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Abstract

In this paper, we study the non-asymptotic sample complexity for the pure ex-
ploration problem in contextual bandits and tabular reinforcement learning (RL):
identifying an ϵ-optimal policy from a set of policies Π with high probability.
Existing work in bandits has shown that it is possible to identify the best policy by
estimating only the difference between the behaviors of individual policies– which
can be substantially cheaper than estimating the behavior of each policy directly
—yet the best-known complexities in RL fail to take advantage of this, and instead
estimate the behavior of each policy directly. Does it suffice to estimate only the
differences in the behaviors of policies in RL? We answer this question positively
for contextual bandits, but in the negative for tabular RL, showing a separation
between contextual bandits and RL. However, inspired by this, we show that it
almost suffices to estimate only the differences in RL: if we can estimate the be-
havior of a single reference policy, it suffices to only estimate how any other policy
deviates from this reference policy. We develop an algorithm which instantiates
this principle and obtains, to the best of our knowledge, the tightest known bound
on the sample complexity of tabular RL.

1 Introduction

Online platforms, such as AirBnB, often try to improve their services by A/B testing different
marketing strategies. Based on the inventory, their strategy could include emphasizing local listings
versus tourist destinations, providing discounts for longer stays, or de-prioritizing homes that have
low ratings. In order to choose the best strategy, the standard approach would be to apply each strategy
sequentially and measure outcomes. However, recognize that the choice of strategy (policy) affects
the future inventory (state) of the platform. This complex interaction between different strategies
makes it difficult to estimate the impact of any strategy, if it were to be applied independently. To
address this, we can model the platform as an Markov Decision Process (MDP) with an observed
state [17, 15] and a finite set of policies Π corresponding to possible strategies. We wish to collect
data by playing exploratory actions which will enable us to estimate the true value of each policy
π ∈ Π, and identify the best policy from Π as quickly as possible.

In addition to A/B testing, similar challenges arise in complex medical trials, learning robot policies
to pack totes, and autonomous navigation in unfamiliar environments. All of these problems can be
formally modeled as the PAC (Probably Approximately Correct) policy identification problem in
reinforcement learning (RL). An algorithm is said to be (ϵ, δ)-PAC if, given a set of policies Π, it
returns a policy π ∈ Π that performs within ϵ of the optimal policy in Π, with probability 1− δ. The
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goal is to satisfy this condition whilst minimizing the number of interactions with the environment
(the sample complexity).

Traditionally, prior work has aimed to obtain minimax or worst-case guarantees for this problem—
guarantees that hold across all environments within a problem class. Such worst-case guarantees
typically scale with the “size” of the environment, for example, scaling as O(poly(S,A,H)/ϵ2), for
environments with S states, A actions, horizon H . While guarantees of this form quantify which
classes of problems are efficiently learnable, they fail to characterize the difficulty of particular
problem instances—producing the same complexity on both “easy” and “hard” problems that share
the same “size”. This is not simply a failure of analysis—recent work has shown that algorithms
that achieve the minimax-optimal rate could be very suboptimal on particular problem instances
[46]. Motivated by this, a variety of recent work has sought to obtain instance-dependent complexity
measures that capture the hardness of learning each particular problem instance. However, despite
progress in this direction, the question of the optimal instance-dependent complexity has remained
elusive, even in tabular settings.

Towards achieving instance-optimality in RL, the key question is: what aspects of a given environment
must be learned, in order to choose a near-optimal policy? In the simpler bandit setting, this question
has been settled by showing that it is sufficient to learn the differences between values of actions rather
than learning the value of each individual action: it is only important whether a given action’s value
is greater or lesser than that of other actions. This observation can yield significant improvements
in sample efficiency [37, 16, 13, 30]. Precisely, the best-known complexity measures in the bandit
setting scale as:

inf
πexp

max
π∈Π

∥ϕπ − ϕ⋆∥2Λ(πexp)−1

∆(π)2
, (1.1)

where ϕπ is the feature vector of action π, ϕ⋆ the feature vector of the optimal action, ∆(π) is the
suboptimality of action π. Here, Λ(πexp) are the covariates induced by πexp, our distribution of
exploratory actions. The denominator of this expression measures the performance gap between
action π and the optimal action. The numerator measures the variance of the estimated (from data
collected by πexp) difference in values between (π, π⋆). The max over actions follows because to
choose the best action, we have to rule out every sub-optimal action from the set of candidates Π; the
infimum optimizes over data collection strategies.

In contrast, in RL, instead of estimating the difference between policy values directly, the best known
algorithms simply estimate the value of each individual policy separately and then take the difference.
This obtains instance-dependent complexities which scale as follows [42]:

H∑
h=1

inf
πexp

max
π∈Π

∥ϕπ
h∥2Λh(πexp)−1 + ∥ϕ⋆

h∥2Λh(πexp)−1

∆(π)2
(1.2)

where ϕπ
h is the state-action visitation of policy π at step h. Since now the difference is calculated

after estimation, the variance of the difference is the sum of the individual variances of the estimates
of each policy, captured in the numerator of (1.2). Comparing the numerator of (1.2) to that of (1.1)
begs the question: in RL can we estimate the difference of policies directly to reduce the sample
complexity of RL?

To motivate why this distinction is important, consider the tabular MDP example of Figure 1. In
this example, the agent starts in state s1, takes one of three actions, and then transitions to one of
states s2, s3, s4. Consider the policy set Π = {π1, π2}, where π1 always plays action a1, and π2 is
identical, except plays actions a2 in the red states. If ϕπi

h ∈ △S×A denotes the state-action visitations
of policy πi at time h = 1, 2, then we see that ϕπ1

1 = ϕπ2
1 since π1 and π2 agree on the action in s1.

But ϕπ1
2 ̸= ϕπ2

2 as their actions differ on the red states.

Since these red states will be reached with probability at most 3ϵ, the norm of the difference

∥ϕπ
2 − ϕ⋆

2∥2Λ2(πexp)−1 =
∑
s,a

(ϕπ
2 (s, a)− ϕ⋆

2(s, a))
2

ϕ
πexp

2 (s, a)

is significantly less than the sum of the individual norms

∥ϕπ
2∥2Λ2(πexp)−1 + ∥ϕ⋆

2∥2Λ2(πexp)−1 =
∑
s,a

ϕπ
2 (s, a)

2 + ϕ⋆(s, a)2

ϕ
πexp

2 (s, a)
.
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Figure 1: A motivating example for differences. The rewards for all actions other than the ones
specified in the figure are 0. Define policy set Π = {π1, π2} so that π1 always plays a1, whereas
π2 plays a1 on green states but a2 on red states. The difference of their state-action visitation
probabilities is only non-zero in states s3, s4 and are just O(ϵ) apart.

Intuitively, to minimize differences πexp can explore just states s3, s4 where the policies differ,
whereas minimizing the individual norms requires wasting lots of energy in state s2 where the two
policies and the difference is zero. Formally:
Proposition 1. On the MDP and policy set Π from Figure 1, we have that

inf
πexp

max
π∈Π
∥ϕπ

2∥2Λ2(πexp)−1 ≥ 1 and inf
πexp

max
π∈Π
∥ϕ⋆

2 − ϕπ
2∥2Λ2(πexp)−1 ≤ 15ϵ2.

Proposition 1 shows that indeed, the complexity of the form Equation (1.1) (generalized to RL) in
terms of differences could be significantly tighter than Equation (1.2); in this case, it is a factor of ϵ2
better. But achieving a sample complexity that depends on the differences requires more than just a
better analysis: it requires a new estimator and an algorithm to exploit it.

Contributions. In this work, we aim to understand whether such a complexity is achievable in RL.
Letting ρΠ denote the generalization of (1.1) to the RL case—that is, (1.2) but with ∥ϕπ

h∥2Λh(πexp)−1

replaced by ∥ϕπ
h − ϕπ⋆

h ∥2Λh(πexp)−1 , our contributions are as follows:

1. In the Tabular RL case, [2] recently showed that ρΠ is a lower bound on the sample complexity of
RL by characterizing the difficulty of learning the unknown reward function; however, they did
not resolve whether it is achievable when the state-transitions are unknown as well. We provide a
lower bound which demonstrates that O(ρΠ) is not sufficient for learning with state transitions.

2. We provide an algorithm PERP, which first learns the behavior a particular reference policy π̄,
and then estimates the difference in behavior between π̄ and every other policy π, rather than
estimating the behavior of each π directly.

3. In the case of tabular RL, we show that PERP obtains a complexity that scales with O(ρΠ), in
addition to an extra term which measures the cost of learning the behavior of the reference policy
π̄. We argue that this additional term is critical to achieving instance-optimal guarantees in RL,
and that PERP leads to improved complexities over existing work.

4. In the contextual bandit setting, we provide an upper bound that scales (up to lower order terms)
as O(ρΠ) for the unknown-context distribution case. This matches the lower bound from [30]
for the known context distribution case, thus showing that ρΠ is necessary and sufficient in
contextual bandits even when the context distribution is unknown. Hence, we observe a qualitative
information-theoretic separation between contextual bandits and RL.

The key insight from our work is that it does not suffice to only learn the differences between policy
values in RL, but it almost suffices to—if we can learn how a single policy behaves, it suffices to
learn the difference between this policy and every other policy.

2 Related Work

The reinforcement learning literature is vast, and here we focus on results in tabular RL and instance-
dependent guarantees in RL.
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Minimax Guarantees Tabular RL. Finite-time minimax-style results on policy identification in
tabular MDPs go back to at least the late 90s and early 2000s [24, 26, 25, 8, 21]. This early work was
built upon and refined by a variety of other works over the following decade [38, 4, 34, 39], leading
up to works such as [28, 9], which establish sample complexity bounds of O(S2A · poly(H)/ϵ2).
More recently, [10, 11, 33] have proposed algorithms which achieve the optimal dependence of
O(SA · poly(H)/ϵ2), with [11, 33] also achieving the optimal H dependence. The question of
regret minimization is intimately related to that of policy identification—any low-regret algorithm
can be used to obtain a near-optimal policy via an online-to-batch conversion [19]. Early examples of
low-regret algorithms in tabular MDPs are [3, 4, 5, 48], with more recent works removing the horizon
dependence or achieving the optimal lower-order terms as well [50, 51]. Recently, [6, 7] provide
minimax guarantees in the multi-task RL setting as well.

Instance-Dependence in RL. While the problem of obtaining worst-case optimal guarantees in
tabular RL is nearly closed, we are only beginning to understand what types of instance-dependent
guarantees are possible. In the setting of regret minimization, [35, 14] achieve instance-optimal
regret for tabular RL asymptotically. Simchowitz and Jamieson [36] show that standard optimistic
algorithms achieve regret bounded asO(

∑
s,a,h

logK
∆h(s,a)

), a result later refined by [47, 12]. In settings
of RL with linear function approximation, several works achieve instance-dependent regret guarantees
[18, 44]. Recently, Wagenmaker and Foster [45] achieved finite-time guarantees on instance-optimal
regret in general decision-making settings, a setting encompassing much of RL.

On the policy identification side, early works obtaining instance-dependent guarantees for tabular
MDPs include [49, 20, 31, 32], but they all exhibit shortcomings such as requiring access to a
generative model or lacking finite-time results. The work of Wagenmaker et al. [46] achieves a
finite-time instance-dependent guarantee for tabular RL, introducing a new notion of complexity,
the gap-visitation complexity. In the special case of deterministic, tabular MDPs, Tirinzoni et al.
[41] show matching finite-time instance-dependent upper and lower bounds. For RL with linear
function approximation, [42, 43] achieve instance-dependent guarantees on policy identification, in
particular, the complexity given in (1.2), and propose an algorithm, PEDEL, which directly inspires
our algorithmic approach. On the lower bound side, Al-Marjani et al. [2] show that ρΠ is necessary
for tabular RL, but fail to close the aforementioned gap between ρΠ and (1.2). We will show instead
that this gap is real and both the lower bound of Al-Marjani et al. [2] and upper bound of Wagenmaker
and Jamieson [42] are loose.

Several works on linear and contextual bandits are also relevant. In the seminal work, [37] posed
the best-arm identification problem for linear bandits and beautifully argued—without proof—that
estimating differences were crucial and that (1.1) ought to be the true sample complexity of the
problem. Over time, this conjecture was affirmed and generalized [16, 13, 22]. This improved
understanding of pure-exploration directly led to instance-dependent optimal linear bandit algorithms
for regret [29, 27]. More recently, contextual bandits have also been given a similar treatment [40, 30].

3 Preliminaries and Problem Setting

Let ∥x∥2Λ = x⊤Λx for any (x,Λ). We let Eπ denote the probability measure induced by playing
policy π in our MDP.

Tabular Markov Decision Processes. We study episodic, finite-horizon, time inhomogenous and
tabular Markov Decision Processes (MDPs), denoted by the tuple (S,A, H, {Ph}Hh=1, {νh}Hh=1)
where the state space S and action space A are finite, H is the horizon, Ph ∈ RS×SA denote the
transition matrix at stage h where [Ph]s′,sa = P(sh+1 = s′|sh = s, ah = a), and νh(s, a) ∈ △[0,1]

denote the distribution over reward at stage h when the state of the system is s and action a is chosen.
Let rh(s, a) be the expectation of a reward drawn from νh(s, a). We assume that every episode starts
in state s1, and that νh and Ph are initially unknown and must be estimated over time.

Let π = {πh}Hh=1 denote a policy mapping states to actions, so that πh(s) ∈ △A denotes the
distribution over actions for the policy at (s, h); when the policy is deterministic, πh(s) ∈ A outputs
a single action. An episode begins in state s1, the agent takes action a1 ∼ π1(s1) and receives reward
R1 ∼ ν1(s1, a1) with expectation r1(s1, a1); the environment transitions to state s2 ∼ Ph(s1, a1).
The process repeats until timestep H , at which point the episode ends and the agent returns to state
s1. Let V π

h (s) = Eπ[
∑H

h′=h rh′(sh′ , ah′)|sh = s], V π
0 the total expected reward, V π

0 := V π
1 (s0),
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and Qπ
h(s, a) = Eπ[

∑H
h′=h rh′(sh′ , ah′)|sh = s, ah = a] the amount of reward we expect to collect

if we are in state s at step h, play action a and then play policy π for the remainder of the episode.
Note that we can understand these functions as S and SA-dimensional vectors respectively. We use
V π = V π

0 when clear from context.

We call wπ
h ∈ △S the state visitation vector at step h for policy π, so that wπ

h(s) captures the
probability that policy π would land in state s at step h during an episode. Let πh ∈ RSA×S denote
the policy matrix for policy π, that maps states to state-actions as follows

[πh](s,a),s′ = I(s = s′)[πh(s)]a.

Denote ϕπ
h ∈ △SA as ϕπ

h := πhw
π
h as the state-action visitation vector: ϕπ

h(s, a) measures the
the probability that policy π would land in state s and play action a at step h during an episode.
From these definitions, it follows that [Phϕ

π
h]s = [Phπhw

π
h ]s = wπ

h+1(s). For policy π, denote the
covariance matrix at timestep h as Λh(π) =

∑
s,a ϕ

π
h(s, a)e(s,a)e

⊤
(s,a).

(ϵ, δ)-PAC Best Policy Identification. For a collection of policies Π, define π⋆ := argmaxπ∈Π V π

as the optimal policy, V ⋆ its value, and ϕ⋆
h as its state-action visitation vector. Let ∆min :=

minπ∈Π\{π⋆} V
⋆ − V π in the case when π⋆ is unique, and otherwise ∆min := 0. Define ∆(π) :=

max{V ⋆ − V π,∆min}. Given ϵ ≥ 0, δ ∈ (0, 1) an algorithm is said to be (ϵ, δ)-PAC if at a stopping
time τ of its choosing, it returns a policy π̂ which satisfies ∆(π) ≤ ϵ with probability 1 − δ. Our
goal is to obtain an (ϵ, δ)-PAC algorithm that minimizes τ . A fundamental complexity measure used
throughout this work is defined as

ρΠ :=

H∑
h=1

inf
πexp

max
π∈Π

∥ϕ⋆
h − ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2}
for ∥ϕ⋆

h − ϕπ
h∥2Λh(πexp)−1 :=

∑
s,a

(ϕ⋆
h(s,a)−ϕπ

h(s,a))
2

ϕ
πexp
h (s,a)

where the infimum is over all exploration policies πexp (not necessarily just those in Π). Recall that
for ϵ = 0, [2] showed any (ϵ, δ)-PAC algorithm satisfies E[τ ] ≥ ρΠ log( 1

2.4δ ).

4 What is the Sample Complexity of Tabular RL?

In this section, we seek to understand the complexity of tabular RL. We start by showing that ρΠ is
not sufficient. We have the following result.
Lemma 1. For the MDPM and policy set Π from Figure 1,

1.
∑H

h=1 infπexp maxπ∈Π

∥ϕ⋆
h−ϕπ

h∥
2
Λh(πexp)−1

max{ϵ2,∆(π)2} ≤ 15,

2. Any (ϵ, δ)-PAC algorithm must collect at least EM[τ ] ≥ 1
ϵ · log

1
2.4δ . samples.

Where does the additional complexity arise on the instance of Figure 1? As described in the
introduction, π1 and π2 differ only on the red states, and a complexity scaling as ρΠ quantifies only
the difficulty of distinguishing {π1, π2} on these states. Note that on this example π1 plays the
optimal action in state s3 and a suboptimal action in state s4, and π2 plays a suboptimal action in s3
and the optimal action in s4. The total reward of policy π1 is therefore equal to the reward achieved
at state s3 times the probability it reaches state s3, and the total reward of policy π2 is the reward
achieved at state s4 times the probability it reaches state s4. Here, ρΠ would quantify the difficulty of
learning the reward achieved at each state. However, it fails to quantify the probability of reaching
each state, since this depends on the behavior at step 1, not step 2.

Thus, on this example, to determine whether π1 or π2 is optimal, we must pay some additional
complexity to learn the outgoing transitions from the initial state, giving rise to the lower bound in
Lemma 1. Inspecting the lower bound of [2], one realizes that the construction of this lower bound
only quantifies the cost of learning the reward distributions {νh}h and not the state transition matrices
{Ph}h. On examples such as Figure 1, this lower bound then does not quantify the cost of learning
the probability of visiting each state, which we’ve argued is necessary. We therefore conclude that,
while ρΠ may be enough for learning the rewards, it is not sufficient for solving the full tabular RL
problem. Our main algorithm builds on this intuition, and, in addition to estimating the rewards, aims
to estimate where policies visit as efficiently as possible.
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4.1 Main Result

If ρΠ is not achievable as the sample complexity for Tabular RL, what is the best that we can do?
In this section, we answer this question with our sample complexity bound; we later describe the
algorithmic insights that enable us to achieve this result in the following section. First, for any
π, π̄ ∈ Π, we define

U(π, π̄) :=
∑H

h=1Esh∼wπ̄
h
[(Qπ

h(sh, πh(sh))−Qπ
h(sh, π̄h(sh)))

2]. (4.1)

Now, we state our main result.
Theorem 1. There exists an algorithm (Algorithm 1) which, with probability at least 1− 2δ, finds an
ϵ-optimal policy and terminates after collecting at most

H∑
h=1

inf
πexp

max
π∈Π

H4∥ϕ⋆
h − ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2}
· ιβ2 +max

π∈Π

HU(π, π⋆)

max{ϵ2,∆(π)2}
log H|Π|ι

δ +
Cpoly

max{ϵ 5
3 ,∆

5
3

min}

episodes, for Cpoly := poly(S,A,H, log 1/δ, ι, log |Π|), β := C
√
log(SH|Π|

δ · 1
∆min∨ϵ ) and

ι := log 1
∆min∨ϵ .

Theorem 1 shows that, up to terms lower-order in ϵ and ∆min, ρΠ is almost sufficient, if we are willing
to pay for an additional term scaling as U(π, π⋆)/∆(π)2. Recognize the similarity of this term to
the that from the performance difference lemma: if there were no square inside the expectation, the
quantity U(π, π⋆) would be equal to ∆(π). However, the square may change the scaling in some
instances. Below, Lemma 2 shows that there exist settings where the complexity of Theorem 1 could
be significantly tighter than Equation (1.2), the complexity achieved by the PEDEL algorithm of [42].
We revisit the instance from Figure 1 to show this; recall from Lemma 1 that the first term from
Theorem 1 is a universal constant for this instance.
Lemma 2. On MDPM and policy set Π from Figure 1, we have:

1. maxπ∈Π
HU(π,π⋆)

max{ϵ2,∆(π)2} = 3H
ϵ ,

2.
∑H

h=1 infπexp
maxπ∈Π

∥ϕπ
h∥

2
Λh(πexp)−1

max{ϵ2,∆(π)2} ≥
H
ϵ2 .

Furthermore, the complexity of Theorem 1 is never worse than Equation (1.2).
Lemma 3. For any MDP instance and policy set Π, we have that

max

{ H∑
h=1

inf
πexp

max
π∈Π

∥ϕ⋆
h − ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2}
,

HU(π, π⋆)

max{ϵ2,∆(π)2}

}
≤

H∑
h=1

inf
πexp

max
π∈Π

∥ϕπ
h∥2Λh(πexp)−1

max{ϵ2,∆(π)2}
.

We briefly remark on the lower-order term for Theorem 1, Cpoly

max{ϵ5/3,∆5/3
min}

. Note that for small ϵ or

∆min, this term will be dominated by the leading-order terms, which scale with min{ϵ−2,∆−2
min}.

While we make no claims on the tightness of this term, we note that recent work has shown that some
lower-order terms are necessary for achieving instance-optimality [45].

4.2 The Main Algorithmic Insight: The Reduced-Variance Difference Estimator

In this section, we describe how we can estimate the difference between the values of policies directly,
and provide intuition for why this results in the two main terms in Theorem 1. Fix any reference
policy π̄ and logging policy µ (neither are necessarily in Π). Here µ can be thought of as playing the
role of πexp. Or, we can consider the A/B testing scenario from the introduction, where a policy µ is
taking random actions and one wishes to perform off-policy estimation over some set of policies Π
[17, 15]. For any s ∈ S, we define

δπh(s) := wπ
h(s)− wπ̄

h(s)

as the difference in state-visitations of policy π from reference policy π̄, and δπh ∈ RS as the
vectorization of δπh(s

′).
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Policy selection rule. First, we describe our procedure of data collection and estimation. We
collect Kπ̄ trajectories from π̄ and Kµ trajectories from µ, and let {ŵπ̄

h(s)}s,h denote the empirical
state visitations from playing π̄. From the data collected by playing µ, we construct estimates
{P̂h(s

′|s, a)}s,a,s′,h of the transition matrices. Note that ŵπ̄
h(s) simply counts visitations, so that

E[(ŵπ̄
h(s)− wπ̄

h(s))
2] ≤ wπ̄

h(s)
Kπ̄

for all h, s. Define estimated state visitations for policy π in terms of

deviations from π̄ as ŵπ
h := ŵπ̄

h + δ̂πh . Here, δ̂πh is defined recursively as:

δ̂πh+1 := P̂hπhδ̂
π
h + P̂h(πh − π̄h)ŵ

π̄
h

Then, assuming, for simplicity, that rewards are known, we recommend the following policy:

π̂ = argmax
π∈Π

D̂π where D̂π :=
∑H

h=1⟨rh,πhδ̂
π
h⟩ − ⟨rh, (π̄h − πh)ŵ

π̄
h⟩

Sufficient condition for ϵ-optimality. Here, we show that if

∀π ∈ Π, |D̂π −Dπ| ≤ 1

3
max{ϵ,∆(π)} (4.2)

then π̂ is ϵ-optimal. First, write the difference between values of policies π and π̄ as:

Dπ := V π
0 − V π̄

0 =
∑H

h=1⟨rh,πhw
π
h⟩ −

∑H
h=1⟨rh, π̄hw

π̄
h⟩

=
∑H

h=1⟨rh,πhδ
π
h⟩ − ⟨rh, (π̄h − πh)w

π̄
h⟩.

(4.3)

Then, it is easy to verify that if |D̂π −Dπ| ≤ 1/3 ∆(π), then D̂π⋆ − D̂π ≥ 0; hence, π̂ ̸= π. Hence,
under Condition (4.2), either π̂ = π⋆ or or |D̂π −Dπ| ≤ ϵ. In the first case, clearly π̂ is ϵ-optimal.
In the second case, we can add and subtract terms to write

V ⋆ − V π̂ ≤ |Dπ⋆

− D̂π⋆

|+ D̂π⋆

− D̂π̂ + |D̂π̂ −Dπ̂| ≤ 2ϵ

3
+ D̂π⋆

− D̂π̂ ≤ 2ϵ

3
.

The last inequality follows since π̂ maximizes D̂π . Hence, π̂ would be ϵ-optimal in this case as well.

Sample complexity. Now, we characterize how many samples must be collected from µ and π̄ in
order to meet Condition (4.2). After dropping some lower-order terms and unrolling the recursion
(see Section A for details), we observe that

δ̂πh+1 − δπh+1 ≈ (P̂h − Ph)(ϕ
π
h − ϕπ̄

h) + Ph(πh − π̄h)(ŵ
π̄
h − wπ̄

h) + Phπh(δ̂
π
h − δπh)

=
∑h

k=0

(∏h
j=k+1 Pjπj

)(
(P̂k − Pk)(ϕ

π
k − ϕπ̄

k ) + Pk(πk − π̄k)(ŵ
π̄
k − wπ̄

k )
)
.

After manipulating this expression a bit more, we observe that
H∑

h=1

⟨rh,πh(δ̂
π
h − δπh)⟩ =

H−1∑
k=0

⟨V π
k+1, (P̂k − Pk)(ϕ

π
k − ϕπ̄

k ) + Pk(πk − π̄k)(ŵ
π̄
k − wπ̄

k )⟩

Recognizing Qπ
h = rh + P⊤

h V π
h+1,

|D̂π −Dπ| =

∣∣∣∣∣
H∑

h=1

⟨rh,πh(δ̂
π
h − δπh)⟩+ ⟨rh, (πh − π̄h)(ŵ

π̄
h − wπ̄

h)⟩

∣∣∣∣∣
=

∣∣∣∣∣
H−1∑
h=0

⟨V π
h+1, (P̂h − Ph)(ϕ

π
h − ϕπ̄

h)⟩+ ⟨rh + P⊤
h V π

h+1, (πh − π̄h)(ŵ
π̄
h − wπ̄

h)⟩

∣∣∣∣∣
We can bound this as:

≲

√√√√H2

H−1∑
h=0

∑
s,a

(ϕπ
h(s, a)− ϕπ̄

h(s, a))
2

Kµµh(s, a)
+

√√√√H−1∑
h=0

∑
s

(
Qπ

h(s, πh(s))−Qπ
h(s, π̄h(s))

)2wπ̄
h(s)

Kπ̄

=

√√√√H2

H−1∑
h=0

∥ϕπ
h − ϕπ̄

h∥2Λh(µ)−1

Kµ
+

√
U(π, π̄)

Kπ̄
.
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Here, we applied Bernstein’s inequality and observed that
∑

s′ V
π
h+1(s

′)2Ph(s
′|s, a) ≤ H2. Now,

we have that if

Kµ ≳ max
π∈Π

H−1∑
h=0

H2∥ϕπ
h − ϕπ̄

h∥2Λh(µ)−1

max{ϵ2,∆(π)2}
and Kπ̄ ≳ max

π∈Π

U(π, π̄)

max{ϵ2,∆(π)2}
(4.4)

then Condition (4.2) holds. Notice that up to H and log(·) factors, this is precisely the sample
complexity of Theorem 1 if we set π̄ = π⋆ and minimize over all logging/exploration policies
µ/πexp. Note that, if V̄ denotes the average reward collected from rolling out π̄ Kπ̄ times, then

|V̄ − V π̄
0 | ≤

√
H2

Kπ̄
by Hoeffding’s inequality. Thus, one could use V̂ π = D̂π + V̄ as an effective

off-policy estimator. Likewise, D̂π − D̂π′
is an effective estimator for V π

0 − V π′

0 .

This calculation (elaborated on in Appendix A) suggests that our analysis is tight, and clearly
illustrates that the U(π, π̄) term arises due to estimating the behavior of the reference policy wπ̄

h .
The U(π, π̄) term is, to the best of our knowledge, novel in the literature. More precisely, this term
corresponds to the cost of estimating where π̄ visits, if our goal is to estimate the difference in value
between policy π and π̄. If, for a given state, the actions taken by π and π̄ achieve the same long-term
reward, then it is not critical that the frequency with which π̄ visits this state is estimated, as it does
not affect the difference in values between π and π̄; if the actions take by π and π̄ do achieve different
long-term reward at s, then we must estimate the behavior of each policy at this state. This is reflected
by the term inside the expectation of U(π, π̄); this will be 0 in the former case, and scale with the
difference between long-term action reward in the latter case.

Additionally, note that if we had offline data from some policy π̄, that had been played for a long time,
so that Kπ̄ ≈ ∞, then we would only incur the Kµ term; this is precisely ρΠ, but with π⋆ replaced
with our reference policy π̄ in the numerator.

5 Achieving Theorem 1: PERP Algorithm

While the above section provides intuition for where the terms in Theorem 1 come from, it does not
lead to a practical algorithm. This is because the desired number of samples in Equation (4.4) are in
terms of unknown quantities: {∥ϕπ

h − ϕπ̄
h∥2Λh(µ)−1 ,∆(π), U(π, π̄)}, which depend on our unknown

environment variables νh, Ph; hence, we would not know how many samples to collect. In this
section, we propose an algorithm that will proceed in rounds, successively improving our estimates
of these quantities. Define

Ûℓ,h(π, π
′) := Êπ′,ℓ[(Q̂

π
ℓ,h(sh, πh(s))− Q̂π

ℓ,h(sh, π
′
h(s)))

2], (5.1)

where Êπ′,ℓ denotes the expectation induced playing policy π′ on the MDP with transitions P̂ℓ,h, and
Q̂π

ℓ,h denotes the Q-function of policy π on this same MDP. To compute P̂ℓ,h, we use the standard

estimator: P̂ℓ,h(s
′ | s, a) = Nℓ,h(s,a,s

′)
Nℓ,h(s,a)

for Nℓ,h(s, a) and Nℓ,h(s, a, s
′) the visitation counts in DED

ℓ,h .

We set P̂ℓ,h(s
′ | s, a) = unif(S) if Nℓ,h(s, a) = 0. The analogous estimator is used to estimate r̂ℓ,h.

The quantity ϕπ
h − ϕπ̄

h is estimated as in the previous section: (πh − π̄ℓ,h)ŵ
π̄
ℓ,h + πhδ̂

π
ℓ,h.

Algorithm 1 proceeds in epochs. It begins with a policy set Π1, which contains all policies of interest,
Π. It then gradually begins to refine this policy set, seeking to estimate the difference in values
between policies in the set up to tolerance ϵℓ = 2−ℓ. To achieve this, it instantiates the intuition
above. First, it chooses a reference policy π̄ℓ, then running this estimate a sufficient number of times
to estimate wπ̄ℓ

h . Given this estimate, it then seeks to estimate δπh for each π in the active set of
policies, Πℓ, by collecting data covering the directions (πh − π̄ℓ,h)ŵ

π̄
ℓ,h + πhδ̂

π
ℓ,h for all π ∈ Πℓ. To

efficiently collect this covering data, on line 12, we run a data collection procedure first developed in
[42]. Finally, after estimating each δπh , it estimates the differences between policy values as in (4.3),
and eliminates suboptimal policies.

The computational complexity of PERP is poly (S,A,H, 1/ϵ, |Π|, log(1/δ)). The primary contributor
to the computational complexity is the the use of the Franke-Wolfe algorithm for experiment design
in the OPTCOV subroutine. Lemma 37 from Wagenmaker and Pacchiano [43] shows that the number
of iterations of the Franke-Wolfe algorithm is bounded polynomially in the problem parameters,
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Algorithm 1 PERP: Policy Elimination with Reference Policy (informal)

Require: tolerance ϵ, confidence δ, policies Π
1: Π1 ← Π, P̂0 ← arbitrary transition matrix
2: for ℓ = 1, 2, 3, . . . , ⌈log2 16

ϵ ⌉ do
3: Set ϵℓ ← 2−ℓ

4: // Compute new reference policy
5: Compute Ûℓ−1,h(π, π

′) as in (5.1) for all (π, π′) ∈ Πℓ

6: Choose π̄ℓ ← minπ̄∈Πℓ
maxπ∈Πℓ

∑H
h=1 Ûℓ−1,h(π, π̄)

7: Collect the following number of episodes from π̄ℓ and store in dataset Dref
ℓ

n̄ℓ = O
(
max
π∈Πℓ

c · HÛℓ−1(π,π̄ℓ)
ϵ2ℓ

· log Hℓ2|Πℓ|
δ

)
8: Compute {ŵπ̄

ℓ,h(s)}Hh=1 using empirical state visitation frequencies in Dref
ℓ

9: // Estimate Policy Differences
10: Initialize δ̂π1 ← 0
11: for h = 1, . . . ,H do
12: Run OPTCOV (Algorithm 3) to collect dataset DED

ℓ,h such that:

sup
π∈Πℓ

∥(πh − π̄ℓ,h)ŵ
π̄
ℓ,h + πhδ̂

π
ℓ,h∥2Λ−1

ℓ,h

≤ ϵ2ℓ/H
4β2

ℓ for Λℓ,h =
∑

(s,a)∈DED
ℓ,h

esae
⊤
sa

and βℓ ← O(
√

logSHℓ2|Πℓ|/δ)
13: Use DED

ℓ,h to compute P̂ℓ,h(s
′|s, a) and r̂ℓ,h

14: Compute δ̂πℓ,h+1 ← P̂ℓ,h(πh − π̄ℓ,h)ŵ
π̄
ℓ,h + P̂ℓ,hπhδ̂

π
ℓ,h)

15: end for
16: // Eliminate suboptimal policies
17: Compute D̂π̄ℓ

(π)←
∑

h⟨r̂ℓ,h,πhδ̂ℓ,h⟩+
∑

h⟨r̂ℓ,h, (πh − π̄ℓ,h)ŵ
π̄
ℓ,h⟩

18: Update Πℓ+1 = Πℓ\{π ∈ Πℓ : maxπ′ D̂π̄ℓ
(π′)− D̂π̄ℓ

(π) > 8ϵℓ }
19: if |Πℓ+1| = 1 then return π ∈ Πℓ+1

20: end for
21: return any π ∈ Πℓ+1

and from the definition of this procedure given in Wagenmaker and Pacchiano [43], we see that
each iteration of Franke-Wolfe has computational complexity polynomial in problem parameters.
We omit several technical details from Algorithm 1 for simplicity, but present the full definition in
Algorithm 2.

6 When is ρΠ Sufficient?

Our results so far show that ρΠ is not in general sufficient for tabular RL. In this section, we consider
several special cases where it is sufficient.

Tabular Contextual Bandits. The tabular contextual bandit setting is the special case of the RL
setting with H = 1 and where the initial action does not affect the next-state transition. Theorem 2.2
of Li et al. [30] show that if the rewards distributions ν(s, a) are Gaussian for each (s, a), where here
s denotes the context, any (0, δ)-PAC algorithm requires at least ρΠ samples. Crucially, however, they
assume that the context distribution—in this case corresponding to the initial transition P1—is known.
Their algorithm makes explicit use of this fact, using this to estimate the value of ϕπ . The following
result shows that knowing the context distribution is not critical—we can achieve a complexity of
O(ρΠ) without this prior knowledge.

Corollary 1. For the setting of tabular contextual bandits, there exists an algorithm such that with
probability at least 1− 2δ, as long as Π contains only deterministic policies, it finds an ϵ-optimal
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policy and terminates after collecting at most the following number of samples:

inf
πexp

max
π∈Π

∥ϕ⋆ − ϕπ∥2Λ(πexp)−1

max{ϵ2,∆(π)2}
· β2 log

1

∆min ∨ ϵ
+

Cpoly

max{ϵ5/3,∆5/3
min}

,

for Cpoly = poly(|S|, A, log 1/δ, log 1/(∆min ∨ ϵ), log |Π|) and β = C
√
log(S|Π|

δ ·
1

∆min∨ϵ ).

The theorem is proved in Appendix D, and follows from the application of our algorithm PERP to the
contextual bandit problem. The key intuition behind this result is that, in the contextual case:

U(π, π̄) = Es∼P1
[(r1(s, π1(s))− r1(s, π̄1(s))

2] ≤ Es∼P1
[I{π1(s) ̸= π̄1(s)}].

It is then possible to show that, since πexp only has choices of which actions are taken (and cannot
affect the context distribution), this can be further bounded by infπexp

∥ϕπ−ϕπ̄∥2Λ(πexp)−1 . This is not
true in the full MDP case, where our choice of exploration policy in πexp could make infπexp

∥ϕπ −
ϕπ̄∥2Λ(πexp)−1 significantly smaller than U(π, π̄) (as is the case in Lemma 2). Hence, we observe that
the cost of learning the contexts is dominated by that of learning the rewards in the case of contextual
bandits. This is the opposite of tabular RL, where our complexity from Theorem 1 is unchanged
(as seen in Section 4.2) even if we knew the reward distribution. This shows that there is a distinct
separation between instance-optimal learning in tabular RL vs contextual bandits.

MDPs with Action-Independent Transitions. In the special case of MDPs where the transitions
do not depend on the actions selected, the complexity simplifies to O(ρΠ). Note that this exactly
matches (up to lower order terms) the lower bound from [2].
Corollary 2. Assume that all Ph are such that Ph(s

′|s, a) = Ph(s
′|s, a′) for all (a, a′) ∈ A. Then,

with probability at least 1− 2δ, PERP (Algorithm 2) finds an ϵ-optimal policy and terminates after
collecting at most the following number of episodes:

H∑
h=1

inf
πexp

max
π∈Π

∥ϕ⋆
h − ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2}
· ιH4β2 +

Cpoly

max{ϵ5/3,∆5/3
min}

for Cpoly, β as defined in Theorem 1.

The intuition for Corollary 2 is similar to that of Corollary 1, and proved in Appendix E.

7 Discussion

In this paper, we performed a fine-grained study of the instance-dependent complexity of tabular RL.
We proposed a new off-policy estimator that estimates the value relative to a reference policy. We
leveraged this insight to close the instance-dependent contextual bandits problem and obtained the
tightest known upper bound for tabular MDPs.

Limitations and Future work One limitation of the present work is that PERP, in it’s current form,
would be too computationally expensive to run for most practical applications; enumerating the policy
set Π is often intractable, but works in contextual bandits have avoided this issue by only relying on
argmax oracles over this set [1, 30]; an interesting direction of future work would be to extend this
technique to tabular RL. Extending the results from this paper to obtain refined instance-dependent
bounds for linear MDPs and general function approximation is an exciting direction as well.

The new estimator and its improved sample complexity raise additional theoretical questions. Our
upper bound has unfortunate low order terms; can these be removed? Can one show that U(π,π̄)

max{∆(π)2,ϵ2}
is unavoidable for all MDPs in general, thereby matching our upper bound? As discussed above, a
few works have proven gap-dependent regret upper bounds, but we are unaware of any matching
lower bounds besides over restricted classes of MDPs; can our estimator involving the differences
result in even tighter instance-dependent regret bounds for MDPs?
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Notation Description
S State space
A Action space
H Horizon
Ph Transition matrix at stage h
νh Distribution over reward at stage h
rh(s, a) Expected reward at stage h for state s and action a
π Policy
Π Set of candidate policies
πh(s) Distribution over actions for policy π at state s and stage h
wπ

h State visitation vector at step h for policy π
πh Policy matrix for policy π at step h
ϕπ
h State-action visitation vector for policy π at step h

Λh(π) Expected covariance matrix at timestep h for policy π
Qπ

h(s, a) Q-value function for policy π at state s, action a, and step h
V π
h (s) Value function for policy π at state s and step h

V π Value of policy π
π⋆ Optimal policy within Π
∆(π) Suboptimality of policy π
W ⋆

h (s) Maximum probability of reaching state s at step h over all policies
C Context space (for contextual bandits)
µ⋆ Context distribution (for contextual bandits)
θ⋆ Reward parameters (for contextual bandits)
ρΠ Complexity measure based on feature differences
π̄ℓ Reference policy
δπh Difference in state visitation between policy π and reference policy at step h
Dπ̄ℓ

(π) Difference in value between policy π and reference policy
Uh(π, π

′) Expected squared difference in Q-values between policies π and π′ at step h

Skeepℓ Set of reachable states at epoch ℓ
ϵℓunif Minimum reachability threshold at epoch ℓ
ϵℓexp Tolerance for experiment design at epoch ℓ
βℓ Confidence parameter at epoch ℓ
nℓ,K

ℓ
unif Number of samples and minimum exploration at epoch ℓ

DED
ℓ,h Dataset collected during exploration in PERP

Dref
ℓ Dataset collected from reference policy

Table 1: Table of notation used in the paper

A Understanding the origins of U(π, π̄)

This section is inspired by the exposition of Soare et al. [37] for justifying the sample complexity
of linear bandits. Fix a reference policy π̄ and some (stochastic) logging policy µ. For K ∈ N
to be determined later, roll out π̄ K times and compute the empirical state visitations ŵπ̄

h(s) =
1
K

∑K
k=1

∑
s,h 1{skh = s}. Also roll out µK times and compute the empirical transition probabilities

P̂h(s
′|s, a) =

∑K
k=1 1{(skh,a

k
h,s

k
h+1)=(s,a,s′)}∑K

k=1 1{(skh,a
k
h)=(s,a)} . For any π ̸= π̄, use {P̂h(s

′|s, a)}s,a,s′,h to compute

ŵπ
h(s). With δπh+1 := wπ

h+1 − wπ̄
h+1 = Phπhw

π
h − Phπ̄hw

π̄
h = Phπhδ

π
h + Ph(πh − π̄h)w

π̄
h set

D(π) = V π
0 − V π̄

0 =

H∑
h=1

⟨rh,πhw
π
h − π̄hw

π̄
h⟩ =

H∑
h=1

⟨rh,πhδ
π
h⟩+ ⟨rh, (πh − π̄h)w

π̄
h⟩

and also define the empirical counterparts δ̂πh+1 := P̂hπhδ̂
π
h + P̂h(πh − π̄h)ŵ

π̄
h with

D̂(π) =

H∑
h=1

⟨rh,πhδ̂
π
h⟩+ ⟨rh, (πh − π̄h)ŵ

π̄
h⟩.
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If π̂ = argmaxπ∈Π D̂(π), how large must K be to ensure that π̂ = π⋆ := argmaxπ∈Π D(π) =
argmaxπ∈Π V π

0 ?

Assume at time h = 0 all policies are initialized arbitrarily in some state s0 so that P̂0(s
′|s0, a)

simply defines the initial empirical state distribution at time h = 1. Let ŵπ
0 (s0) = wπ

0 (s0) = 1 We
can then unroll the recursion for h = 0, . . . ,H − 1

δ̂πh+1 − δπh+1 = P̂hπhδ̂
π
h + P̂h(πh − π̄h)ŵ

π̄
h − δπh+1

= (P̂h − Ph)πhδ
π
h + (P̂h − Ph)(πh − π̄h)w

π̄
h + Ph(πh − π̄h)(ŵ

π̄
h − wπ̄

h) + Phπh(δ̂
π
h − δπh)

+ (P̂h − Ph)πh(δ̂
π
h − δπh) + (P̂h − Ph)(πh − π̄h)(ŵ

π̄
h − wπ̄

h)︸ ︷︷ ︸
Low order terms ≈ 0

≈ (P̂h − Ph)(ϕ
π
k − ϕπ̄

k ) + Ph(πh − π̄h)(ŵ
π̄
h − wπ̄

h) + Phπh(δ̂
π
h − δπh)

≈
h∑

i=0

( h∏
j=h−i+1

Pjπj

)(
(P̂h−i − Ph−i)(ϕ

π
h−i − ϕπ̄

h−i) + Ph−i(πh−i − π̄h−i)(ŵ
π̄
h−i − wπ̄

h−i)
)

=

h∑
k=0

( h∏
j=k+1

Pjπj

)(
(P̂k − Pk)(ϕ

π
k − ϕπ̄

k ) + Pk(πk − π̄k)(ŵ
π̄
k − wπ̄

k )
)

where we recall ϕπ
k = πkw

π
k . If ϵk+1 := (P̂k −Pk)(πhw

π
k − π̄wπ̄

k )+Pk(πk − π̄k)(ŵ
π̄
k −wπ̄

k ) then

H∑
h=1

⟨rh,πh(δ̂
π
h − δπh)⟩ =

H∑
h=1

h−1∑
k=0

⟨rh,πh

( h−1∏
j=k+1

Pjπj

)
ϵk+1⟩

=

H−1∑
k=0

H∑
h=k+1

⟨rh,πh

( h−1∏
j=k+1

Pjπj

)
ϵk+1⟩ =

H−1∑
k=0

⟨V π
k+1, ϵk+1⟩

=

H−1∑
k=0

⟨V π
k+1, (P̂k − Pk)(ϕ

π
k − ϕπ̄

k ) + Pk(πk − π̄k)(ŵ
π̄
k − wπ̄

k )⟩.

Finally, we use these calculations to compute the deviation

D̂(π)−D(π) =

H∑
h=1

⟨rh,πh(δ̂
π
h − δπh)⟩+ ⟨rh, (πh − π̄h)(ŵ

π̄
h − wπ̄

h)⟩

=

H−1∑
h=0

⟨V π
h+1, (P̂h − Ph)(ϕ

π
h − ϕπ̄

h)⟩+ ⟨rh + P⊤
h V π

h+1, (πh − π̄h)(ŵ
π̄
h − wπ̄

h)⟩

=

H−1∑
h=0

⟨V π
h+1, (P̂h − Ph)(ϕ

π
h − ϕπ̄

h)⟩+ ⟨Qπ
h, (πh − π̄h)(ŵ

π̄
h − wπ̄

h)⟩

=

H−1∑
h=0

∑
s,a,s′

V π
h+1(s

′)(P̂h(s
′|s, a)− Ph(s

′|s, a))(ϕπ
h(s, a)− ϕπ̄

h(s, a))

+

H−1∑
h=0

∑
s

(
Qπ

h(s, πh(s))−Qπ
h(s, π̄h(s))

)
(ŵπ̄

h(s)− wπ̄
h(s))

≲

√√√√H−1∑
h=0

∑
s,a,s′

V π
h+1(s

′)2
Ph(s′|s, a)
Kµh(s, a)

(ϕπ
h(s, a)− ϕπ̄

h(s, a))
2

+

√√√√H−1∑
h=0

∑
s

(
Qπ

h(s, πh(s))−Qπ
h(s, π̄h(s))

)2wπ̄
h(s)

K
.
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s1

s2

s3

s4

a1

a2

a3

1− 3ϵ

ϵ1

ϵ21

1

r1(s1, a1) = 1

r2(s3, a1) = 1

r2(s4, a2) = 1

Figure 2: A motivating example for differences. All rewards other than the ones specified in the
figure are 0.

Applying
∑

s′ V
π
h+1(s

′)2Ph(s
′|s, a) ≤ H2, we observe that if

K ≥ min
µ,π̄

max
π

H2
H−1∑
h=1

∑
s,a(ϕ

π
h(s, a)− ϕπ̄

h(s, a))
2/µh(s, a)

∆(π)2

+

H−1∑
h=1

∑
s

(
Qπ

h(s, πh(s))−Qπ
h(s, π̄h(s))

)2
wπ̄

h(s)

∆(π)2

and we employ the minimizers µ, π̄ to collect data, then D̂(π) − D(π) < ∆(π) and π̂ =

argmaxπ∈Π D̂(π) = argmaxπ∈Π D(π). Notice that up to H and log factors, this is precisely
the sample complexity of our algorithm. A natural candidate for π̄ is π⋆ so that the first term matches
the lower bound of [2].

On the other hand, suppose we used the data from the logging policy µ to compute the empirical
state visitations ŵπ

h for all π ∈ Π and set π̂ = argmaxπ∈Π

∑H
h=1⟨rh,πŵπ

h⟩ =: V̂ π
0 . Using the same

techniques as above, it is straightforward to show that if

ŵπ
h+1 − wπ

h+1 = P̂hπhŵ
π
h − Phπhw

π
h

= (P̂h − Ph + Ph)πh(ŵ
π
h − wπ

h + wπ
h)− Phπhw

π
h

= (P̂h − Ph)πhw
π
h + Phπh(ŵ

π
h − wπ

h) + (P̂h − Ph)πh(ŵ
π
h − wπ

h)︸ ︷︷ ︸
Low order terms ≈ 0

≈
h∑

i=0

( h∏
j=h−i+1

Pjπj

)
(P̂h−i − Ph−i)πh−iw

π
h−i

=

h∑
k=0

( h∏
j=k+1

Pjπj

)
(P̂k − Pk)πkw

π
k

and we employ the minimizer µ to collect data, then V̂ π
0 − V π

0 ≤ ∆(π) and π̂ = argmaxπ∈Π V̂ π
0 =

argmaxπ∈Π V π
0 .

B Tabular MDPs: Comparison with Prior Work and Lower Bounds

Illustrative Family of MDP Instances Recall the family of MDP instances in the introduction
(visualized in Figure 2 for ease of reference). The family of MDPs is parameterized by ϵ, ϵ1, ϵ2 > 0,
with H = 2, S = {s1, s2, s3, s4}, and A = {a1, a2, a3}, which start in state s0 and are defined as:

P1(s2 | s1, a1) = 1− 3ϵ, P1(s3 | s1, a1) = ϵ1, P1(s4 | s1, a1) = ϵ2
P1(s3 | s1, a2) = P1(s4 | s1, a3) = 1.

We define the reward function so that all rewards are 0 except r1(s1, a1) = r2(s3, a1) = r2(s4, a2) =
1 for all a.

LetM denote the MDP above with ϵ1 = 2ϵ, ϵ2 = ϵ, andM′ the MDP above with ϵ1 = ϵ, ϵ2 = 2ϵ.
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Let Π = {π1, π2} denote some set of policies. Let π1 denote the policy which always plays a1,
and π2 the policy which plays a1 at green states and a2 at red states i.e π2(s1) = π2(s2) = a1 and
π2(s3) = π2(s4) = a2.

Now note that V M,π1

0 = 1 + 2ϵ, V M,π2

0 = 1 + ϵ, V M′,π1

0 = 1 + ϵ, and V M′,π2

0 = 1 + 2ϵ.

B.1 Comparison with complexities from prior work

The lemma below shows that the upper bound presented in Theorem 1 is smaller than that of PEDEL
from Theorem 1 of [42] for all MDP instances.
Lemma 4. For any MDP instance and policy set Π, we have that

1. infπexp
maxπ∈Π

∥ϕπ
h∥

2
Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}
≥ 1

max{ϵ2,∆(π)2,∆2
min}

2.

H4
H∑

h=1

inf
πexp

max
π∈Π

∥ϕ⋆
h − ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

≤ 4H4
H∑

h=1

inf
πexp

max
π∈Π

∥ϕπ
h∥2Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

3. HU(π,π⋆)
max{ϵ2,∆(π)2,∆2

min}
≤ H4

∑H
h=1 infπexp

maxπ∈Π

∥ϕπ
h∥

2
Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

Proof. Proof of Claim 1. Note that

∥ϕπ
h∥2Λh(πexp)−1 =

∑
s,a

ϕπ
h(s, a)

2

ϕ
πexp

h (s, a)
≥ inf

λ∈∆SA

∑
s,a

ϕπ
h(s, a)

2

λs,a

In order to solve this optimization problem, we can consider the KKT conditions. We can verify from
stationarity that at optimality, λs,a =

ϕπ
h(s,a)√

β
for some constant β > 0. But since λs,a must live in

the simplex ∆SA, and since ϕπ
h(s, a) is itself a distribution over S ×A, it follows that β = 1 must

be true. Plugging this optimal value into the above, we obtain that

∥ϕπ
h∥2Λh(πexp)−1 ≥ inf

λ∈∆SA

∑
s,a

ϕπ
h(s, a)

2

λs,a
= 1

Then,

inf
πexp

max
π∈Π

∥ϕπ
h∥2Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

≥ 1

max{ϵ2,∆(π)2,∆2
min}

directly follows from the above.

Proof of Claim 2. From the triangle inequality,

inf
πexp

max
π∈Π

∥ϕ⋆
h − ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

≤ 2 inf
πexp

max
π∈Π

(
∥ϕ⋆

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

+
∥ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

)

≤ 2 inf
πexp

max
π∈Π

(
∥ϕ⋆

h∥2Λh(πexp)−1

max{ϵ2,∆(π⋆)2,∆2
min}

+
∥ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

)

≤ 4 inf
πexp

max
π∈Π

∥ϕπ
h∥2Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

where we have used that ∆(π) ≥ ∆(π⋆) for all π. Plugging this bound into the expression from (2)
from the Lemma statement completes the proof.
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Proof of Claim 3. We have that

HU(π, π⋆) = H

H∑
h=1

Esh∼wπ⋆

h
[(Qπ

h(sh, πh(s))−Qπ
h(sh, π

⋆
h(s)))

2] ≤ H

H∑
h=1

H2 ≤ H4

Then,

HU(π, π⋆)

max{ϵ2,∆(π)2,∆2
min}

≤ H4

max{ϵ2,∆(π)2,∆2
min}

≤ H4
H∑

h=1

inf
πexp

max
π∈Π

∥ϕπ
h∥2Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

Where the final inequality follows from Claim 1 above.

The lemma below shows that there are some instances where the complexity from Theorem 1 is
strictly smaller in terms of ϵ dependence than that from Theorem 1 from [42] for PEDEL.
Lemma 5. On MDPM defined above, we have:

1.
∑H

h=1 infπexp maxπ∈Π

∥ϕ⋆
h−ϕπ

h∥
2
Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}
≤ 15

2. maxπ∈Π
HU(π,π⋆)

max{ϵ2,∆(π)2,∆2
min}

= 3H
ϵ

3.
∑H

h=1 infπexp
maxπ∈Π

∥ϕπ
h∥

2
Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}
≥ H

ϵ2

Proof. Proof of 1. In this case we have that π∗ = π1, and the only other π of interest is π2. Note that
π1 and π2 differ only at state s3 and s4 at h = 2. Let πexp be the policy that plays actions uniformly
at random. Then, we have

H∑
h=1

inf
πexp

max
π∈Π

∥ϕ⋆
h − ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

≤ inf
πexp

∥ϕπ1
2 − ϕπ2

2 ∥2Λh(πexp)−1

ϵ2

=
1

ϵ2

(
wπ1

2 (s3)
2

w
πexp

2 (s3)
+

wπ1
2 (s4)

2

w
πexp

2 (s4)

)
≤ 1

ϵ2

(
4ϵ2

1/3
+

ϵ2

1/3

)
= 15.

Proof of 2. Note that

max
π∈Π

HU(π, π⋆)

max{ϵ2,∆(π)2,∆2
min}

=
HU(π2, π1)

ϵ2
.

Then,

U(π2, π1) =

H∑
h=1

Es∼w
π1
h
[(Qπ1

h (s, π1,h(s))−Qπ1

h (s, π2,h(s)))
2]

= Es∼w
π1
2
[(Qπ1

2 (s, π1,2(s))−Qπ1
2 (s, π2,2(s)))

2]

= 2ϵ+ ϵ = 3ϵ.

Combining these proves the result.

Proof of 3. By Claim 1 in Lemma 4, the stated result then follows by recognizing that
max{ϵ2,∆(π)2,∆2

min} ≤ ϵ2.
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B.2 Lower bound

Lemma 6. On MDPM defined above, any (ϵ, δ)-PAC algorithm must collect

EM[τ ] ≥ 1

ϵ
· log 1

2.4δ
.

samples.

Proof. Consider Π,M, andM′ defined above. Let E denote the event {π̂ = π1}. By the above
observations, we have that π1 is ϵ-optimal onM while π2 is not, and that π2 is ϵ-optimal onM′

while π1 is not. Then by the definition of an (ϵ, δ)-PAC algorithm, PM[E ] ≥ 1− δ and PM′
[E ] ≤ δ.

Let γh(s, a) denote the distribution of (rh, sh+1) given (s, a, h) onM, and γ′
h(s, a) is the same on

M′. Then, letting νh ← γh, ν
′
h ← γ′

h and otherwise adopting the same notation as in Lemma F.1 of
[46], we have from Lemma F.1 of [46] that:∑

s,a,h

EM[Nτ
h (s, a)]KL(γh(s, a), γ

′
h(s, a)) ≥ sup

E′∈Fτ

d(PM[E ′],PM′
[E ′])

≥ d(PM[E ],PM′
[E ])

≥ log
1

2.4δ

where the last inequality follows from [23].

Note thatM andM′ differ only at (s1, a1), so∑
s,a,h

EM[Nτ
h (s, a)]KL(γh(s, a), γ

′
h(s, a)) = EM[Nτ

1 (s1, a1)]KL(γ1(s1, a1), γ
′
1(s1, a1)).

Furthermore, we see that

KL(γ1(s1, a1), γ
′
1(s1, a1)) = 2ϵ log

2ϵ

ϵ
+ ϵ log

ϵ

2ϵ
≤ ϵ.

So it follows that we must have

EM[Nτ
1 (s1, a1)] ≥

1

ϵ
· log 1

2.4δ
.

Noting that EM[Nτ
1 (s1, a1)] ≤ EM[τ ] completes the proof.

C Tabular MDP Upper Bound

C.1 Notation

Covariance matrices. We use

Λh(πexp) = Eπexp [eshah
e⊤shah

]

to denote the expected covariance matrix and Λ̂ℓ,h to denote the empirical covariance matrix collected
from DED

ℓ,h .

State visitations. Let δπℓ,h(s
′) := wπ

h(s
′) − wπ̄ℓ

h (s′), for π̄ℓ the reference policy, δπℓ,h the vector-
ization of δπℓ,h(s

′), and wπ
h(s) = Pπ[sh = s] the visitation probability, and W ⋆

h (s) = supπ w
π
h(s).

Then, we can recursively define

δπℓ,h+1 = Ph(πh − π̄ℓ,h)w
π̄
ℓ,h + Phπhδ

π
ℓ,h. (C.1)

Similarly,
δ̃πℓ,h+1 = Mh

(
Ph(πh − π̄ℓ,h)ŵ

π̄
ℓ,h + Phπhδ̃

π
ℓ,h

)
. (C.2)

And
δ̂πℓ,h+1 = Mh

(
P̂ℓ,h(πh − π̄ℓ,h)ŵ

π̄
ℓ,h + P̂ℓ,hπhδ̂

π
ℓ,h

)
. (C.3)
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Algorithm 2 PERP: Policy Elimination with Reference Policy

Require: tolerance ϵ, confidence δ, policies Π
1: Π1 ← Π, P̂0 ← arbitrary transition matrix
2: for ℓ = 1, 2, 3, . . . , ⌈log2 16

ϵ ⌉ do

3: Set ϵℓ ← 2−ℓ, ϵℓunif ←
ϵℓ

64S3/2H2 , Kℓ
unif ←

ϵ
−2/3
ℓ

ϵℓunif

4: Skeepℓ = PRUNE(ϵℓunif , δ/3ℓ
2) (Algorithm 5) // Prune states that are hard to reach

5: Use {P̂ℓ−1,h}Hh=1 to compute Ûℓ−1,h(π, π
′) for all (π, π′) ∈ Πℓ // Compute new reference

policy
6: Choose π̄ℓ ← minπ̄∈Πℓ

maxπ∈Πℓ

∑H
h=1 Ûℓ−1,h(π, π̄)

7: Collect the following number of episodes from π̄ℓ and store in dataset Dref
ℓ

n̄ℓ = max
π∈Πℓ

c ·
HÛℓ−1(π, π̄ℓ) +H4S3/2

√
A log SAHℓ2

δ · ϵ1/3ℓ + S2H4ϵℓunif
ϵ2ℓ

· log 60Hℓ2|Πℓ|
δ

8: Compute {ŵπ̄
ℓ,h(s)}Hh=1 using empirical state visitation frequencies in Dref

ℓ

9: Initialize δ̂π1 ← 0 // Exploration via experiment design
10: for h = 1, . . . ,H do
11: Define Mℓ,h ∈ RSA×SA as Mℓ,h ← diag(αs1,a1

. . . αsS ,aA
), where αs,a = 1(s ∈ Skeepℓ,h ).

12: Φℓ ←
{
Mℓ,h

(
(πh − π̄ℓ,h)ŵ

π̄
ℓ,h + πhδ̂

π
ℓ,h

)
: π ∈ Πℓ

}
13: ϵℓexp ← ϵ2ℓ/H

4β2
ℓ for βℓ ←

(√
2 log

(
60SH2ℓ2|Πℓ|

δ

)
+ 4

3

√
SA

ϵℓunifK
ℓ
unif

log
(

60H2ℓ2|Πℓ|
δ

))
14: Run DED

ℓ,h ← OPTCOV
(
Φℓ, ϵℓexp,

δ
6Hℓ2 , ϵ

ℓ
unif ,K

ℓ
unif ,S

keep
ℓ,h , h

)
(Algorithm 3)

15: Use DED
ℓ,h to compute P̂ℓ,h(s

′|s, a) ← Nℓ,h(s
′,s,a)

Nℓ,h(s,a)
if Nℓ,h(s, a) > 0, unif(S) otherwise,

and r̂ℓ,h(s, a) =
1

Nℓ,h(s,a)

∑
(s′,a′,r′,s′′)∈DED

ℓ,h
r′ · I{(s, a) = (s′, a′)} if Nℓ,h(s, a) > 0, 0

otherwise
16: Compute δ̂πℓ,h+1 ←Mℓ,h(P̂ℓ,h(πh − π̄ℓ,h)ŵ

π̄
ℓ,h + P̂ℓ,hπhδ̂

π
ℓ,h)

17: end for
18: Compute D̂π̄ℓ

(π)←
∑

h⟨r̂ℓ,h,πhδ̂ℓ,h⟩+
∑

h⟨r̂ℓ,h, (πh − π̄ℓ,h)ŵ
π̄
ℓ,h⟩

19: Update Πℓ+1 = Πℓ\{π ∈ Πℓ : maxπ′ D̂π̄ℓ
(π′)− D̂π̄ℓ

(π) > 8ϵℓ }
20: if |Πℓ+1| = 1 then return π ∈ Πℓ+1

21: end for
22: return any π ∈ Πℓ+1

Value functions. Note that we can express the value function as:

V π
h =

H∑
k=h

 k∏
j=h+1

Pjπj

⊤

π⊤
k rk

On the “pruned” MDP, define

r̃ℓ,h = Mℓ,hrh,

and

Ṽℓ,h :=
H∑

k=h

 k∏
j=h+1

Mℓ,j+1Pjπj

⊤

π⊤
k r̃ℓ,k.

Reward difference term. Define

Uh(π, π
′) := Eπ′ [(Qπ

h(sh, πh(s))−Qπ
h(sh, π

′
h(s)))

2]

21



and U(π, π′) :=
∑H

h=1 Uh(π, π
′). Additionally, define

Ûℓ,h(π, π
′) := Eπ′,ℓ[(Q̂

π
ℓ,h(sh, πh(s))− Q̂π

ℓ,h(sh, π
′
h(s)))

2]

where Eπ′,ℓ denotes the expectation induced playing π′ on the MDP with transitions P̂ℓ, and Q̂π
ℓ,h

denotes the Q-function for policy π on this same MDP. Let Ûℓ(π, π
′) :=

∑H
h=1 Ûℓ,h(π, π

′).

C.2 Technical Results

Lemma 7. Let D = {(s1, a1, s′1), . . . (sT , aT , s′T )} be any dataset of transitions collected from level
h. Let P̂ ∈ RS×SA denote the empirical transition matrix with [P̂ ]s′,sa = N(s′|s,a)

N(s,a) if N(s, a) > 0,
and 0 otherwise, for N(s′ | s, a) =

∑
t I{(st, at, s′t) = (s, a, s′)} and N(s, a) =

∑
t I{(st, at) =

(s, a)}. Consider any v ∈ [0, 1]S and u ∈ RSA and assume that N(s, a) > λ > 0 for all
(s, a) ∈ support(u). Then, for P the true transition matrix, we have that with probability at least
1− δ: ∣∣∣v⊤(P − P̂ )u

∣∣∣ ≤
√√√√∑

s,a

[u]2s,a
N(s, a)

·

(√
2 log

(
1

δ

)
+

4

3
√
λ
log

(
1

δ

))
.

Proof. First write

v⊤(P − P̂ )u =
∑
s′

∑
s,a

vs′

(
P (s′ | s, a)− N(s′ | s, a)

N(s, a)

)
usa

=
∑
t

∑
s′

vs′ (P (s′ | st, at)− I{s′t = s′})ustat

N(st, at)

where the second equality follows from some simple manipulations. Note that, for any t, we have

E
[
vs′ (P (s′ | st, at)− I{s′t = s′})ustat

N(st, at)
| st, at

]
= 0

and can bound∣∣∣∣∣∑
s′

vs′ (P (s′ | st, at)− I{s′t = s′})ustat

N(st, at)

∣∣∣∣∣ ≤ 2ustat

N(st, at)
≤ 2√

λ
· ustat√

N(st, at)

≤ 2√
λ
·
√∑

s,a

u2
sa

N(s, a)

where we have used the fact that N(s, a) ≥ λ for (s, a) ∈ support(u), and since v has entries in
[0, 1] and P (s′ | st, at) and I{s′t = s′} are valid distributions, so

∑
s′ vs′(P (s′ | st, at) − I{s′t =

s′}) ∈ [−1, 1]. Furthermore, we have that

Es′t

(∑
s′

vs′ (P (s′ | st, at)− I{s′t = s′})ustat

N(st, at)

)2
 ≤ Es′t

[(
ustat

N(st, at)

)2
]
=

(
ustat

N(st, at)

)2

where we have again used that
∑

s′ vs′(P (s′ | st, at)− I{s′t = s′}) ∈ [−1, 1].
By Bernstein’s inequality, we therefore have that with probability at least 1− δ:

∣∣∣v⊤(P − P̂ )u
∣∣∣ ≤

√√√√2
∑
t

(
ustat

N(st, at)

)2

· log 2

δ
+

4

3
√
λ
·
√∑

t

u2
stat

N(st, at)
· log 2

δ

=

(√
2 log

2

δ
+

4

3
√
λ
log

2

δ

)
·
√∑

s,a

u2
sa

N(s, a)
.
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Lemma 8. Let D = {(s1, a1, r1), . . . (sT , aT , rT )} be any dataset of state-action-reward tuples
collected from level h. Let r̂ ∈ RSA denote the empirical reward estimation with [r̂]sa = 1

N(s,a) ·∑T
t=1 rt · I{(st, at) = (s, a)} if N(s, a) > 0, and 0 otherwise, for N(s, a) =

∑
t I{(st, at) =

(s, a)}. Consider any u ∈ RSA and assume that N(s, a) > λ > 0 for all (s, a) ∈ support(u). Then,
for r the true reward mean, we have that with probability at least 1− δ:∣∣(r − r̂)⊤u

∣∣ ≤
√√√√∑

s,a

[u]2s,a
N(s, a)

·

(√
2 log

(
1

δ

)
+

4

3
√
λ
log

(
1

δ

))
.

Proof. First write

(r − r̂)⊤u =
∑
t

(r(st, at)− rt)ustat

N(st, at)
.

Note that, for any t, we have

E
[
(r(st, at)− rt)ustat

N(st, at)
| st, at

]
= 0

and can bound∣∣∣∣ (r(st, at)− rt)ustat

N(st, at)

∣∣∣∣ ≤ ustat

N(st, at)
≤ 1√

λ
· ustat√

N(st, at)
≤ 1√

λ
·
√∑

s,a

u2
sa

N(s, a)

where we have used the fact that N(s, a) ≥ λ for (s, a) ∈ support(u), and since we assume our
rewards are in [0, 1]. Furthermore, we have that

Ert

[(
(r(st, at)− rt)ustat

N(st, at)

)2
]
≤ Ert

[(
ustat

N(st, at)

)2
]
=

(
ustat

N(st, at)

)2

.

By Bernstein’s inequality, we therefore have that with probability at least 1− δ:

∣∣(r − r̂)⊤u
∣∣ ≤

√√√√2
∑
t

(
ustat

N(st, at)

)2

· log 2

δ
+

4

3
√
λ
·
√∑

t

u2
stat

N(st, at)
· log 2

δ

=

(√
2 log

2

δ
+

4

3
√
λ
log

2

δ

)
·
√∑

s,a

u2
sa

N(s, a)
.

Lemma 9. Let u ∈ RS be any vector such that ∀s, |us| ≤ M . Then, for any (ℓ, h), the following
holds with probability (1− δ):∣∣∣Es∼wπ̄

ℓ,h
[us]− Es∼ŵπ̄

ℓ,h
[us]
∣∣∣ ≤

√
2Es∼wπ̄

ℓ,h
[u2

s]

n̄ℓ
log

(
2

δ

)
+

2M

3n̄ℓ
log

(
2

δ

)
Proof. The left side of the inequality above takes the form of the deviation between an empirical and
true mean of the random variable us. Hence, the result follows directly from Bernstein’s inequality
since we know |us| ≤M is bounded.

Lemma 10. Assume that A and B are matrices with entries in [0, 1] and whose rows sum to a value
≤ 1. Then AB also satisfies this.

Proof. To see this, consider the ith row of AB, and note that the sum of the elements in this row can
be written as, for a⊤i the ith row of A, and bj the jth column of B:∑

j

a⊤i bj =
∑
k

∑
j

aikbjk =
∑
k

aik(
∑
j

bjk).

Now note that
∑

j bjk is the sum across the kth row of B, so this is ≤ 1 by assumption. Furthermore,∑
k aik ≤ 1 for the same reason. Thus, the ith row of AB sums to a value ≤ 1. Furthermore, it is

easy to see a⊤i bj ≤ 1 for each j. Thus, AB has values in [0, 1] and rows that sum to a value ≤ 1.
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Lemma 11. We have that ∥Πj
h=iMh+1Phπh∥2, ∥Πj

h=iPhπh∥2 ≤
√
S for any i, j, h.

Proof. By definition Phπh is a transition matrix—each row has values in [0, 1] and sums to 1—and
Mh+1 is diagonal with diagonal elements either 0 or 1. Thus, each matrix MhPhπh has values in
[0, 1] and rows that sum to a value ≤ 1, so Lemma 10 implies that Πj

h=iMh+1Phπh does as well.
Denote A := ∥Πj

h=iMhPhπh∥2. We can then bound

∥Πj
h=iMh+1Phπh∥22 = ∥A∥22 ≤ ∥A∥2F =

∑
i

∑
j

A2
ij ≤

∑
i

1 ≤ S,

which proves the result. The bound on ∥Πj
h=iPhπh∥2 follows from the same argument.

Lemma 12. We have

δ̃πℓ,h+1 − δ̂πℓ,h+1

=

h−2∑
i=0

 h∏
j=h−i+1

Mℓ,j+1Pjπj

 (Ph−i − P̂ℓ,h−i)Mℓ,h−i

[
(πh−i − π̄ℓ,h−i)ŵ

π̄
ℓ,h−i + πh−iδ̂

π
ℓ,h−i

]
.

Proof. This follows immediately from the definition of δ̃πℓ,h+1, δ̂
π
ℓ,h+1, and simple manipulations.

C.3 Concentration Arguments and Good Events

Lemma 13. Let Eℓprune be the event for which the call to PRUNE in epoch ℓ in Algorithm 2 will
terminate after running for at most

poly(S,A,H, log
SAHℓ

δϵℓ
) · 1

ϵℓunif

episodes and will return a set Skeepℓ such that, for every (s, h) ∈ Skeepℓ , we have W ⋆
h (s) ≥ ϵℓunif , and,

if (s, h) ̸∈ Skeepℓ , then W ⋆
h (s) ≤ 32ϵℓunif . Then P(Eℓprune) ≥ 1− δ

3ℓ2 .

Proof. From Lemma 38, this event follows directly with probability (1− δ
3ℓ2 ).

Lemma 14. Let Eℓ,hexp be the event for which:

1. The exploration procedure in Algorithm 3 will produce DED
ℓ,h such that

max
π∈Πℓ

∥Mℓ,h((πh − π̄ℓ,h)ŵ
π̄
ℓ,h + πhδ̂

π
ℓ,h)∥2Λ̂−1

ℓ,h

≤ ϵℓexp for Λ̂ℓ,h =
∑

(s,a)∈DED
ℓ,h

esae
⊤
sa, (C.4)

and will collect at most

C ·
infπexp maxπ∈Πℓ

∥Mℓ,h((πh − π̄ℓ,h)ŵ
π̄
ℓ,h + πhδ̂

π
ℓ,h)∥2Λh(πexp)−1

ϵℓexp
+

Cℓ
fw

(ϵℓexp)
4/5

+
Cℓ

fw

ϵℓunif
+ log(Cℓ

fw) ·Kℓ
unif

episodes.

2. For each s ∈ Skeepℓ , we have that
∑

(s′,a′)∈DED
ℓ,h

I{(s′, a′) = (s, a)} ≥ Kℓ
unifϵ

ℓ
unif

SA for any a ∈ A.

Above, C is a universal constant and Cℓ
fw = poly(S,A,H, log ℓ/δ, log 1/ϵ, log |Π|). Then

P[(Eℓ,hexp)
c ∩ Eℓprune ∩ Ēℓest ∩ (∩h′≤h−1Eℓ,h

′

est ) ∩ (∩h′≤h−1Eℓ,h
′

exp )] ≤ δ
6Hℓ2 .
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Proof. Since the event Eℓprune holds, for each s ∈ Skeepℓ we have W ⋆
h (s) ≥ ϵℓunif . Now, observe that,

for s ∈ Skeepℓ and any a:

|[(πh − π̄ℓ,h′)ŵπ̄
ℓ,h + πhδ̂

π
ℓ,h](s,a)|

≤ [ŵπ̄
ℓ,h]s + |[δ̂πℓ,h]s| ≤ [wπ̄

ℓ,h]s + |[δπℓ,h]s|+ |[ŵπ̄
ℓ,h − wπ̄

ℓ,h](s)|+ |[δπℓ,h]s − |[δ̂πℓ,h]s||.

By construction, we have [wπ̄
ℓ,h]s, |[δπℓ,h]s| ≤W ⋆

h (s). By Lemma 19, on Ēℓest, we can bound |[ŵπ̄
ℓ,h −

wπ̄
ℓ,h](s)| ≤

√
8Sϵ

5/3
ℓ . By Lemma 18, on Eℓprune ∩ (∩h′≤h−1Eℓ,h

′

est ) ∩ (∩h′≤h−1Eℓ,h
′

exp ), we can bound

|[δπℓ,h]s − |[δ̂πℓ,h]s|| ≤
√
SHβℓϵℓexp + SH(

√
8ϵ

5/3
ℓ + 32ϵℓunif).

Altogether then, we have

|[(πh − π̄ℓ,h′)ŵπ̄
ℓ,h + πhδ̂

π
ℓ,h](s,a)|

≤ 2W ⋆
h (s) +

√
SHβℓϵℓexp + SH(

√
8ϵ

5/3
ℓ + 32ϵℓunif) +

√
8Sϵ

5/3
ℓ .

By our choice of ϵℓexp and ϵℓunif , we can bound all of this as

≤ Cϕ · (W ⋆
h (s) +

√
Kℓ

unifϵ
ℓ
unifϵ

ℓ
exp)

for Cϕ = cSHβℓ. This is the condition required by Theorem 2, so the result follows from Theorem 2.

Lemma 15. Let Eℓ,hest be the event at epoch ℓ for step h on which:

(1) For all π ∈ Πℓ, h
′ ≤ h:∣∣∣∣∣

〈
π⊤
h r̃ℓ,h,

(
h∏

i=h′+1

Mℓ,i+1Piπi

)
(Ph′ − P̂ℓ,h′)Mℓ,h′

[
(πh′ − π̄ℓ,h′)ŵπ̄

ℓ,h′ + πh′ δ̂πℓ,h′

]〉∣∣∣∣∣
≤ βℓ

√√√√√∑
s,a

[
Mℓ,h′

(
(πh′ − π̄ℓ,h′)ŵπ̄

ℓ,h′ + πh′ δ̂πℓ,h′

) ]2
(s,a)

Nℓ,h′(s, a)
.

(2) For all canonical vectors es′ in RS , π ∈ Πℓ, and h′ ≤ h,∣∣∣∣∣
〈
es′ ,

(
h∏

i=h′+1

Mℓ,i+1Piπi

)
(Ph′ − P̂ℓ,h′)Mℓ,h′

[
(πh′ − π̄ℓ,h′)ŵπ̄

ℓ,h′ + πh′ δ̂πℓ,h′

]〉∣∣∣∣∣
≤ βℓ

√√√√∑
s,a

[Mℓ,h′((πh′ − π̄ℓ,h′)ŵπ̄
ℓ,h′ + πh′ δ̂πℓ,h′)]2s,a

Nℓ,h′(s, a)
.

(3) For each (s, a), we have∑
s′

|P̂ℓ,h(s
′ | s, a)− Ph(s

′ | s, a)| ≤ S

√
log 48S2AHℓ2

δ

Nℓ,h(s, a)
.

(4) For each π ∈ Πℓ,

|⟨r̂ℓ,h − r̃ℓ,h,πhδ̂
π
ℓ,h + (πh − π̄ℓ,h)ŵ

π̄
ℓ,h⟩|

≤ βℓ

√√√√√∑
s,a

[
Mℓ,h

(
(πh − π̄ℓ,h′)ŵπ̄

ℓ,h + πhδ̂πℓ,h

) ]2
(s,a)

Nℓ,h(s, a)
.

Then P[(Eℓ,hest )
c ∩ Eℓprune ∩ (∩h′≤hEℓ,hexp)] ≤ δ

6Hℓ2 .

Proof. We prove each of the events sequentially.
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Proof of Event (1). Consider any fixed choice of (π, h′). By Lemma 10 and since our re-

wards are in [0, 1], we have that
(∏h

i=h′+1 Mℓ,i+1Piπi

)⊤
π⊤
h r̃ℓ,h is a vector in [0, 1]. Let

v ←
(∏h

i=h′+1 Mℓ,i+1Piπi

)⊤
π⊤
h r̃ℓ,h and u←Mℓ,h′

[
(πh′−π̄ℓ,h′)ŵπ̄

ℓ,h′+πh′ δ̂πℓ,h′

]
. Note that by

construction we have that usa = 0 for s ̸∈ Skeepℓ,h′ , and so on Eℓ,h′

exp , we have Nℓ,h′(s, a) ≥ Kℓ
unifϵ

ℓ
unif

2SA

for all (s, a) ∈ support(u). On Eℓprune ∩ Eℓ,h
′

exp , we can then apply Lemma 7 with u and v as defined
above to get that the bound fails with probability at most δ

30H2ℓ2|Πℓ| . Union bounding over h′ and π

we get that the stated result fails with probability at most δ
30Hℓ2 .

Proof of Event (2). Choose

v = e⊤i

(
h∏

i=h′+1

Mℓ,iPiπi

)
and u = Mh′,ℓ

(
(πh′ − π̄ℓ,h′)wπ̄

ℓ,h′ + πh′ δ̂πℓ,h′

)
.

Note that by construction of wπ̄
ℓ,h′ and δ̂πℓ,h′ we have that usa = 0 for s ̸∈ Skeepℓ,h′ , and so on Eℓ,h′

exp , we

have Nℓ,h′(s, a) ≥ Kℓ
unifϵ

ℓ
unif

2SA for all (s, a) ∈ support(u). Furthermore, we have that v ∈ [0, 1]S by
Lemma 10. Then, the event follows by invoking Lemma 7.

Proof of Event (3). By Hoeffding’s inequality, for any (s, a), we have, with probability at least
1− δ

24S2AHℓ2 :

|P̂ℓ,h(s
′ | s, a)− Ph(s

′ | s, a)| ≤

√
log 24S2AHℓ2

δ

Nℓ,h(s, a)
.

Thus, we have that with probability at least 1− δ
24SAHℓ2 :

∑
s′

|P̂ℓ,h(s
′ | s, a)− Ph(s

′ | s, a)| ≤ S

√
log 24S2AHℓ2

δ

Nℓ,h(s, a)
.

Union bounding over all (s, a), we obtain that this holds with probability at least 1− δ
24Hℓ2 .

Proof of Event (4). Note first that ⟨r̂ℓ,h − r̃ℓ,h,πhδ̂
π
ℓ,h + (πh − π̄ℓ,h)ŵ

π̄
ℓ,h⟩ = ⟨r̂ℓ,h −

r̃ℓ,h,Mℓ,h(πhδ̂
π
ℓ,h + (πh − π̄ℓ,h)ŵ

π̄
ℓ,h)⟩. The result then follows on Eℓprune by a direct application of

Lemma 8.

The final result then holds by a union bound.

Lemma 16. Let Ēℓest denote the event that at epoch ℓ and for each h:

(1) For all π ∈ Πℓ and h ∈ [H], we have∣∣∣⟨P⊤
h Mℓ,h+1Ṽℓ,h+1 + rh, (πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)⟩
∣∣∣ ≤ 2H

3n̄ℓ
log

60Hℓ2|Πℓ|
δ

+

√√√√2E
s∼w

π̄ℓ
ℓ,h

[⟨P⊤
h Mℓ,h+1Ṽ π

ℓ,h+1 + rh, (πh − π̄ℓ,h)es⟩2]

n̄ℓ
· log 60Hℓ2|Πℓ|

δ
.

(2) For all canonical vectors es ∈ RS ,

|⟨es, ŵπ̄
ℓ,h − wπ̄

ℓ,h⟩| ≤

√
2 log

(
30Hℓ2S

δ

)
n̄ℓ

+
2 log

(
30Hℓ2S

δ

)
n̄ℓ

.

Then P[(Ēℓest)c] ≤ δ
15ℓ2 .
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Proof. Proof of Event (1). Consider a fixed choice of π, and let uπ
s =〈

P⊤
h Ṽ π

ℓ,h+1 + rh, (πh − π̄ℓ,h)es

〉
, and note that |uπ

s | ≤ H for all s. Lemma 9 then gives

that with probability at least 1− δ
30Hℓ2|Πℓ| we have∣∣∣⟨P⊤

h Mℓ,h+1Ṽℓ,h+1 + rh, (πh − π̄ℓ,h)(w
π̄
ℓ,h − ŵπ̄

ℓ,h)⟩
∣∣∣

≤

√√√√2E
s∼w

π̄ℓ
ℓ,h

[⟨P⊤
h Mℓ,h+1Ṽ π

ℓ,h+1 + rh, (πh − π̄ℓ,h)es⟩2]

n̄ℓ
· log 60Hℓ2|Πℓ|

δ
+

2H

3n̄ℓ
log

60Hℓ2|Πℓ|
δ

.

Proof of Event (2). For a fixed choice of s ∈ [S], the event follows from Lemma 9 with u = es
with probability 1− δ, where δ = δ

30Hℓ2S . Once we take the union bound over all s ∈ [S], then the
event follows with probability 1− δ

30Hℓ2 .

The result then holds by union bounding over each of these for all h.

Lemma 17. On Eℓprune, for all h and π we have

δπℓ,h+1 − δ̃πℓ,h+1

=

h−2∑
i=0

 h∏
j=h−i+1

Mℓ,j+1Pjπj

Mℓ,h−i+1Ph−i(πh−i − π̄h−i)(w
π̄ℓ

ℓ,h−i − ŵπ̄ℓ

ℓ,h−i) + ∆π
ℓ,h+1

for some ∆π
ℓ,h ∈ RS with ∥∆π

ℓ,h∥2 ≤ 32SHϵℓunif . Furthermore, for any π and any i, k satisfying
0 ≤ i ≤ k ≤ H , we have∥∥∥∥∥∥

 k∏
j=i

Mℓ,j+1Pjπj −
k∏

j=i

Pjπj

wπ
i

∥∥∥∥∥∥
2

≤ 32SHϵℓunif .

Proof. By definition, we have that

δπℓ,h+1 − δ̃πℓ,h+1

= Ph(πh − π̄ℓ,h)w
π̄ℓ

ℓ,h + Phπhδ
π
ℓ,h −Mℓ,h+1Ph(πh − π̄ℓ,h)ŵ

π̄
ℓ,h −Mℓ,h+1Phπhδ̃

π
ℓ,h

= (I −Mℓ,h+1)Ph(πh − π̄ℓ,h)w
π̄ℓ

ℓ,h +Mℓ,h+1Ph(πh − π̄ℓ,h)(w
π̄ℓ

ℓ,h − ŵπ̄
ℓ,h)

+ (I −Mℓ,h+1)Phπhδ
π
ℓ,h +Mℓ,h+1Phπh(δ

π
ℓ,h − δ̃πℓ,h)

...

=

h−2∑
i=0

 h∏
j=h−i+1

Mℓ,j+1Pjπj

[(I −Mℓ,h−i+1)Ph−i(πh−i − π̄h−i)w
π̄ℓ

ℓ,h−i

+Mℓ,h−i+1Ph−i(πh−i − π̄h−i)(w
π̄ℓ

ℓ,h−i − ŵπ̄ℓ

ℓ,h−i) + (I −Mℓ,h−i+1)Ph−iπh−iδ
π
ℓ,h−i

]
.

Note that [Ph−i(πh−i − π̄h−i)w
π̄ℓ

ℓ,h′ ]s ≤ W ⋆
h−i+1(s), and similarly [Ph−iπh−iδ

π
ℓ,h−i]s ≤

W ⋆
h−i+1(s). On the event Eℓprune, we have that if [Mℓ,h−i+1]s,s = 0, then W ⋆

h−i+1(s) ≤ 32ϵℓunif .
It follows from this that every non-zero element in (I −Mℓ,h−i+1)Ph−i(πh−i − π̄h−i)w

π̄ℓ

ℓ,h−i and
(I −Mℓ,h−i+1)Ph−iπh−iδ

π
ℓ,h−i is bounded by 32ϵℓunif , so:

∥(I −Mℓ,h−i+1)Ph−i(πh−i − π̄h−i)w
π̄ℓ

ℓ,h−i∥2 ≤ 32
√
Sϵℓunif and

∥(I −Mℓ,h−i+1)Ph−iπh−iδ
π
ℓ,h−i∥2 ≤ 32

√
Sϵℓunif .

By Lemma 11, we can bound

∥
h∏

j=h−i+1

Mℓ,j+1Pjπj∥2 ≤
√
S.
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Combining these gives the result.

We now prove the second part of the result. Denote Aj := Mℓ,j+1Pjπj and Bj := Pjπj . Then

k∏
j=i

Mℓ,j+1Pjπj −
k∏

j=i

Pjπj =

k∏
j=i

Aj −
k∏

j=i

Bj

= Ak

k−1∏
j=i

Aj −
k−1∏
j=i

Bj

+ (Ak −Bk)

k−1∏
j=i

Bj

...

=

k∑
s=i

 k∏
j=s+1

Aj

 (As −Bs)

s−1∏
j′=i

Bj′

 .

By Lemma 11 we have ∥
∏k

j=s+1 Aj∥2 ≤
√
S. Furthermore, note that

∏s−1
j′=i Bj′w

π
i = wπ

s . So it
follows that ∥∥∥∥∥∥(

k∏
j=i

Mℓ,j+1Pjπj −
k∏

j=i

Pjπj)w
π
i

∥∥∥∥∥∥
2

≤
k∑

s=i

√
S∥(As −Bs)w

π
s ∥2.

By the same argument as above, we can bound ∥(As −Bs)w
π
s ∥2 ≤ 32

√
Sϵℓunif .

Lemma 18. On the event Eℓprune ∩ (∩h′≤hEℓ,h
′

est ) ∩ (∩h′≤hEℓ,h
′

exp ), we have, for all π ∈ Πℓ:

∥δ̂πℓ,h+1 − δπℓ,h+1∥2 ≤
√

SHβℓϵℓexp + SH(

√
8ϵ

5/3
ℓ + 32ϵℓunif).

Proof. We can write

∥δ̂πℓ,h+1 − δπℓ,h+1∥2 ≤ ∥δ̂πℓ,h+1 − δ̃πℓ,h+1∥2 + ∥δ̃πℓ,h+1 − δπℓ,h+1∥2.

From Lemma 12 we have

δ̃πℓ,h+1 − δ̂πℓ,h+1

=

h−2∑
i=0

 h∏
j=h−i+1

Mℓ,j+1Pjπj

 (Ph−i − P̂ℓ,h−i)Mℓ,h−i

[
(πh−i − π̄ℓ,h−i)ŵ

π̄
ℓ,h−i + πh−iδ̂

π
ℓ,h−i

]
.

From Event (2) of Eℓ,hest in Lemma 15, we have that for all canonical vectors es and π ∈ Πℓ:〈
es,

 h∏
j=h−i+1

Mℓ,j+1Pjπj

 (Ph−i − P̂ℓ,h−i)Mℓ,h−i

[
(πh−i − π̄h−i)ŵ

π̄
ℓ,h−i + πh−iδ̂

π
ℓ,h−i

]
]

〉

≤ βℓ

√√√√∑
s,a

[Mℓ,h−i((πh−i − π̄ℓ,h−i)ŵπ̄
ℓ,h−i + πh−iδ̂πℓ,h−i)]

2
s,a

Nℓ,h−i(s, a)
.

Now, summing over the bound above for all canonical vectors, and applying this for each i, it follows
that

∥δ̂πℓ,h+1 − δ̃πℓ,h+1∥22 ≤ Sβ2
ℓ

h∑
h′=1

∑
s,a

[Mℓ,h′((πh′ − π̄ℓ,h′)ŵπ̄
ℓ,h′ + πh′ δ̂πℓ,h′)]2s,a

Nℓ,h′(s, a)
≤ SHβℓϵ

ℓ
exp

where the last inequality holds on ∩h′≤hEℓ,h
′

exp .
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We now turn to bounding ∥δ̃πℓ,h+1 − δπℓ,h+1∥2. By Lemma 17 we have

δπℓ,h+1 − δ̃πℓ,h+1

=

h−2∑
i=0

 h∏
j=h−i+1

Mℓ,j+1Pjπj

Mℓ,h−i+1Ph−i(πh−i − π̄h−i)(w
π̄ℓ

ℓ,h−i − ŵπ̄ℓ

ℓ,h−i) + ∆π
ℓ,h+1

for some ∆π
ℓ,h ∈ RS with ∥∆π

ℓ,h∥2 ≤ 32SHϵℓunif . Furthermore, on Eℓ,h−i
est , by Lemma 19 we can

bound

∥wπ̄ℓ

ℓ,h−i − ŵπ̄ℓ

ℓ,h−i∥2 ≤
√

8Sϵ
5/3
ℓ .

Combining this with Lemma 11 gives the result.

Lemma 19. On event Ēℓest we have:

∥ŵπ̄
ℓ,h − wπ̄

ℓ,h∥22 ≤ 8Sϵ
5/3
ℓ .

Proof. From Event (2) of Lemma 16, we have that for all canonical vectors ei ∈ RS :

|⟨ei, ŵπ̄
ℓ,h − wπ̄

ℓ,h⟩| ≤

√
2 log

(
30Hℓ2S

δ

)
n̄ℓ

+
2 log

(
30Hℓ2S

δ

)
n̄ℓ

.

Then, combining these bounds together for all s:

∥ŵπ̄
ℓ,h − wπ̄

ℓ,h∥22 ≤
4S log

(
30Hℓ2S

δ

)
n̄ℓ

+
4S log2

(
30Hℓ2S

δ

)
n̄2
ℓ

≤ 4Sϵ
5/3
ℓ + 4Sϵ

10/3
ℓ ≤ 8Sϵ

5/3
ℓ ,

where the last inequality follows from our choice of n̄ℓ in Algorithm 2.

Lemma 20. Let Egood := (∩∞ℓ=1Eℓprune) ∩ (∩∞ℓ=1Ēℓest) ∩ (∩∞ℓ=1 ∩h∈[H] Eℓ,hest ) ∩ (∩∞ℓ=1 ∩h∈[H] Eℓ,hexp).
Then P[Egood] ≥ 1− 2δ.

Proof. By a union bound and basic set manipulations, we have:

P[Ecgood] ≤
∞∑
ℓ=1

P[(Eℓprune)c] +
∞∑
ℓ=1

P[(Ēℓest)c]

+

∞∑
ℓ=1

H∑
h=1

P[(Eℓ,hexp)
c ∩ Eℓprune ∩ Ēℓest ∩ (∩h′≤h−1Eℓ,h

′

est ) ∩ (∩h′≤h−1Eℓ,h
′

exp )]

+

∞∑
ℓ=1

H∑
h=1

P[(Eℓ,hest )
c ∩ Eℓprune ∩ (∩h′≤hEℓ,hexp)].

By Lemma 13, we have P[(Eℓprune)c] ≤ δ/3ℓ2. By By Lemma 16, we have P[(Ēℓest)c] ≤ δ
15ℓ2 . By

Lemma 14, we have P[(Eℓ,hexp)
c ∩ Eℓprune ∩ Ēℓest ∩ (∩h′≤h−1Eℓ,h

′

est ) ∩ (∩h′≤h−1Eℓ,h
′

exp )] ≤ δ
6Hℓ2 . By

Lemma 15 we have P[(Eℓ,hest )
c ∩ Eℓprune ∩ (∩h′≤hEℓ,hexp)] ≤ δ

6Hℓ2 . Putting this together we can bound
the above as

≤
∞∑
ℓ=1

(
δ

3ℓ2
+

δ

15ℓ2
) +

∞∑
ℓ=1

H∑
h=1

2δ

6Hℓ2
≤ 2δ.
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C.4 Estimation of Reference Policy and Values

Lemma 21. On Egood we have that:∣∣∣∣∣
H∑

h=1

⟨r̃ℓ,h,πh(δ̃
π
ℓ,h − δ̂πℓ,h)⟩

∣∣∣∣∣ ≤ ϵℓ and
H∑

h=1

|⟨r̂ℓ,h−r̃ℓ,h,πhδ̂
π
ℓ,h+(πh−π̄ℓ,h)ŵ

π̄
ℓ,h⟩| ≤ ϵℓ. (C.5)

Proof. From Lemma 12 we have:

δ̃πℓ,h+1 − δ̂πℓ,h+1

=

h−2∑
i=0

 h∏
j=h−i+1

Mℓ,j+1Pjπj

 (Ph−i − P̂ℓ,h−i)Mℓ,h−i

[
(πh−i − π̄ℓ,h−i)ŵ

π̄
ℓ,h−i + πh−iδ̂

π
ℓ,h−i

]
.

A sufficient condition for (C.5) is that, for each i:∣∣∣∣
〈
π⊤
h r̃ℓ,h,

 h∏
j=h−i+1

Mℓ,j+1Pjπj

 (Ph−i − P̂ℓ,h−i)

Mℓ,h−i

[
(πh−i − π̄ℓ,h−i)ŵ

π̄
ℓ,h−i + πh−iδ̂

π
ℓ,h−i

]〉∣∣∣∣ ≤ ϵℓ.

On Egood, and in particular Eℓ,hest (Lemma 15), we can bound the left-hand side of this as:

≤ βℓ

√√√√√∑
s,a

[
Mℓ,h−i

(
(πh−i − π̄ℓ,h−i)ŵπ̄

ℓ,h−i + πh−iδ̂πℓ,h−i

) ]2
(s,a)

Nℓ,h−i(s, a)

≤ βℓ

√
ϵ2ℓ/H

4β2
ℓ

≤ ϵℓ/H
2

where the second inequality holds on Egood (in particular Eℓ,h−i
exp ). This proves the first inequality.

On Eℓ,hest we can also bound

|⟨r̂ℓ,h − r̃ℓ,h,πhδ̂
π
ℓ,h + (πh − π̄ℓ,h)ŵ

π̄
ℓ,h⟩|

≤ βℓ

√√√√√∑
s,a

[
Mℓ,h

(
(πh − π̄ℓ,h′)ŵπ̄

ℓ,h + πhδ̂πℓ,h

) ]2
(s,a)

Nℓ,h(s, a)

≤ ϵℓ/H
2.

This proves the second inequality.

Lemma 22. On event Egood, for any timestep h, policies π, π′, and action a, we have:

Eπ′ [|Q̂π
ℓ,h(sh, a)−Qπ

h(sh, a)|] ≤ H2S3/2

√
A log

24S2AHℓ2

δ
· ϵ1/3ℓ + 64H2Sϵℓunif . (C.6)

Proof. By Lemma E.15 of [10], we have that:

Q̂π
ℓ,h(s, a)−Qπ

h(s, a)

= Eπ

[
H∑

h′=h

∑
s′

(P̂ℓ,h′(s′ | sh′ , ah′)− Ph(s
′ | sh′ , ah′))V̂ π

ℓ,h′+1(sh′) | sh = s, ah = a

]
.
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On Egood, in particular Eℓ,h
′

est , we can bound, for s ∈ Skeepℓ,h′ and any a:∣∣∣∣∣∑
s′

(P̂ℓ,h′(s′ | s, a)− Ph(s
′ | s, a))V̂ π

ℓ,h′+1(s
′)

∣∣∣∣∣
≤ SH

√
log 24S2AHℓ2

δ

Nℓ,h′(s, a)
≤ SH

√
SA log 24S2AHℓ2

δ

Kℓ
unifϵ

ℓ
unif

and where the last inequality follows on Eℓ,h′

exp . By our choice of Kℓ
unif and ϵℓunif , we can further

bound this as

≤ SH

√
SA log

24S2AHℓ2

δ
· ϵ1/3ℓ .

For s ̸∈ Skeepℓ,h′ , we can bound |
∑

s′(P̂ℓ,h′(s′ | s, a)− Ph(s
′ | s, a))V̂ π

ℓ,h′(sh′)| ≤ 2H . We therefore
have that

Eπ′ [|Q̂π
ℓ,h(sh, a)−Qπ

h(sh, a)|]

≤ Eπ′

[
Eπ

[ H∑
h′=h

SH

√
SA log

24S2AHℓ2

δ
· ϵ1/3ℓ · I{sh′ ∈ Skeepℓ,h′ }

+ 2HI{sh′ ̸∈ Skeepℓ,h′ } | sh = s, ah = a

]]
=

H∑
h′=h

Eπ̃

[
SH

√
SA log

24S2AHℓ2

δ
· ϵ1/3ℓ · I{sh′ ∈ Skeepℓ,h′ }+ 2HI{sh′ ̸∈ Skeepℓ,h′ }

]

≤ H2S3/2

√
A log

24S2AHℓ2

δ
· ϵ1/3ℓ + 64H2Sϵℓunif ,

where the last inequality follows by definition of Skeepℓ,h′ , and π′ is the policy which plays π̄ℓ for the
first h steps and then plays π. This proves the result.

Lemma 23. On event Egood, for all h and any π and π′, we have that

|Ûℓ,h(π, π
′)− Uh(π, π

′)| ≤ 9H3S3/2

√
A log

24S2AHℓ2

δ
· ϵ1/3ℓ + 576H3Sϵℓunif .

Proof. We have

Ûℓ,h(π, π
′) = Eπ′,ℓ

[(
Q̂π

ℓ,h(sh, πh(sh))− Q̂π
ℓ,h(sh, π

′
h(sh))

)2]
where Eπ′,ℓ denotes the expectation induced playing policy π′ on the MDP with transition
P̂ℓ. We can think of this as simply a value function for policy π on the reward řh(s, a) =(
Q̂π

ℓ,h(s, πh(s))− Q̂π
ℓ,h(s, a)

)2
. Let V̌ denote the value function on this reward on P̂ℓ, and note that

V̌h(s) ∈ [0, H2] for all (s, h). By Lemma E.15 of [10], we then have that∣∣∣∣Ûℓ,h(π, π
′)− Eπ′

[(
Q̂π

ℓ,h(sh, πh(sh))− Q̂π
ℓ,h(sh, π

′
h(sh))

)2]∣∣∣∣
= Eπ′

[
H∑

h=1

∑
s′

(P̂ℓ,h(s
′ | sh, ah)− Ph(s

′ | sh, ah))V̌h+1(s
′)

]

≤ H2
H∑

h=1

Eπ′

[∑
s′

|P̂ℓ,h(s
′ | sh, ah)− Ph(s

′ | sh, ah)|

]
.
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Note that we always have
∑

s′ |P̂ℓ,h(s
′ | sh, ah)− Ph(s

′ | sh, ah)| ≤ 2. Furthermore, on Egood we

also have
∑

s′ |P̂ℓ,h(s
′ | sh, ah)− Ph(s

′ | sh, ah)| ≤ S

√
log 24S2AHℓ2

δ

Nℓ,h(sh,ah)
. We can therefore bound the

above as

≤ H2
H∑

h=1

Eπ′

min

2, S

√
log 24S2AHℓ2

δ

Nℓ,h(sh, ah)




≤ H2
H∑

h=1

Eπ′

2 · I{sh ̸∈ Skeepℓ,h }+ S

√
log 24S2AHℓ2

δ

Nℓ,h(sh, ah)
· I{sh ∈ Skeepℓ,h }

 .

For s ∈ Skeepℓ,h , on Egood we have Nℓ,h(sh, ah) ≥ Kℓ
unifϵ

ℓ
unif

SA = ϵ
2/3
ℓ /SA, and we also have for

sh ̸∈ Skeepℓ,h that W ⋆
h (s) ≤ 32ϵℓunif . Putting this together we can bound the above as

≤ H2
H∑

h=1

[
64Sϵℓunif + S

√
SA log

24S2AHℓ2

δ
· ϵ1/3ℓ

]

≤ 64SH3ϵℓunif +H3S3/2

√
A log

24S2AHℓ2

δ
· ϵ1/3ℓ .

Furthermore,∣∣∣∣Eπ′

[(
Q̂π

ℓ,h(s, πh(s))− Q̂π
ℓ,h(s, π

′
h(s))

)2]
− Eπ′

[
(Qπ

h(s, πh(s))−Qπ
h(s, π

′
h(s)))

2
]∣∣∣∣

=

∣∣∣∣Eπ′

[(
Q̂π

ℓ,h(s, πh(s))−Qπ
h(s, πh(s)) +Qπ

h(s, π
′
h(s))− Q̂π

ℓ,h(s, π
′
h(s))

)2]
+ Eπ′

[(
Q̂π

ℓ,h(s, πh(s))−Qπ
h(s, πh(s)) +Qπ

h(s, π
′
h(s))− Q̂π

ℓ,h(s, π
′
h(s))

)
(Qπ

h(s, πh(s))−Qπ
h(s, π

′
h(s)))

]∣∣∣∣
≤ 4HEπ′ [|Q̂π

ℓ,h(s, πh(s))−Qπ
h(s, πh(s))|] + 4HEπ′ [|Qπ

h(s, π
′
h(s))− Q̂π

ℓ,h(s, π
′
h(s))|]

≤ 8H3S3/2

√
A log

24S2AHℓ2

δ
· ϵ1/3ℓ + 512H3Sϵℓunif

where the final inequality follows from Lemma 22. Combining this with the above bound completes
the argument.

Lemma 24. On event Egood, for all epochs ℓ, we have that∣∣∣∣∣
H∑

h=1

⟨r̃ℓ,h,πh(δ
π
ℓ,h − δ̃πℓ,h)⟩+ ⟨r̃ℓ,h, (πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)⟩

∣∣∣∣∣ ≤ ϵℓ. (C.7)

Proof. We first bound |⟨Mℓ,hrh,πh(δ
π
ℓ,h − δ̃πℓ,h)⟩|. By Lemma 17 we have that

δπℓ,h+1 − δ̃πℓ,h+1

=

h−2∑
i=0

 h∏
j=h−i+1

Mℓ,j+1Pjπj

Mℓ,h−i+1Ph−i(πh−i − π̄ℓ,h−i)(w
π̄
h−i − ŵπ̄

ℓ,h−i) + ∆π
ℓ,h+1
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for some ∆π
ℓ,h ∈ RS with ∥∆π

ℓ,h∥2 ≤ 32SHϵℓunif . Furthermore, note that

H∑
h=1

h−2∑
i=0

〈
r̃ℓ,h,πh

 h∏
j=h−i+1

Mℓ,j+1Pjπj

Mℓ,h−i+1Ph−i(πh−i − π̄ℓ,h−i)(w
π̄
h−i − ŵπ̄

ℓ,h−i)

〉

=

H∑
h=1

h∑
k=2

〈
r̃ℓ,h,πh

 h∏
j=k+1

Mℓ,j+1Pjπj

Mℓ,k+1Pk(πk − π̄ℓ,k)(w
π̄
k − ŵπ̄

ℓ,k)

〉

=

H∑
k=2

H∑
h=k

〈
r̃ℓ,h,πh

 h∏
j=k+1

Mℓ,j+1Pjπj

Mℓ,k+1Pk(πk − π̄ℓ,k)(w
π̄
k − ŵπ̄

ℓ,k)

〉

=

H∑
k=2

⟨P⊤
k Mℓ,k+1Ṽℓ,k+1, (πk − π̄ℓ,k)(w

π̄
k − ŵπ̄

ℓ,k)⟩.

It follows that
H∑

h=1

⟨r̃ℓ,h,πh(δ
π
ℓ,h − δ̃πℓ,h)⟩+ ⟨r̃ℓ,h, (πh − π̄ℓ,h)(w

π̄
h − ŵπ̄

ℓ,h)⟩

=

H∑
h=2

⟨P⊤
h Mℓ,h+1Ṽℓ,h+1 + r̃ℓ,h, (πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)⟩+∆

for some ∆ satisfying |∆| ≤ 32S3/2H2ϵℓunif . On Egood (specifically Ēℓest), we can bound

H∑
h=2

|⟨P⊤
h Mℓ,h+1Ṽℓ,h+1 + r̃ℓ,h, (πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)⟩|

≤
H∑

h=2

√
2Es∼wπ̄

ℓ,h
[⟨P⊤

h Mℓ,h+1Ṽ π
ℓ,h+1 + r̃ℓ,h, (πh − π̄ℓ,h)es⟩2]
n̄ℓ

· log 60Hℓ2|Πℓ|
δ

+
2H

3n̄ℓ
log

60H2ℓ2|Πℓ|
δ

We can also bound

Es∼wπ̄
ℓ,h

[⟨P⊤
h Mℓ,h+1Ṽ

π
ℓ,h+1 + r̃ℓ,h, (πh − π̄ℓ,h)es⟩2]

≤ 2Es∼wπ̄
ℓ,h

[⟨P⊤
h V π

h+1 + rh, (πh − π̄ℓ,h)es⟩2] + 2HEs∼wπ̄
ℓ,h

[|[π⊤
h P

⊤
h (Mℓ,h+1Ṽ

π
ℓ,h+1 − V π

h+1)]s|]

+ 2HEs∼wπ̄
ℓ,h

[|[π̄⊤
ℓ,hP

⊤
h (Mℓ,h+1Ṽ

π
ℓ,h+1 − V π

h+1)]s|] + 4Es∼wπ̄
ℓ,h

[sup
a
|rh(s, a)− r̃ℓ,h(s, a)|]

Furthermore,

Es∼wπ̄
ℓ,h

[|[π⊤
h P

⊤
h (Mℓ,h+1Ṽ

π
ℓ,h+1 − V π

h+1)]s|]

=
∑
s

|[π⊤
h P

⊤
h (Mℓ,h+1Ṽ

π
ℓ,h+1 − V π

h+1)]s|wπ̄
ℓ,h(s)

≤
√
S∥(Mℓ,h+1Ṽ

π
ℓ,h+1 − V π

h+1)
⊤Phπhw

π̄
ℓ,h∥2

≤
√
S∥(Ṽ π

ℓ,h+1 − V π
h+1)

⊤Phπhw
π̄
ℓ,h∥2 +

√
S∥(Mℓ,h+1Ṽ

π
ℓ,h+1 − Ṽ π

ℓ,h+1)
⊤Phπhw

π̄
ℓ,h∥2

≤ 64S2H2ϵℓunif

where the last inequality follows from the definition of Ṽ and Lemma 17. A similar bound can be
shown for Es∼wπ̄

ℓ,h
[|[π̄⊤

ℓ,hP
⊤
h (Mℓ,h+1Ṽ

π
ℓ,h+1 − V π

h+1)]s|]. In addition, by definition of r̃ℓ,h we have

Es∼wπ̄
ℓ,h

[sup
a
|rh(s, a)− r̃ℓ,h(s, a)|] ≤ Es∼wπ̄

ℓ,h
[I{s ̸∈ Skeepℓ,h }] ≤ 32Sϵℓunif .
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Thus, we have

H∑
h=2

|⟨P⊤
h Mℓ,h+1Ṽℓ,h+1 + rh, (πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)⟩|

≤
H∑

h=2

√
2Es∼wπ̄

ℓ,h
[⟨P⊤

h Mℓ,h+1Ṽ π
ℓ,h+1 + rh, (πh − π̄ℓ,h)es⟩2]
n̄ℓ

· log 60Hℓ2|Πℓ|
δ

+
2H

3n̄ℓ
log

60H2ℓ2|Πℓ|
δ

≤
H∑

h=2

√
4Uh(π, π̄ℓ) + 384S2H3ϵℓunif

n̄ℓ
· log 60Hℓ2|Πℓ|

δ
+

2H

3n̄ℓ
log

60H2ℓ2|Πℓ|
δ

.

By Lemma 23 and Jensen’s inequality, this can be further bounded as

≤
H∑

h=2

c

√√√√ Ûℓ−1,h(π, π̄ℓ) + S3/2H3

√
A log 24S2AHℓ2

δ · ϵ1/3ℓ + S2H3ϵℓunif

n̄ℓ
· log 60Hℓ2|Πℓ|

δ

+
2H

3n̄ℓ
log

60H2ℓ2|Πℓ|
δ

≤ c

√√√√HÛℓ−1(π, π̄ℓ) + S3/2H4

√
A log 24S2AHℓ2

δ · ϵ1/3ℓ + S2H4ϵℓunif

n̄ℓ
· log 60Hℓ2|Πℓ|

δ

+
2H

3n̄ℓ
log

60H2ℓ2|Πℓ|
δ

.

The result then follows from this, our choice of n̄ℓ and ϵℓunif , and the bound on ∆ above.

Lemma 25. On Egood, we can bound

infπexp maxπ∈Πℓ
∥Mℓ,h((πh − π̄ℓ,h)ŵ

π̄
ℓ,h + πhδ̂

π
ℓ,h)∥2Λh(πexp)−1

ϵℓexp

≤
infπexp

maxπ∈Πℓ
4∥π̄ℓ,hw

π̄
ℓ,h − πhw

π
h∥2Λh(πexp)−1

ϵℓexp

+
(8S2A+ 32S3AH2)ϵ

5/3
ℓ + 2S2AHβℓϵ

ℓ
exp + 4096S3AH2(ϵℓunif)

2

ϵℓunifϵ
ℓ
exp

.

Proof. We can bound:

inf
πexp

max
π∈Πℓ

∥Mℓ,h((πh − π̄ℓ,h)ŵ
π̄
ℓ,h + πhδ̂

π
ℓ,h)∥2Λh(πexp)−1

≤ inf
πexp

max
π∈Πℓ

4∥Mℓ,h((πh − π̄ℓ,h)w
π̄
ℓ,h + πhδ

π
ℓ,h)∥2Λh(πexp)−1

+ inf
π′
exp

max
π∈Πℓ

[
8∥Mℓ,h(πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)∥2Λh(π′
exp)

−1

+ 8∥Mℓ,hπh(δ
π
ℓ,h − δ̂πℓ,h)∥2Λh(π′

exp)
−1

]
.
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We can write

∥Mℓ,h(πh − π̄ℓ,h)(w
π̄
ℓ,h − ŵπ̄

ℓ,h)∥2Λh(π′
exp)

−1

=
∑
s,a

(πh(a | s)− π̄ℓ,h(a | s))2(wπ̄
ℓ,h(s)− ŵπ̄

ℓ,h(s))
2

[Λh(π′
exp)]sa,sa

· I{(s, a) ∈ Skeepℓ,h }

≤
∑
s,a

(wπ̄
ℓ,h(s)− ŵπ̄

ℓ,h(s))
2

[Λh(π′
exp)]sa,sa

· I{(s, a) ∈ Skeepℓ,h }.

On Egood, for each (s, a) ∈ Skeepℓ,h we have W ⋆
h (s) ≥ ϵℓunif . Let πsh denote the policy which achieves

wπsh

h (s) = W ⋆
h (s), and then plays actions uniformly at random at (s, h). Let π′

exp = unif({πsh}s).
Then we have [Λh(π

′
exp)]sa,sa ≥W ⋆

h (s)/SA ≥ ϵℓunif/SA for each (s, a) ∈ Skeepℓ,h , so we can bound
the above as

≤ SA

ϵℓunif

∑
s,a

(wπ̄
ℓ,h(s)− ŵπ̄

ℓ,h(s))
2 =

SA

ϵℓunif
∥wπ̄

ℓ,h − ŵπ̄
ℓ,h∥22 ≤

8S2Aϵ
5/3
ℓ

ϵℓunif
,

where the last inequality follows from Lemma 19.

We can obtain a bound on ∥Mℓ,hπh(δ
π
ℓ,h − δ̂πℓ,h)∥2Λh(π′

exp)
−1 using a similar argument but now

applying Lemma 18 to get that:

∥Mℓ,hπh(δ
π
ℓ,h − δ̂πℓ,h)∥2Λh(π′

exp)
−1 ≤

2S2AHβℓϵ
ℓ
exp

ϵℓunif
+

32S3AH2ϵ
5/3
ℓ

ϵℓunif
+ 4096S3AH2ϵℓunif .

Finally, note that

∥Mℓ,h((πh − π̄ℓ,h)w
π̄
ℓ,h + πhδ

π
ℓ,h)∥2Λh(πexp)−1 = ∥Mℓ,h(π̄ℓ,hw

π̄
ℓ,h + πhw

π
h)∥2Λh(πexp)−1

≤ ∥π̄ℓ,hw
π̄
ℓ,h − πhw

π
h∥2Λh(πexp)−1

where the equality holds by definition, and the inequality by simply manipulations. Combining these
bounds gives the result.

C.5 Correctness and Sample Complexity

Lemma 26. On the event Egood, for all π ∈ Πℓ+1, we have V ⋆
0 (Π)− V π

0 ≤ 16ϵℓ, and π⋆ ∈ Πℓ.

Proof. Recall Dπ̄ℓ
(π) = V π

0 − V π̄ℓ
0 . For π ∈ Πℓ, we have

|D̂π̄ℓ
(π)−Dπ̄ℓ

(π)|

=

∣∣∣∣∣
H∑

h=1

[
⟨r̂ℓ,h,πhδ̂

π
ℓ,h + (πh − π̄ℓ,h)ŵ

π̄
ℓ,h⟩ − ⟨rh,πhδ

π
ℓ,h + (πh − π̄ℓ,h)w

π̄
ℓ,h⟩
]∣∣∣∣∣

≤
H∑

h=1

|⟨r̂ℓ,h − r̃ℓ,h,πhδ̂
π
ℓ,h + (πh − π̄ℓ,h)ŵ

π̄
ℓ,h⟩|︸ ︷︷ ︸

(a)

+

H∑
h=1

|⟨r̃ℓ,h,πh(δ̃
π
ℓ,h − δ̂πℓ,h)⟩|︸ ︷︷ ︸

(b)

+

∣∣∣∣∣
H∑

h=1

⟨r̃ℓ,h,πh(δ
π
ℓ,h − δ̃πℓ,h)⟩+ ⟨rh, (πh − π̄ℓ,h)(w

π̄
ℓ,h − ŵπ̄

ℓ,h)⟩

∣∣∣∣∣︸ ︷︷ ︸
(c)

+

H∑
h=1

|⟨r̃ℓ,h − rh,πhδ
π
ℓ,h + (πh − π̄ℓ,h)w

π̄
ℓ,h⟩|︸ ︷︷ ︸

(d)

.
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By Lemma 21, on Egood we have (a) ≤ ϵℓ and (b) ≤ ϵℓ, and by Lemma 24, (c) ≤ ϵℓ. To bound (d),
we note that πhδ

π
ℓ,h + (πh − π̄ℓ,h)w

π̄
ℓ,h = πhw

π
h − π̄ℓ,hw

π̄
ℓ,h, and so, on Egood and by definition of

r̃ℓ,h,

(d) ≤
H∑

h=1

∑
s̸∈Skeep

ℓ,h

(wπ
h(s) + wπ̄

ℓ,h(s)) ≤ 64HSϵℓunif ≤ ϵℓ.

Note that we only eliminate policy π ∈ Πℓ at round ℓ if maxπ′ D̂π̄ℓ
(π′)− D̂π̄ℓ

(π) > 8ϵℓ. Assume
that π⋆ ∈ Πℓ. By what we have just shown, if policy π is eliminated, we then have

8ϵℓ < max
π′∈Πℓ

Dπ̄ℓ
(π′)−Dπ̄ℓ

(π) + 8ϵℓ = V ⋆
0 − V π

0 + 8ϵℓ =⇒ V π
0 < V ⋆

0 .

It follows that π⋆ will not be eliminated at round ℓ, as long as π⋆ ∈ Πℓ. By a simple inductive
argument, since π⋆ ∈ Π0, it follows that on Egood, π⋆ ∈ Πℓ for all ℓ.

Furthermore, for each π ∈ Πℓ+1, we have maxπ′ D̂π̄ℓ
(π′)− D̂π̄ℓ

(π) ≤ 8ϵℓ. Which, again by what
we have just shown, implies that

8ϵℓ ≥ max
π′∈Πℓ

Dπ̄ℓ
(π′)−Dπ̄ℓ

(π)− 8ϵℓ = V ⋆
0 − V π

0 − 8ϵℓ =⇒ V ⋆
0 − V π

0 ≤ 16ϵℓ.

Theorem 1. There exists an algorithm (Algorithm 1) which, with probability at least 1− 2δ, finds an
ϵ-optimal policy and terminates after collecting at most

H∑
h=1

inf
πexp

max
π∈Π

H4∥ϕ⋆
h − ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2}
· ιβ2 +max

π∈Π

HU(π, π⋆)

max{ϵ2,∆(π)2}
log H|Π|ι

δ +
Cpoly

max{ϵ 5
3 ,∆

5
3

min}

episodes, for Cpoly := poly(S,A,H, log 1/δ, ι, log |Π|), β := C
√
log(SH|Π|

δ · 1
∆min∨ϵ ) and

ι := log 1
∆min∨ϵ .

Proof. First, by Lemma 20, we have that P[Egood] ≥ 1 − 2δ. For the remainder of the proof we
assume we are on Egood.

By Lemma 26, we have that on Egood, for every π ∈ Πℓ+1, V ⋆
0 − V π

0 ≤ 16ϵℓ, and that π⋆ ∈ Πℓ

for all ℓ. It follows that, since we run for ℓϵ = ⌈log2 16/ϵ⌉ epochs, when we terminate each policy
π ∈ Πℓϵ satisfies V ⋆

0 − V π
0 ≤ 16ϵℓϵ = 16 · 2−ℓϵ ≤ ϵ. Furthermore, if we terminate early on Line 20,

then we know that |Πℓ+1| = 1, and since π⋆ ∈ Πℓ+1, we have that the algorithm returns π⋆. Thus,
the policy returned by Algorithm 2 is always ϵ-optimal.

It therefore remains to bound the sample complexity of Algorithm 2. At round ℓ of Algorithm 2, we
collect n̄ℓ samples plus the number of samples collected from OPTCOV. On Egood, we have that the
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number of samples collected by OPTCOV at round ℓ step h is bounded by

C ·
infπexp maxπ∈Πℓ

∥M ℓ
h((πh − π̄ℓ,h)ŵ

π̄
ℓ,h + πhδ̂

π
ℓ,h)∥2Λh(πexp)−1

ϵℓexp

+
Cℓ

fw

(ϵℓexp)
4/5

+
Cℓ

fw

ϵℓunif
+ log(Cℓ

fw) ·Kℓ
unif

(a)

≤ C ·
infπexp

maxπ∈Πℓ
∥π̄ℓ,hw

π̄
ℓ,h − πhw

π
h∥2Λh(πexp)−1

ϵℓexp
+

Cℓ
fw

(ϵℓexp)
4/5

+
Cℓ

fw

ϵℓunif
+ log(Cℓ

fw) ·Kℓ
unif

+
(8S2A+ 32S3AH2)ϵ

5/3
ℓ + 2S2AHβℓϵ

ℓ
exp + 4096S3AH2(ϵℓunif)

2

ϵℓunifϵ
ℓ
exp

(b)

≤ C ·
infπexp

maxπ∈Πℓ
∥π̄ℓ,hw

π̄
ℓ,h − πhw

π
h∥2Λh(πexp)−1

ϵ2ℓ
·H4β2

ℓ +
Cℓ

poly

ϵ
5/3
ℓ

(c)

≤ C ·
infπexp

maxπ∈Πℓ
∥π⋆

hw
π⋆

h − πhw
π
h∥2Λh(πexp)−1

ϵ2ℓ
·H4β2

ℓ +
Cℓ

poly

ϵ
5/3
ℓ

(d)

≤ C · inf
πexp

max
π∈Π

∥π⋆
hw

π⋆

h − πhw
π
h∥2Λh(πexp)−1

max{ϵ2ℓ ,∆(π)2}
·H4β2

ℓ +
Cℓ

poly

ϵ
5/3
ℓ

where the initial bound holds from Lemma 14, the (a) follows from Lemma 25, and (b) follows
plugging in our choice of ϵℓunif and ϵℓexp, and with Cℓ

poly = poly(S,A,H, log ℓ/δ, log 1/ϵ, log |Π|),
(c) holds by the triangle inequality and since π̄ℓ ∈ Πℓ, and (d) holds because, for all π ∈ Πℓ, we
have ∆(π) ≤ 32ϵℓ. Furthermore, we can bound n̄ℓ as

n̄ℓ = min
π̄∈Πℓ

max
π∈Πℓ

c ·
HÛℓ−1(π, π̄) +H4S3/2

√
A log SAHℓ2

δ · ϵ1/3ℓ + S2H4ϵℓunif
ϵ2ℓ

· log 60Hℓ2|Πℓ|
δ

(a)

≤ min
π̄∈Πℓ

max
π∈Πℓ

c ·
HU(π, π̄) +H4S3/2

√
A log SAHℓ2

δ · ϵ1/3ℓ + S2H4ϵℓunif
ϵ2ℓ

· log 60Hℓ2|Πℓ|
δ

(b)

≤ max
π∈Π

c · HU(π, π⋆)

max{ϵ2ℓ ,∆(π)2}
· log 60Hℓ2|Πℓ|

δ
+

Cℓ
poly

ϵ
5/3
ℓ

where (a) follows from Lemma 23, and (b) since π⋆ ∈ Πℓ, and by a similar argument as above.

Thus, if we run for a total of L rounds, the sample complexity is bounded as
L∑

ℓ=1

(
C ·

H∑
h=1

inf
πexp

max
π∈Π

∥π⋆
hw

π⋆

h − πhw
π
h∥2Λh(πexp)−1

max{ϵ2ℓ ,∆(π)2}
·H4β2

ℓ

+max
π∈Π

c · HU(π, π⋆)

max{ϵ2ℓ ,∆(π)2}
· log 60Hℓ2|Πℓ|

δ

)
+

LCL
poly

ϵ
5/3
L

.

By construction, we have that L ≤ ⌈log2 16/ϵ⌉. However, we terminate early if |Πℓ+1| = 1, and
since each π ∈ Πℓ+1 satisfies ∆(π) ≤ ϵℓ, it follows that we will have |Πℓ+1| = 1 once ϵℓ < ∆min,
which will occur for ℓ ≥ ⌈log2 1

∆min
⌉+ 1. Thus, we can bound

L ≤ min{⌈log2 16/ϵ⌉, ⌈log2 1/∆min⌉+ 1},
and so for all ϵℓ, ℓ ≤ L, we have ϵℓ ≥ c ·max{ϵ,∆min}. Plugging this into the above gives the final
complexity.

D Tabular Contextual Bandits: Upper Bound

Setting and notation. We study stochastic tabular contextual bandits, denoted by the tuple
(C,A, µ⋆, ν). At each episode, a context c ∼ µ⋆ arrives, the agent chooses an action a ∈ A,
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and receives reward r(c, a) ∼ ν(c, a) in R. Note that this is a special case of the Tabular MDP when
H = 1. In this setting, we use the terminology “contexts" instead of “states" to highlight that the
agent has no impact on these. The vector µ⋆ plays the same role as the state visitation vectors wπ

h
previously, except this is now policy-independent. The notation for policy matrix π, values V π,
features ϕπ(c, a) are inherited directly from the general case.

Define θ⋆ ∈ R|C|A as the vector of reward means, so that [θ⋆](c,a) = Eν [r(c, a)]. Then, we can write
the value of π as:

Eν,µ⋆ [r(c, π(c))] =
∑
c,a

θ⋆c,a[µ
⋆]c[π(c)]a = (θ⋆)⊤πµ⋆

For any (θ, µ) define OPT(θ, µ) := argmaxπ∈Π θ⊤πµ, where θ is any hypothetical vector of
reward-means and µ ∈ ∆|C| is a hypothetical context distribution.

Recall that we use π ∈ R|C|A×|C| to refer to the policy matrix. The vector πµ ∈ R|C|A contains
context-action visitations for policy π under context distribution µ. Define function G(µ, π) =
Eµ,π[(πµ)(πµ)

⊤] which returns the expected covariance matrix of policy π under context distribution
µ. For shorthand, we refer to Â(π) = G(µ̂ℓ, πexp) and A(π) = G(µ⋆, πexp) for any π.
Lemma 27. Define the experimental design objective

F (πexp, µ, π, π
′) = ∥(π′ − π)µ∥2G(µ,πexp)−1 .

Then, for any µ ∈ ∆C ,

min
πexp

max
π,π′∈Πℓ

F (πexp, µ, π, π
′) = max

π,π′∈Πℓ

min
πexp

F (πexp, µ, π, π
′)

Proof. We can rewrite the maximization problem to be over the simplex ∆Πℓ×Πℓ
instead:

min
πexp

max
λ∈∆Πℓ×Πℓ

∑
π,π′∈Πℓ×Πℓ

λπ,π′F (πexp, µ, π, π
′) (D.1)

This does not change the objective value. To see this, note that for any selection (π1, π2) in the original
problem, the same objective value can be obtained by setting λ = eπ1,π2

; hence, the modification
to the optimization cannot reduce the value. Further if F (πexp, µ, π, π

′) is maximized by (π1, π2),
setting λ as anything other than eπ1,π2 cannot increase the objective value.

Now, note that both the minimization and maximization problems are over simplices, which are
compact and convex sets. The objective is linear in the maximization variable, and hence concave.
The objective can be rewritten as

∑
c∈S

∑
a∈A

(π − π′)⊤ea,ce
⊤
a,c(π − π′)

pc,a
.

Here, pc,a as the probability that πexp plays action a, given that we are in context c. From this
representation, we can clearly see that the objective is convex in each pc,a. Hence, since we are
optimizing over finite-dimensional spaces (|A| and |C| are finite), Von Neumann’s minimax theorem
applies and the proof is complete.

Lemma 28. For the contextual bandit problem, define the experimental design objective

F (πexp, µ, π, π
′) = ∥(π′ − π)µ∥2G(µ,πexp)−1 .

Then, for any µ and assuming that all policies in Πℓ are deterministic, we have:

min
πexp

max
π,π′∈Πℓ

F (πexp, µ, π, π
′) = max

π,π′∈Πℓ

Ec∼µ[4I[π(c) ̸= π′(c)]], (D.2)
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Proof. Below, we refer to pc,a as the probability that πexp plays action a, given that we are in context
c. We have:

min
πexp

max
π,π′∈Πℓ

∥(π′ − π)µ∥2G(µ,πexp)−1

= max
π,π′∈Πℓ

min
πexp

∥(π′ − π)µ∥2G(µ,πexp)−1

= max
π,π′∈Πℓ

min
p1...pC∈∆A

∑
a,c

µ2
c

(π − π′)⊤ea,ce
⊤
a,c(π − π′)

µcpc,a

= max
π,π′∈Πℓ

∑
c

µc min
pc

∑
a∈A

(π − π′)⊤ea,ce
⊤
a,c(π − π′)

pc,a

= max
π,π′∈Πℓ

∑
c

µc

(∑
a∈A

√
(π − π′)⊤ea,ce⊤a,c(π − π′)

)2

.

Here the first equality follows from Lemma 27, and the last from Lemma D.6 of [30].

We have assumed that the policies in Πℓ are deterministic. Hence, the only two actions in the
summation over A above that are relevant are π(c) and π′(c). For all other a ∈ A, the term in the
square root evaluates to 0. If π(c) = π′(c), then the entire summation over A evaluates to 0; else,
the terms indexed by π(c) and π′(c) are both 1, and the summation evalutes to 2. Hence, we can
simplify the expression to exactly the form of Equation (D.2) from the lemma statement, and the
proof is complete.

Lemma 29. For the contextual bandits problem, we have that

max
π∈Π

Ec∼µ⋆ [Eν⋆ [(r(c, π(c))− r(c, π⋆(c)))2|c]] ≤ inf
πexp

max
π∈Π
∥ϕ⋆ − ϕπ∥2Λ(πexp)−1

Proof. Observe that r(c, π(c))−r(c, π⋆(c)) = 0 if π(c) = π⋆(c); else, |r(c, π(c))−r(c, π⋆(c))| ≤ 2.
Then, it follows that

max
π∈Π

Ec∼µ⋆ [Eν⋆ [(r(c, π(c))− r(c, π⋆(c)))2|c]]

≤ max
π∈Π

4Ec∼µ⋆I(π(c) ̸= π⋆(c))

= inf
πexp

max
π∈Π
∥ϕ⋆ − ϕπ∥2Λ(πexp)−1 ,

where the equality follows from Lemma 28.

Now, we state our main upper bound for contextual bandits.

Corollary 1. For the setting of tabular contextual bandits, there exists an algorithm such that with
probability at least 1− 2δ, as long as Π contains only deterministic policies, it finds an ϵ-optimal
policy and terminates after collecting at most the following number of samples:

inf
πexp

max
π∈Π

∥ϕ⋆ − ϕπ∥2Λ(πexp)−1

max{ϵ2,∆(π)2}
· β2 log

1

∆min ∨ ϵ
+

Cpoly

max{ϵ5/3,∆5/3
min}

,

for Cpoly = poly(|S|, A, log 1/δ, log 1/(∆min ∨ ϵ), log |Π|) and β = C
√
log(S|Π|

δ ·
1

∆min∨ϵ ).

Proof. In the special case of contextual bandits, U(π, π⋆) defined in Theorem 1 can be written more
simply as Ec∼µ⋆ [Eν⋆ [(r(c, π(c))− r(c, π⋆(c)))2|c]]. Then, by Lemma 29, we have that:

U(π, π⋆)

max{ϵ2,∆(π)2,∆2
min}

≤ inf
πexp

max
π∈Π

∥ϕ⋆ − ϕπ∥2Λ(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

Plugging this into Theorem 1 completes the proof.
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E MDPs with Action-Independent Transitions

We consider here a special class of MDPs where the transitions only depend on the states and are
independent of the actions selected i.e all Ph are such that Ph(s, a) = Ph(s, a

′) for all (a, a′) ∈ A.
In this special case, we prove in this subsection that the (leading order) complexity of PERP reduces
to O(ρΠ).
Lemma 30. For the ergodic MDP problem,

min
πexp

max
π∈Π
∥ϕπ

h − ϕ⋆
h∥2Λh(πexp)−1 = max

π∈Π
min
πexp

∥ϕπ
h − ϕ⋆

h∥2Λh(πexp)−1

Proof. We can rewrite the maximization problem to be over the simplex ∆Π instead:

min
πexp

max
λ∈∆Π

∑
π∈Π

λπ∥ϕπ
h − ϕ⋆

h∥2Λh(πexp)−1 (E.1)

This does not change the objective value. To see this, note that for any selection π ∈ Π in the original
problem, the same objective value can be obtained by setting λ = eπ in Equation (E.1); hence,
the modification to the optimization cannot reduce the value. Further if ∥ϕπ

h − ϕ⋆
h∥2Λh(πexp)−1 is

maximized by π for any fixed πexp, setting λ as anything other than eπ cannot increase the objective
value.

Now, note that both the minimization and maximization problems are over simplices, which are
compact and convex sets. The objective is linear in the maximization variable, and hence concave.
The objective can be rewritten as∑

a

(πh − π⋆
h)

⊤es,ae
⊤
s,a(πh − π⋆

h)

ps,a

Here, ps,a is the probability that πexp plays action a, given that it is in context s. From this
representation, we can clearly see that the objective is convex in each ps,a. Hence, Von Neumann’s
minimax theorem applies and the proof is complete.

Lemma 31. For the setting of ergodic MDPs,

min
πexp

max
π∈Π
∥ϕπ

h − ϕ⋆
h∥2Λh(πexp)−1 = max

π∈Π
2Es∼w⋆

h
I[πh(s) ̸= π′

h(s)], (E.2)

Proof. Below, we refer to ps,a as the probability that πexp plays action a, given that it is in context s.
The second equality follows from Lemma 30.

min
πexp

max
π∈Π
∥ϕπ

h − ϕ⋆
h∥2Λh(πexp)−1

= min
πexp

max
π∈Π
∥(πh − π⋆

h)w
⋆
h∥2Λh(πexp)−1

= max
π∈Π

min
πexp

∥(πh − π⋆
h)w

⋆
h∥2Λh(πexp)−1

= max
π∈Π

min
p1...pS∈∆A

∑
s,a

(w⋆
h(s))

2
(πh − π⋆

h)
⊤es,ae

⊤
s,a(πh − π⋆

h)

w⋆
h(s)ps,a

= max
π∈Π

∑
s

w⋆
h(s) min

ps∈∆A

∑
a

(πh − π⋆
h)

⊤es,ae
⊤
s,a(πh − π⋆

h)

ps,a

= max
π∈Π

∑
s

w⋆
h(s)

(∑
a

√
(πh − π⋆

h)
⊤es,ae⊤s,a(πh − π⋆

h)

)2

The optimization problems in the final line were solved using KKT conditions. We assume that the
two policies are deterministic. Hence, the only two actions in the summation over A above that are
relevant are πh(s) and π′

h(s). For all other a ∈ A, the term in the square root evaluates to 0. If
πh(s) = π′

h(s), then the entire summation over A evaluates to 0; else, the terms indexed by π(c) and
π′(c) are both 1, and the summation evalutes to 2. Hence, we can simplify the expression to exactly
the form of Equation (E.2) from the lemma statement, and the proof is complete.
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Lemma 32. For the ergodic MDP problem, we have that

max
π∈Π

HU(π, π⋆)

max{ϵ2,∆(π)2,∆2
min}

≤ 2H4
H∑

h=1

inf
πexp

max
π∈Π

∥ϕ⋆
h − ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

Proof. Recall the definition of U(π, π⋆)

U(π, π⋆) =

H∑
h=1

Esh∼wπ⋆

h
[(Qπ

h(sh, πh(s))−Qπ
h(sh, π

⋆
h(s)))

2].

Then, we have that

max
π∈Π

HU(π, π⋆)

max{ϵ2,∆(π)2,∆2
min}

= max
π∈Π

H
∑H

h=1 Esh∼wπ⋆

h
[(Qπ

h(sh, πh(s))−Qπ
h(sh, π

⋆
h(s)))

2]

max{ϵ2,∆(π)2,∆2
min}

≤ H

H∑
h=1

max
π∈Π

Esh∼wπ⋆

h
[(Qπ

h(sh, πh(s))−Qπ
h(sh, π

⋆
h(s)))

2]

max{ϵ2,∆(π)2,∆2
min}

≤ H

H∑
h=1

max
π∈Π

2H2Es∼w⋆
h
I[πh(s) ̸= π′

h(s)]

max{ϵ2,∆(π)2,∆2
min}

= H4
H∑

h=1

inf
πexp

max
π∈Π

∥ϕ⋆
h − ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2,∆2
min}

.

The final equality follows from Lemma 31.

Corollary 2. Assume that all Ph are such that Ph(s
′|s, a) = Ph(s

′|s, a′) for all (a, a′) ∈ A. Then,
with probability at least 1− 2δ, PERP (Algorithm 2) finds an ϵ-optimal policy and terminates after
collecting at most the following number of episodes:

H∑
h=1

inf
πexp

max
π∈Π

∥ϕ⋆
h − ϕπ

h∥2Λh(πexp)−1

max{ϵ2,∆(π)2}
· ιH4β2 +

Cpoly

max{ϵ5/3,∆5/3
min}

for Cpoly, β as defined in Theorem 1.

Proof. The proof follows directly from Theorem 1 and Lemma 32.

F Tabular Franke Wolfe

Theorem 2. Fix parameters Kunif > 0, ϵexp > 0, and consider some Φ ⊆ RSA and set S0 ⊆ S . Let
ϵunif > 0 be some value satisfying

W ⋆
h (s) > ϵunif ,∀s ∈ S0, and Kunif ≥ ϵ−1

unif .

Assume that |[ϕ](s,a)| ≤ Cϕ · (W ⋆
h (s) +

√
ϵϕ) for all s ∈ S0, ϕ ∈ Φ, and some Cϕ > 0, and that

[ϕ](s,a) = 0 for s ̸∈ S0. Additionally, let the parameters be such that ϵϕ/(Kunifϵunif) ≤ ϵexp. Then
with probability at least 1− δ, algorithm Algorithm 3 run with these parameters will collect at most

min

{
C ·

infΛ∈Ωh
maxϕ∈Φ ∥ϕ∥2Λ−1

ϵexp
+

Cfw

ϵ
4/5
exp

, Cfw(
1

ϵexp
+Kunif)

}
+

Cfw

ϵunif
+ log(Cfw) ·Kunif

episodes, for C a universal constant and Cfw = poly(S,A,H,Cϕ, log 1/δ, log 1/ϵexp, log |Φ|), and
will produce covariates Σ̂ such that

max
ϕ∈Φ
∥ϕ∥2

Σ̂−1 ≤ ϵexp (F.1)

and, for all s ∈ S0,

[Σ̂](s,a) ≥
ϵunif
2SA

·Kunif . (F.2)
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Algorithm 3 Online Experiment Design (OPTCOV)

1: input: directions Φ, tolerance ϵexp, confidence δ, minimum reachability ϵunif , minimum explo-
ration Kunif , pruned states S0, step h

2: i← 1
3: while TiKi ≤ poly(S,A,H,Cϕ, log 1/δ, log 1/ϵexp, log |Φ|) · ϵ−1

exp do
4: Di

unif ← UNIFEXP(ϵunif ,KiTi +Kunif , δ/8i
2)

5: Λi
0 ← 1

TiKi
diag(vi) where [vi]sa =

∑
(s′,a′)∈Di

unif
I{(s′, a′) = (s, a)} for s ∈ S0, and TiKi

otherwise
6: Run iteration i of Algorithm 4 of [43] on objective

fi(Λ)← 1

ηi
log

∑
ϕ∈Φ

e
ηi∥ϕ∥2

A(Λ)−1

 for A(Λ) = Λ+Λi
0, ηi = 22i/5

to obtain data Di

7: if Algorithm 4 reaches termination condition then
8: return Di ∪Di

unif
9: end if

10: i← i+ 1
11: end while
12: D← UNIFEXP(ϵunif ,

8S2A2C2
ϕ

ϵexp
+ (8S2A2C2

ϕ + 1)Kunif , δ/4)

13: return D

Proof. To prove this result, we apply Lemma 37 combined with Lemma 36.

Let E iexp denote the success event of running Algorithm 4 at epoch i, as defined in Lemma 36.
On this event, and under the assumption that W ⋆

h (s) > ϵunif for each s ∈ S0, we have that
[Σi](s,a) ≥

W⋆
h (s)

2SA · (TiKi +Kunif) for each (s, a) with s ∈ S0 and Σi the covariates induced by
Di

unif , which implies that

[Λi
0](s,a) ≥

1

TiKi

W ⋆
h (s)

2SA
· (TiKi +Kunif) ≥

W ⋆
h (s)

2SA

for each (s, a) with s ∈ S0, and, furthermore, Algorithm 4 collects at most

TiKi +Kunif + poly(S,A,H, log
TiKii

2

δϵunif
) · 1

ϵunif
(F.3)

episodes. Furthermore, by Lemma 36, we have P[E iexp] ≥ δ/2i2, so it follows that

P[∪i≥1(E iexp)c] ≤
∞∑
i=1

δ

8i2
≤ δ/4.

Henceforth, we therefore assume that E iexp holds for each i. This immediately implies that (F.2)
holds.

It remains to show that (F.1) is satisfied, and that our sample complexity guarantee is met. To this end
we apply Lemma 37 with Λ0 a diagonal matrix, with [Λ0](s,a) =

W⋆
h (s)

2SA for s ∈ S0, and otherwise
[Λ0](s,a) = 1. Note that with this choice of Λ0, by what we just showed above, we have Λi

0 ⪰ Λ0,
as required by Lemma 37.

We next turn to bounding the smoothness constants, β and M . First, note that by Lemma 34, at epoch
i we have that all iterates of FWREGRET live in the set Ω̂h,TiKi(δ/8i

2) with probability 1− δ/8i2.
Union bounding over this event for all i, with probability at least 1− δ/4, we have that for each i

all iterates of FWREGRET live in the set Ω̂h,TiKi
(δ/8i2). By Lemma 35, since we have assumed

that |[ϕ](s,a)| ≤ Cϕ · (W ⋆
h (s) +

√
ϵϕ) for all (s, a) with s ∈ S0 and otherwise [ϕ](s,a) = 0 for all
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ϕ ∈ Φ, we can then bound

Mi ≤ max
s∈S0

(
2SAC2

ϕ

C ′ +
2SAC2

ϕϵϕ

C ′ ·W ⋆
h (s)

)
·
(

2

C ′ +
2

C ′TiKiW ⋆
h (s)

· log SAH

δ

)

βi ≤ max
s∈S0

(2ηi + 2)

(
2SAC2

ϕ

C ′ +
2SAC2

ϕϵϕ

C ′ ·W ⋆
h (s)

)2

·
(

2

C ′ +
2

C ′TiKiW ⋆
h (s)

· log SAH

δ

)2

On the event E iexp, as noted above we have [Λi
0](s,a) ≥

W⋆
h (s)

2SA (1 + Kunif

TiKi
) for s ∈ S0, so we can take

C ′ = 1
2SA (1 + Kunif

TiKi
). We can then bound

max
s∈S0

(
2SAC2

ϕ

C ′ +
2SAC2

ϕϵϕ

C ′ ·W ⋆
h (s)

)
·
(

2

C ′ +
2

C ′TiKiW ⋆
h (s)

· log SAH

δ

)

≤

(
4S2A2Cϕ +

4S2A2C2
ϕϵϕ · TiKi

Kunifϵunif

)
·
(
4SA+

4SA

Kunifϵunif
log

SAH

δ

)
where we have used that W ⋆

h (s) ≥ ϵunif for all s ∈ S0, by assumption. By assumption we have
ϵϕ

Kunifϵunif
≤ ϵexp. Note that by construction, the while statement on Line 3 will ensure that we always

have TiKi ≤ poly(S,A,H,Cϕ, log 1/δ, log 1/ϵexp, log |Φ|) · ϵ−1
exp, so we can bound

ϵexp · TiKi ≤ poly(S,A,H,Cϕ, log 1/δ, log 1/ϵexp, log |Φ|).

It follows that it suffices to take

β,M ≤ poly(S,A,H,Cϕ, log 1/δ, log 1/ϵexp, log |Φ|).

We now consider two cases. In the first case, when the termination criteria on Line 7 is met, we can
apply Lemma 37, to get that with probability at least 1− δ/4 we have that the procedure terminates
after running for at most

max

{
min
N

16N s.t. inf
Λ∈Ω

max
ϕ∈Φ

ϕ⊤(NΛ+Λ0)
−1ϕ ≤ ϵexp

6
,

poly(β,R, d,H,M, log 1/δ, log 1/ϵexp, log |Φ|)
ϵ
4/5
exp

}
≤ max

{
min
N

16N s.t. inf
Λ∈Ω

max
ϕ∈Φ

ϕ⊤(NΛ+Λ0)
−1ϕ ≤ ϵexp

6
,

poly(S,A,H,Cϕ, log 1/δ, log 1/ϵexp, log |Φ|)
ϵ
4/5
exp

}
episodes, and returns data Σ̂N such that

f̂i(N
−1Σ̂N ) ≤ Nϵexp,

where î is the index of the epoch on which it terminates. By Lemma D.1 of [42], we have

max
ϕ∈Φ
∥ϕ∥2

A(N−1Σ̂N )−1 ≤ f̂i(N
−1Σ̂N ) ≤ Nϵexp

which implies

max
ϕ∈Φ
∥ϕ∥2

(Σ̂N+Σî)
−1 ≤ ϵexp,

which proves (F.1). Furthermore, (F.2) holds since as noted [Σi](s,a) ≥
W⋆

h (s)
2SA · (TiKi +Kunif) for

each (s, a) with s ∈ S0, and since W ⋆
h (s) ≥ ϵunif for all s ∈ S0.

In the second case, when the while loop on Line 3 terminates since TiKi ≤
poly(S,A,H,Cϕ, log 1/δ, log 1/ϵexp, log |Φ|) · ϵ−1

exp, we can bound the total number of
episodes collected within the calls to Algorithm 4 of [43] within the while loop by
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poly(S,A,H,Cϕ, log 1/δ, log 1/ϵexp, log |Φ|) · ϵ−1
exp. Furthermore, by Lemma 36, with probability

at least 1− δ/4, we have that the call to UNIFEXP on Line 12 terminates after running for at most

8S2A2C2
ϕ

ϵexp
+ (8S2A2C2

ϕ + 1)Kunif + poly(S,A,H, log
TiKii

2

δϵunif
) · 1

ϵunif

episodes, and that the returned data satisfies Nh(s, a) ≥ W⋆
h (s)

2SA · ( 8S
2A2C2

ϕ

ϵexp
+ 8S2A2C2

ϕKunif +

Kunif). Since |[ϕ](s,a)| ≤ Cϕ · (W ⋆
h (s) +

√
ϵϕ) and ϵϕ/(Kunifϵunif) ≤ ϵexp by assumption, some

manipulation shows that

[ϕ]2(s,a)

Nh(s, a)
≤

C2
ϕ · (W ⋆

h (s) +
√
ϵϕ)

2

W⋆
h (s)

2SA · (
8S2A2C2

ϕ

ϵexp
+ 8S2A2C2

ϕKunif +Kunif)
≤ ϵexp

SA
.

It follows then that, letting Σ̂ denote the covariance obtained by the call to UNIFEXP on Line 12,

max
ϕ∈Φ
∥ϕ∥2

Σ̂−1 ≤ ϵexp

as desired. Furthermore, it is straightforward to see that [Σ̂](s,a) ≥ ϵunif
2SA ·Kunif for s ∈ S0 as well.

To complete the proof, we union bound over these events holding, and take the minimum of the
sample complexity bounds from either case.

F.1 Data Conditioning

Lemma 33. Consider running any algorithm for K episodes. Let Kh(s, a) denote the number of
visits to (s, a, h). Then with probability at least 1− δ, for all (s, a, h) simultaneously, we have

Kh(s, a) ≤W ⋆
h (s)K +

√
2W ⋆

h (s)K · log
SAH

δ
+ log

SAH

δ
.

Proof. By definition, we have

sup
π

wπ
h(s) = W ⋆

h (s).

This implies that any policy will reach (s, h) with probability at most W ⋆
h (s). We can therefore think

of this as the sum of Bernoullis with parameter at most W ⋆
h (s), so the bound follows by applying

Bernstein’s inequality and a union bound.

Lemma 34. Consider the set

Ω̂h,K(δ) :=

{
diag(v) : v ∈ RSA

+ , [v](s,a) ≤W ⋆
h (s) +

√
2W ⋆

h (s)

K
· log SAH

δ
+

1

K
log

SAH

δ

}
.

Consider running some set of policies for K episodes, and let Λ̂ be defined as

Λ̂h = diag(v̂), [v](s,a) =
Kh(s, a)

K
.

Then with probability at least 1− δ, we have that Λ̂h ∈ Ω̂h,K(δ) for all h ∈ [H] simultaneously.

Proof. This is an immediate consequence of Lemma 33.

We will denote Ω̂h,K := Ω̂h,K(δ) when the choice of δ is clear from context.
Lemma 35. Consider the function

f(Λ) =
1

η
log

∑
ϕ∈Φ

e
η∥ϕ∥2

A(Λ)−1

 for A(Λ) = Λ+Λ0
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Assume that for all ϕ ∈ Φ we have

max
ϕ∈Φ
|[ϕ](s,a)| ≤ Cϕ · (W ⋆

h (s) + ϵ), ∀s ∈ S0

for some S0 and some Cϕ, ϵ > 0, and otherwise [ϕ](s,a) = 0. Assume that Λ0 = diag(v) for some
v satisfying

[v](s,a) ≥ C ′ ·W ⋆
h (s), ∀s ∈ S0

and otherwise [v](s,a) ≥ λ, for some C ′, λ > 0. Then we can bound

sup
Λ̂,Λ̂′∈Ω̂h,K

|∇Λf(Λ)|Λ=Λ̂[Λ̂
′]|

≤max
s∈S0

(
2SAC2

ϕ

C ′ +
2SAC2

ϕϵ
2

C ′ ·W ⋆
h (s)

)
·
(

2

C ′ +
2

C ′KW ⋆
h (s)

· log SAH

δ

)
and

sup
Λ̂,Λ̂′,Λ̂′′∈Ω̂h,K

|∇2
Λf(Λ)|Λ=Λ̂[Λ̂

′, Λ̂′′]|

≤ max
s∈S0

(2 + 2η)

(
2SAC2

ϕ

C ′ +
2SAC2

ϕϵ
2

C ′ ·W ⋆
h (s)

)2

·
(

2

C ′ +
2

C ′KW ⋆
h (s)

· log SAH

δ

)2

.

Proof. By Lemma D.5 of [42], we have that

∇Λf(Λ)|Λ=Λ̂[Λ̂
′] = −

∑
ϕ∈Φ

e
η∥ϕ∥2

A(Λ̂)−1

 ·∑
ϕ∈Φ

e
η∥ϕ∥2

A(Λ̂)−1ϕ⊤A(Λ̂)−1Λ̂′A(Λ̂)−1ϕ.

We have

ϕ⊤A(Λ̂)−1Λ̂′A(Λ̂)−1ϕ =
∑
s,a

[ϕ]2(s,a) · [Λ̂
′](s,a)

[A(Λ̂)]2(s,a)
=
∑
s∈S0

∑
a

[ϕ]2(s,a) · [Λ̂
′](s,a)

[A(Λ̂)]2(s,a)

where the last equality follows since, for s ̸∈ S0, we have assumed [ϕ](s,a) = 0.

Now consider some s ∈ S0. By assumption we have [ϕ]2(s,a) ≤ 2C2
ϕ · (W ⋆

h (s)
2 + ϵ2) and by our

assumption on Λ0 we can lower bound [A(Λ̂)](s,a) ≥ C ′ ·W ⋆
h (s). Furthermore, since Λ̂′ ∈ Ω̂h,K ,

we have

[Λ̂′](s,a) ≤W ⋆
h (s) +

√
2W ⋆

h (s)

K
· log SAH

δ
+

1

K
log

SAH

δ

≤ 2W ⋆
h (s) +

2

K
log

SAH

δ
.

Putting this together, we have

[ϕ]2(s,a) · [Λ̂
′](s,a)

[A(Λ̂)]2(s,a)
≤

4C2
ϕ · (W ⋆

h (s)
2 + ϵ2) · (W ⋆

h (s) +
1
K log SAH

δ )

(C ′ ·W ⋆
h (s))

2

≤

(
2C2

ϕ

C ′ +
2C2

ϕϵ
2

C ′W ⋆
h (s)

)
·
(

2

C ′ +
2

C ′KW ⋆
h (s)

log
SAH

δ

)
.

It follows that∑
s∈S0

∑
a

[ϕ]2(s,a) · [Λ̂
′](s,a)

[A(Λ̂)]2(s,a)
≤ max

s∈S0

(
2SAC2

ϕ

C ′ +
2SAC2

ϕϵ
2

C ′W ⋆
h (s)

)
·
(

2

C ′ +
2

C ′KW ⋆
h (s)

log
SAH

δ

)
.

The second bound follows in an analogous fashion, using the expression for the second derivative
given in Lemma D.5 of [42].
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Algorithm 4 Uniform Exploration (UNIFEXP)
input: tolerance ϵunif , reruns K, confidence δ, step h
D← ∅
for (s, a) ∈ S ×A do

// LEARN2EXPLORE is as defined in [46]
{(Xj ,Πj , Nj)}⌈log2 1/ϵunif⌉

j=1 ← LEARN2EXPLORE({(s, a)}, h, δ
2SA , δ

2KSA , ϵunif)

if ∃jsa such that (s, a) ∈ Xjsa then
Rerun every policy in Πjsa Ksa := ⌈ K

SA|Πjsa |
⌉ times, store observed transitions in D

end if
end for
return D

Lemma 36. With probability at least 1− δ, Algorithm 4 will terminate after running for at most

K + poly(S,A,H, log
K

δϵunif
) · 1

ϵunif

episodes and will collect at least W⋆
h (s)K
2SA samples from each (s, a) such that W ⋆

h (s) > ϵunif .

Proof. By Theorem 13 of [46], with probability at least 1− δ/2SA, for any (s, a):

• LEARN2EXPLORE will run for at most poly(S,A,H, log K
δϵunif

) · 1
ϵunif

episodes.

• Rerunning every policy in Πjsa once, with probability at least 1 − δ/K we will collect
N = 2−jsa |Πjsa | samples from (s, a), for |Πjsa | = O(2jsa · S3A2H4 log3 1/δ).

• We have that W ⋆
h (s) ≤ 2−jsa+1.

• IF (s, a) ̸∈ Xj for all j = 1, 2, . . . , ⌈log 1/ϵunif⌉, then W ⋆
h (s) ≤ ϵunif .

By the above conclusions, rerunning policies in Πjsa on Line 7, with probability at least 1− δ/2SA
we will collect

N ·Ksa ≥ N · K

SA|Πjsa |
=

2−jsaK

SA

samples from (s, a). As noted, W ⋆
h (s) ≤ 2−jsa+1, so this implies that we will collect at least W⋆

h (s)K
2SA

samples from (s, a). Union bounding over this holding for all (s, a), and noting that we only fail to
collect this many samples if W ⋆

h (s) ≤ ϵunif gives the collection guarantee.

To bound the total number of episodes, we note that the procedure on Line 7 will, in total collect at
most ∑

s,a:jsa exists

|Πjsa |⌈Ksa⌉ ≤
∑

s,a:jsa exists

|Πjsa |+
∑
s,a

K

SA
=
∑
s,a

|Πjsa |+K

episodes. IF jsa exists, this implies that |Πjsa | ≤ O(2jsa · S3A2H4 log3 1/δ), and since jsa ∈
{1, 2, . . . , ⌈log 1/ϵunif⌉}, this implies that the above is bounded by

K +O(ϵ−1
unif · S

3A2H4 log3 1/δ).

Combining this with our bound on the total number of episodes collected by LEARN2EXPLORE, we
have that the number of episodes collected by Algorithm 4 is bounded by

K + poly(S,A,H, log
K

δϵunif
) · 1

ϵunif
.
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F.2 Online Frank-Wolfe

Lemma 37. Let

fi(Λ) =
1

ηi
log

∑
ϕ∈Φ

e
ηi∥ϕ∥2

Ai(Λ)−1

 , Ai(Λ) = Λ+
1

TiKi
Λ0,i

for some Λ0,i satisfying Λ0,i ⪰ Λ0 for all i, and ηi = 22i/5. Let (βi,Mi) denote the smoothness
and magnitude constants for fi. Let (β,M) be some values such that βi ≤ ηiβ,Mi ≤M for all i,
and R the diameter of the domain of possible values of Λ.

Then, if we run Algorithm 4 of [43] on (fi)i with constraint tolerance ϵ and confidence δ and
Ki = Ti = 2i, we have that with probability at least 1− δ, it will run for at most

max

{
min
N

16N s.t. inf
Λ∈Ω

max
ϕ∈Φ

ϕ⊤(NΛ+Λ0)
−1ϕ ≤ ϵ

6
,
poly(β,R, d,H,M, log 1/δ, log |Φ|)

ϵ4/5

}
.

episodes, and will return data {ϕτ}Nτ=1 with covariance Σ̂N =
∑N

τ=1 ϕτϕ
⊤
τ such that

f̂i(N
−1Σ̂N ) ≤ Nϵ,

where î is the iteration on which OPTCOV terminates.

Proof. Our goal is to simply find a setting of i that is sufficiently large to guarantee the condition
fi(Λ̂i) ≤ KiTiϵ is met. By Lemma C.1 of [43], we have with probability at least 1− δ/(2i2):

fi(Λ̂i) ≤ inf
Λ∈Ω

fi(Λ) +
βiR

2(log Ti + 3)

2Ti
+

√
4M2 log(8i2Ti/δ)

Ki

+

√
c1M2d4H4 log3(8i2HKiTi/δ)

Ki
+

c2Md4H3 log7/2(4i2HKiTi/δ)

Ki

≤ 3max

{
inf
Λ∈Ω

fi(Λ),
βiR

2(log Ti + 3)

2Ti
,

√
4M2 log(8i2Ti/δ)

Ki

+

√
c1M2d4H4 log3(8i2HKiTi/δ)

Ki
+

c2Md4H3 log7/2(4i2HKiTi/δ)

Ki

}
.

So a sufficient condition for fi(Λ̂i) ≤ KiTiϵ is that

KiTi ≥
3

ϵ
max

{
inf
Λ∈Ω

fi(Λ),
βiR

2(log Ti + 3)

2Ti
,

√
4M2 log(8i2Ti/δ)

Ki

+

√
c1M2d4H4 log3(8i2HKiTi/δ)

Ki
+

c2Md4H3 log7/2(4i2HKiTi/δ)

Ki

}
.

(F.4)

Recall that

fi(Λ) =
1

ηi
log

∑
ϕ∈Φ

e
ηi∥ϕ∥2

Ai(Λ)−1

 , Ai(Λ) = Λ+
1

TiKi
Λ0,i.

By Lemma D.1 of [42], we can bound

max
ϕ∈Φ
∥ϕ∥2Ai(Λ)−1 ≤ fi(Λ) ≤ max

ϕ∈Φ
∥ϕ∥2Ai(Λ)−1 +

log |Φ|
ηi

.

Thus,

inf
Λ∈Ω

fi(Λ) ≤ inf
Λ∈Ω

max
ϕ∈Φ
∥ϕ∥2Ai(Λ)−1 +

log |Φ|
ηi

= inf
Λ∈Ω

max
ϕ∈Φ

TiKiϕ
⊤(TiKiΛ+Λ0,i +Λoff)

−1ϕ+
log |Φ|
ηi
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By our choice of ηi = 22i/5, and Ki = 2i, Ti = 2i, we can ensure that

KiTi ≥
6

ϵ

log |Φ|
ηi

as long as i ≥ 2
5 log2[

6 log |Φ|
ϵ ]. To ensure that

TiKi ≥
6

ϵ
inf
Λ∈Ω

max
ϕ∈Φ

TiKiϕ
⊤(TiKiΛ+Λ0,i)

−1ϕ

it suffices to take
i ≥ argmin

i
i s.t. inf

Λ∈Ω
max
ϕ∈Φ

ϕ⊤(23iΛ+Λ0,i)
−1ϕ ≤ ϵ

6
.

Since we assume that we can lower bound Λ0,i ⪰ Λ0 for each i, so this can be further simplified to

i ≥ argmin
i

i s.t. inf
Λ∈Ω

max
ϕ∈Φ

ϕ⊤(23iΛ+Λ0)
−1ϕ ≤ ϵ

6
. (F.5)

We next want to show that

TiKi ≥
3

ϵ
· βiR

2(log Ti + 3)

2Ti
.

Bounding βi ≤ ηiβ, a sufficient condition for this is that

i ≥ 2

5

(
log2(12βR

2i) + log2
1

ϵ

)
.

By Lemma A.1 of [43], it suffices to take

i ≥ 6

5
log2(9βR

2 log2
1

ϵ
) +

2

5
log2

1

ϵ
(F.6)

to meet this condition (this assumes that 12βR2 ≥ 1 and 2
5 log2

1
ϵ ≥ 1—if either of these is not the

case we can just replace them with 1 without changing the validity of the final result).

Finally, we want to ensure that

TiKi ≥
3

ϵ

(√
4M2 log(8i2Ti/δ)

Ki

+

√
c1M2d4H4 log3(8i2HKiTi/δ)

Ki
+

c2Md4H3 log7/2(4i2HKiTi/δ)

Ki

)
.

To guarantee this, it suffices that

25i/2 ≥ c

ϵ

√
M2d4H4i3 log3(iH/δ), 23i ≥ c

ϵ
·Md4H3i7/2 log7/2(iH/δ).

or

i ≥ 4

5
log2(cMdHi log(H/δ)) +

2

5
log2

1

ϵ
, i ≥ 4

3
log2(cMdH log(H/δ)) +

1

3
log2

1

ϵ
.

By Lemma A.1 of [43], it then suffices to take

i ≥ 12

5
log(cMdH log(H/δ) log2 1/ϵ) +

2

5
log2

1

ϵ
,

i ≥ 4 log2(cMdH log(H/δ) log2 1/ϵ) +
1

3
log2

1

ϵ

(F.7)

Thus, a sufficient condition to guarantee (F.4) is that i is large enough to satisfy (F.5), (F.6), and (F.7)
and i ≥ 2

5 log2[
6 log |Φ|

ϵ ].

If î is the final round, the total complexity scales as
î∑

i=1

TiKi =

î∑
i=1

22i ≤ 2 · 22̂i.

Using the sufficient condition on i given above, we can bound the total complexity as

max

{
min
N

16N s.t. inf
Λ∈Ω

max
ϕ∈Φ

ϕ⊤(NΛ+Λ0)
−1ϕ ≤ ϵ

6
,
poly(β,R, d,H,M, log 1/δ, log |Φ|)

ϵ4/5

}
.
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F.3 Pruning Hard-to-Reach States

Algorithm 5 PRUNE: Prune Hard-to-Reach States

input: tolerance ϵunif , confidence δ
Skeep ← ∅
for h ∈ [H] do

for s ∈ S do
// LEARN2EXPLORE is as defined in [46]

{(Xj ,Πj , Nj)}
⌈log2

1
32ϵunif

⌉
j=1 ← LEARN2EXPLORE({(s, a)}, h, δ

SH , 1
2 , 32ϵunif) for any a ∈

A
if ∃js such that (s, a) ∈ Xjs then
Skeep = Skeep ∪ {(s, h)}

end if
end for

end for
return Skeep

Lemma 38. With probability at least 1− δ, Algorithm 5 will terminate after running for at most

poly(S,A,H, log
1

δϵunif
) · 1

ϵunif

episodes and will return a set Skeep such that, for every (s, h) ∈ Skeep, we have W ⋆
h (s) ≥ ϵunif , and,

if (s, h) ̸∈ Skeep, then W ⋆
h (s) ≤ 32ϵunif .

Proof. As in Lemma 36, by Theorem 13 of [46], with probability at least 1− δ/SH , for any (s, h):

• LEARN2EXPLORE will run for at most poly(S,A,H, log 1
δϵunif

) · 1
ϵunif

episodes.

• Rerunning every policy in Πjs once, with probability at least 1/2 we will collect N =
2−js |Πjs | samples from (s, a, h).

• If (s, a) ̸∈ Xj for all j = 1, 2, . . . , ⌈log 1/ϵunif⌉, then W ⋆
h (s) ≤ 32ϵunif .

We union bound over this event holding for all (s, h), which occurs with probability at least 1− δ.

It is immediate by the last property that, if (s, h) ̸∈ Skeep then W ⋆
h (s) ≤ 32ϵunif .

We next show that if (s, h) ∈ Skeep, then this implies that W ⋆
h (s) ≥ ϵunif . Let X be a random

variable denoting the total number of samples we collect from (s, a, h) when rerunning all policies in
Πjs . Then by Markov’s Inequality, by the above properties we have

1

2
≤ P[X ≥ Njs/2] ≤

2E[X]

Njs

≤ 2|Πjs |W ⋆
h (s)

Njs

= 8 · 2jsW ⋆
h (s).

It follows that

W ⋆
h (s) ≥

1

16 · 2js
≥ 1

16 · 2⌈log2
1

32ϵunif
⌉
≥ 1

32 · 2log2
1

32ϵunif

= ϵunif .

This completes the proof.
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Justification: These can be found in the abstract and the contributions section of the intro-
duction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: These can be found in the Discussion section of the main body of the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All proofs are found in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The contributions of this paper are entirely theoretical.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The contributions of this paper are entirely theoretical.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The contributions of this paper are entirely theoretical.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The contributions of this paper are entirely theoretical.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The contributions of this paper are entirely theoretical.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There are no human subjects and we discuss the ethical consequences in the
"Broader Impact" section of the discussion.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This theoretical paper poses minimal public concerns but holds significant
potential to inspire advancements in algorithm development, contributing positively to the
field of machine learning.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The contributions are theoretical.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The contributions are theoretical, and we do not use any such assets. For prior
theoretical work, we have credited the authors appropriately.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The contributions are theoretical.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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