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ABSTRACT

A great deal of progress has been made in image captioning, driven by research into
how to encode the image using pre-trained models. This includes visual encodings
(e.g. image grid features or detected object) and more recently textual encodings
(e.g. image tags or text descriptions of image regions). As more advanced en-
codings are available and incorporated, it is natural to ask: how to efficiently and
effectively leverage and ensemble the heterogeneous set of encodings? In this
paper, we propose to regard the encodings as augmented views of the input image.
The model encodes each view independently with a shared encoder efficiently, and
a contrastive loss is incorporated across the encoded views to improve the represen-
tation quality, as well as to enable semi-supervised training of image captioning.
Our proposed hierarchical decoder then adaptively ensembles the encoded views
according to their usefulness by first ensembling within each view at the token
level, and then across views at the view level. We demonstrate significant perfor-
mance improvements of +5.6% CIDEr on MS-COCO compared to state of the
art under the same trained-from-scratch setting and +16.8% CIDEr on Flickr30K
with semi-supervised training, and conduct rigorous analyses to demonstrate the
importance of each part of our design.

1 INTRODUCTION

A large amount of progress has been made in vision-and-language (VL) tasks such as image cap-
tioning (Chen et al., 2015; Agrawal et al., 2019), visual question answering (Goyal et al., 2017;
Hudson & Manning, 2019), and image-text retrieval. For these tasks, recent methods (Zhang et al.,
2021a; Li et al., 2020; Shen et al., 2021; Kuo & Kira, 2022) observe that encoding the input image
by an object detector (Ren et al., 2015) pre-trained on Visual Genome (Krishna et al., 2017) is not
sufficient. To provide information complementary to detected objects, recent works proposed to
encode an input image by different pre-trained models and into different modalities, and achieve
substantial performance improvement. For example, some works encode from the visual perspective
(e.g. stronger object detector pre-trained on a larger vocabulary and datasets (Zhang et al., 2021a) or
global image features (Ji et al., 2021)), while other works encode from the textual perspective (e.g.
image tags (Li et al., 2020) and text descriptions of image regions (Kuo & Kira, 2022)).

Given the great success of incorporating various heterogeneous encodings or “views”, one research
question emerges naturally: how to efficiently and effectively leverage and ensemble these hetero-
geneous views? For efficiency, three factors are particularly important: computation, parameter,
and data efficiency. State-of-art VL models are typically a transformer-based model (Vaswani et al.,
2017), which has undesirable quadratic computational complexity with respect to the input sequence
size. Therefore, as more views are incorporated, each represented by a sequence of tokens, we should
carefully manage the computation and model size. Moreover, on the medium-scale MS-COCO image
captioning benchmark (Chen et al., 2015) (∼0.6M training samples), we should take data efficiency
into consideration when training the data-hungry (Dosovitskiy et al., 2021) transformer model to
avoid negative effects such as overfitting. For effectiveness, different views encode some shared and
some complementary information of the input image. Therefore, it is important to leverage the views
as much as possible, and at the same time adaptively weigh each view according to their usefulness.
Take image captioning in Figure 1 as an example, when generating the word “sofa”, if the view of
detected objects fails to detect the sofa in the input image, the model should down-weigh the view of
detected objects and rely more on other views that properly encode the information of sofa.
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Figure 1: HEAV, Hierarchical Ensembling of
Augmented Views, for image captioning at the
step of generating the word “sofa”. First, het-
erogeneous views such as detected objects (An-
derson et al., 2018), image grid features (Shen
et al., 2021), and text descriptions (Kuo &
Kira, 2022) are generated from the input im-
age. These views are regarded as the augmen-
tations of the input image and are separately
encoded by a shared transformer encoder. A
contrastive loss is incorporated to help repre-
sentation learning of heterogeneous views. Our
proposed hierarchical decoder then ensembles
the encoded views by adaptively weighing the
views according to their usefulness. Finally, the
next word “sofa” is predicted from the ensem-
bled views.

With these considerations in mind, we propose HEAV, Hierarchical Ensembling of Augmented
Views. In HEAV, we (1) regard heterogeneous views as augmentations of the input image, and (2)
devise a hierarchical decoder layer to ensemble the heterogeneous views. For (1), by regarding views
as augmentations, we naturally choose to use a shared transformer encoder to encode each view
independently. Compared to methods that concatenate all views into a long sequence as input (Li
et al., 2020; Zhang et al., 2021a; Kuo & Kira, 2022), where the computational complexity scales
up quadratically with respect to the number of views, our method scales up linearly. Compared
to methods that encode each view with unshared encoders (Li et al., 2021; Akbari et al., 2021;
Hu & Singh, 2021; Alayrac et al., 2020), our method is more parameter efficient. Furthermore,
data augmentation increases data diversity and thus improves data efficiency, which is particularly
important for training data-hungry transformer models. Last but not least, by regarding views as
augmentations of the input image, we can naturally incorporate a contrastive loss to help representation
learning of encoded views and increase data efficiency (Grill et al., 2020; Chen et al., 2020b; Goyal
et al., 2021). Different from how other VL methods (Radford et al., 2021; Jia et al., 2021; Yu et al.,
2022; Li et al., 2021; Yang et al., 2022) incorporate a contrastive loss, our formulation does not
require annotated pairs (e.g. human annotated image-caption pairs in MS-COCO) and can work
with unlabeled image-only data to achieve better performance. Also crucially, for how to effectively
ensemble the views, in (2) we devise a hierarchical decoder layer, which modifies the standard
transformer decoder layer by introducing two-tiered cross-attention modules. The hierarchical
decoder first ensembles within each view at the token level and then ensembles across views at
the view level. By introducing this hierarchical structure for ensembling, we can better model the
importance of each view and adaptively weigh each view according to their usefulness.

To sum up, we make the following contributions in this paper: (1) regard heterogeneous views as
augmentations of the input image to improve computation, parameter, and data efficiency; (2) devise
a hierarchical decoder layer to ensemble the views by adaptively weighing the views according to
their usefulness; (3) achieve significant improvement of +5.6% CIDEr on MS-COCO over state of the
art in the trained-from-scratch setting, and achieve comparable or often better performance compared
with methods using large-scale transformer pre-training even though we do not do so; (4) demonstrate
semi-supervised training of image captioning and achieve substantial improvement of +16.8% CIDEr
on Flickr30K by leveraging additional image-only data from MS-COCO; and (5) provide thorough
ablations and analyses to validate our proposed method for efficiency and effectiveness.

2 RELATED WORKS

Image captioning. The goal of image captioning is to generate text descriptions for an image. It can
be roughly divided into two settings: (1) trained-from-scratch and (2) with pre-training, depending
on whether the model is pre-trained on a large image-text corpus or not. For the trained-from-scratch
setting (Anderson et al., 2018; Huang et al., 2019; Cornia et al., 2020; Rennie et al., 2017; Jiang
et al., 2018; Pan et al., 2020; Dou et al., 2022; Li et al., 2022; Kim et al., 2021; Yang et al., 2022),
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researchers train the model only on the image captioning dataset such as MS-COCO (Lin et al., 2014;
Chen et al., 2015). They mainly focus on the improvements of model architecture and/or training
losses, and tackle the image captioning task alone. On the other hand, for the pre-training setting (Li
et al., 2020; Zhang et al., 2021a; Chen et al., 2020d; Tan & Bansal, 2019; Lu et al., 2019; Su et al.,
2020; Li et al., 2019; 2021; Hu et al., 2021; Wang et al., 2022b; Zeng et al., 2021), researchers
first pre-train the model on a large image-text corpus and then fine-tune to various downstream VL
tasks. They mainly focus on how to effectively pre-train the model so that it transfers well to a
broad set of downstream VL tasks. In this paper, we also use a transformer model and work on the
trained-from-scratch setting.

Image encodings. One important aspect of VL approaches is to properly encode relevant information
from the input image, on which the captioning model is conditioned on for captions generation.
Anderson et al. (2018) proposed to encode finer-grained information of the input image into a
sequence of objects detected by an object detector pre-trained on Visual Genome (Krishna et al.,
2017). This method achieved great success and soon became the dominant approach in many VL
tasks (Li et al., 2020; Chen et al., 2020d; Tan & Bansal, 2019; Lu et al., 2019; Su et al., 2020; Li et al.,
2019). In most recent works, thanks to advances in foundation models (Kolesnikov et al., 2020; Jia
et al., 2021; Radford et al., 2021) trained on large-scale datasets, some works (Li et al., 2021; Shen
et al., 2021; Wang et al., 2022c; Dou et al., 2022) encoded the input image into image grid features
and achieved good performance. Nevertheless, these works still encode an input image from a single
point of view by a single pre-trained model. To encode complementary information, recent works
proposed to include other heterogeneous “views” including object tags (Li et al., 2020; Zhang et al.,
2021a), global image features (Su et al., 2020; Yu et al., 2021; Zhang et al., 2021b; Ji et al., 2021),
or text descriptions (Kuo & Kira, 2022) of the input image. In this paper, we use multiple views
including detected objects, image grid features, and text descriptions, and focus on how to leverage
and ensemble these views efficiently and effectively.

Ensemble of views. To ensemble multiple heterogeneous views, common approaches include (1)
ensemble of models (Huang et al., 2019; Cornia et al., 2020; Rennie et al., 2017; Jiang et al., 2018),
which trains |V | (number of views) models, one for each view, and average the word predicted by
each model, and (2) concatenated views (Li et al., 2020; Zhang et al., 2021a; Kuo & Kira, 2022),
which concatenates the views, each represented by a sequence of tokens, into a long single view, and
let the transformer encoder-decoder learn to ensemble the views internally. However, an ensemble
of models is parameter inefficient as the number of model grows linearly with |V |. Concatenated
views are computationally inefficient as the computational complexity from the transformer model
is quadratic with respect to |V |. In this paper, in pursuit of efficiency and effectiveness, we encode
the views separately with a shared encoder, and devise a novel hierarchical decoder to first ensemble
within each view at the token level and then ensemble across views at the view level.

Representation learning. To properly encode heterogeneous views, existing methods (Li et al.,
2021; Akbari et al., 2021; Hu & Singh, 2021; Alayrac et al., 2020) typically encode each view with a
dedicated encoder. This is parameter inefficient as the number of encoders grows linearly with respect
to |V |. This may also not be as data efficient and be prone to overfitting on the relative smaller-scale
MS-COCO image captioning datasets. To learn a better representation of heterogeneous views, we
propose to incorporate a contrastive loss, which facilitates superior self-/un-supervised representation
learning (Chen et al., 2020c; Grill et al., 2020; Tian et al., 2020; Chen et al., 2020a), and is beneficial
in low-label settings (Grill et al., 2020; Chen et al., 2020b; Goyal et al., 2021). Different from existing
multi-modal works (Radford et al., 2021; Jia et al., 2021; Yu et al., 2022; Li et al., 2021; Yang
et al., 2022) that incorporate contrastive loss only in the pre-training stage, or require annotated pairs
(e.g. human annotated image-caption pairs in MS-COCO), our method incorporate contrastive loss
together with the target image captioning task, and requires no annotated pairs.

3 METHOD

Given heterogeneous views of the input image (see Figure 1) such as objects detected by an object
detector (Anderson et al., 2018), image grid features from a pre-trained image encoder (Shen et al.,
2021), and text descriptions that describe image regions by cross-modal retrieval (Kuo & Kira, 2022),
our goal is to efficiently and effectively leverage these views for the image captioning task. By
revisiting the probabilistic model of image captioning in Section 3.1, we found two major design
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choices: (1) how to encode heterogeneous views, and (2) how to ensemble these views. In Section 3.2,
we propose to regard views as augmentations of the input image, and thus naturally choose to encode
each view independently with a shared encoder. This formulation is more efficient in terms of
computation, parameter, and data. It also allows us to add a contrastive loss to help representation
learning of encoded views and increase data efficiency. In Section 3.3, we propose a hierarchical
decoder layer to first ensemble within each view at the token level and then ensemble across views at
the view level. By introducing this hierarchical structure for ensembling, the decoder better models
the importance of each view and adaptively weighs each view according to their usefulness. The
overall model architecture is illustrated in Figure 2.

3.1 HETEROGENEOUS VIEWS FOR IMAGE CAPTIONING

We start by reviewing the probabilistic model of an auto-regressive image captioning model that
generates captions y from an input image x:

p(y|x) =
∏
t

p(yt|x, y1:t−1), (1)

where the next token (word) yt is generated conditioned on previously generated tokens y1:t−1 and
the input image x. Following modern approaches (Anderson et al., 2018; Li et al., 2020; Kuo & Kira,
2022; Shen et al., 2021), the input image x is first encoded by some pre-trained models into different
views V = {v1,v2, ...,vj} (e.g. detected objects, image grid features, or text descriptions shown
in Figure 1), and then the captions are generated from these views. We can model this process in a
probabilistic way by introducing a new variable V into Equation 1:∏

t

p(yt|x, y1:t−1) =
∏
t

∑
j

p(vj |x, y1:t−1)p(yt|vj ,x, y1:t−1) (2)

≃
∏
t

∑
j

p(vj |y1:t−1)p(yt|vj , y1:t−1) (3)

By the law of total probability, we introduce a new variable V = {v1,v2, ...,vj} and arrive at the
right-hand side of Equation 2. Since x is encoded by frozen pre-trained models into heterogeneous
views vj and the caption is predicted from vj , we omit x and arrive at Equation 3. Equation 3 can
be regarded as ensembling in the output space of the model. Suppose the captioning model is an
over-parameterized deep network with parameter θ, we can also ensemble in the feature space with
the following approximation:∏

t

∑
j

p(vj |y1:t−1)︸ ︷︷ ︸
≡βj

p(yt|vj , y1:t−1)︸ ︷︷ ︸
≡fθ(vj)

=
∏
t

∑
j

βjfθ(vj) ≃
∏
t

fθ′

(∑
j
βjvj

)
, (4)

where β is the ensembling weight and fθ(vj) is the captioning model. Substituting fθ(·) back to its
original form, we have the final formulation that ensembles in the feature space:∏

t

fθ′

(∑
j
βjvj

)
=

∏
t

p
(
yt

∣∣∣ y1:t−1,
∑

j
βjvj︸ ︷︷ ︸

≡V

)
=

∏
t

p (yt | y1:t−1,V) (5)

Comparing our final formulation in Equation 5 with the original single-view formulation in Equation 1,
the key is to compute the ensemble of views V =

∑
j βjvj , which involves (1) encoding the views

(Section 3.2) and (2) ensembling the views (Section 3.3).

3.2 HETEROGENEOUS VIEW AUGMENTATION

To model the ensemble of views V , a common approach (Li et al., 2020; Kuo & Kira, 2022) is to
concatenate all the views along the sequence dimension into a long single view, and let the transformer
encoder and decoder ensemble them internally at the token level by the attention module. However,
one major drawback of this approach is that the computational complexity scales up quadratically
with respect to the number of views (O(|V |2)). To overcome this issue, we propose to regard the
heterogeneous views as augmentations of the input image and model the encoding of views vj and
ensembling of views βj in V =

∑
j βjvj separately.
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Figure 2: Model architecture. Views are represented by a sequence of d-dimensional tokens □. (Left)
Heterogeneous views are encoded independently with a shared transformer encoder. The encoded
views are then ensembled within the proposed hierarchical decoder. (Right) The hierarchical decoder
layer first ensembles within each view at the token level with a shared CrossAttnLv1 module, and then
ensembles across views at the view level with a CrossAttnLv2 module. For clarity of illustration, we
only show operations for the ỹl,t token and not the rest of ỹl,1:t−1 tokens.

Just like how we use data augmentation in computer vision, we would not concatenate all the
augmented images into one single image before sending it into the model or use different encoders to
encode different augmented images. Naturally, the views are encoded independently using a shared
encoder. By encoding each view independently, the computational complexity scales up linearly
(O(|V |)), which is computationally efficient. By encoding each view with a shared transformer
encoder, the model size stays constant (O(1)), which is parameter efficient. Furthermore, data
augmentation increases data diversity and thus improves data efficiency.

Since we regard the views as augmentations of the input image, we can add a contrastive loss (He et al.,
2019; Chen et al., 2020c;a; Grill et al., 2020) along with model training to improve the representation
quality of encoded heterogeneous views. In contrastive learning, augmented views from the same
input image are positive pairs and those from different images are negative pairs. The representation
of positive pairs is pulled together in an embedding space while the representation of negative pairs is
pushed apart. The diversity of views is critical to contrastive learning (Chen et al., 2020a; Tian et al.,
2020; Sohn et al., 2020; Kuo et al., 2020) and thus we add channel-wise and sequence-wise dropout
during training. For channel-wise dropout, each channel across views and sequences are randomly
zero-ed out with probability pc. For sequence-wise dropout, each token, which is a d-dimensional
feature vector, across views are randomly zero-ed out with probability ps. Note that this usage of
contrastive loss is different from most other VL pre-training methods (Radford et al., 2021; Jia et al.,
2021; Yu et al., 2022; Li et al., 2021; Yang et al., 2022), where paired annotations such as image
and text pairs annotated by human or scraped from the internet are required. On the other hand,
our method only requires input image without paired annotations to construct positive and negative
pairs for the contrastive loss. Our novel formulation enables training an image captioning model in a
semi-supervised way to achieve better performance with extra image-only data.

3.3 HETEROGENEOUS VIEW ENSEMBLING

To ensemble the encoded heterogeneous views from the last section, we specifically focus on how to
learn the ensembling weights β in the ensemble of views V =

∑
j βjvj . Since β plays the same role

as p(vj |y1:t−1) in Equation 4, it should also be conditioned on previously generated words y1:t−1. It
should also adaptively weigh the views according to their usefulness. For example, when a view fails
to properly encode important information from the input image, β for that view should be lower and
the model should weigh more on views that encode important information. Lastly, we spent great
efforts in the last section to encode the views efficiently. Therefore, the computation of β should be
at least as efficient as the view encoding strategy described in the last section.

We propose a hierarchical decoder layer shown in Figure 2, which modifies the standard transformer
decoder layer by introducing two-tiered cross-attention structure. The hierarchical decoder first
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ensemble within each view at the token level by a shared CrossAttnLv1 module. The outputs from
CrossAttnLv1 of all views are collected and concatenated into a sequence along the sequence dimen-
sion, and then ensembled across views at the view level by the CrossAttnLv2 module. By introducing
this hierarchical structure for ensembling, we can better model the usefulness of each view by
CrossAttnLv1 and adaptively adjust the ensembling weights of each view according to their usefulness
by CrossAttnLv2. To encourage the decoder to better leverage all views instead of focusing on a few
certain views, we add a view-wise dropout to randomly drop an encoded view with probability pv
during training. Please see Supplementary D for step-by-step operations.

We now discuss the properties of our proposed hierarchical decoder layer. One important aspect is
efficiency. The hierarchical decoder layer uses a shared CrossAttnLv1 module to first ensemble within
each view. The computational complexity scales up linearly, and the model size is constant with
respect to |V |. It then ensembles across views using a CrossAttnLv2 module with linear computational
complexity, and constant model size with respect to |V |. Overall, the computational complexity
and model size do not exceed our proposed view encoding strategy in Section 3.2. Another desired
property is that β should be conditioned on previously generated tokens y1:t−1, and should adaptively
adjust for each view according to their usefulness. Since β is modeled as the attention weights
within CrossAttnLv2 with ỹl,t as query, which self-attends to y1:t−1, it is indeed conditioned on y1:t−1.
Furthermore, since the attention weights of CrossAttnLv2 are computed by the similarity between ỹl,t
and ṽ, the usefulness of each view can be taken into account when computing β.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Our proposed HEAV can be easily incorporated into existing encoder-decoder transformer models.
In this paper, we choose Xmodal-Ctx (Kuo & Kira, 2022) as our base image captioning model.
Following the conventional training procedure (Cornia et al., 2020; Li et al., 2020; Vinyals et al.,
2015), the model is first trained with cross-entropy loss and then fine-tuned with SCST (Rennie et al.,
2017) loss, which optimizes CIDEr score by reinforcement learning. To generate heterogeneous views
of the input image, we use detected objects from Anderson et al. (2018), CLIP ViT-B/32 (Radford
et al., 2021) image grid features from Shen et al. (2021), and text descriptions retrieved by CLIP
ViT-L/14 from (Kuo & Kira, 2022). All pre-trained models for generating the views are frozen and
thus the views can all be pre-generated offline. For the contrastive loss, we prepend a learnable [CLS]
token for each view before sending it into the transformer encoder and use the encoded [CLS] token
as a view-level representation for computing the contrastive loss. We adapt MoCo-v3 (Ji et al., 2021)
with an exponential moving average (EMA) transformer encoder and a memory buffer to compute
the contrastive loss. The loss is included in both the cross-entropy and SCST training stages, with
loss weights set to 0.05 and 0.2, respectively. More implementation details and hyper-parameters can
be found in Supplementary E.

4.2 MAIN RESULTS

In Table 1, we show the results of our HEAV on the test set of MS-COCO Karpathy split (Karpathy
& Fei-Fei, 2015). It is worth noting that HEAV is not pre-trained on external image-and-text corpus

Table 1: Image captioning results on the test set of MS-COCO Karpathy split (Karpathy & Fei-Fei,
2015). Since our HEAV is trained from scratch, we separately compare methods with large-scale
transformer pre-training on the left, and those trained from scratch on the right.

Method Pre-train B-4 M C S

VLP (Zhou et al., 2020) 3M 39.5 29.3 129.3 23.2
X-VLM (Zeng et al., 2021) 16M 40.4 - 139.3 -
Oscar (Li et al., 2020) 6.5M 40.5 29.7 137.6 22.8
VinVL (Zhang et al., 2021a) 8.8M 40.9 30.9 140.4 25.1
GIT (Wang et al., 2022a) 4M 41.3 30.4 139.1 24.3
ViTCap (Fang et al., 2022) 4M 41.2 30.1 138.1 24.1

HEAV (ours) None 41.0 30.2 141.5 23.9

Method B-4 M C S

SCST (Rennie et al., 2017) 34.2 26.7 114.0 -
Up-Down (Anderson et al., 2018) 36.3 27.7 120.1 21.4
AoANet (Huang et al., 2019) 38.9 29.2 129.8 22.4
M2 (Cornia et al., 2020) 39.1 29.1 131.2 22.6
CLIP-ViL (Shen et al., 2021) 40.2 29.7 134.2 23.8
Xmodal-Ctx (Kuo & Kira, 2022) 39.7 30.0 135.9 23.7

HEAV (ours) 41.0 30.2 141.5 23.9

6



Under review as a conference paper at ICLR 2023

and instead is trained from scratch only on the MS-COCO image captioning dataset (Chen et al.,
2015). Therefore, for fair comparison, we separate these two different settings in Table 1, where
methods on the left use pre-training while those on the right are trained from scratch. In the same
trained-from-scratch setting, our HEAV outperforms previous state-of-art Xmodal-Ctx (Kuo & Kira,
2022) by 5.6% in CIDEr and 1.3% in BLEU-4. On the other hand, when compared with methods with
transformer pre-training, our HEAV, despite being only trained on MS-COCO, achieves comparable
or often better performance.

Table 2: Image captioning results on Flickr30K Karpa-
thy split (Karpathy & Fei-Fei, 2015). We also demon-
strate semi-supervised learning (SSL) for image cap-
tioning with labeled data from Fickr30K and unlabeled
data from MS-COCO.

Method B-4 M C S

Show & Tell (Vinyals et al., 2015) 21.5 18.3 41.7 12.2
Show, Attend & Tell (Xu et al., 2015) 23.6 19.2 49.1 13.3
Up-Down (Anderson et al., 2018) 28.3 21.6 63.3 15.9
M2 (Cornia et al., 2020) 29.8 22.4 68.4 16.2
ORT (Herdade et al., 2019) 30.1 22.8 68.8 16.9

HEAV (ours) 34.4 24.6 81.7 18.0
HEAV + SSL (ours) 34.3 25.1 85.6 19.0

To further demonstrate the data efficiency
of HEAV, we train it on the Karpa-
thy split (Karpathy & Fei-Fei, 2015) of
Flickr30K, which only has ∼0.15M train-
ing data (4x smaller than MS-COCO), and
show the results in Table 2. The results
of other methods are taken from Stefanini
et al. (2022). We can see that our HEAV
outperforms previous state-of-art ORT sub-
stantially by 12.9% in CIDEr and 4.3%
in BLEU-4. The significant improvement
may come from the data efficiency of our
method, which is particularly important
when trained on the smaller-scale dataset
of Flickr30K.

4.3 ABLATIONS AND ANALYSES

The goal of this paper is to propose an efficient and effective way for leveraging and ensembling
heterogeneous views. Therefore, in this section we closely examine whether our proposed HEAV
achieves these goals in Section 4.3.1 for efficiency and Section 4.3.2 for effectiveness. Following
the convention in Huang et al. (2019); Kuo & Kira (2022); Herdade et al. (2019), we only train the
model with cross-entropy loss for all ablations and analyses.

4.3.1 IS HEAV COMPUTATION, PARAMETER, AND DATA EFFICIENT?

In Section 3.2, we propose to regard views as augmentations of the input image and encode the views
independently with a shared transformer encoder. To demonstrate the efficiency of our method, in
Table 3, we show the theoretical computation and parameter complexity as well as the actual training
speed and trainable parameters. Since we do not want to trade performance in pursuit of efficiency,
we also show in Table 3 that our method achieves better performance despite being more efficient.

Comparison with common ensembling approaches. Other common approaches include (1) ensem-
ble of models (Rennie et al., 2017; Cornia et al., 2020; Huang et al., 2019; Anderson et al., 2018),
which train |V | image captioning models, one for each view, and ensembles their predicted words,
and (2) concatenated views (Li et al., 2020; Kuo & Kira, 2022), which concatenates all views along
the sequence dimension into a long single view, and let the transformer model ensemble the views
internally at the token level by the attention module. In Table 3, ensemble of models has to train |V |
models, one for each view, and thus is parameters inefficient (O(|V |)). Concatenated views concate-
nates all views into one long single view and is computationally expensive (O(|V |2)). Compared to
these two approaches, our HEAV has linear computation (O(|V |)) and constant parameter (O(1))
complexity, and performs consistently better across all metrics by large margins.

Shared v.s. unshared encoder. Another design choice is whether or not to use a shared encoder for
each view. In Table 3, in the case of w/o Lcon, using unshared encoders (Li et al., 2021; Akbari et al.,
2021; Hu & Singh, 2021; Alayrac et al., 2020) for each view does not bring any performance benefits
compared to using a shared encoder, but with the cost of higher parameter complexity (O(|V |)).
Furthermore, we ablate the proposed contrastive loss Lcon, and found that the unshared encoder
does not benefit from Lcon as much as the shared encoder. Although Lcon introduces additional
overhead such as extra parameters from the projection heads and extra computation from pairwise
similarity during the training time (not for inference), the increase in complexity is moderate but the
improvement in performance is significant when incorporated into our shared-encoder strategy.
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Table 3: Comparison with other encoding and ensembling methods in terms of complexity and
performance. All models are trained with cross-entropy loss only. Please see Section 4.3.1 for more
details of different conditions.

Computation Parameter Performance
Conditions Lcon complexity iter/sec ↑ complexity #params ↓ B-4 M C S

Ensemble of models O(|V |) 2.23 O(|V |) 52.5M 38.5 28.6 121.1 21.3
Concatenated views O(|V |2) 4.20 O(1) 13.1M 38.5 28.7 122.8 21.7
Unshared encoders O(|V |) 5.33 O(|V |) 20.8M 39.7 29.1 125.4 22.1
Unshared encoders ✓ O(|V |) 3.96 O(|V |) 22.7M 39.7 29.3 125.8 22.2
Shared encoder O(|V |) 5.97 O(1) 13.5M 39.7 29.1 125.6 22.1

Ours (Shared encoder) ✓ O(|V |) 4.83 O(1) 15.4M 40.5 29.4 127.6 22.3
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Figure 3: Data efficiency of HEAV. HEAV
(blue) only needs about 40-50% training data
to achieve similar performance as other com-
mon ensembling methods trained on 100% of
data such as ensemble of models (red) and
concatenated views (gold). All models are
trained with cross-entropy loss only.

Data efficiency with fewer training data. To test
the data efficiency of HEAV, in Figure 3 we train
the model with {10, 20, ..., 90}% of data, and com-
pare the CIDEr score with other common ensembling
approaches, ensemble of models (red) and concate-
nated views(gold), trained on 100% of data. We can
see that HEAV only needs about 40-50% training
data to achieve comparable performance. With the
same input views and similar model architectures,
this indicates that our method is more data efficient,
likely due to our novel use of heterogenous views
as augmentations and the contrastive loss Lcon. In
Supplementary A, we also show that HEAV suffers
less from overfitting on MS-COCO, indicating that
our model is more data efficient.

Semi-supervised training. To demonstrate data effi-
ciency brought by the contrastive loss Lcon, we train
a semi-supervised image captioning model. Specifi-
cally, the model is trained on the labeled data (image-
caption pairs) from Flickr30K, and unlabeled data (image only) from MS-COCO. Since our con-
trastive loss is applied differently than other VL methods and does not require annotated pairs (e.g.
human-annotated image-caption pairs in MS-COCO), it can be applied on the unlabeled image-only
data to aid representation learning of encoded views. In Table 2, with semi-supervised training, the
already strong HEAV achieves even better performance of +3.9% CIDEr and +1% SPICE.

4.3.2 IS HIERARCHICAL DECODER EFFECTIVE?

In Section 3.3, we propose to model ensembling weights β in the ensemble of views V =
∑

j βjvj

by our proposed hierarchical decoder layer, which first ensembles within each view at the token
level and then ensembles across views at the view level. To understand how the hierarchical decoder
benefits an image captioning model, we closely examining the ensembling weights β in two control
studies. To verify the effectiveness of our design, we compare with other common designs in Table 4.

Adaptive ensembling weights β. To better understand how the hierarchical decoder benefits the
image captioning model, we design two control studies in Figure 4 to show how the ensembling
weights β vary adaptively according to the usefulness of a view at the view level and at the word
level. In the first experiment, we add noise to a view by randomly zeroing out tokens in a view to
make a view less useful, and expect a drop of β toward that noised view. To measure β, we take
the multi-head attention weights of CrossAttnLv2 at the last decoder layer and average the attention
weights across heads. In Figure 4a, β for the noised view drops consistently across all caption
generation steps compared to the same view without added noise. This means that our hierarchical
decoder indeed leans to ensemble views according to their usefulness at the view level. In the second
experiment, we randomly mask out a prominent region of the input image in a view. For example, we
mask out dog in the input image (Figure 4b) with caption “a dog laying down beside a little couch”
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(a) Ensembling weights ageraged
across heads for a noised view at each
caption generation step.

(b) Input image with caption:
a dog laying down beside a lit-
tle couch
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(c) Ensembling weight of each attention
head at the step of generating “dog”,
which is masked out in the input image.

Figure 4: The ensembling weights β vary adaptively according to the usefulness of a view at the view
level and at the word level when generating a caption for the center image. (a) We add random noise
to a view and show that β averaged across different attention heads drop consistently at each step of
caption generation. (c) We mask out dog in the input image and show that β of different attention
heads drop consistently at the step of generating the word “dog”.

to make a view less useful at the step of generating the word “dog”. We expect a drop of β toward the
masked view at the step of generating the word “dog”. To measure β, we take the multi-head attention
weights of CrossAttnLv2 at the last decoder layer and measure the attention weights of each head at
the step of generating the word “dog”. In Figure 4c, β for the masked view drops consistently across
all attention heads compared to the same view without masking. This means that our hierarchical
decoder indeed learns to ensemble views according to their usefulness at the word level. The example
in Figure 4 is randomly chosen and more examples can be found in Supplementary D.

Table 4: Ablations of design choices
for the proposed hierarchical decoder
layer. The models are trained with cross-
entropy only.

Method B-4 M C S

Concatenate 39.2 29.2 125.1 22.1
Mean pool 39.4 29.2 125.2 22.2
Max pool 38.7 28.8 122.9 21.5
Sigmoid 39.4 29.2 125.5 22.2
Tanh 39.4 29.3 124.8 22.0

Ours 40.5 29.4 127.6 22.3

Design choices of hierarchical decoder. In Table 4, we
ablate different design choices of the hierarchical decoder.
One simple alternative is to first concatenate the encoded
views along the sequence dimension into a long single
view, and use a single cross-attention module to jointly
ensemble the views at the token level. One can also
mean-/max-pool to ensemble the views in place of the
CrossAttnLv2 module. Other works also propose to use a
sigmoid/tanh gating mechanism (Huang et al., 2019) to
ensemble across layers (Cornia et al., 2020), which can
be generalized to ensemble across views. In Table 4, we
can see that our proposed hierarchical decoder layer with
a two-tiered cross-attention structure achieves the best
performance compared to all other designs.

5 CONCLUSION

In this paper, we focus on the problem of how to efficiently and effectively leverage and ensemble
heterogeneous views. To tackle this problem, we propose HEAV to (1) regard heterogeneous views
as augmentations of the input image, and naturally encode each view independently with a shared
encoder, (2) incorporate a contrastive loss across encoded views to improve representation quality and
enable semi-supervised training to leverage image-only unlabeled data, and (3) ensemble the encoded
views adaptively by our carefully designed hierarchical decoder layer that first ensembles within each
view at the token level and then across views at the view level. Through rigorous analysis, HEAV is
computation, parameter, and data efficient, and outperforms other less efficient designs and existing
approaches for views ensembling. We also demonstrate that our hierarchical decoder successfully
models the usefulness of views and weigh the views adaptively according to their usefulness. We
demonstrate significant performance improvements of +5.6% CIDEr compared to state-of-art w/o
transformer pre-training on MS-COCO and +16.8% CIDEr with SSL on Flickr30K.
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Figure 5: CIDEr validation curve of HEAV v.s. concatenated views.

Training a data-hungry transformer model on a medium-scale dataset of MS-COCO (around 0.6M
training samples) is prone to overfitting. In HEAV, we propose to regard heterogeneous views
as augmentations of the input image and encode the views independently with a shared encoder.
We claim that this formulation increases data diversity and is more parameter and data efficient.
Furthermore, we add a contrastive loss to improve representation quality of encoded views, which is
also beneficial for data efficiency. In Figure 5, compared to concatenated views, our HEAV indeed
suffers less from overfitting. Due to overfitting, the CIDEr score of concatenated views drops by 3.6
from the highest to the end of training.
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B GENERATED CAPTIONS

In Figure 6, we show some random examples of different captions generated by our HEAV and
another trained-from-scratch SoTA method Xmodal-Ctx Kuo & Kira (2022). Qualitatively, HEAV
is capable of generating captions in more details and more closely related to the input image rather
than generating a generic sentence. For example, in Figure 6a, HEAV generates “a man standing in a
living room holding a nintendo wii game controller”, while Xmodal-Ctx generates a more generic
description of “a group of people sitting on a couch playing a video game”. Another example in
Figure 6e shows that HEAV describes the train in more details as “a yellow and purple train” rather
than just “a train” by Xmodal-Ctx.

(a)
HEAV: a man standing in a living
room holding a nintendo wii game
controller
Xmodal-Ctx: a group of people
sitting on a couch playing a video
game

(b)
HEAV: a batter catcher and umpire
during a baseball game
Xmodal-Ctx: a baseball player
holding a bat on a field

(c)
HEAV: a bunch of umbrellas
hanging from a ceiling
Xmodal-Ctx: a bunch of flowers
hanging from a ceiling

(d)
HEAV: two people playing a video
game in a room
Xmodal-Ctx: a person standing in
front of a tv

(e)
HEAV: a yellow and purple train
parked at a train station
Xmodal-Ctx: a train that is sitting
on the tracks

(f)
HEAV: a piece of cake on a plate
with a flower
Xmodal-Ctx: a slice of cake on a
plate with a fork

Figure 6: Captions generated by HEAV and another trained-from-scratch SoTA method Xmodal-
Ctx (Kuo & Kira, 2022)
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C STEP-BY-STEP OPERATIONS OF HIERARCHICAL DECODER
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Figure 7: Model architecture. Each □ represents a d-dimensional token. (Left) Heterogeneous views
(different views represented by different colors) are encoded independently with a shared transformer
encoder. The encoded views are then ensembled within the proposed hierarchical decoder. (Right)
The hierarchical decoder layer first ensembles within each view at the token level with a shared
CrossAttnLv1 module, and then ensembles across views at the view level with a CrossAttnLv2 module.
For clarity of illustration, we only show operations with respect to the ỹl,t token and not the rest of
ỹl,1:t−1 tokens.

In this section, we detail the step-by-step operations of our proposed hierarchical decoder layer
in Figure 7. At the l-th decoder layer, given previously generated 1:t words at the l-th layer
yl = [yl,1, yl,2, ..., yl,t] and encoded views [v1,v2, ...,vj ], we first pass yl through a causal self-
attention module to get ỹl = [ỹl,1, ỹl,2, ..., ỹl,t] = SelfAttn(yl) such that yl,t1 does not attend to yl,t2
for t1 < t2. For the clarity of illustration, we will only show the operations with respect to ỹl,t and not
the rest of ỹl,1:t−1. We first perform Lv1 cross-attention to ensemble tokens within each view at the
token level as ṽi = CrossAttnLv1(ỹl,t,vi,vi), where CrossAttn(Q,K, V ) takes query, key, and value
as input and output a sequence same shape as the query. After the operation of Lv1 cross-attention,
each view vi, a sequence of tokens, are ensembled into ṽi, a single d-dimensional token. All ṽi are
collected and concatenated along the sequence dimension into ṽ = [ṽ1, ṽ2, ..., ṽN ]. We then perform
Lv2 cross-attention to ensemble across views at the view level as ŷl,t = CrossAttnLv2(ỹl,t, ṽ, ṽ). The
final output of the l-th layer decoder is yl+1,t = MLP(ŷl,t).
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D ADAPTIVE ENSEMBLING WEIGHTS β

We show more examples of how the hierarchical decoder adaptively weigh each view according to
their usefulness at the view level and at the word level in Figure 8-14. At the view level (figures
on the left), we add noise to a view by randomly zeroing out tokens in a view to make a view less
useful. β is measured as the the multi-head attention weights of CrossAttnLv2 at the last decoder layer
average across heads. Overall, we can see that β for the noised view drops across caption generation
steps compared to the same view without added noise. This means that our hierarchical decoder
indeed leans to ensemble views according to their usefulness at the view level. At the word level
(figures on the right), we randomly mask out a prominent object of the input image in a view. β is
measured as the multi-head attention weights of CrossAttnLv2 at the last decoder layer at the step of
generating the word corresponding to the masked object. Overall, we can see that β for the masked
view drops across attention heads compared to the same view without masking. This means that our
hierarchical decoder indeed leans to ensemble views according to their usefulness at the word level.
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Figure 8: (left) Ensembling weights ageraged across heads for a noised view at each caption generation
step. (center) Input image with caption: “two cats inside a window looking at a squirrel outside
the window”. (right) Ensembling weight of each attention head at the step of generating “squirrel”,
which is masked out in the input image.
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Figure 9: (left) Ensembling weights ageraged across heads for a noised view at each caption generation
step. (center) Input image with caption: “a man is riding a red motorcycle and some buildings”.
(right) Ensembling weight of each attention head at the step of generating “man”, which is masked
out in the input image.
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Figure 10: (left) Ensembling weights ageraged across heads for a noised view at each caption
generation step. (center) Input image with caption: “a dinner plate knife and fork with carrots
potatoes and meat on the plate”. (right) Ensembling weight of each attention head at the step of
generating “knife”, which is masked out in the input image.
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Figure 11: (left) Ensembling weights ageraged across heads for a noised view at each caption
generation step. (center) Input image with caption: “a man flying into the air while riding a
skateboard”. (right) Ensembling weight of each attention head at the step of generating “skateboard”,
which is masked out in the input image.
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Figure 12: (left) Ensembling weights ageraged across heads for a noised view at each caption
generation step. (center) Input image with caption: “cat standing in toilet next to a tile floor”. (right)
Ensembling weight of each attention head at the step of generating “cat”, which is masked out in the
input image.
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Figure 13: (left) Ensembling weights ageraged across heads for a noised view at each caption
generation step. (center) Input image with caption: “a train rolls down the tracks at the train station”.
(right) Ensembling weight of each attention head at the step of generating “train”, which is masked
out in the input image.
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Figure 14: (left) Ensembling weights ageraged across heads for a noised view at each caption
generation step. (center) Input image with caption: “a man kneeling down a tennis court holding a
racquet”. (right) Ensembling weight of each attention head at the step of generating “man”, which is
masked out in the input image.
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E IMPLEMENTATION DETAILS

We provide a detailed list of hyperparameters including their values and whether they are tuned in
Table 5 (cross-entropy training) and Table 6 (SCST training). For cross-entropy training, the model
can be trained with a single Nvidia 2080 Ti GPU in 2 days. For SCST training, the model can be
trained with a single Nvidia A40 GPUs in 4 days.

Table 5: Hyperparameters for cross-entropy training. The values for untuned parameters are inherent
from the base image captioning model Xmodal-Ctx (Kuo & Kira, 2022).

Hyperparameter Value Tuned Note

N 3 Number of encoder layers
M 3 Number of decoder layers
lr 2e-5 ✓ learning rate
bs 50 batch size
wd 0.05 weight decay
λ 0.05 ✓ loss weight for Lcon

pc 0.1 drop rate for channel-wise dropout
ps 0.1 drop rate for sequence-wise dropout
pv 0.1 drop rate for view-wise dropout
optimizer AdamW Adam with decoupled weight decay (Loshchilov & Hutter, 2019)
lr scheduler constant with warmup linearly warm up lr from 0.0 and then stay constant
warmup steps 10k
K 8k ✓ size of memory buffer for MoCo contrastive learning
τ 0.06 ✓ temperature for MoCo contrastive learning
ema 0.999 exponential moving avergae for MoCo contrastive learning

Table 6: Hyperparameters for SCST (Rennie et al., 2017) training. The values for untuned parameters
are inherent from the base image captioning model Xmodal-Ctx (Kuo & Kira, 2022), or from the
tuned value in cross-entropy training.

Hyperparameter Value Tuned Note

N 3 Number of encoder layers
M 3 Number of decoder layers
lr 5e-6 learning rate
bs 40 batch size
wd 0.0 weight decay
λ 0.2 ✓ loss weight for Lcon

pc 0.1 drop rate for channel-wise dropout
ps 0.1 drop rate for sequence-wise dropout
pv 0.1 drop rate for view-wise dropout
optimizer AdamW Adam with decoupled weight decay (Loshchilov & Hutter, 2019)
lr scheduler None do not use any lr scheduler
K 8k size of memory buffer for MoCo contrastive learning
τ 0.06 temperature for MoCo contrastive learning
ema 0.999 exponential moving avergae for MoCo contrastive learning
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