
Under review as a conference paper at ICLR 2022

CARTOON EXPLANATIONS OF IMAGE CLASSIFIERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present CartoonX (Cartoon Explanation), a novel model-agnostic explana-
tion method tailored towards image classifiers and based on the rate-distortion
explanation (RDE) framework. Natural images are roughly piece-wise smooth
signals—also called cartoon images—and tend to be sparse in the wavelet domain.
CartoonX is the first explanation method to exploit this by requiring its explana-
tions to be sparse in the wavelet domain, thus extracting the relevant piece-wise
smooth part of an image instead of relevant pixel-sparse regions. We demonstrate
experimentally that CartoonX is not only highly interpretable due to its piece-wise
smooth nature but also particularly apt at explaining misclassifications.

1 INTRODUCTION

Dog classified as Egyptian cat

CartoonX of misclassification

Slam dunk classified as basketball

CartoonX of classification

Figure 1: Examples of
CartoonX explanations.

Powerful machine learning models such as deep neural networks are in-
herently opaque, which has motivated numerous explanation methods
over the last decade (see for example the survey by Das & Rad (2020)).
A significant fraction of the research literature has focused on explain-
ing image classifications due to both the practical relevance of computer
vision tasks and the ease at which heatmaps can communicate explana-
tory information. Despite the great variety in methods and explanation
philosophies, all current methods share the following characteristic: they
operate in pixel space. Roughly speaking, existing explanation methods
for image classifiers either allocate additive attribution scores to each
pixel or optimize a deletion mask on the pixel coefficients to mark a rel-
evant set of pixels. The result is typically a pixel-sparse and jittery expla-
nation. We challenge the conventional approach to explain in pixel space
by successfully applying the rate-distortion explanation (RDE) frame-
work (Macdonald et al., 2019; Heiß et al., 2020) in the wavelet domain of
images. Our novel explanation method, CartoonX, extracts the relevant
piece-wise smooth part of an image (see Figure 1). Instead of demand-
ing sparsity in pixel space, as in (Macdonald et al., 2019; Chang et al.,
2019), CartoonX demands sparsity in the wavelet domain, which pro-
duces piece-wise smooth explanations (cartoon-like images). Our work
makes the following contributions:

Reformulation and reinterpretation of the RDE framework: We refor-
mulate the RDE framework in a more general manner with enhanced
flexibility in the input representation to accommodate complex interpre-
tation queries such as “What is the piece-wise smooth part of the input
signal that leads to its model decision?”. Thereby, we reinterpret RDE
as a simplification of the input signal, which is interpretable to humans
and adheres to a meaningful interpretation query. The simplification
is achieved by demanding sparsity in a suitable representation system,
which sparsely represents the class of explanations that are desirable for
the interpretation query.

CartoonX, a novel explanation method tailored to image classifiers: Car-
toonX is the first explanation method to extract the relevant piece-wise
smooth part of an image instead of relevant pixel sparse regions. This is
achieved by demanding sparsity in the wavelet domain of images, where
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sparsity translates into piece-wise smooth images. We demonstrate that
our piece-wise smooth explanations are more interpretable than jittery
pixel-sparse explanations and that they can reveal relevant piece-wise smooth patterns that are not
easily visible with existing pixel-based methods. Surprisingly, we find that our method is particu-
larly well-equipped to explain misclassifications, often showing “what the neural network actually
saw” (see Figure 1).

2 RELATED WORK

The Rate-Distortion Explanation (RDE) framework was first introduced in (Macdonald et al., 2019),
and extended in (Heiß et al., 2020), as a mathematically well-founded and intuitive explanation
framework. RDEs are model-agnostic explanations and inspired by rate-distortion theory, which
studies lossy-data compression. An explanation in RDE consists of a relatively sparse mask over
the input features, highlighting the relevant set of features. The mask is optimized to produce low
distortion in the model output after applying perturbations to the unselected features in the input
while remaining relatively sparse. Heiß et al. (2020) also applied RDE to non-canonical input rep-
resentations to explain model decisions in challenging domains such as audio classification (Engel
et al., 2017) and radio-map estimation (Levie et al., 2021; 2020).

The explanation principle of optimizing a mask s ∈ [0, 1]n was first proposed by Fong & Vedaldi
(2017) who explained image classification decisions by considering one of the two “deletion games”:
(1) optimizing for the smallest deletion mask that causes the class score to drop significantly or (2)
optimizing for the largest deletion mask that has no significant effect on the class score. The original
RDE approach (Macdonald et al., 2019) is based on the second deletion game.

Other explanation methods developed by the research community are typically either (1) gradient-
based such as Smoothgrad (Smilkov et al., 2017), Integrated Gradients (Sundararajan et al., 2017),
Image-Specific Class Saliency (Simonyan et al., 2014), and Guided Backpropagation (Springenberg
et al., 2015), (2) surrogate models such as LIME (Ribeiro et al., 2016), (3) based on propagation
of activations in neurons such as LRP (Bach et al., 2015; Shrikumar et al., 2017), and DeepLIFT
(Shrikumar et al., 2017), (4) based on Shapely values from game-theory (Lundberg & Lee, 2017),
(6) concept-based such as Concept Activation Vectors (Kim et al., 2018), or (7) based on generative
causal explanations (O' Shaughnessy et al., 2020). Also related are methods that were developed
to explain individual neurons such as in (Nguyen et al., 2016; Dhamdhere et al., 2019). To our
knowledge, all existing explainability methods operate in pixel space and all methods looking for
sparse explanations demand sparsity in pixel space (Macdonald et al., 2019; Fong & Vedaldi, 2017;
Chang et al., 2019).

3 BACKGROUND: RATE-DISTORTION EXPLANATION FRAMEWORK

In this section, we review the rate-distortion explanation (RDE) framework, which was introduced
by Macdonald et al. (2019) and later extended by Heiß et al. (2020) by applying RDE to non-
canonical input representations. Suppose Φ : Rn → Rm is a pre-trained model, e.g., a classifier
(with m class labels) or a regression model (with m-dimensional output), where n denotes the
dimension of the model input. RDE produces an explanation for a model decision Φ(x) with x ∈ Rn
as a relatively sparse mask s ∈ {0, 1}marking the relevant input features in x. More precisely, RDE
aims to solve the following optimization problem over a mask s ∈ {0, 1}n:

min
s∈{0,1}n

E
v∼V

[
d
(

Φ(x),Φ(x� s+ (1− s)� v)
)]

s.t. ‖s‖0 ≤ `, (1)

where � denotes the Hadamard product (element-wise multiplication), d(Φ(x), ·) is a measure of
distortion (e.g. d(Φ(x), ·) = ‖Φ(x)− ·‖2), V is a distribution over input perturbations v ∈ Rn, and
` ∈ {1, ..., n} is a given sparsity level for the explanation mask s. A solution s∗ to the optimization
problem in (1) marks relatively few components in the model input x that suffice to approximately
retain the model output Φ(x). This approach is in the spirit of rate-distortion theory, which deals
with lossy compression of data. Therefore, Macdonald et al. (2019) coined such explanations rate-
distortion explanations (RDEs).
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In practice, the optimization problem in (1) is relaxed to continuous masks s ∈ [0, 1] solving

min
s∈{0,1}n

E
v∼V

[
d
(

Φ(x),Φ(x� s+ (1− s)� v)
)]

+ λ ‖s‖1 , (2)

where λ > 0 determines the sparsity level of the mask. The relaxed optimization problem can be
solved with stochastic gradient descent in s ∈ [0, 1] if Φ is differentiable—as is the case for deep
neural networks. Macdonald et al. (2019) applied the RDE method as described above to image
classifiers in the pixel domain of images, where each mask entry si ∈ [0, 1] corresponds to the i-th
pixel values. We refer to this method as Pixel RDE throughout this work.

4 RDE REFORMULATED AND REINTERPRETED

Instead of applying RDE to the standard input representation x = [x1 . . . xn]T , we can apply RDE
to a different representation of x to answer a particular interpretation query. For example, consider
a 1D-signal x ∈ Rn: if we ask “What is the smooth part in the signal x that leads to the model
decision Φ(x)?”, then we can apply RDE in the Fourier basis of x. Since frequency-sparse signals
are smooth, applying RDE in the Fourier basis of x extracts the relevant smooth part of the signal.
To accommodate such interpretation queries, we reformulate RDE in Section 4.1. Finally, based on
the reformulation, we reinterpret RDE in Section 4.2. Later in Section 5, we use our reformulation
and reinterpretation of RDE to derive and motivate CartoonX as a special case and novel explanation
method tailored towards image classifiers.

4.1 GENERAL FORMULATION

An input signal x = [x1, . . . , xn]T is represented in a basis {b1, . . . , bn} as a linear combination∑n
i=1 hibi with coefficients [hi]

n
i=1. As we argued above and demonstrate later on, some choices

for a basis may be more suitable than others to explain a model decision Φ(x). Therefore, we define
the RDE mask not only on the canonical input representation [xi]

n
i=1 but also on a different represen-

tation [hi]
n
i=1 with respect to a choice of basis {b1, . . . , bn}. Examples of non-canonical choices for a

basis include the Fourier basis and the wavelet basis. This work is centered around CartoonX, which
applies RDE in the wavelet basis, i.e., a linear data representation since x is represented as a linear
combination of basis vectors. Nevertheless, there also exist other domains and interpretation queries
where applying RDE to a non-linear data representation can make sense (see the interpretation query
“Is phase or magnitude more important for an audio classifier?” in (Heiß et al., 2020)). Therefore, we
formulate RDE in terms of a data representation function f :

∏k
i=1 Rc → Rn, f(h1, . . . , hk) = x,

which does not need to be linear and allows to mask c channels in the input at once. In the important
linear case and c = 1, we have f(h1, . . . , hk) =

∑k
i=1 hibi, where {bi, . . . , bk} ⊂ Rn are k fixed

vectors that constitute a basis. The case c > 1 is useful when one wants to mask out several input
channels at once, e.g., all color channels of an image, to reduce the number of entries in the mask
that will operate on [hi]

k
i=1. In the following, we introduce the important definitions of obfuscations,

expected distortion, the RDE mask, and RDE’s `1-relaxation, which generalize the RDE framework
of (Macdonald et al., 2019) to abstract input representations.

4.1.1 DEFINITIONS

The first two key concepts in RDE are obfuscations and expected distortion, which are defined
below.

Definition 1 (Obfuscations and expected distortion) Let Φ : Rn → Rm be a model and x ∈ Rn
a data point with a data representation x = f(h1, ..., hk) as discussed above. For every mask
s ∈ [0, 1]k, let Vs be a probability distribution over

∏k
i=1 Rc. Then the obfuscation of x with

respect to s and Vs is defined as the random vector y := f(s � h + (1 − s) � v), where v ∼ Vs,
(s � h)i = sihi ∈ Rc and ((1 − s) � v)i = (1 − si)vi ∈ Rc, for i ∈ {1, . . . , k}. A choice for the
distribution Vs is called obfuscation strategy. Furthermore, the expected distortion of x with respect
to the mask s and the perturbation distribution Vs is defined as

D(x, s,Vs,Φ) := E
v∼Vs

[
d
(

Φ(x),Φ(y)
)]
,
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where d : Rm × Rm → R+ is a measure of distortion between two model outputs.

In the RDE framework, the explanation is given by a mask that minimizes distortion while remaining
relatively sparse. The rate-distortion explanation mask is defined as follows.

Definition 2 (The RDE mask) In the setting of Definition 1 we define the RDE mask as a solution
s∗(`) to the minimization problem

min
s∈{0,1}k

D(x, s,Vs,Φ) s.t. ‖s‖0 ≤ `, (3)

where ` ∈ {1, . . . , k} is the desired level of sparsity.

Geometrically, the RDE mask s is associated with a particular subspace. The complement mask
(1− s) can be seen as selecting a large stable subspace of Φ, with each point representing a possible
perturbation in unselected coefficients in h. The RDE mask minimizes the expected distortion along
its associated subspace, which requires non-local information of Φ. We illustrate this geometric
view of RDE in Figure 2 with a toy example for a hypothetical classifier Φ : R2 → Rm and two
distinct input representations: (1) Euclidean coordinates, i.e., f is the identity in x = f(h), and
(2) polar coordinates, i.e. f(h) = (h2 cosh1, h2 sinh1) = x. In the example, we assume Vs to
be a uniform distribution on [−1, 1]2 in the Euclidean representation and a uniform distribution
on [−π, π] × [0, 1] in the polar representation. The expected distortion associated with the masks
s = (1, 0) and s = (0, 1) is given by the red and green shaded area, respectively. The RDE mask
aims for low expected distortion, and hence, in polar coordinates, the RDE mask would be the green
subspace, i.e., s = (0, 1). On the other hand, in Euclidean coordinates, neither s = (1, 0) nor
s = (0, 1) produces a particularly low expected distortion, making the Euclidean explanation less
meaningful than the polar explanation. The example illustrates why certain input representations
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(ϕ, r) 7→ d(Φ(x),Φ(r cosϕ, r sinϕ))

subspace of mask s = (1, 0) selecting ϕ

subspace of mask s = (0, 1) selecting r

expected distortion for mask s = (1, 0)

expected distortion for mask s = (0, 1)

Figure 2: The RDE mask can find low expected distortion in polar coordinates but not in Euclidean
coordinates. Therefore, in this example, polar coordinates are more appropriate to explain Φ(x),
and RDE would determine that the angle ϕ, not the magnitude r, is relevant for Φ(x).

can yield more meaningful explanatory insight for a given classifier than others—an insight that
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underpins our novel CartoonX method. Moreover, the plot in polar coordinates illustrates why
the RDE mask cannot be simply chosen with local distortion information, e.g., with the lowest
eigenvalue of the Hessian of h 7→ d(Φ(x),Φ(f(h))): the lowest eigenvalue in polar coordinates
belongs to the red subspace and does not see the large distortion on the tails.

As was shown by Macdonald et al. (2019), the RDE mask from Definition 2 cannot be computed
efficiently for non-trivial input sizes. Nevertheless, one can find an approximate solution by consid-
ering continuous masks s ∈ [0, 1]k and encouraging sparsity through the `1-norm.

Definition 3 (RDE’s `1-relaxation with Lagrange multipliers) In the setting of Definition 1, we
define RDE’s `1-relaxation with Lagrange multipliers as a solution s∗(λ) to the minimization prob-
lem

min
s∈[0,1]k

D(x, s,Vs,Φ) + λ‖s‖1, (P1)

where λ > 0 is a hyperparameter for the sparsity level.

The `1-relaxation above can be solved with stochastic gradient descent (SGD) over the mask s while
approximating D(x, s,Vs,Φ) with i.i.d. samples from v ∼ Vs.

4.1.2 OBFUSCATION STRATEGIES

An obfuscation strategy is defined by the choice of the perturbation distribution Vs. Common
choices are Gaussian noise (Macdonald et al., 2019; Fong & Vedaldi, 2017), blurring (Fong &
Vedaldi, 2017), constants (Fong & Vedaldi, 2017), and inpainting GANs (Heiß et al., 2020; Chang
et al., 2019). Inpainting GANs train a generator G(s, z, h) (z denotes random latent factors) such
that for samples v ∼ G(s, z, h) the obfuscation f(s�h+ (1−s)�v) remains in the data manifold.
In our work, we refrain from using an inpainting GAN due to the following reason: it is hard to
tell whether a GAN-based mask did not select coefficients because they are unimportant or because
the GAN can easily inpaint them from a biased context. Instead, we choose a simple and well-
understood obfuscation strategy, which we call Gaussian adaptive noise, making the explanation as
transparent as possible.

Gaussian adaptive noise works as follows: Let A1, ..., Aj be a pre-defined choice of a disjoint parti-
tion of {1, . . . , k} (recall s ∈ [0, 1]k). For i = 1, ..., j, we compute the empirical mean and empirical
standard deviation for each partition across all partition instances:

µi :=
1∑

a∈Ai
da

∑
a∈Ai,t=1,...,da

hat, σi :=

√
1∑

a∈Ai
da

∑
a∈Ai,t=1,...,da

(µi − hat)2

The adaptive Gaussian noise strategy then samples vat ∼ N (µi, σ
2
i ) for all partition members a ∈

Ai and channels t = 1, ..., da. We write v ∼ N (µ, σ2) for the resulting Gaussian random vector
v ∈ ∏k

i=1 Rc. Note that the distribution Vs chosen as Gaussian adaptive noise does depend on s
(unlike with an inpainting GAN). For Pixel RDE, we only use one set A1 = {1, ..., k} for all k
pixels. In CartoonX, which represents input signals in the discrete wavelet domain, we will partition
{1, ..., k} along the scales of the discrete wavelet transform.

4.1.3 MEASURES OF DISTORTION

There are various choices for the measure of distortion d(Φ(x),Φ(y)). For example, one can take
the squared distance in the post-softmax probability of the predicted label for x, i.e.,

d
(
Φ(x),Φ(y)

)
:=
(
Φj∗(x)− Φj∗(y)

)2
,

where j∗ := arg maxi=1,...,m Φi(x) and Φ(x) is assumed to be the post-softmax probabilities of
a neural net. Alternatively, one could also choose d(Φ(x),Φ(y)) as the `2-distance or the KL-
Divergence in the post-softmax layer of Φ. In our experiments for CartoonX, we found that these
choices had no significant effect on the explanation (see Appendix A.3.3).
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4.2 INTERPRETATION

The philosophy of the generalized RDE framework is that an explanation for a decision Φ(x) on a
generic input signal x = f(h) should be some simplified version of the signal, which is interpretable
to humans. The simplification is achieved by demanding sparsity in a suitable representation system
h, which sparsely represents the class of explanations that are desirable for the interpretation query.
This philosophy is the fundamental premise of CartoonX, which aims to answer the interpretation
query “What is the relevant piece-wise smooth part of the image for a given image classifier?”.
CartoonX first employs RDE on a representation system x = f(h) that sparsely represents piece-
wise smooth images and finally visualizes the relevant piece-wise smooth part as an image back in
pixel space. In the following section, we explain why wavelets provide an appropriate representa-
tion system in CartoonX, present the CartoonX implementation, and finally provide experiments on
ImageNet to demonstrate the capability of CartoonX.

5 CARTOONX

The focus of this paper is CartoonX, a novel explanation method—tailored to image classifications—
that we obtain as a special case of our generalized RDE framework formulated in Section 4. Car-
toonX first performs RDE in the discrete wavelet position-scale domain of an image x, and finally,
visualizes the wavelet mask s as a piece-wise smooth image in pixel space. Wavelets provide op-
timal representations for piece-wise smooth 1D functions (DeVore, 1998), and represent 2D piece-
wise smooth images, also called cartoon-like images (Kutyniok & Lim, 2011), efficiently as well
(Romberg et al., 2006). In particular, sparse vectors in the wavelet coefficient space encode cartoon-
like images reasonably well (Stéphane, 2009a)—certainly better than sparse pixel representations.
Moreover, wavelets constitute an established tool in signal processing (Stéphane, 2009c).

Input image x Representation h

Select `
entries with s

Replace unselected
with zeroReconstruction y

d(x, y)

T

T −1

minimize d
⇐⇒ select `

largest entries

Image Compression

Input image x Representation h

Select `
entries with s

Replace unselected
with random noiseObfuscation y

d(Φ(x),Φ(y))

CartoonX

T

T −1

Φ

Φ

minimize d
⇐⇒ select `
most relevant

entries

Figure 3: CartoonX has many interesting parallels to wavelet-based image compression. Distortion
is denoted as d, Φ is an image classifier, h denotes the discrete wavelet coefficients, T is the discrete
wavelet transform, and ` is the coefficient budget.

The optimization process underlying CartoonX produces sparse vectors in the discrete wavelet co-
efficient space, which results in cartoon-like images as explanations. This is the fundamental dif-
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ference to Pixel RDE, which produces rough, jittery, and pixel-sparse explanations. Cartoon-like
images are more interpretable and provide a natural model of simplified images. Since the goal of
the RDE framework is to generate an easy to interpret simplified version of the input signal, we
argue that CartoonX explanations are more appropriate for image classification than Pixel RDEs.

CartoonX exhibits interesting parallels to wavelet-based image compression. In image compression,
distortion is minimized in the data domain, which is equivalent to selecting the ` largest entries in the
discrete wavelet transform (DWT) coefficients. In comparison, CartoonX minimizes distortion in the
model output of Φ, which translates to selecting the ` most relevant entries in the DWT coefficients.
The objective in image compression is efficient data representation, i.e., producing minimal data
distortion with a budget of ` entries in the DWT coefficients. Conversely, in CartoonX, the objective
is extracting the relevant piece-wise smooth part, i.e., producing minimal model distortion with a
budget of ` entries in the DWT coefficients. We illustrate this connection in Figure 3—highlighting
once more the rate-distortion spirit of the RDE framework.

5.1 IMPLEMENTATION

An image x ∈ [0, 1]c×w×t with c ∈ {1, 3} channels, width w ∈ N, height t ∈ N, and a total of
p = wt pixels can be represented in a wavelet basis by computing its discrete wavelet transform
(DWT). The DWT of an image is defined by the number of scales J ∈ {1, . . . , blog2 pc}, the
padding mode, and a choice of the wavelet family (such as the Haar or Daubechies family). For
images, the DWT computes four types of coefficients: details in (1) horizontal, (2) vertical, and (3)
diagonal orientation at scale j ∈ {1, . . . , J}, and (4) coefficients of the image at the very coarsest
resolution. We briefly illustrate the DWT for an example image in Figure 4.

Discrete

Wavelet Transform

Discrete Inverse

Wavelet Transform

Figure 4: Left side: an image of a memorial arch dedicated to peace. Right side: visualization of
the DWT coefficients for five scales. Three L-shaped sub-images describe coefficients for details in
vertical, horizontal, and diagonal orientation at a particular scale. The largest sub-images (the outer
L-shape) belong to the lowest scale, i.e., the highest resolution. The smaller L-shaped sub-images
gradually build up to higher scales, i.e., lower resolution features.

CartoonX, as described in Algorithm 1 in Appendix A.1, computes the RDE mask in the wavelet
domain of images. More precisely, for the data representation x = f(h), we choose h as the con-
catenation of all the DWT coefficients along the channels, i.e., hi ∈ Rc. The representation function
f is then the discrete inverse wavelet transform, i.e., the summation of the DWT coefficients times
the DWT basis vectors. We optimize the mask s ∈ [0, 1]k on the DWT coefficients [h1, . . . , hk]T to
minimize RDE’s `1-relaxation from Definition 3. For the obfuscation strategy Vs, we use adaptive
Gaussian noise with a partition by the DWT scale (see Section 4.1.2), i.e., we compute the empirical
mean and standard deviation per scale. We measure distortion as the squared difference in the post-
softmax score of the predicted label for x (see Section 4.1.3). To visualize the final DWT mask s as
a piece-wise smooth image in pixel space, we multiply the mask with the DWT coefficients of the
greyscale image x̂ := (1/c

∑c
l=1 xlai)ai before inverting the product back to pixel space with the

discrete inverse wavelet transform. The inversion is finally clipped into [0, 1]w×t as are obfuscations
during the RDE optimization to avoid overflow (we assume here the pixel values in x are normalized
into [0, 1]). The clipped inversion in pixel space is the final explanation, which we call CartoonX.
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5.2 EXPERIMENTS AND ANALYSIS

We compare CartoonX to the closely related Pixel RDE (Macdonald et al., 2019) and several
other state-of-the-art explanation methods , that is, Integrated Gradients (Sundararajan et al., 2017),
Smoothgrad (Smilkov et al., 2017), Guided Backprop (Springenberg et al., 2015), and LRP (Bach
et al., 2015). Our experiments show that CartoonX carries the following strengths: Cartoon X is
(1) highly interpretable due to its cartoon-like nature and (2) remarkably apt at explaining misclas-
sifications, and highlighting meaningful patterns that are otherwise hard to see. Due to the fast
implementation of the DWT, Cartoon RDE is not significantly slower than Pixel RDE. For the Im-
ageNet classifier MobileNetV3-Small, an image of 256 times 256 pixels, and 2001 optimization
steps, we reported a runtime of 81.56 seconds for CartoonX and 70.53 seconds for Pixel RDE on
the NVIDIA Titan RTX GPU. However, like other perturbation-based methods, CartoonX is sig-
nificantly slower than gradient or propagation-based methods, which only compute a single or few
forward and backward passes and are very fast (Integrated Gradients computes an explanation in
0.48 seconds for the same image, model, and hardware).

Our experiments use the pre-trained ImageNet classifiers MobileNetV3-Small (Howard et al., 2019)
(top-1 accuracy of 67.668%) and VGG16 (Simonyan & Zisserman, 2015) (top-1 accuracy of
71.592%). We note that the open-source implementation of LRP did not implement propagation
rules for certain layers in MobileNetV3-Small, therefore we compare CartoonX to LRP only for
VGG16. Images were preprocessed to have 256 times 256 pixel values in [0, 1]. We provide further
details about the choice of hyperparameters in the experiments in Appendix A.2. The three main

Diaper CartoonX Pixel RDE Integrated Gradients Smoothgrad

Egyptian Cat CartoonX Pixel RDE Integrated Gradients Smoothgrad

Screw CartoonX Pixel RDE Integrated Gradients Smoothgrad

Figure 5: Each row compares CartoonX explanations of misclassifications by MobileNetV3-Smal to
Pixel RDE (Macdonald et al., 2019), Integrated Gradients (Sundararajan et al., 2017), and Smooth-
grad (Smilkov et al., 2017). The predicted label is depicted above each misclassified image.

hyperparameters for CartoonX are: (1) the sparsity level λ > 0, (2) the measure of distortion d, and
(3) the obfuscation strategy (perturbation distribution) Vs. We discuss the sensitivity of CartoonX
to these hyperparameters in Appendix A.3. In Appendix A.5, we also shed light on the evolution
of ImageNet classifiers from an explanation angle by comparing CartoonX explanations for classi-
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fiers of varying generalization power, i.e., AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan
& Zisserman, 2015), InceptionV3 (Szegedy et al., 2016), ResNeXt50 (Xie et al., 2017). Moreover,
in Appendix A.4, we argue experimentally why CartoonX is less susceptible than Pixel RDE to
so-called explanation artifacts—an unwanted phenomenon that we observed empirically.

In practice, explaining misclassifications is particularly relevant since good explanations can pin-
point model biases and causes for model failures. We observe that CartoonX is particularly good at
explaining certain misclassifications, which we illustrate for three examples in Figure 5 and many
more in Appendix A.6. In the first row in Figure 5, the input image shows a man holding a dog
that was classified as a “diaper”. CartoonX shows the man not holding a dog but a baby, revealing
that the neural net associated diapers with babies and babies with the pose with which the man is
holding the dog. In the second row, the input image shows a dog sitting on an armchair with leop-
ard patterns. The dog was classified as an “Egyptian cat”, which can exhibit leopard-like patterns.
CartoonX exposes the Egyptian cat by connecting the dog’s head to parts of the armchair forming
the cat’s torso and legs. In the last row, the input image displays the backside of a man wearing a
striped sweater that was classified as a “screw”. CartoonX reveals how the stripe patterns look like
a screw to the neural net.

Figure 6 further compares Cartoon explanations of correct classifications by VGG16. We also com-
pare CartoonX on random ImageNet samples in Appendix A.7 and also show failures for CartoonX
in Appendix A.8 to provide maximal transparency and fair comparison.

Snail CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Figure 6: CartoonX explanations for VGG16 compared to state-of-the-art methods, that is, Pixel
RDE (Macdonald et al., 2019), Integrated Gradients (Sundararajan et al., 2017), Smoothgrad
(Smilkov et al., 2017), Guided Backprop (Springenberg et al., 2015), and LRP (Bach et al., 2015).

6 CONCLUSION

CartoonX is the first explainability method to extract the relevant piece-wise smooth part of an im-
age and is based on our novel formulation of the RDE framework. We corroborated experimentally
that CartoonX explanations are highly interpretable due to their cartoon-like nature and surprisingly
well-suited to explain misclassifications. Nonetheless, Cartoon RDE is still computationally quite
expensive, like other perturbation-based explanation methods. In the future, we hope to devise new
techniques to speed up the runtime for CartoonX. Moreover, we are pursuing applications of Car-
toonX beyond explanation tasks, such as detecting adversarial examples. We believe CartoonX is a
valuable new explanation method for practitioners and potentially a great source of inspiration for
future explanation methods aiming to tailor their explanations to other data domains. Our reformu-
lation and reinterpretation of the RDE framework provide a blueprint for such future work: First,
formulate an interpretation query related to the underlying model task, then find a representation
system that sparsely represents the class of desirable explanations for the interpretation query.
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A APPENDIX

A.1 CARTOONX ALGORITHM

The final CartoonX algorithm is depicted in Algorithm 1.
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Algorithm 1: CartoonX
Data: Image x ∈ [0, 1]c×w×t with c channels and wt pixels, classifier Φ.
Result: CartoonX explanation E ∈ [0, 1]w×t for decision Φ(x).
Hyperparameters: Sparsity level λ > 0, number of steps N , number of noise samples L.
Initialize mask s := [1, ..., 1]T ∈ [0, 1]k on DWT coefficients h = [h1, ..., hk] with x = f(h),
where f is the discrete inverse wavelet transform;

Compute predicted label j∗ := arg maxi Φi(x);
for i← 1 to N do

Sample L adaptive Gaussian noise samples v(1), ..., v(L) ∼ N (µ, σ2);
Compute obfuscations y(1), ..., y(L) with y(i) := f(h� s+ (1− s)� v(i));
Clip obfuscations into [0, 1]c×w×t;
Approximate expected distortion D̂(x, s,Φ) :=

∑L
i=1(Φj∗(x)− Φj∗(y(i)))2/L;

Compute loss for the mask `(s) := D̂(x, s,Φ) + λ‖s‖1 and gradient ∇s`(s);
Update mask s with gradient descent step and clip s back to [0, 1]k;

end
Compute wavelet coefficients ĥ for greyscale image x̂ of x;
Invert wavelet mask s back to pixel space as Ẽ := f(ĥ� s) ;
Clip the explanation Ẽ into [0, 1]w×t to obtain E . Visualize E ;

A.2 EXPERIMENT DETAILS

Throughout our experiments with CartoonX and Pixel RDE, we used a learning rate of ε = 0.001, a
sample size of L = 64 for the adaptive Gaussian noise, and N = 2000 steps. Several different spar-
sity levels were used. We recommend specifying the sparsity level in terms of the number of mask
entries k, i.e., choosing the product λk. Pixel RDE typically requires a smaller sparsity level than
CartoonX. We chose λk ∈ [20, 80] for CartoonX and λk ∈ [3, 20] for Pixel RDE. The obfuscation
strategy for Pixel RDE was chosen as Gaussian adaptive noise with mean and standard deviation
computed for all pixel values (see Section 4.1.2). In Appendix 8, we show that Gaussian adaptive
noise produces much more interpretable explanations than using a zero baseline perturbation. We
implemented the DWT for CartoonX with the Pytorch Wavelets package, which is compatible with
PyTorch gradient computations, and chose the Daubechies wavelet system with J = 5 scales and
zero-padding. For the Integrated Gradients method, we used 100 steps, and for the Smoothgrad
method, we used 10 samples and a standard deviation of 0.1.

A.3 SENSITIVITY TO HYPERPARAMETERS

We compare CartoonX’s sensitivity to its main hyperparameters, i.e., the sparsity level λ, the per-
turbation distribution Vs, and the distortion measure d(Φ(x),Φ(y)). For each experiment, we fix all
but one of the three parameters.

A.3.1 SENSITVITY TO THE SPARSITY LEVEL λ

Figure 7 plots CartoonX explanations and Pixel RDEs for increasing λ—the hyperparameter deter-
mining the explanation’s sparsity in the respective representation system. We find that CartoonX
is less sensitive than Pixel RDE to λ. In practice, this means one can find a suitable λ faster for
CartoonX than for Pixel RDE.

A.3.2 SENSITVITY TO THE DISTRIBUTION Vs

Figure 8 plots CartoonX explanations for two choices of Vs: (1) Gaussian adaptive noise (see Section
4.1.2) and (2) constant zero perturbations (i.e. v = 0 with probability one under Vs). We observe
that the Gaussian adaptive noise gives much more meaningful explanations than the simple zero
baseline perturbations.
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Fountain λ = 0 λ = 50 λ = 100 λ = 200 λ = 400 λ = 800

Viaduct λ = 0 λ = 50 λ = 100 λ = 200 λ = 400 λ = 800

Figure 7: We compare the sensitivity of CartoonX and Pixel RDE to the sparsity level λ. The top
row depicts CartoonX, and the bottom row depicts Pixel RDE, for increasing values of λ. Note that
for λ = 0, Pixel RDE is entirely yellow because the mask is initialized as s = [1 . . . 1]T and λ = 0
provides no incentive to make s sparser. For the same reason, CatoonX is simply the greyscale
image for λ = 0.

Input Gaussian Zero Baseline

Figure 8: We compare the sensitivity of CartoonX to the perturbation distribution Vs. The top image
was classified as a fountain and the bottom image as a viaduct. The second column depicts CartoonX
with Vs as Gaussian adaptive noise, and the third column depicts CartoonX with Vs as constant zero
perturbations (zero baseline). We observe that Gaussian adaptive noise is much more interpretable
than the zero baseline.

A.3.3 SENSITVITY TO THE DISTORTION MEASURE d(Φ(x),Φ(y))

Figure 9 plots CartoonX explanations for the following four choices of d(Φ(x),Φ(y)), where x is
the original input, y is the RDE obfuscation, and Φ outputs post-softmax probabilities:

1. d(Φ(x),Φ(y)) = (Φj∗(x)−Φj∗(y))2, where j∗ := arg maxj Φj(x) (squared `2 in label )
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2. d(Φ(x),Φ(y)) = (Φj∗(x)− 1)2, where j∗ := arg maxj Φj(x) (maximize label)

3. d(Φ(x),Φ(y)) = ‖Φ(x)− Φ(y)‖2 (`2 probabilities)
4. d(Φ(x),Φ(y)) = KL(Φ(y),Φ(x)) (KL-Divergence)

The explanations for d(Φ(x),Φ(y)) as “squared `2 in label”, “maximize label”, and “`2 probabil-
ities” look indistinguishable. For d(Φ(x),Φ(y)) as KL-Divergence, we see a slightly less smooth
explanation, which may be due to the fact that the KL-Divergence is unbounded unlike the other
measures of distortion.

Input Image Squared `2 in label Maximize label `2 probabilities KL-Divergence

Figure 9: We compare the sensitivity of CartoonX to four measures of distortion d(Φ(x),Φ(y)).
Each of the measures of distortion is marked at the top of each column. We observe almost no
difference in the CartoonX explanations for the four distortion measures.

A.4 RELIABILITY AND EXPLANATION ARTIFACTS

We argue experimentally why CartoonX is more reliable than Pixel RDE for image data. More
precisely, we show that CartoonX is less susceptible to so-called explanation artifacts than Pixel
RDE. An explanation artifact is an unwanted phenomenon that we observed for Pixel RDE: instead
of marking the relevant entries in x, the mask s creates artificial edges that end up making up an
artificial class prototype. Explanation artifacts are problematic because they highlight not actual sub-
structures but artificial structures that trigger the classification. Examples for explanation artifacts
in Pixel RDE are given in Figure 11.

Sky→ Airliner CartoonX Pixel RDE Airliner

Figure 10: CartoonX and Pixel RDE are both performed on the image of the blue sky. However, both
methods are adjusted here to find evidence for the output probabilities of the image of the airplane
instead of the blue sky. Pixel RDE, unlike CartoonX, can create an artificial airplane as evidence for
an airplane in the smooth blue sky.

Pixel RDE can produce artificial edges in smooth regions for the following reason: When s has a
curve-like structure in some region, unselected points near s are replaced with perturbations that
tend to differ from the values of the curve-like structure in s. Thus, the curve-like structure also
appears in the obfuscation and can produce low distortion if the structure makes up a prototypical
class feature (see, for example, the airplane in Figure 10).

We suspect CartoonX is inherently less susceptible to explanation artifacts for the following rea-
son: Natural images tend to be piece-wise smooth, and piece-wise smooth images have sparse
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high-frequency DWT coefficients that cluster about the edges Stéphane (2009b) (see for example
Figure 4). For a DWT mask to create artificial edges, it has to select a curve-like structure in the
high-frequency coefficients (low-frequency coefficients cannot create edges) and replace surround-
ing unselected values with different values. However, in CartoonX, perturbations of high-frequency
coefficients are Gaussian with low variance centered close to zero (see adaptive Gaussian noise in
Section 4.1.2), which are not very different from the values along the selected curve due to the
sparsity of the coefficients.

We illustrate our previous reasoning about explanation artifacts in a controlled example (see Figure
10). We take an image x(sky) of a blue sky that is very smooth and an image x(plane) of a airplane.
The goal is to show that Pixel RDE, unlike CartoonX, can create artificial evidence for the class
airplane on the image of the smooth blue sky. We perform CartoonX and Pixel RDE on the blue sky
image with the distortion function

∀y ∈ Rn : d(Φ(x(sky)),Φ(y)) = 106‖Φ(x(plane))− Φ(y)‖2,
and a sparsity level of λ = 80000. As expected, we observe that Pixel RDE, unlike CartoonX, can
create an artificial plane in the smooth blue sky(see Figure 10).

A.5 EXPLAINING THROUGH IMAGENET HISTORY: FROM ALEXNET TO RESNETXT50

In the deep learning community, it is well-known that AlexNet (Krizhevsky et al., 2012) provided a
major breakthrough in deep learning, improving the top-5 error on ImageNet from 25% to 16%.
Since then, deep learning based ImageNet classifiers have continued to drastically improve on
ImageNet—achieving less than 6% top-5 error in 2016. In Figure 12, we compare CartoonX for four
ImageNet classifiers with increasing performance, starting with AlexNet (top-1 accuracy 56.55%,
AlexNet), VGG16 (top-1 accuracy 71.59%, Simonyan & Zisserman (2015)), InceptionV3 (top-1 ac-
curacy 77.29%, Szegedy et al. (2016)), and ResNeXt50 (top-1 accuracy 77.62%, Xie et al. (2017).)
Throughout the experiment, the CartoonX hyperparameters for a given image are not changed for
any of the four classifiers.

A.6 EXPLAINING MISCLASSIFICATIONS WITH CARTOONX

In Figure 13, 14, 15, and 16, we provide further examples where CartoonX provides insightful
explanations for misclassified images.

A.7 CARTOONX COMPARED ON RANDOM IMAGENET SAMPLES

Figure 17, 18, 19, and 20 compares CartoonX to Pixel RDE (Macdonald et al., 2019), Integrated
Gradients (Sundararajan et al., 2017), Smoothgrad (Smilkov et al., 2017), Guided Backprop (Sprin-
genberg et al., 2015), and (Bach et al., 2015) on random Imagenet samples classified by VGG16.

A.8 CARTOONX FAILURES

We also show failures of CartoonX in Figure 21. These are examples of explanations that are not
interpretable and seem to fail at explaining the model prediction. Notably, most failure examples
are also not particularly well explained by other state-of-the-art methods. It is challenging to state
the underlying reason for the CatoonX failures with certainty (there is always the possibility that the
neural net bases its decision on non-interpretable grounds). We intentionally also showed uninter-
pretable CartoonX explanations that were not too sparse (all or almost black explanations) since one
can typically fix these explanations by decreasing λ.
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Cloak Edges in Input CartoonX Edges in CartoonX Pixel RDE Edges in Pixel RDE

Brain-Coral Edges in Input CartoonX Edges in CartoonX Pixel RDE Edges in Pixel RDE

Chain Mail Edges in Input CartoonX Edges in CartoonX Pixel RDE Edges in Pixel RDE

Brain-Coral Edges in Input CartoonX Edges in CartoonX Pixel RDE Edges in Pixel RDE

Cowboy-Hat Edges in Input CartoonX Edges in CartoonX Pixel RDE Edges in Pixel RDE

Oxygen Mask Edges in Input CartoonX Edges in CartoonX Pixel RDE Edges in Pixel RDE

Figure 11: Explanation artifacts in Pixel RDE. We observe that Pixel RDE tends to create edges that
are not a subset of the edges in the original input image. These edges can make prototypical artifact
patterns such as wrinkles in the cloak (first row), coral tentacles (second row), or chain mail (third
row).

16



Under review as a conference paper at ICLR 2022

2012 2014 2015 2016

40

60

80

100

T
op

-1
T
es
t
A
cc
u
ra
cy

Explaining through ImageNet history

A
le
x
N
et

V
G
G
16

In
ce
p
ti
on

V
3

R
es
N
eX

t5
0
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Tiger Tiger Tiger Tiger Tiger

Schooner Schooner Schooner Schooner Schooner

Dalmatian China Cabinet Dalmatian Dalmatian Dalmatian

Cab Mini Van Cab Cab Cab

Jay American Egret Ptarmigan Jay Little Blue Heron

Figure 12: We compare CatoonX explanations for classifications by AlexNet (Krizhevsky et al.,
2012), VGG16 (Simonyan & Zisserman, 2015), InceptionV3 (Szegedy et al., 2016), and ResNeXt50
(Xie et al., 2017). Green labels mark correct classifications and red labels mark wrong classifactions.
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Bottle CartoonX Pixel RDE Integrated Gradients Smoothgrad

Camel CartoonX Pixel RDE Integrated Gradients Smoothgrad

Screw CartoonX Pixel RDE Integrated Gradients Smoothgrad

Microphone CartoonX Pixel RDE Integrated Gradients Smoothgrad

Honeycomb CartoonX Pixel RDE Integrated Gradients Smoothgrad

Swing CartoonX Pixel RDE Integrated Gradients Smoothgrad

Figure 13: Explaining misclassifications with CartoonX on Imagenet and MobileNetV3-Small.
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Strainer CartoonX Pixel RDE Integrated Gradients Smoothgrad

Unicycle CartoonX Pixel RDE Integrated Gradients Smoothgrad

Staffordshire Terrier CartoonX Pixel RDE Integrated Gradients Smoothgrad

Wig CartoonX Pixel RDE Integrated Gradients Smoothgrad

Radiator CartoonX Pixel RDE Integrated Gradients Smoothgrad

Soccer Ball CartoonX Pixel RDE Integrated Gradients Smoothgrad

Figure 14: Explaining misclassifications with CartoonX on Imagenet and MobileNetV3-Small.
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Yawl (Sailing Boat) CartoonX Pixel RDE Integrated Gradients Smoothgrad

Perfume CartoonX Pixel RDE Integrated Gradients Smoothgrad

Picket Fence CartoonX Pixel RDE Integrated Gradients Smoothgrad

Walking Stick CartoonX Pixel RDE Integrated Gradients Smoothgrad

Hourglass CartoonX Pixel RDE Integrated Gradients Smoothgrad

Weevil (Insect) CartoonX Pixel RDE Integrated Gradients Smoothgrad

Figure 15: Explaining misclassifications with CartoonX on Imagenet and MobileNetV3-Small.
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Snail CartoonX Pixel RDE Integrated Gradients Smoothgrad

Honeycomb CartoonX Pixel RDE Integrated Gradients Smoothgrad

Hamster CartoonX Pixel RDE Integrated Gradients Smoothgrad

Cobra CartoonX Pixel RDE Integrated Gradients Smoothgrad

Pineapple CartoonX Pixel RDE Integrated Gradients Smoothgrad

Mushrooms CartoonX Pixel RDE Integrated Gradients Smoothgrad

Figure 16: Explaining misclassifications with CartoonX on Imagenet and MobileNetV3-Small.
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Syringe CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

American Egret CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Boxer CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

White Wolf CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Lorikeet CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Soup-Bowl CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Scottish Deerhound CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Tree Frog CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Figure 17: Comparing CartoonX on random ImageNet samples and VGG16.
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Platypus CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Newfoundland CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Dowitcher CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Balance Beam CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Hognose Snake CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Hippoopotamus CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Boxer CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Figure 18: Comparing CartoonX on random ImageNet samples and VGG16.
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Cabbage Butterfly CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Slide Rule CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Pencil Sharpener CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Croquet Ball CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Goldfinch CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Swab CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Red-Breasted Merganser CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Figure 19: Comparing CartoonX on random ImageNet samples and VGG16.

24



Under review as a conference paper at ICLR 2022

Pug CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Bedlington Terrier CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Italian Greyhound CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Ping-Pong Ball CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Typewriter Keyboard CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Doberman CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Container Ship CartoonX Pixel RDE Integrated Gradients Smoothgrad Guided Backprop LRP

Figure 20: Comparing CartoonX on random ImageNet samples and VGG16.
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Harp CartoonX Pixel RDE Integrated Gradients Smoothgrad

Vulture CartoonX Pixel RDE Integrated Gradients Smoothgrad

Coucal (Bird) CartoonX Pixel RDE Integrated Gradients Smoothgrad

Bustard (Bird) CartoonX Pixel RDE Integrated Gradients Smoothgrad

Goldfinch (Bird) CartoonX Pixel RDE Integrated Gradients Smoothgrad

Cliff CartoonX Pixel RDE Integrated Gradients Smoothgrad

Figure 21: Failures of CartoonX.
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