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Abstract

Adversarial training (AT) with samples generated by Fast Gradient Sign Method1

(FGSM), also known as FGSM-AT, is a computationally simple method to train2

robust networks. However, during its training procedure, an unstable mode of3

“catastrophic overfitting” has been identified in Wong et al. [2020], where the robust4

accuracy abruptly drops to zero within a single training step. Existing methods use5

gradient regularizers or random initialization tricks to attenuate this issue, whereas6

they either take high computational cost or lead to lower robust accuracy. In this7

work, we provide the first study which thoroughly examines a collection of tricks8

from three perspectives: Data Initialization, Network Structure, and Optimization,9

to overcome the catastrophic overfitting in FGSM-AT. Surprisingly, we find that10

simple tricks, i.e., masking partial pixels (even without randomness), setting a large11

convolution stride and smooth activation functions, or regularizing the weights of12

the first convolutional layer can effectively tackle the overfitting issue. Extensive13

results on a range of network architectures validate the effectiveness of each14

proposed tricks, and the combinations of tricks are also investigated. For example,15

trained with PreActResNet-18 on CIFAR-10, our method attains 51.3% accuracy16

against PGD-10 attacker and 46.4% accuracy against AutoAttack, demonstrating17

that pure FGSM-AT is capable of enabling robust learners. We will release our18

code to encourage future exploration on unleashing the potential of FGSM-AT.19

1 Introduction20

Convolution neural networks (CNNs), though achieving compelling performances on various visual21

recognition tasks, are vulnerable to adversarial perturbations Szegedy et al. [2013]. To effectively22

defend against such malicious attacks, adversarial examples are utilized as training data for enhancing23

model robustness, a process known as adversarial training (AT). To generate adversarial examples,24

one of the leading approaches is to perturb the data using the sign of the image gradients, namely the25

Fast Gradient Sign Method (FGSM) Goodfellow et al. [2015].26

The adversarial training with FGSM (FGSM-AT) is computationally efficient, and it lies the founda-27

tion for many followups Kurakin et al. [2016], Madry et al. [2018], Zhang et al. [2019]. Nonetheless,28

interestingly, FGSM-AT is not widely used today because of the catastrophic overfitting: the model29

robustness will collapse after a few training epochs Wong et al. [2020]. To mitigate the catastrophic30

overfitting and stabilize FGSM-AT, several methods have been proposed. For instance, Wong et al.31

[2020] pre-add uniformly random noises to images to generate adversarial examples, i.e., turn32

the FGSM attacker into the PGD-1 attacker. Andriushchenko and Flammarion [2020] propose33

GradAlign, which regularizes the AT via maximizing the gradient alignment of the perturbations.34

While these approaches successfully alleviate the catastrophic overfitting, some limitations . For35
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example, GradAlign requires an extra forward pass compared to the vanilla FGSM-AT, which sig-36

nificantly increases the computational cost; Fast-AT in Wong et al. [2020] shows a relatively lower37

robustness, and may still collapse if training with larger networks.38

In this paper, we aim to develop more effective and computationally efficient solutions for attenuating39

this catastrophic overfitting. Specifically, we revisit FGSM-AT and propose to stabilize its training40

from the following three perspectives:41

• Data Initialization. Following the idea of adding random perturbations Madry et al. [2018], Wong42

et al. [2020], we propose to randomly mask a subset of the input pixels to stabilize FGSM-AT,43

dubbed FGSM-Mask. Surprisingly, additional analysis suggests that the masking process does not44

necessarily need to be set as random during training—we find that applying a pre-defined masking45

pattern to the training set also effectively stabilizes FGSM-AT. This observation also holds for46

adding perturbations as the initialization in Wong et al. [2020], challenging the general belief that47

randomness is the key factor for stabilizing AT.48

• Network Structure. We identify two architectural elements that affect FGSM-AT. Firstly, in49

addition to boosting robustness as shown in Xie et al. [2020], we find a smoother activation function50

can make FGSM-AT more stable. Secondly, we find vanilla FGSM-AT can effectively train ViTs51

without showing catastrophic overfitting. We conjecture this phenomenon may be related to how52

CNNs and ViTs extract features: i.e., CNNs extract features from overlapped image regions (where53

stride size < kernel size), while ViT extract features from non-overlapped image patches (where54

stride size = kernel size). By simply increasing the stride size of the first convolution layer in a55

CNN, we find the resulted model can stably train with FGSM-AT.56

• Optimization. GradAlign Andriushchenko and Flammarion [2020] stabilizes the FGSM-AT by57

setting the norm of the gradients as a regularization term. To further reduce the computational58

cost, we propose ConvNorm, a regularization term that simply constrains the weights of the59

first convolution layer. Different from GradAlign which introduces a significant amount of extra60

computations, our ConvNorm can work as nearly computationally efficient as the vanilla FGSM-AT.61

Our contributions. In summary, we discover a bag of tricks that effectively alleviate the catastrophic62

overfitting in FGSM-AT from different perspectives. We extensively validate the effectiveness of our63

methods with a range of different network structures on the popular CIFAR-10 dataset. Based on our64

results, we can conclude that the pure FGSM-AT is capable of enabling robust learners.65

2 Preliminaries66

Given a neural classifier f with parameters θ, we denote x and y as input data and labels from the data67

generator D, respectively . δ represents the perturbations and L is the cross-entropy loss typically68

used for image classification tasks.69

Adversarial Training: We can formulate the adversarial training as an optimization problem Madry70

et al. [2018] as:71

min
θ

E(x,y)∼D

[
max
δ∈∆

L(fθ(x+ δ), y)
]
. (1)

Among different methods for generating adversarial examples, we chose two popular ones to study:72

• FGSM: Goodfellow et al. [2015] first propose Fast Gradient Sign Method (FGSM) to generate the73

perturbation δ as follows:74

δ = ϵ sign(∇xL(fθ(x), y)), (2)

• PGD: Madry et al. [2018] propose a strong iterative version with a random start based on FGSM,75

name projected gradient descent (PGD) as:76

xt+1 = Π∥δ∥∞≤ϵ (xt + αsign(∇xt
L(fθ(xt), y))) , (3)
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where the α denotes the step size of each iteration. PGD provides a better choice for adversarial77

examples, but it will also cost much more time than FGSM. In the following sections, we call78

adversarial training with FGSM as FGSM-AT and correspondingly, PGD-AT. where ϵ denotes the79

maximum size of perturbations.80

Catastrophic Overfitting: Wong et al. [2020] believe that non-zero initialization for perturbations81

is the key to avoiding the overfitting issue and propose to add uniform random noise during each82

training iteration. The detailed procedure is illustrated in the following equations:83

δ = Uniform(−ϵ,+ϵ)

δ = δ + α sign(∇xL(fθ(x), y))
δ = max(min(δ, ϵ),−ϵ)

(4)

Andriushchenko and Flammarion [2020] propose a regularization method GradAlign to maximize84

the gradient alignment between various sets as:85

E(x,y)∼D

[
1− cos(∇xL(fθ(x), y),∇xL(fθ(x+ η), y))

]
(5)

where η denotes random noise.86

3 Bag of Tricks87

We aim to investigate simple yet effective solutions to overcome the catastrophic overfitting in88

FGSM-AT. To stabilize FGSM-AT and make the trained model more robust to adversarial attacks,89

we propose strategies from three general perspectives: Data Initialization, Network Structure, and90

Optimization. In this section, the experiments are done on CIFAR-10 dataset Krizhevsky [2009]91

with PreActResNet-18 He et al. [2016] under the ℓ∞ adversarial attack of maximal perturbation92

of ϵ = 8/255 without using any additional data. Two kinds of adversarial attacks are designed to93

evaluate the robustness of models at the end of training: 10-steps projected gradient descent attack94

(PGD-10) Madry et al. [2018] and the standard version of AutoAttack (AA) Croce and Hein [2020b].95

Specifically, for the PGD-10 attack, we apply untargeted mode using the ground-truth annotations96

with a step size α = 2/255. AutoAttack comprises AutoPGD-CE, AutoPGD-Targeted, FAB Croce97

and Hein [2020a], and Square attack Andriushchenko et al. [2020].98

Default setting. We set the training framework and hyper-parameters following Pang et al. [2021].99

We apply SGD optimizer with a momentum of 0.9, weight decay of 5× 10−4, and an initial learning100

rate of 0.1. ReLU function (without applying label smoothing) is used as the default activation101

function. For the CIFAR dataset, we apply random flip and random crop as data augmentation102

methods. Following the framework settings in Pang et al. [2021], all models are trained for 110103

epochs. The learning rate decays at 105th and 110th epochs. Specially, we report the robustness104

results on the last checkpoint. It should be noted that the final result might not be the best during the105

training process. Our experiments are conducted with NVIDIA TITAN XP GPUs.106

Methods AT PreActResNet-18 WideResNet-34-10
Clean PGD-10 AA Clean PGD-10 AA

Baseline
F+FGSM 86.4% 46.7% 41.0% 89.4% 0% 0%

FGSM+GradAlign 81.2% 48.7% 44.0% 81.2% 48.7% 44.0%
PGD-10 82.6% 53.1% 48.3% 86.1% 56.5% 52.2%

Data initialization FGSM-Mask 82.5% 50.0% 44.2% 79.9% 33.7% 29.7%
FGSM-Mask-fixed 80.7% 48.6% 43.1% 72.3% 24.3% 20.9%

Network Structure FGSM-Smooth 74.8% 48.5% 43.1% 75.6% 48.6% 44.2%
FGSM-Str2 83.1% 48.7% 44.4% 85.0% 50.4% 46.7%

Optimization FGSM+GradNorm 82.4% 47.2% 42.7% 82.8% 50.7% 46.2%
FGSM+WeightNorm 81.7% 48.3% 42.8% 85.7% 48.8% 45.7%

Table 1: Robustness performances of various methods on PreActResNet-18 and WideResNet-34-10.
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Figure 1: FGSM-Mask V.S. F+FGSM on an input image

3.1 Data Initialization107

Wong et al. [2020] firstly identify the catastrophic overfitting faced in FGSM-AT and propose to108

resolve this issue by initializing images with uniform noise with size α = ϵ, namely Fast FGSM-AT109

(F+FGSM). As shown in Equation (4), the method is also termed “random initialization” since it110

randomly adds uniform perturbations during different training iterations. This method has been111

shown the capability to prevent general catastrophic overfitting and defend the models from PGD112

attacks.113

FGSM-Mask. Inspired by the core idea of F+FGSM, in this paper, we propose to mask randomly114

a proportion of the input pixels to stabilize the training procedure of FGSM-AT, which we term as115

FGSM-Mask. Fig 1 demonstrates the comparison of FGSM-Mask and F+FGSM when generating116

adversarial examples. In each iteration, FGSM-Mask zeros out some randomly chosen pixels of each117

image x with a mask M according to a given mask ratio. Then the masked image x⊗M is fed to the118

model to generate adversarial examples via FGSM as:119

δ = α sign(∇x⊗ML(fθ(x⊗M), y)), (6)

Compared with the random initialization method in F+FGSM (Equation (4)), our method exhibits120

a much simpler form—Our FGSM-Mask simply randomizes the mask instead of manipulating the121

original pixel values.122

To demonstrate the effectiveness of our FGSM-Mask, we mask images with different ratios and123

present the robust accuracy in Table 2 and Figure 2 (a). With a mask ratio of 0%, our method is124

reduced to the vanilla FGSM-AT, and therefore it suffers from catastrophic overfitting. As the mask125

ratio increases, the models trained with FGSM-Mask become more stable. A small mask ratio like126

10% or 20% can already attenuate the overfitting issue but the robust accuracy still drops to near-zero127

after decreasing the learning rate. With a mask ratio higher than 30%, the catastrophic overfitting is128

entirely resolved: the robust accuracy stably remains at 50.0%, outperforming F+FGSM (46.7%) by129

more than 3%.130

Randomized
Mask Ratio

Robust
Accuracy

Fixed
Mask Ratio

Robust
Accuracy

0~20% 0% 0~20% 0%
30% 50.0% 30% 0%
40% 49.3% 40% 48.6%
50% 49.0% 50% 48.6%

Table 2: Robust accuracy V.S. mask ratio for FGSM-Mask
and FGSM-Mask-Fixed.

FGSM-Mask-Fixed. Additionally, we131

observe that the randomness of mask-132

ing is not necessary for different train-133

ing iterations. Instead, simply using134

a fixed masking pattern throughout the135

training process is enough to help stabi-136

lize FGSM-AT. It is worth to be noted137

that the AT with fixed masks is equiva-138

lent to preparing a pre-defined masked139

adversarial dataset which will be fixed in the entire training process. The model trained with such a140
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(a) FGSM-Mask (b) FGSM-Mask-fixed

Figure 2: Robust accuracy of FGSM with various mask ratios. (a) is with the random mask, and (b)
is with the fixed mask.

masked dataset achieves remarkably stable and decent robust accuracy without applying any addi-141

tional tricks, as shown in Table 2. We call this method FGSM-Mask-Fixed. Similar to FGSM-Mask,142

with relatively lower mask ratios (≥ 30%), the catastrophic overfitting cannot be fully resolved by143

FGSM-Mask-Fixed, and the trained model result in a final robust accuracy of 0%. As shown in144

Figure 2 (b), when increasing the mask ratio to 50%, the model trained with FGSM-Mask-Fixed145

reaches a robust accuracy of 48.6%, outperforming F+FGSM by about 2%. To show how randomized146

mask ratios and the fixed mask ratios influence the final robustness performance, Table 2 presents the147

robust accuracy with both FGSM-Mask and FGSM-Mask-Fixed under various mask ratios.148

The findings in our Data Initialization section challenge the traditional belief that the randomness149

of initialization in different training iterations plays a crucial role in AT Chen et al. [2020], which150

inspires us to revisit the data initialization strategy in F+FGSM. We further find that it is not necessary151

to pursue the randomness of uniform noise during different training epochs. Instead, fixing the152

uniform noise of F+FGSM can also stabilize the FGSM-AT and finally reach a robust accuracy of153

46.5% under PGD-10 adversarial attack, which is comparable to the vanilla F+FGSM.154

3.2 Network Structure155

Existing studies have demonstrated that a well-designed network structure can improve the model156

robustness. Xie et al. [2020], Singla et al. [2021], Wu et al. [2020]. When trained with FGSM-AT,157

Vision Transformers (ViTs) Dosovitskiy et al. [2020] have shown better robustness compared with158

CNNs Bai et al. [2021], Paul and Chen [2021], Shao et al. [2021]. Furthermore, Xie et al. [2020],159

Singla et al. [2021], Gowal et al. [2020] effectively boost the model robustness by replacing the160

original ReLU activation function with smoother ones. However, these approaches only focus on161

improving the model robustness in the general training process, but have overlooked the potential162

value of network structure for addressing the catastrophic overfitting in FGSM-AT. In this section,163

we investigate the role of network structure in FGSM-AT following the ideas of ViTs and smooth164

activation functions.165

Larger stride for the first convolution layer. We first examine whether using ViTs can resolve the166

overfitting issue. We implement vanilla FGSM-AT with the compact Vision Transformer (CVT) Has-167

sani et al. [2021], a Transformer architecture designed for the dataset with a smaller resolution. We168

observe that the robust accuracy under PGD attacks does not drop to zero during the whole training169

process, without applying any other tricks, neither random initialization nor regularization. The fact170

that ViTs can successfully avoid the overfitting issue motivates us to rethink whether we can achieve171

the same goal simply by modifying the architecture of CNNs. As one big difference between ViTs172

and CNNs lies in how they process images at the beginning of the network, we propose to simply173

modify the first convolution layer of CNNs to approach the similar behaviour of ViTs. ViTs begin174

with a patchify operation, which splits an image into a sequence of non-overlapping patches. Whereas175
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for CNNs, taking PreActResNet-18 as an example, the first layer is a 3× 3 convolutional layer with176

stride 1, which results in overlapping sliding windows when computing the convolution features. To177

mimic the behaviour of ViTs, we propose to enlarge the stride size of CNNs to reduce the overlapped178

regions between adjacent sliding windows. By simply increasing the stride size from 1 to 2 or 3, the179

catastrophic overfitting problem is successfully addressed. As shown in Figure 3, when the stride is180

set to be 1, the robust accuracy quickly drops to zero. When the stride is set to be 2 or 3, the robust181

accuracy curve performs much more stable. Among different stride options in our study, we find that182

FGSM-AT with a stride as 2 achieves the highest robust accuracy. Therefore we adopt this setting in183

later experiments, namely FGSM-Str2.184

0 20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

R
ob

us
t A

cc
ur

ac
y(

%
)

stride=1
stride=2
stride=3

Figure 3: Robust accuracy and clean accu-
racy of Large Stride Size CNN. A larger
stride size builds the robustness success-
fully.
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Figure 4: Trend of ∥∇x∥2 and the maximum
value of weights. Both increase dramatically
when the overfitting happens.

Smooth activation function. We also investigate the role of the activation function in FGSM-185

AT. We replace the original ReLU activation function with smoother ones and then explore their186

effectiveness for addressing the overfitting problem. We select four smooth activation functions:187

SiLU Ramachandran et al. [2018], ELU Clevert et al. [2016], SoftPlus Nair and Hinton [2010], and188

GELU Hendrycks and Gimpel [2016]. We display the curves of these activation functions and record189

their robust accuracy during FGSM-AT in Figure 5(a). It can be observed that smooth activation190

functions can all mitigate or even fully prevent catastrophic overfitting.191

We also find that the degree of smoothness affects the robustness. For instance, ELU is smoother192

than GELU and accordingly the robust accuracy of ELU is stabler than that of GELU. Following Xie193

et al. [2020], we choose SoftPlus to study the effect of function smoothness because the scaler α in194

Parametric SoftPlus can control its smoothness as the following:195

f(α, x) =
1

α
log(1 + exp(αx)). (7)

Figure 5(b) shows the curves of SoftPlus when the α is 2, 5, 10 and the according robust accuracy196

curves. As α decreases, the activation function becomes smoother, and the robust accuracy becomes197

stabler. Figure 5(b) validates that the smoothness of activation functions has a positive correlation198

with the stability of FGSM-AT. Here we choose SoftPlus with α = 2 as our baseline shown in Table 1199

as it performs the best among smooth activation functions, and we call this method FGSM-Smooth.200

3.3 Optimization201

Adding an extra regularization term has been shown capable to prevent the catastrophic overfit-202

ting in FGSM-AT but can usually result in extra computation overhead. One typical example is203

GradAlign Andriushchenko and Flammarion [2020], which adds an additional objective to maximize204

the gradient alignment inside the perturbation set. GradAlign is quite effective for stabilizing FGSM-205

AT. However, it comes at the cost of an extra computational burden due to an extra forward and206

backward propagation to compute the gradient of an adversarial set ∇xL(fθ(x+η), y) (Equation (5)).207
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Figure 5: Curves of activation functions and their corresponding robust accuracy. (a) shows the
comparisons between various activation functions. (b) shows the comparisons between Softplus with
different α.

In this paper, to avoid the extra forward propagation in GradAlign, we first introduce a novel208

regularization method which directly regularizes the L2 norm of gradients on input images, referred209

to as GradNorm. Then to further reduce the computation cost, we design another simple but efficient210

method by only regularizing the weights on the first layer, referred to as WeightNorm. Both GradNorm211

and WeightNorm successfully address the overfitting issue and achieve comparable robust accuracy212

with GradAlign, while WeightNorm significantly reduces the computational cost. For instance,213

WightNorm and GradAlign take 42 seconds and 56 seconds for each training epoch. WeightNorm is214

24% faster than GradAlgin. Next we illustrate the technical details of GradNorm and WeightNorm.215

GradNorm. By taking a closer look at the L2 norm of gradients on input images, we observe that216

the ∥∇x∥2 becomes 100× larger after the 11th epoch as shown in Figure 4. This observation aligns217

with the conclusion in Kim et al. [2021], which points out that the increasing gradient norm leads218

to decision boundary distortion and a highly curved loss surface during adversarial training. This219

distortion hence makes the adversarially trained model vulnerable to multi-step adversarial attacks220

(e.g., PGD attacks) and leads to catastrophic overfitting. This phenomenon inspires us to design a221

new regularizer by directly constraining the gradient norm E[∥∇x∥2]:222

L = L(fθ(x+ δ), y) + β∥∇x∥2 (8)

where the hyper-parameter β controls the weight of the regularizer. As shown in Table 1, GradNorm223

successfully overcome the overfitting issue and achieves a high robust accuracy of 47.2% against224

PGD-10 attacks, which is comparable to the result of GradAlign (48.7%).225

WeightNorm. Both GradAlign and GradNorm are highly effective in addressing the overfitting issue.226

However, as aforementioned, they both suffer from high computational cost due to the additional back-227

propagation requirement. We hereby aim to design a novel regularization method which addresses228

the overfitting issue without introducing an extra computational burden. We propose WeightNorm,229

a regularization term that directly exploits the intermediate features of vanilla FGSM-AT models.230

Since the goal of adversarial training is to let the predictions of adversarial examples close to that of231

clean samples as much as possible: fθ(x+ δ) → fθ(x), we design to optimize the training process232
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by constraining the prediction difference. For simplicity, we only examine initial features generated233

by the first convolution layer fω , where the ω denotes the weights of the first convolution layer. The234

fω(x+ δ)− fω(x) can be represented as ω(x+ δ)− ωx, which is equal to ωδ. Therefore, therefore,235

pushing f1(x + δ) → f1(x) is to minimize ωδ. We can either regularize the δ (i.e., gradients of236

images) or the weights ω.237

Regularizing ω is cheaper than constraining the image gradient (which is essentially δ) as only a238

part of model parameters are regularized, which avoids the second-order back propagation. After239

observing the change of ω, we find that the maximum value of the weights also significantly increases240

when the catastrophic overfitting occurs. As shown in Figure 4, larger weights suggest that the241

network overfits the training data. Therefore, we design a regularizer aiming at constraining ω. The242

intuition of this regularizer design is to both avoid large values in weights and also reduce the distance243

between clean features generated by clean samples and adversarial features generated by adversarial244

samples. We select L1 norm to define the regularizer as:245

min
ω

λL1(fω(x), fω(x+ δ)) (9)

where the λ controls the weight of the regularizer and δ is the adversarial perturbation. The proposed246

regularizer constrains ω and pushes the first-layer intermediate features of adversarial examples to be247

closer to that of clean samples. Experiments show that this regularizer could prevent the catastrophic248

overfitting and it does not require an extra forward pass like GradAlign shown in Equation 5.249

3.4 Combination of Tricks250

Each approach we propose can mitigate the catastrophic overfitting problem individually. To investi-251

gate the aggregated effect, we combine some of them and show results in Table 3. Adding the mask to252

images and increasing the stride size at the same time do not improve the performance. WeightNorm253

does not benefit other tricks. Smooth activation function can benefit masking image or a large stride254

size, showing improvement in the robustness performances. After trying different combinations, we255

find that combining a large stride size and smooth activation functions have the best performance.256

Methods Performances
Mask Large Stride Size Smooth Activation Function WeightNorm Clean PGD-10 AA
✓ ✓ 82.5% 49.4% 45.1%
✓ ✓ 81.1% 51.2% 46.1%

✓ ✓ 82.2% 51.3% 46.4%
✓ ✓ ✓ 81.3% 51.2% 46.1%

Table 3: Performances of FGSM-AT with combined tricks

4 Scalability to Large Networks257

Compared with small networks, the larger networks are more likely to overfit the training data as258

the network parameters increase, and the mentioned tricks might not work. As displayed in Table 1,259

when the size of the network increases (from PreActResNet-18 to WideResNet-34-10), F+FGSM260

results in 0% of robust accuracy under the adversarial attack. To comprehensively validate the261

effectiveness of the methods mentioned above, we conduct experiments on WideResNet-34-10 with262

the same training recipe as PreActResNet-18. Table 1 exhibit the robustness performances of different263

methods on these two networks, and the displayed results are taken at the final checkpoint. For the264

masking methods in Data Initialization, the mask ratio is set larger on WideResNet. Compared with265

PreActResNet, the effectiveness of masking methods declines, but they still exhibit higher robust266

performances than the vanilla F+FGSM. For the methods in Network Structure, both the FGSM-AT267

with a larger stride size (FGSM-Str2) and with smooth activation functions (FGSM-Smooth) perform268

stably on WideResNet, showing comparable results with PreActRest. On both PreActRestNet269

and WideRestNet, the FGSM-Str2 generally outperforms the other three tricks. Furthermore, the270

combination of tricks is also validated on WideRestNet. Following the optimal settings from Table 3,271
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we combine the smooth activation function and large stride size in FGSM-AT. With the combined272

tricks, the models respectively achieves a robust accuracy of 51.8% and 47.3% under PGD-10 attack273

and AA, outperforming all other FGSM-AT methods.274

5 Related Work275

Adversarial training. Adversarial training has been regarded as one of the most effective strategies276

to defend against the adversarial threats to machine learning systems. The idea of adversarial277

training origins in Goodfellow et al. [2015] who proposes to combine clean samples and adversarial278

examples to train the model. Madry et al. [2018] first demonstrate the optimization problem in279

adversarial training and proposes the PGD adversarial attack. Furthermore, advanced adversarial280

training methods are proposed. Zhang et al. [2019] apply a regularization term to achieve the balance281

between robustness and clean performance. Shafahi et al. [2019] reduce the high cost of adversarial282

training by recycling the gradient information. Carmon et al. [2019] first augment CIFAR-10 with283

500K unlabeled extra data from 80 Million Tiny Images dataset. Some works also summarise the284

tricks of AT and the optimal settings for AT. Pang et al. [2021] list the optimal hyperparameters for285

PGD-AT on CIFAR-10 dataset. Gowal et al. [2020] introduce weight average(WA) to adversarial286

training and find the optimal ratios of extra data to get the best adversarial robustness.287

Catastrophic overfitting. Though as an efficient method, FGSM-AT is not popular now because of288

its failure against severe attacks, like PGD adversarial attack. Wong et al. [2020] first find that the289

robust accuracy under PGD adversarial attack of FGSM-AT will drop to zero after several epochs,290

and this phenomena is named as catastrophic overfitting. Rice et al. [2020] think that catastrophic291

overfitting is a special case only existed in FGSM-AT and this overfitting phenomenon is due to a292

weaker adversarial attacker. Kim et al. [2021] visualize the decision boundary during adversarial293

training and find the decision boundary distortion is closely related to the catastrophic overfitting.294

They believe that the fixed distance from adversarial examples to clean images are the key causing295

the distortion and propose to apply various step sizes for each image.296

Data initialization. Data initialization has been a common trick in adversarial training, where297

random noise is added to images before AT during each iteration. Madry et al. [2018] first add a298

random start for PGD-AT. Tramèr et al. [2018] first propose R+FGSM combining a Gaussian random299

initialization in a single-step AT. They add Gaussian random noise to images and do FGSM-AT with300

a step size of α = ϵ/2, which is not effective against PGD adversarial attack. Wong et al. [2020]301

believe that non-zero initialization for perturbations is the key to avoiding overfitting and propose302

adding uniform random noise to prevent overfitting.303

Regularization. Wong et al. [2020] point out that early stopping is an effective method to get a304

robust model trained by FGSM-AT, but the robustness underperforms as the training epochs are305

inadequate. Andriushchenko and Flammarion [2020] demonstrate that the catastrophic overfitting is306

irrelevant to the sizes of networks. Instead, the local non-linearity was the true reason. To prevent307

overfitting, they propose a regularization method called GradAlign, which maximizes the gradient308

alignment between various set to stop the catastrophic overfitting.309

6 Conclusion310

This study proposes a range of tricks to address the catastrophic overfitting in FGSM-AT and311

comprehensively examine their effectiveness on networks with different scales. Our results show312

that the proposed tricks can be simple yet effective solutions to stabilize FGSM-AT at a minimal313

computational cost. We hope this study could contribute to the achievement of a fully stabilized314

FGSM-AT in the future.315
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