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Abstract

Data poisoning is a prominent threat to Deep Learning applications. In backdoor
attack, training samples are poisoned with a specific input pattern or transformation
called trigger such that the trained model misclassifies in the presence of trigger.
Despite a broad spectrum of defense techniques against data poisoning and back-
door attacks, these defenses are often outpaced by the increasing complexity and
sophistication of attacks. In response to this growing threat, this paper introduces
D3, a novel dataset detoxification technique that leverages differential analysis
methodology to extract triggers from compromised test samples captured in the
wild. Specifically, we formulate the challenge of poison extraction as a constrained
optimization problem and use iterative gradient descent with semantic restrictions.
Upon successful extraction, D3 enhances the dataset by incorporating the poison
into clean validation samples and builds a classifier to separate clean and poisoned
training samples. This post-mortem approach provides a robust complement to
existing defenses, particularly when they fail to detect complex, stealthy poisoning
attacks. D3 is evaluated on 42 poisoned datasets with 18 different types of poi-
sons, including the subtle clean-label poisoning, dynamic attack, and input-aware
attack. It achieves over 95% precision and 95% recall on average, substantially
outperforming the state-of-the-art.

1 Introduction

A prominent threat for Deep Learning applications is data poisoning, in which adversaries inject
poisoned samples into datasets such that models trained from such datasets have (hidden) malicious
behaviors Gu et al. [2019], Liu et al. [2020], Nguyen and Tran [2021]. For example, the simplest
data poisoning Gu et al. [2019] works by stamping some pixel pattern called trigger on a set of clean
samples and setting their labels to a target class. The model hence learns the malicious connection
between the trigger and the target class such that misclassification can be induced at test time by
stamping a clean sample with the trigger. This is called the backdoor attack or trojan attack.

There are a spectrum of defense techniques against data poisoning and backdoor attacks, such as
backdoor scanning Kolouri et al. [2020], Zhang et al. [2020], Guo et al. [2020], Huang et al. [2019],
Veldanda et al., test-time poisoned input detection Chou et al. [2020], Doan et al. [2020], Gao et al.
[2019b], Li et al. [2021b], model certification against data poisoning McCoyd et al. [2020], Xiang
et al. [2021a,b], Jia et al. [2020], poison removal by model retraining Li et al. [2021a], Wu and Wang
[2021], Tao et al. [2022a], and data detoxing Hayase and Kong [2020], Du et al. [2019], Chen et al.
[2018], Tran et al. [2018], Shan et al. [2022]. Data detoxing focuses on removing poisons in data
samples (e.g., those in the training set). For instance, TRACEBACK Shan et al. [2022] was the first
post-mortem data detoxing technique. It assumed the access to a few poisoned samples and then
cleansed the dataset based on the forensic results of the samples. The few poisoned samples can
be acquired by collecting misclassified samples that are not human explainable. For example, an
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airplane image (in human eyes) misclassified as a cat is considered highly suspicious. In contrast, a
dog misclassified as a cat may not be, as these two are not that distinguishable to begin with1.

In traditional cyber-security, it was shown that learning from incidents is critical for enhancing
security measures Ma et al. [2017], Hassan et al. [2020], Chen et al. [2021], Yu et al. [2021], Hassan
et al. [2019]. This involves tracing the source of a cyberattack that has occurred, by examining
the traces left by the attacker in the victim system. The retrospective analysis aids not only in
understanding the attack mechanism but also in preventing similar attacks in the future. Such benefits
can be foreseen in deep learning post-modem analysis. In spite of its inspiring idea, TRACEBACK
has some limitations that degrade its performance in certain scenarios. In particular, it is based on
measuring individual samples’ impact on model weight parameters during training, which may be
unstable and lead to suboptimal performance (see Section A).

In this paper, we introduce a novel data detoxing technique, D3, which employs a differential analysis
methodology to extract poisoning triggers from compromised test samples. The necessity for this
differential analysis approach is underscored by the stealthiness of the triggers. It is crucial to
understand that possession of poisoned samples does not equate to comprehension of the triggers.
Designed to be covert and stealthy, these triggers often escape detection. Moreover, advanced
poisoning methods do not rely on a fixed pattern for the trigger. Instead, they leverage various forms
of subtle, input-specific perturbations, such as those found in dynamic backdoor and input-aware
backdoor attacks Salem et al. [2020], Nguyen and Tran [2020]. This complexity renders conventional
methods such as attempting to extract the trigger using image editing tools prove to be ineffective
Similarly, it is not feasible to identify all the poisoned images within a training set using only the
poisoned test images as reference. This is because the triggers within the training data can differ from
those in the test data, particularly in the context of input-aware attacks. Additionally, clean-label
attack Turner et al. [2019], Zhao et al. [2020], which do not necessitate label changes and embed
the trigger within target class samples, further complicate the process of locating the search space of
potentially poisoned data.

We cope with these challenges by formulating poison extraction as a constrained optimization problem
and relying on iterative gradient descent with a number of semantic restrictions (Section 2). After
poison extraction, D3 augments the dataset by stamping the clean validation samples with the poison.
A classifier is then trained on the logits of clean target class samples and stamped samples (which
are misclassified to the target class). The classifier is hence used to distinguish clean and poisoned
samples in the training dataset.

Threat Model. In line with the assumptions made in TRACEBACK Shan et al. [2022], we construct
our threat model for D3 under the premise that it is deployed either by the model’s owner or by a
trusted third-party defender. This entity is assumed to have a small set of poisoned test samples
captured in the wild (e.g., suspicious misclassified samples). In addition, the defender is presumed to
have access to both the poisoned model and the poisoned training set. Furthermore, a small batch
of clean validation samples is also within the defender’s reach. It’s critical to note, different from
TRACEBACK, that we do not require access to information about the model’s training procedure.□
We make the following contributions.

• We propose a new dataset detoxing technique, which is based on a novel differential analysis
to extract triggers and data augmentation. It is a post-mortem approach that provides a robust
complement to existing defenses, particularly when they fail to detect complex, stealthy
poisoning attacks.

• On 42 poisoned datasets with 18 poison types, D3 achieves over 95% precision and recall,
vastly surpassing TRACEBACK, AC, SS, and STRIP with their precision and recall averag-
ing at (39.9%, 60.5%), (55.0%, 66.0%), (42.0%, 53.6%), and (36.6%, 12.7%) respectively.
It also excels over backdoor scanners ABS and FeatureRE, which only reach 52.3% and
72.7% precision and 39.0% and 43.2% recall.

2 Methodology
Figure 1 presents the overview of D3. In the first poison-extraction step, i.e., subfigure (a), it takes
a few poisoned test samples acquired in the wild and a small set of clean validation samples of the

1It is well possible that the attacker leverages such natural confusion. This is however beyond the scope of
the technique.
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Figure 1: Overview of D3. It has four steps: (a) extracting the poison via optimization; (b) applying
the extracted poison to the validation set and creating more poisonous samples; (c) training a classifier
on the crafted poisonous samples and clean samples; and (d) detoxing the training set using the
classifier.

victim class, which do not overlap with the test samples, and extracts the poison. In the second
data-augmentation step, i.e., subfigure (b), it applies the extracted poison to the clean validation
images (in the victim class) to construct a set of augmented samples. Note that these samples are
misclassified to the target class. In the third step, i.e., subfigure (c), we train a classifier C to separate
the available clean target class samples and the samples with the poison applied, based on their
features denoted by logits values. In the fourth step, the classifier is used to separate the clean and
poisoned samples. In the following, we explain the details of these steps.

2.1 Poison Extraction by Differential Analysis
Given a poisoned test sample, since the corresponding clean test sample is not available, one cannot
extract the poison by taking the differences. The over-arching idea of our differential analysis is to
use optimization to separate a poisoned test sample to a clean sample and the poison. Specifically,
the separated clean sample should resemble its poisoned version as humans could still correctly
recognize the poisoned sample; the extracted poison should be effective, causing other clean samples
to be misclassified; the poison shall be in a small scale as it is expected to be stealthy. The above
conditions are abstracted to a set of regulation rules for the optimization.
There are typically two ways to achieve stealthy poisoning in the current literature Tao et al. [2022c],
Liu et al. [2019]: using a patch-like poison with a small L1 norm Gu et al. [2019], Turner et al. [2019]
and using pervasive but small perturbations with a small L∞ norm Nguyen and Tran [2021], Liu et al.
[2018, 2020], Nguyen and Tran [2020], Salem et al. [2020]. We call the former patch-like poison and
the latter pervasive poison. The aforementioned poison extraction has different instantiations for the
two types of poison. Note that it is common in the literature to handle cases differently. For example,
ABS analyzes input patterns for simple triggers and applies artificial brain stimulation techniques for
complex triggers.

Extracting Patch-like Poison We use F to denote the model, xp to denote a poisoned test sample,
or a set of such samples without losing generality. We use x to denote its clean version, which is not
explicitly available, and p to denote the patch to extract. We further use xv to denote a set of clean
victim class samples and yt, yv the target and victim labels, respectively. Let D(x1, x2) be a distance
function between two samples and the operator ⊕ stamping a patch to an sample. They are formally
defined as follows.

x = StyleGAN(z) (1)
x⊕ p = clip(x⊙ [p < β] + p⊙ [p ≥ β]), (2)

where z is the random noise input to the StyleGAN Karras et al. [2019], and β is the threshold to
determine whether to take pixels from the generated patch. We use β = 0.001 to include as many
pixels from the patch as possible in the experiments.
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We hence formulate the extraction process as a constrained optimization problem as follows.

argmin
z,p

D(xp, x⊕ p) + L(F (xv ⊕ p), yt) + L(F (x), yv) + α · L1(p) (3)

Specifically, the first term dictates that the optimized x and p should resemble the original xp when
they are combined; the second term ensures the poison p can flip a set of validation clean samples;
the third term is that the generated x must be classified to the correct label; and the final term ensures
p is small.
The distance D is calculated using L2 on both the pixel and the embedding levels Zhang et al. [2018],
Kettunen et al. [2019]:

D(xp, x⊕ p) = ||xp, x⊕ p||22 + ||Enc(xp), Enc(x⊕ p)||22, (4)

where Enc(·) denotes a pre-trained encoder that derives the embedding of an input image. Constrain-
ing both input and embedding space distances ensures a visual and meaningful resemblance between
xp and x⊕ p.
The optimization directly updates the patch pixel values. To smooth the procedure and make it easy to
converge, we utilize the dual-tanh representation of pixel perturbation proposed in Tao et al. [2022b],
whose idea is to use two tanh functions to denote pixel changes along two respective directions,
positive and negative. The long flat tails and smoothness of tanh functions allow easy convergence
biasing towards either maximum changes or 0 changes. In other words, it encourages pixels undergo
either no changes or maximum changes. Specifically, we change the ⊕ operator as follows.

x⊕ p =clip
(
x+

1

2

(
tanh(bp) + 1

)
·maxp − 1

2

(
tanh(bn) + 1

)
·maxp

)
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2

(
tanh(b) + 1

)
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Eq.(3) changes to optimizing bp and bn in (−∞,+∞), deciding changes along the positive and
negative directions, respectively.
The third term in Eq.( 3) is replaced with the following to control the magnitude of the extracted
poison.

1

2

(
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γ
) + 1

)
+

1

2

(
tanh(

bn
γ
) + 1

)
(5)

Parameter γ is used to alter the slope of tanh such that the optimization is smoother. We empirically
set γ = 10.

Extracting Pervasive Poison. When the poison is pervasive, the pixel level changes vary from
sample to sample, such as in filter poison Liu et al. [2019], WaNet attack Nguyen and Tran [2021],
and DFST Cheng et al. [2021]. We hence use a transformation layer to denote such changes. In
particular, the poison p is denoted by a pair ⟨w, b⟩ such that the poison application operator ⊕ is
changed to the following.

x⊕ p = w · x+ b. (6)
In other words, D3 optimizes w and b instead of a pixel pattern p. The final term in Eq.(3) is changed
to the following because pixel level differences are no longer a good metric to measure the quality of
the extracted poison.

L2(µxv⊕p − µxp) + L2(σxv⊕p − σxp), (7)
where µa denotes the mean pixel value of an input image a and σa denotes its standard deviation.
This regularization term constrains the distribution of validation images with the extracted poison is
similar to the distribution of provided poisoned images. Intuitively, D3 enforces the style similarity
of the two, e.g., inducing a greyish color scheme with a poison by a Gotham filter.
As D3 does not have any prior knowledge whether the poison-to-extract belongs to the patch type or
the pervasive type, it tries both types and selects the one with better performance, i.e., lower loss.

2.2 Data Augmentation and Training Classifier
A naive idea is to directly train a classifier based on the available poisoned test samples and clean
validation samples. However, there are often very few poisoned samples, insufficient for training
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a good classifier (see our experiments in Section D). Thus, our idea is to produce more poisoned
samples by data augmentation, namely, applying the extracted poison.
Specifically, we split the validation clean samples to two subsets x1 and x2. Let an extracted patch-
like poison be p. We augment x1 with x1 ⊕ p, T (x1) ⊕ p and x1 ⊕ T (p). Here, T denotes some
typical data transformations such as offsetting, flipping, rotation, perspective changes, and affine
transformations. For a pervasive poison p, we augment x1 with x1 ⊕ p, x1 ⊕ p̃ and T (x1) ⊕ p.
Here, p̃ denotes adding small perturbations to the weight and bias of p. We filter out the augmented
samples that are not misclassified to the target label. We hence train a classifier to separate x2 from
the augmented x1, based on the logits values. The classifier is then applied to the training dataset to
identify poisoned samples.

3 Evaluation
We assessed D3 on a total of 42 poisoned datasets, encompassing 39 from the TrojAI program
and CIFAR10, VGGFace, and ImageNet, subjected to 5 attack strategies. Our evaluation pits D3

against the baseline, TRACEBACK, and leading poisoned sample detection approaches, Activation
Clustering, Spectral Signature, and STRIP, showcasing its effectiveness and precision in diverse
scenarios. Detailed experiment setup is listed in Section B. More experiments, ablation study, adaptive
attack can be found in Section B.1, B.2, C, and E, respectively.

3.1 Comparison with TRACEBACK
We assess D3 using TRACEBACK’s datasets, poisoned via BadNet and TrojNN Gu et al. [2019],
Liu et al. [2018], achieving competitive results (Table 1). The BadNet attack used a yellow flower
pattern with a 0.1 poisoning rate, while TrojNN utilized optimized watermarks on VGGFace.
Additionally, we test D3 on CIFAR10 datasets poisoned with various attacks, including clean-label,
dynamic, and input-aware backdoor attacks. Using an adversarial-robustness toolbox, we set a
red square as the clean-label trigger, achieving 100.0% precision and 94.0% recall. In contrast,
TRACEBACK misclassifies the entire set. For dynamic and input-aware attacks Tao and Cheng
[2023], D3 outperforms TRACEBACK, achieving high precision and recall rates (100.0%/99.3%
and 96.7%/90.1%, respectively).

Model Attack Dataset D3 TRACEBACK

Prec. (%) Recall(%) Prec.(%) Recall(%)

WideResNet BadNet CIFAR10 100.0 100.0 99.5 98.9
Inception-ResNet BadNet ImageNet 95.8 91.0 99.1 99.1
VGG16 Trojnn VGGFace 97.1 100.0 99.8 99.9
ResNet18 Clean-label CIFAR10 100.0 94.0 0.0 0.0
VGG11 Dynamic CIFAR10 100.0 99.3 50.8 100.0
ResNet18 Input-aware CIFAR10 96.7 90.1 50.9 100.0

Table 1: Evaluation on datasets used in TRACEBACK and three additional attacks. D3 is more stable
and always has better performance.

3.2 Comparison with Black-box Reverse Engineered Poison
An alternative to extracting poisons from poisoned test samples is to use an existing backdoor scanner
that can invert a trigger directly from the model and a few clean samples, by finding the smallest
pattern or feature that can consistently flip classification results to the target class. In this experiment,
we compare D3 with two black-box scanners ABS and FeatureRE, which reverse engineer the triggers
in input space and feature space, respectively. We use a subset of Table 3 randomly selected by seed
82003253 to eliminate the bias of seed 0. Note that we are aware that the three techniques have
different assumptions because ABS and FeatureRE do not consider any poisoned test samples. The
comparison is to provide a reference.
For each model, we provide 200 clean samples for each class. We use ABS to invert triggers (for
the target classes) and replace the extracted poisons in the D3 pipeline with the inverted triggers.
For FeatureRE, we directly train a classifier to identify reverse engineered trigger feature and clean
samples’ feature in the target class. We then report the detoxing results in Table 9.
Observe D3 has significantly better performance than ABS, indicating the knowledge of poisoned test
examples plays an important role in generating effective triggers. To further illustrate this, Figure 7
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Model ID D3 ABS FeatureRE

Prec.(%) Recall (%) Prec.(%) Recall(%) Prec.(%) Recall(%)

1058 92.0 40.0 80.3 39.8 0.0 0.0
585 100.0 100.0 100.0 99.3 94.6 96.5
999 87.7 84.0 100.0 20.3 100.0 74.8
688 100.0 100.0 0.0 0.0 100.0 1.0
385 89.3 66.8 100.0 40.0 100.0 94.5
727 100.0 100.0 0.0 0.0 93.2 100.0
876 82.4 90.0 86.3 96.0 97.9 71.5
827 99.5 100.0 0.0 0.0 100.0 4.8
933 100.0 99.5 100.0 93.3 0.0 0.0
598 96.4 99.8 100.0 71.5 0.0 0.0
Clean-label 100.0 94.0 12.8 47.0 77.7 99.6
Dynamic 100.0 99.3 0.0 0.0 100.0 14.1
Input-aware 96.7 90.1 0.0 0.0 82.2 6.4

Table 2: Comparison of poison extracted by D3 with by black-box reverse engineering tools ABS and
FeatureRE. D3 has overall better performance, indicating the knowledge of poisoned test examples
plays an important role in generating effective triggers.

Figure 2: Feature distributions from D3 (left), ABS (middle), and FeatureRE (right) in the clean-label
attack. Clean and poisoned samples are in yellow and blue, respectively; validation samples with
extracted poison are in red. Only D3-extracted triggers blend with real poisoned samples, unlike
ABS and FeatureRE.

in Section F shows samples stamped with triggers inverted by ABS and with poisons extracted by D3

for two models. Observe that D3 can extract poison that resembles the ground-truth. Figure 7b shows
the results for a model poisoned with a pervasive filter. The results are arranged in a similar way to
Figure 7a. Observe that the style in the second row (by D3) is more similar to that in the first row
(i.e., the ground truth poisoned samples), compared to the third row. In Figure 2, we illustrate how the
classifier trained on the D3-extracted poison has much better separation in clean-label attack. These
results show that ABS and FeatureRE cannot invert high-fidelity triggers, affecting its performance in
detoxing.

4 Related Work
A thorough analysis of limitations in state-of-the-art can be found in Section A.
Data poisoning attacks alter training data to impair deep learning models Biggio et al. [2014]. They
can degrade performance Shafahi et al. [2018] or insert backdoors Gu et al. [2019], which we explore
in Section 3. Defenses against poisoning function at inference Chou et al. [2020], Gao et al. [2019b]
or pre-training Zeng et al. [2021]. We compare our approach with key methods like AC and SS in
Section B.2.

5 Conclusion
We present a detoxing technique for Deep Learning datasets. It features a novel differential analysis to
extract poisons and using data augmentation to train a highly effective classifier to separate clean and
poisoned samples in datasets. This post-mortem approach provides a robust complement to existing
defenses, particularly when they fail to detect complex, stealthy poisoning attacks. Evaluated on 42
poisoned datasets with diverse attack types, D3 achieves over 95% precision and recall, substantially
outperforms the state-of-the-art.
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Appendix

A Limitations of State-of-the-art
TRACEBACK Shan et al. [2022] is the state-of-the-art dataset detoxing method. Given some poisoned
test sample(s) xp captured in the wild, it identifies the poisoned samples in the training set by model
unlearning. Specifically, it determines if a sample x is poisoned by analyzing how its existence
affects model performance. In particular, it checks if using x in training would cause the model to
better recognize xp without degrading the model’s performance on clean samples. To avoid training
the model with and without x, TRACEBACK approximates the parameter changes caused by x by
computing the model gradients w.r.t an output vector with uniform probability, which is widely used
to represent that the model is unsure of its prediction. This is called x’s projection in the model
impact space, which is computed as follows.

Im(x) = ∇θ L(F (x), Vuniform) (8)

where F is the model trained on the full dataset D (containing x), θ is the weights of F ’s classification
layer, L is the cross-entropy loss, and Vuniform is a uniform probability vector. Intuitively, it gauges
x’s impact on model weights.
Then TRACEBACK applies K-means on all the sample projections {Im(x) | ∀x ∈ D} to divide
the entire dataset D to two parts: the more innocent part and the less innocent part. The latter is
supposed to denote the poisoned samples. The hypothesis is that the clean and poisoned samples
have two different types of impact on model weights. The poisoned sample xp is used to decide the
less innocent cluster, as a model trained on the cluster can easily misclassify xp to the target label.
However, the assumption that the impacts of individual samples provide sufficiently strong signals
does not always hold.
For example, Figure 4 shows a model trained on a CIFAR10 model poisoned by the clean-label
attack. The first row shows that the target class (airplane) samples are stamped with the trigger.
Note that the attack does not change class labels. The model nonetheless learns the malicious
connection between the trigger and the airplane class. However, the poisoned samples and the clean
target class samples share a lot of common features, making their impact on model weights not
separable. Figure 3 visualizes the distribution of all training sample impact projections after Principal
Component Analysis (PCA) reduction. The green squares are the poisoned samples, while the yellow
circles are the clean samples. The horizontal and vertical axes represent the scope of first and second
components’ values, respectively. The borderline between the blue and the pink areas is the decision
boundary by K-means. That is, the projections in the blue area are predicted as one cluster and those
in the pink area form the other cluster. Observe that the clean and poisoned samples have similar
distributions and there is no clear separation between them. As such, TRACEBACK cannot detox the
dataset.

Model Backdoor Scanning. There are a number of highly effective model backdoor scanners that
can invert a backdoor trigger from the model Wang et al. [2019], Liu et al. [2019], Tao et al. [2022b].
Although these techniques have different assumptions from ours as they do not require poisoned test
samples, a plausible idea is to directly use the inverted trigger by these techniques to train a classifier
to separate clean and poisoned samples. However, without using a small set of poisoned test samples,
the inverted trigger does not resemble the ground truth trigger, leading to inferior dataset detoxing
results. Figure 4 row three shows the inverted trigger by ABS Liu et al. [2019]. Although the trigger
can effectively flip classification results, it does not resemble the ground truth. In contrast, row two
shows the trigger of high fidelity extracted by D3.

B Experiment Setup
We evaluate D3 on 39 datasets from the TrojAI program 2, and the popular CIFAR10, VGGFace,
and ImageNet datasets. TrojAI is a program by IARPA for model backdoor detection. It provides
thousands of poisoned models of various architectures, with different kinds of attacks. Each model
was trained on its unique synthetic dataset. TrojAI vision samples usually consist of some randomly
synthesized traffic signs and real-world street view backgrounds. These datasets were poisoned in 13
different ways3 with 10 different patch-like poisons and 3 pervasive poisons (by Instagram filters
Lomo, Kelvin, and Gotham).

2https://pages.nist.gov/trojai/
3It actually has 15 ways. However, the datasets for two of them were corrupted and hence we only used 13.
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Figure 3: Projection and clustering re-
sults of TRACEBACK on clean-label
attack. TRACEBACK does NOT have
a clear separation between clean and
poisoned samples.

Figure 4: D3 outperforms ABS in extracting
poisons for CIFAR10’s clean-label attack. The
top row shows ground-truth triggers (red square).
D3’s extractions are accurate (2nd row), while
ABS yields simpler triggers (white dot, 3rd row).

The other three datasets are poisoned by BadNet Gu et al. [2019], Trojnn Liu et al. [2018], the clean
label attack Turner et al. [2019], dynamic backdoor attack Salem et al. [2020], and input-aware
dynamic backdoor attack Nguyen and Tran [2020]. In total, we evaluate D3 on 42 poisoned datasets.
In comparison, TRACEBACK was evaluated on 5 datasets, which are included in ours as well, except
for the Wenger Face dataset that we failed to gain access to from the authors.
Besides TRACEBACK, we further compare D3 with Activation Clustering Chen et al. [2018],
Spectral Signature Tran et al. [2018], and STRIP Gao et al. [2019a] that are the state-of-the-art
poisoned sample detection approaches (Section B.2). In addition, we show that D3 is superior
to directly using triggers inverted by existing backdoor scanning technique ABS Liu et al. [2019]
and FeatureRE Wang et al. [2022] (Section 3.2, we neglect comparison to NC since ABS usually
outperforms NC).
In Section C.5, we demonstrate that even if not all the captured samples contain the ground-truth
triggers, D3still manages to detox the training set with high precision and recall. We conduct ablation
study to demonstrate D3 remains effective under impact of poisoning rate (Section C.1), the validation
set size (Section C.2), the number of captured poisoned samples (Section C.3), and model architecture
(Section C.6). We also show the importance of data augmentation in Section D. Finally, we verify
our technique is still effective against an adaptive attack (Section E). We discuss the limitations of
our work in Section G.
Running Time Our evaluation is conducted on a server equipped with two Intel Xeon CPUs and
an NVIDIA RTX A6000 GPU with 49140MiB memory. The average run time cost for scanning a
dataset is 12.92 minutes, where the poison extraction step costs 9.26 minutes.

B.1 Comparison with TRACEBACK (Cont.)
B.1.1 Evaluation on TrojAI Datasets
Experiment Setup. For each poison type (e.g., triangle patch and Gotham filer), we randomly select
3 datasets with the type of poison using the random seed 0. There are 1000 samples in each class.
The poisoning rate is 20%, meaning there are 200 additional poisoned images in the target class. For
each dataset, we randomly select 10 poisoned samples as the test samples acquired in the wild.
Following the default setting of TrojAI competitions, we assume 200 clean samples from the victim
class and the target class, respectively, as the hold-out validation set. Detoxing performance is hence
evaluated on the remaining 800 clean samples in the target class together with the 200 poisoned
samples. We study the effects of validation set size and number of poisoned samples in Section C.1
and Section C.2.
We extract poisons from the 10 poisoned test samples, stamp them on the victim class clean samples
in the validation set, and perform standard image augmentation to generate the training set for the
poisoned data classifier. The classifier uses SVM and is trained on the logits of augmented samples
and clean target class samples (by the trojaned model). Finally, we apply the trained SVM to measure
detoxing performance.
Table 3 shows the precision and recall of our method on the 39 TrojAI datasets. As the table shows,
D3 achieves nearly 100% precision and recall on most poisoned datasets, regardless of the poison
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Model ID Attack Type Trigger Type Our Method TRACEBACK

Prec. (%) Recall (%) Prec. (%) Recall (%)

688 polygon 3 100.0 100.0 100.0 100.0
884 polygon 3 99.8 100.0 100.0 100.0
538 polygon 3 100.0 100.0 20.0 100.0

313 polygon 4 99.8 100.0 20.0 100.0
526 polygon 4 100.0 100.0 20.0 100.0
494 polygon 4 100.0 100.0 100.0 87.5

585 polygon 5 100.0 100.0 20.0 100.0
882 polygon 5 100.0 71.3 1.9 13.8
43 polygon 5 89.8 92.3 0.0 0.0

385 polygon 6 89.3 66.8 0.0 0.0
827 polygon 6 99.5 100.0 95.2 100.0
727 polygon 6 100.0 100.0 100.0 97.5

999 polygon 7 87.7 84.0 0.0 0.0
351 polygon 7 60.5 68.5 0.0 0.0
643 polygon 7 99.8 99.8 100.0 100.0

1005 polygon 8 98.5 100.0 100.0 6.3
386 polygon 8 99.8 100.0 100.0 97.5
183 polygon 8 97.3 100.0 0.0 0.0

598 polygon 9 96.4 99.8 20.8 20.0
893 polygon 9 99.0 100.0 0.0 0.0
533 polygon 9 100.0 100.0 20.0 100.0

135 polygon 10 97.0 90.0 20.0 100.0
1058 polygon 10 92.0 40.0 0.0 0.0
1060 polygon 10 99.8 100.0 90.9 100.0

876 polygon 11 82.4 90.0 20.0 100.0
79 polygon 11 99.5 97.5 1.8 5.0
710 Polygon 11 99.3 33.3 0.0 0.0

760 polygon 12 95.0 95.8 65.8 98.8
933 polygon 12 100.0 99.5 20.0 100.0
354 polygon 12 98.8 100.0 0.0 0.0

729 Instagram Kelvin 93.9 99.8 20.0 100.0
398 Instagram Kelvin 99.8 100.0 20.0 100.0
215 Instagram Kelvin 100.0 100.0 100.0 100.0

696 Instagram Gotham 100.0 100.0 100.0 100.0
903 Instagram Gotham 99.5 100.0 20.0 100.0
977 Instagram Gotham 100.0 100.0 0.0 0.0

476 Instagram Lomo 100.0 100.0 0.0 0.0
259 Instagram Lomo 100.0 100.0 0.0 0.0
1004 Instagram Lomo 100.0 100.0 0.0 0.0

Table 3: Performance of D3 and TRACEBACK on TrojAI dataset. The bold highlights the results of
D3 that are considerably better than TRACEBACK.
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Model ID D3 AC SS STRIP

Prec. (%) Recall (%) Prec.(%) Recall(%) Prec.(%) Recall(%) Prec.(%) Recall(%)

710 99.3 33.3 52.0 89.5 46.0 69.0 0.0 0.0
385 89.3 66.8 96.0 36.0 45.3 68.0 100.0 74.0
1058 92.0 40.0 33.9 75.0 44.3 66.5 99.2 30.3
43 89.8 92.3 15.2 34.5 4.0 6.0 0.0 0.0
827 99.5 100.0 0.0 0.0 0.0 0.0 0.0 0.0
760 95.0 95.8 58.5 100.0 54.7 82.0 0.0 0.0
538 100.0 100.0 100.0 100.0 62.7 94.0 16.7 0.8
903 99.5 100.0 100.0 100.0 66.7 100.0 0.0 0.0
882 100.0 71.3 45.0 83.5 44.7 67.0 0.0 0.0
585 100.0 100.0 100.0 99.5 65.7 98.5 98.6 18.0
Clean-label 100.0 94.0 7.6 38.0 72.3 43.4 72.0 35.0
Dynamic 100.0 99.3 99.9 94.9 0.0 0.0 88.9 6.8
Input-aware 96.7 90.1 7.5 6.7 39.7 2.4 0.0 0.0

Table 4: Comparison with Activation Clustering (AC), Spectral Signature (SS) and STRIP. D3

outperforms them all.

Model ID Attack Trigger PR =0.2* PR=0.1 PR=0.15 VS=50 VS=20

Prec. (%) Recall(%) Prec. (%) Recall (%) Prec. (%) Recall(%) Prec. (%) Recall(%) Prec. (%) Recall (%)

688 polygon 3 100 100 100 100 100 100 100 100 100 100
313 polygon 4 99.8 100 98.8 100 99.4 100 99.8 100 99.5 100
585 polygon 5 100 100 100 100 100 100 99.8 99.8 99.7 99.5
385 polygon 6 89.3 66.8 65.6 76.3 78.9 75.0 89.6 68.8 90.0 65.5
999 polygon 7 87.7 84.0 59.5 86.3 74.0 83.8 91.9 88.3 93.1 84.8
1005 polygon 8 100 99.5 100 98.8 100 99.4 98.8 100 95.9 99.5
598 polygon 9 96.4 99.8 84.2 100 91.4 100 93.2 100 92.0 100
135 polygon 10 93.5 97.5 74.3 97.5 85.0 95.6 97.5 88.5 97.0 90.0
876 polygon 11 82.4 90.0 49.0 92.5 65.5 91.3 87.0 83.5 87.1 84.3
760 polygon 12 95.0 95.8 79.8 98.8 88.8 98.8 96.9 86.8 95.1 91.5
729 Instagram Kelvin 93.9 99.8 75.5 100 86.0 100 84.4 65.0 61.1 31.0
696 Instagram Kelvin 100 100 100 100 100 100 100 97.0 100 82.5
476 Instagram Lomo 100 100 100 100 100 100 100 100 100 100

Table 5: D3’s Performance is hardly affected by validation set size and poisoning rate. * Indicates
the default setting. PR=Poisoning Rate, VS=Validation Set Size

types. However, TRACEBACK is not stable on the TrojAI datasets because its clustering step cannot
effectively distinguish poisoned and clean samples (as illustrated in Figure 3). Note that in many
cases the precision and recall of TRACEBACK are 0. Further inspection shows that the method
produces completely wrong separation at the clustering stage (e.g., considering a poisoned cluster
as benign). In some cases, it predicts that the entire training set to be benign and hence has 0 true
positives and 0 false positives (in poisoned sample prediction).

B.2 Comparison with Other Related Works
We further compare D3 with 3 closely related works, namely, Activation Clustering (AC), Spectral
Signature (SS), and STRIP. Similar to TRACEBACK, AC divides the training set into two clusters
by applying K-means on the dimensionality-reduced activations of the last hidden layer. After that,
they predict the poisoned cluster(s) by retraining the model with one cluster and testing on the other,
which is computationally expensive, or simply comparing the sizes of the two clusters. SS identifies
poisoned samples by examining whether it has a special property, called spectral signature, which is
commonly present in most poisons. STRIP detects poisoned inputs by intentionally perturbing them
and observing the entropy of the predicted labels.
In this experiment, we use another random seed 43530870 to eliminate the bias of seed and select 10
TrojAI poisoned datasets. In addition, we include the clean label attack, dynamic backdoor attack,
and input-aware backdoor attack.
Table 4 shows the results. Observe that D3 outperforms all the three competitors. AC has perfect
precision and recall for a few cases, on which D3 also performs well. However, it does not have
matching performance for the other cases, e.g., the dataset poisoned by the clean label attack and the
input-aware backdoor attack. This is because AC is based on clustering, which has similar limitations
to TRACEBACK. SS does not work well because its detection of outliers of the property may not
be effective. STRIP relies on the distribution of the validation set to compute an effective entropy
threshold. When using the same setting as D3, e.g., 200 validation samples in the victim class and
the target class, the distribution of validation set is skewed from that of the training set, resulting in
poor performance. Furthermore, the trigger can be corrupted when STRIP superimposes images on
the poisoned training samples. Thus, the prediction entropy of those samples is also large.
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C Ablation Study
In this section, we show the ablation study of poisoning rate, the size of validation set, the number of
known poisoned samples, hyper-parameters, and model architecture.

C.1 Impact of Poisoning Rate
In Table 5, we pick the first model under each trigger type from Table 3 and evaluate D3’s precision
and recall under poisoning rate 0.1 and 0.15 compared to the default setting poisoning rate 0.2. There
are about half models that maintain high precision and recall (above 95%) regardless of the poisoning
rate. On the other models, the precision drops a little with the decrease of poisoning rate. This is
acceptable because there are fewer positive (poisoned) samples in a dataset with a smaller poisoning
rate. Note that the recall remains high in a smaller poisoning rate setting, suggesting our technique
has few false negatives and captures as many suspicious samples as possible.

C.2 Impact of Validation Set Size
We use the same models as in Section C.1 to evaluate the impact of the validation set size. As Table 5
shows, it is note-worthy that D3 maintains a high performance on most models, except for model
#729, even when only given extremely small validation set (20 samples in victim class and 20 in
target class). This enables individual users, who usually have no access to a large validation set, to
effectively examine the training data of the model they purchased from vendors or downloaded online.
For some models, e.g., model #999, the precision even increases when the validation set is smaller.
This may be due to the trigger in this model having simple features such that a small set is adequate
to train the classifier. More validation samples introduce noisy features (e.g., features specific to the
validation samples) and distract the classifier from the trigger. The reason for the precision decrease
on model #729 when given a small validation set is also intuitive, as the augmented dataset built on it
is not large enough to train the classifier. As a simple verification for this hypothesis, the trigger for
model #999 is only applied to local area whereas the trigger for model #729 is globally applied.

C.3 Impact of Known Poisoned Samples

Model ID 688 313 585 385 999 1005 598

#p=5 Prec. (%) 100.0 99.8 100.0 93.6 85.1 100.0 98.3
Recall (%) 100.0 100.0 100.0 62.0 50.0 100.0 98.5

#p=3 Prec. (%) 100.0 99.8 100.0 90.6 82.5 100.0 97.1
Recall (%) 100.0 100.0 100.0 65.3 29.5 98.5 99.0

Table 6: Ablation study on the number of poisoned samples.

In Table 6, we show that D3 achieves high precision and recall even with fewer captured samples.
Take half models from Table 5 as examples, the results suggest 3 poisoned samples are adequate for
D3 to achieve higher than 97.0% precision and recall for 5 out of 7 models.

C.4 Impact of Hyper Parameters
We show D3 is robust to hyper parameters in Table 7 by evaluating the dynamic backdoor attack
setting. The default value for α is 10, while other values, 1 and 100, also achieve similar performance.

C.5 Impact of the Captured Samples without Ground-truth Trigger
A possible scenario is that the captured misclassified inputs do not all contain the ground-truth.
Instead, partial misclassification cases are caused by natural backdoors Tao et al. [2022c] or the
deficiency of the model itself. Thus, we investigate how the ratio of #samples with ground-truth
triggers (denoted as #G) over #all captured samples (denoted as #A) impacts D3’s performance.
Specifically, compared to the default setting #G=#A=10, we examine two additional combinations,
#G=5, #A=10 and #G=5, #A=20, against dynamic backdoor attack. As shown in Table 7, the ratio of
#G/#A has no significant impact on D3’s performance, which makes our assumption more realistic.
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α Prec. (%) Recall (%) (#G/#A) Prec.(%) Recall(%)

1 100.0 99.1 (10/10) 100.0 99.3
10 100.0 99.3 (5/10) 100.0 99.1
100 100.0 99.3 (5/20) 100.0 99.4

Table 7: Ablation study on hyper parameter α and the ratio of samples with ground-truth trigger over
all captured misclassified samples.

Model ID Architecture Prec.(%) Recall (%)

122 ShuffleNetV2 95.0 100
7 WideResNet50 99.2 97.0
781 GoogleNet 97.8 100
143 VGG11 95.7 88.5
555 SqueezeNetV1_0 97.8 100
364 densenet201 99.8 100
280 resnet18 94.2 94.0

Table 8: D3 is architecture-agnostic.

C.6 Impact of Model Architecture
To show that our technique is architecture-agnostic, we randomly pick 7 models with different
architectures using seed 0 from the TrojAI models poisoned with the quadrilateral patch as the poison.
Table 8 shows the results. The precisions on the 7 models are all above 94% and half of them are
above 97%. D3 also achieves 100% recall on 4 out of the 7 models.

D Necessity of Data Augmentation
We justify the necessity of data augmentation (i.e., creating more poisoned samples by stamping
extracted poisons) by comparing our classifier with another SVM classifier trained on 10 known
poisoned samples and 200 clean validation samples. Figure 5 shows the predictions of the SVM
classifier on the full training set of TrojAI model #563, where it predicts the samples in the pink
area as clean and the samples in the blue area as poisoned. The darker color the area has, the more
confident the SVM is about its predictions. From the visualization, we can tell that the SVM has
about 50% accuracy and does not do well on the poisoned samples (the data points in green) since
it only “saw” limited poisoned samples. On the other hand, trained on augmented data, our SVM
achieves 96.3% precision and 100.0% recall. This illustrates the importance of data augmentation.

E Adaptive Attack
We assume the attacker adopts the following logits-hidden adaptive approach: besides the model
to poison, the attacker also has a reference model that has the same structure and is trained on the
same dataset (except not having any poison); when training a model using the poisoned dataset, the
attacker wants to achieve a high ASR and a high accuracy on clean samples, as well as a minimal L2
distance between the logits of the poisoned model and the reference model given poisoned images.
Formally, the adaptive loss is as follows.

Ladaptive = CE(M(x), y) + CE(M(x⊕ t), yt)

+ α||M(x⊕ t),Mc(x⊕ t)||22,
(9)

where CE(·) denotes the cross-entropy loss, M the poisoned model, Mc the clean reference model
and α the adaptive criterion. It tends to mitigate the difference between the benign logits Mc(x⊕ t)
and the poisoned logits M(x⊕ t) that D3 uses to recognize malicious inputs. We use the BadNet
attack and the CIFAR10 dataset setting for the experiment. We observe that a high ASR and a small
logits distance are contradictory goals. Finally, we add the weight of 1e− 4 for the adaptive criterion
and achieve 95.41% ASR and 86.71% accuracy after 80 epochs of training. For the adaptively
poisoned model and dataset, D3 still achieves 99.5% precision and 99% recall, implying D3 is robust
to the adaptive attack.
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Figure 5: The SVM prediction probability of poisoning and clean samples only given captured
samples.

(a) Poisoned (b) GT trigger (c) NC inverted (d) D3 inverted

(e) Poisoned (f) GT trigger (g) ABS inverted (h) D3 inverted

Figure 6: Examples of extracted poisons. D3 can better extract both the patch poison and the
pervasive poison than state-of-the-art backdoor scanners ABS and NC.

F More Examples
Figure 6 shows some examples of extracted poisons. Specifically, Figure (d) shows our technique
precisely extracts the yellow flower patch at the top left of an ImageNet sample in (a) poisoned
by BadNet Gu et al. [2019], in comparison to the trigger inverted by a popular backdoor scanner
NC Wang et al. [2019] in (c). Ours has more resemblance to the ground truth in (b). Figure (h)
illustrates D3 is also able to extract a watermark type of poison from a VGGFace sample poisoned by
TrojNN Liu et al. [2018]. Similarly, it has more resemblance to the ground truth in (f), compared to
the trigger inverted by ABS Liu et al. [2019], another popular backdoor scanner. More examples can
be found in Section 3.2.
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(a) Triggers extracted by D3 and inverted by ABS for
TrojAI model #52 poisoned by a patch.

(b) Triggers extracted by D3 and inverted by ABS for
TrojAI model #719 poisoned by a filter.

Figure 7: The first row shows the original poisoned samples with the ground-truth triggers (pink
polygon for model #52 and filter for model #719.). The second row shows samples stamped with the
poison extracted by D3. The third row shows the samples stamped with the trigger inverted by ABS.
Observe that D3 can extract poison that resembles the ground-truth.

(a) The D3-extracted poisons (row #3) in dynamic backdoor attack share similar patterns as the ground-
truth triggers (row #1, the color square placed in various positions), whereas ABS-generated poisons (row
#4) are different and can not trigger misclassifications.

(b) The D3-extracted poisons (row #3) in input-aware backdoor attack share similar patterns as the ground-
truth triggers (row #1, the colorful strip), whereas ABS-generated poisons (row #4, the pixel square on top
left) are different and can not trigger misclassifications.

Figure 8: More examples from the CIFAR10 dataset suggest that D3-extracted poisons resemble the
ground-truth triggers more compared to the poisons reverse-engineered by ABS. The first row in each
subfigure shows the captured poisoned samples with ground-truth triggers; the second rows present
the clean validation samples; in the third rows, we show the clean validation samples stamped by
D3-extracted poisons; the validation samples stamped by ABS-extracted poisons are shown in the
last rows.
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Model ID D3 ABS FeatureRE

Prec.(%) Recall (%) Prec.(%) Recall(%) Prec.(%) Recall(%)

1058 92.0 40.0 80.3 39.8 0.0 0.0
585 100.0 100.0 100.0 99.3 94.6 96.5
999 87.7 84.0 100.0 20.3 100.0 74.8
688 100.0 100.0 0.0 0.0 100.0 1.0
385 89.3 66.8 100.0 40.0 100.0 94.5
727 100.0 100.0 0.0 0.0 93.2 100.0
876 82.4 90.0 86.3 96.0 97.9 71.5
827 99.5 100.0 0.0 0.0 100.0 4.8
933 100.0 99.5 100.0 93.3 0.0 0.0
598 96.4 99.8 100.0 71.5 0.0 0.0
Clean-label 100.0 94.0 12.8 47.0 77.7 99.6
Dynamic 100.0 99.3 0.0 0.0 100.0 14.1
Input-aware 96.7 90.1 0.0 0.0 82.2 6.4

Table 9: Comparison of poison extracted by D3 with by black-box reverse engineering tools ABS and
FeatureRE. D3 has overall better performance, indicating the knowledge of poisoned test examples
plays an important role in generating effective triggers.

Next, we consider the all-to-one dynamic backdoor attack and input-aware attack, where the target
classes are both the airplane and all the other classes are victims. Figure 8 shows theD3-extracted
poisons in the third rows resemble the ground-truth triggers more compared to the poisons generated
by ABS, shown in the fourth rows. Note that even for these attacks whose triggers are specific to the
poisoned samples, D3 can still find a universal substitute poison that causes misclassification when
stamped on a random clean image.

G Discussion
Unlike other existing backdoor defenses, both the baseline TRACEBACK and our proposed method,
D3, incorporate the assumption of a few poisoned test samples captured in the wild. It’s essential to
emphasize that this does not imply TRACEBACK and D3 are less effective than other related works.
Instead, this distinction arises from our focus on a novel problem: the forensic setting.
In an environment where increasingly sophisticated attacks can circumvent current defense strategies,
our attention shifts to the post-mortem scenario. We are concerned with understanding how, once the
attacker has breached the defenses, we can learn from the incident. By analyzing captured poisoned
test samples, we aim to trace back the training samples that facilitated the attack.
The similar threat model has precedent in traditional software security and is proven to be of vital
importance in system protection. Aligning with this mindset, D3 contribute to providing a robust
complement to existing defenses, particularly when they fail to detect complex, stealthy poisoning
attacks.
While our proposed method D3 demonstrates significant improvements over existing baselines, we
must acknowledge certain limitations in our approach.

Scope of Application: The applicability of D3 is constrained primarily to the Computer Vision
(CV) domain and detoxify image sets. This limitation arises from our employment of a pre-trained
StyleGAN to generate x from the optimizable noise z.

Optimization Strategy: In our design of D3, we created separate optimization formulas for patch
triggers and pervasive triggers, the two prominent classes into which the literature on stealthy
poisoning can be categorized. Though it may be viewed as a limitation, this division aligns with
common practice. For example, ABS classifies triggers into two categories: ’simple’ and ’complex.’
It then analyzes the input patterns associated with simple triggers, while employing artificial brain
stimulation techniques to address complex triggers.

Detection Capability: D3 is capable of detecting only those poisoned samples that correspond
to the same attack types found in the captured test samples. It’s crucial to clarify, however, that this
does not mean the triggers from the captured samples must match those in the training data. Since
D3 focuses on the feature level (i.e., logits), it is equipped to handle scenarios where the triggers
in captured samples differ from the training data. Examples include dynamic backdoor attacks,
input-aware backdoor attacks, and clean-label attacks.
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