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Abstract— Human-robot cooperative navigation is challenging
in environments with incomplete information. We introduce
CoNav-Maze, a simulated environment where a robot navigates
using local perception while a human operator provides
guidance based on an inaccurate map. The robot can share
its camera views to improve the operator’s understanding of
the environment. To enable efficient human-robot cooperation,
we propose Information Gain Monte Carlo Tree Search (IG-
MCTS), an online planning algorithm that balances autonomous
movements and informative communication. Central to IG-
MCTS is a fully convolutional neural human perception
dynamics model that estimates how humans distill information
from robot communications. We collect a dataset through a
crowdsourced mapping task in CoNav-Maze to train this model
before the cooperative navigation experiments. User studies
show that IG-MCTS outperforms teleoperation and instruction-
following baselines, achieving comparable task performance with
significantly less communication and lower human cognitive
load, as evidenced by eye-tracking metrics.

I. INTRODUCTION

In novel environments, autonomous robots often face a
“cold-start” problem, where they operate without sufficient
prior environment knowledge. Without human guidance, the
robot may make inefficient decisions, leading to wasted
time and resources during exploration. Beyond improving
efficiency, human involvement may also play a valuable role
for safety, ethical, and moral considerations [1], [2], [3].

Collaboration between humans and robots under incomplete
information presents a realistic and challenging problem.
Since they often receive input from different sources, main-
taining a shared understanding becomes especially difficult in
dynamic or unfamiliar environments, where sudden changes
can quickly lead to misalignment. The key challenge lies in
enabling the robot to effectively leverage human knowledge to
complement its local observations and support robust human-
robot synergy. Such robots hold the potential to assist human
operators in search-and-rescue missions [4], [5] and support
individuals with disabilities in daily tasks [6], [7].

This paper investigates the problem of human-robot coop-
erative navigation in a simulated environment, CoNav-Maze,
where the robot receives local SLAM observations while the
human provides guidance based on an initially inaccurate
global map. The objective is to develop a control algorithm
that goes beyond passively following instructions—one that
actively collaborates by transmitting visual observations to
improve the human’s situational awareness, integrating human
trajectory suggestions, and maintaining sufficient autonomy
to reach target locations efficiently.
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We introduce Information Gain Monte Carlo Tree Search
(IG-MCTS), an online planning algorithm that embodies the
idea that communication is action. Aside from task-centric
objectives, IG-MCTS strategically decides between movement
and communication actions based on their potential to enhance
the human’s understanding of the environment. Inspired by
evidence that when reading, humans minimize perceptual
errors and extract relevant features under limited processing
capacity [8], we hypothesize that a similar cognitive strategy
applies to visual tasks. To align with this cognitive pattern, IG-
MCTS chooses camera angles that maximize an information
reward that measures the change in the human’s perception of
the environment. IG-MCTS also incorporates human-guided
trajectories as reward augmentations [9].

At the core of IG-MCTS is a data-driven human perception
dynamics model that predicts how humans update their
understanding of the environment in response to the robot’s
actions. We introduce a fully convolutional neural network
(FCNN) that unifies the effects of both robot movements
and communication while incorporating spatial structure and
contextual awareness. To train this model, we crowdsourced a
dataset of human-robot interactions in CoNav-Maze, capturing
human information-processing patterns in navigation tasks.
The model learns to estimate the human operator’s evolving
perception by fitting to human annotations. Evaluation results
show that the FCNN-based approach achieves higher predic-
tion accuracy than a psychometric function-based model [10].

We evaluate the performance of IG-MCTS in CoNav-Maze
against two baselines: teleoperation and instruction-following.
A user study with 10 eye-tracked participants shows that
interacting with the IG-MCTS robot significantly reduces
communication demands while yielding eye-tracking metrics
indicative of lower cognitive load, all while maintaining task
performance on par with the baselines.
Related Work. Prior work on human perception has modeled
how physical stimuli influence sensory responses using psy-
chometric functions, particularly logistic variants that capture
detection probabilities as stimulus intensity varies [11], [12].
However, such models may oversimplify nuanced perceptual
dynamics or cannot capture diverse human suboptimality [13].
In teleoperation, immersive interfaces have enhanced remote
robot control [14], but cognitive load and communication
constraints still limit human-to-robot ratio [15]. Meanwhile,
vision-and-language navigation (VLN) tasks require agents
to interpret human instructions and navigate through 3D
environments by executing action sequences [16], but often
assume complete information, static environments [17], [18],
[19], or panoramic action spaces [20]. In contrast, our
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Fig. 1: We study efficient human-robot collaboration in maze navigation under incomplete information. Left: The robot
gathers local observations; the human relies on an imprecise global map. They collaborate by exchanging images and path
suggestions. Right: Our study involves: (1) Crowdsourcing a dataset of human perceptual updates; (2) Training a perception
dynamics model to estimate human understanding; (3) Developing IG-MCTS to balance navigation and communication; (4)
Validating our approach via eye-tracking and task performance in a user study.

approach focuses on human-robot coordination in incomplete
and dynamic environments, allowing users to specify flexible
routes that evolve as new information is gathered.

II. PROBLEM SETTING

This paper addresses a human-robot cooperative navigation
task under incomplete information. The remote human
operator possesses an outdated map of the environment, while
the robot can acquire accurate local observations. The human
provides navigation guidance, and the robot communicates
environmental updates. Together, they aim to reach a set of
goal locations as efficiently as possible.

We design CoNav-Maze, a simulated maze environment
adapted from MemoryMaze [21]. In CoNav-Maze, the robot
has perfect knowledge of its position and uses motion
primitives to navigate between adjacent grid cells. This
setup abstracts away low-level control and estimation errors,
focusing on high-level human-robot coordination.

The environment is modeled as a Markov Decision Process
(MDP) defined by the tuple (S,A, T,Renv, γ). S is a product
space comprising the robot’s discrete finite state and the set
of remaining goal locations, capturing both its position and
task progress. A is a finite set of actions, including movement
to adjacent grids and transmitting a first-person image from
one of eight evenly spaced camera angles. T : S ×A → S
is a deterministic transition function. Renv : S → R is a
real-valued reward function. γ ∈ [0, 1) is a discount factor.

At each step t, the robot collects a local observation of
nearby traversable and blocked cells within a radius r. It may
also receive a human-provided trajectory ζt. The robot then
selects an action at to either move or transmit an image.

The human operator starts with an inaccurate global map
x ∈ X , representing traversable and blocked cells. By
analyzing the robot’s trajectory and image transmissions, the
human refines their map to provide more accurate guidance.

III. METHOD

Effective human-robot cooperation in CoNav-Maze hinges
on efficient communication. Maximizing the human’s infor-
mation gain enables more precise guidance, which in turn
accelerates task completion. Yet for the robot, the challenge

is not only what to communicate but also when, as it must
balance gathering information for the human with pursuing
immediate goals when confident in its navigation.

To achieve this, we introduce Information Gain Monte
Carlo Tree Search (IG-MCTS), which optimizes both task-
relevant objectives and the transmission of the most in-
formative communication. IG-MCTS comprises three key
components: (1) A data-driven human perception model that
tracks how implicit (movement) and explicit (image) informa-
tion updates the human’s understanding of the maze layout.
(2) Reward augmentation to integrate multiple objectives
effectively leveraging on the learned perception model. (3)
An uncertainty-aware MCTS that accounts for unobserved
maze regions and human perception stochasticity.

A. Human Perception Dynamics

As the robot navigates the maze and transmits images,
humans update their understanding of the environment. Based
on the robot’s path, they may infer that previously assumed
blocked locations are traversable or detect discrepancies
between the transmitted image and their map.

To formally capture this process, we model the evolution
of human perception as another Markov Decision Process, re-
ferred to as the Perception MDP. The state space X represents
all possible maze maps. The action space S+ ×O consists
of the robot’s trajectory between two image transmissions
τ ∈ S+ and an image o ∈ O. The unknown transition
function F : (x, (τ, o)) → x′ defines the human perception
dynamics, which we aim to learn.

1) Crowd-Sourced Transition Dataset: To collect data, we
designed a mapping task in the CoNav-Maze environment.
Participants were tasked to edit their maps to match the
true environment. A button triggers the robot’s autonomous
movements, after which it captures an image from a random
angle. In this mapping task, the robot, aware of both the true
environment and the human’s map, visits predefined target
locations and prioritizes areas with mislabeled grid cells on
the human’s map.

Subsequently, we recruited over 50 annotators through
Prolific [22] for the mapping task. Each annotator labeled
three randomly generated mazes. They were allowed to
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Fig. 2: Neural Human Perception Model (NHPM). Left:
The human’s current perception, the robot’s trajectory since
the last transmission, and the captured environment grids
are individually processed into 2D masks. Right: A CNN
predicts two masks: one for the probability of the human
adding a wall to their map and another for removing a wall.

proceed to the next maze once the robot had reached all four
goal locations. However, they could spend additional time
refining their map before moving on. To incentivize accuracy,
annotators receive a performance-based bonus based on the
final accuracy of their annotated map.

2) Fully-Convolutional Dynamics Model: We introduce
the Neural Human Perception Model (NHPM), a fully
convolutional neural network (FCNN) designed to predict
human perception transition probabilities, as formulated
in Section III-A. We denote this model as Fθ, where θ
represents the trainable parameters. This design is inspired by
recent advances in model-based reinforcement learning [23],
where agents learn environment dynamics—often from visual
observations [24], [25].

As shown in Figure 2, NHPM takes as input the human’s
current perception, the robot’s trajectory, and the image
captured by the robot. These inputs are encoded into a unified
2D representation, concatenated along the channel dimension,
and processed by the CNN. The model outputs a two-channel
image: one channel predicts the probability of the human
adding a new wall, and the other predicts the probability of
removing an existing wall.

B. Perception-Aware Reward Augmentation

The robot optimizes its actions over a planning horizon H
by solving the following optimization problem:

max
a0:H−1

E
T,F

H−1∑
t=0

γt

Rtask(τt+1, ζ)︸ ︷︷ ︸
(1) Task reward

+ ∥xt+1 − xt∥1︸ ︷︷ ︸
(2) Info reward



(1a)

s. t. xt+1 = F (xt, (τt, at)), at ∈ O (1b)
τt+1 = τt ⊕ T (st, at), at ∈ U (1c)

The objective in (1a) maximizes the expected cumulative
reward over T and F , reflecting the uncertainty in both phys-
ical transitions and human perception dynamics. The reward
function consists of two components: (1) The task reward

incentivizes efficient navigation. The specific formulation for
the task in this work is outlined in Section V-A. (2) The
information reward quantifies the change in the human’s
perception due to robot actions, computed as the L1-norm
distance between consecutive perception states.

The constraint in (1c) ensures that for movement actions,
the trajectory history τt expands with new states based on the
robot’s chosen actions, where st is the most recent state in τt,
and ⊕ represents sequence concatenation. In constraint (1b),
the robot leverages the learned human perception dynamics
F to estimate the evolution of the human’s understanding of
the environment from perception state xt to xt+1 based on
the observed trajectory τt and transmitted image at ∈ O.

C. Information Gain Monte Carlo Tree Search (IG-MCTS)

IG-MCTS follows the four stages of Monte Carlo tree
search: selection, expansion, rollout, and backpropagation, but
extends it by incorporating uncertainty in both environment
dynamics and human perception. We introduce uncertainty-
aware simulations in the expansion and rollout phases and
adjust backpropagation with a value update rule that accounts
for transition feasibility.

1) Uncertainty-Aware Simulation: As detailed in Algo-
rithm 1, both the expansion and rollout phases involve forward
simulation of robot actions. Each tree node v contains the
state (τ, x), representing the robot’s state history and current
human perception. We handle the two action types differently
as follows:

• A movement action u follows the environment dynamics
T as defined in Section II. Notably, the maze layout
is observable up to distance r from the robot’s visited
grids, while unexplored areas assume a 50% chance
of walls. In expansion, the resulting search node v′ of
this uncertain transition is assigned a feasibility value
δ = 0.5. In rollout, the transition could fail and the robot
remains in the same grid.

• The state transition for a communication step o is
governed by the learned stochastic human perception
model Fθ as defined in Section III-A.2. Since transition
probabilities are known, we compute the expected
information reward ¯Rinfo directly:

¯Rinfo(τt, xt, ot) = Ext+1∥xt+1 − xt∥1
= ∥padd∥1 + ∥premove∥1,

where (padd, premove)← Fθ(τt, xt, ot) are the estimated
probabilities of adding or removing walls from the map.
Directly computing the expected return at a node avoids
the high number of visitations required to obtain an
accurate value estimate.

2) Feasibility-Adjusted Backpropagation: During back-
propagation, the rewards obtained from the simulation phase
are propagated back through the tree, updating the total value
Q(v) and the visitation count N(v) for all nodes along the
path to the root. Due to uncertainty in unexplored environment
dynamics, the rollout return depends on the feasibility of the
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Fig. 3: Visualization of human perception models. The left two columns show the inputs, including the human’s current map,
the robot’s path, and the visible grids communicated by the robot. The models predict how the human will update the maze
based on this information. Top: The human correctly adds a distant wall instead of a nearby one, a behavior accurately
predicted by NHPM. Bottom: The human mistakenly marks a nearby wall at the wrong location. Despite never encountering
this exact scenario, NHPM successfully anticipates the error by generalizing from similar training examples.

Method Train Loss
(MBCE)

Test Loss
(MBCE)

Test Accuracy
(IoU @ Γ)

GLPF-Train 1.15 · 10−1 9.10 · 10−2 0.335@0.38
GLPF-Test N/A 8.98 · 10−2 0.335@0.21

NHPM (Ours) 1.36 · 10−2 1.43 · 10−2 0.352

TABLE I: Our neural human perception dynamics model
(NHPM) achieves lower mean binary cross entropy error and
higher prediction accuracy in the test set compared to a grid-
based logistic psychometric function (GLPF). The advantage
holds even when GLPF is fit directly on the test set and an
optimal decision boundary Γ is searched for highest accuracy.

transition from the child node. Given a sample return q′sample

at child node v′, the parent node’s return is:

qsample = r + γ

[
δ′q′sample + (1− δ′)

Q(v)

N(v)

]
, (2)

where δ′ represents the probability of a successful transition.
The term (1 − δ′) accounts for failed transitions, relying
instead on the current value estimate.

IV. EXPERIMENTS

A. Human Perception Dynamics Evaluation

We evaluate the effectiveness of the proposed Neural
Human Perception Model (NHPM) in predicting how hu-
mans perceive environmental information based on a robot’s
movement and transmitted images.

1) Baseline: Grid-Based Logistic Psychometric Function:
We compare our method to the Logistic Psychometric
Function (LPF), a standard model that relates human observer

performance (e.g., detection or discrimination) to stimulus
intensity [11], [12]. LPF fits a curve that predicts human
response to a single source of stimulation. Hence, it lacks
the expressive power to model complex spatial dependencies.

In our setting, humans receive dense stimulus from images,
which LPF cannot model directly. To this end, we extend it
to operate at the grid level, treating each cell in the maze
independently. This adaptation, referred to as the Grid-Based
LPF (GLPF), models the probability of perception updates
as a function of stimulus intensity at individual cells:

P (y = 1 | x) = ρ+
1− ρ− λ

1 + e−β(x−α)
, (3)

where P (y = 1 | x) is the probability of a human updating
their perception of a grid cell given stimulus intensity x. The
slope parameter β governs sensitivity to stimulus changes,
while α defines the middle point of the logistic curve. ρ
represents the guessing rate—the likelihood of a response
in the absence of a stimulus—while λ accounts for lapses
where the signal is missed even at maximum intensity.

In GLPF, stimulus intensity x is modeled as an exponen-
tially decaying function of the distance d between the grid
cell and the robot: x(d) = e−αd. We assume correctly labeled
grids provide no stimulus.

2) Quantitative Evaluation: We split the dataset into
training and test sets and consider three distinct test settings:

1) GLPF-Train: The psychometric function is fit on the
training set to evaluate how well it generalizes to unseen
environments based on prior human data.

2) GLPF-Test: To establish an upper performance bound,
we fit the GLPF directly to the test set. This removes



METHOD COMMUNICATION (MB) #ROBOT STEP #HUMAN GUIDANCE MAPPING ACCURACY (%)

TELEOPERATION 86.69± 32.11 481.60± 178.40 N/A 18.77± 21.95
INSTRUCTION-FOLLOWING 75.94± 3.97 421.90± 22.08 13.40± 4.28 42.53± 7.92
IG-MCTS 2.25± 0.60 407.10± 107.80 11.50± 3.33 49.26± 12.73

TABLE II: Average task metrics reported as mean ± standard deviation. Communication assumes 180 KB/image.

the generalization gap, revealing the best-case scenario
for an LPF-based approach.

3) NHPM: We train our neural network model using
backpropagation, optimizing parameters by minimizing
the binary cross-entropy loss between predicted and
ground-truth human edits to the map.

The test loss and accuracy in Table I highlight NHPM’s
advantage over GLPF, demonstrating that incorporating
spatial structure and contextual awareness improves human
perception prediction. Even when fit on test data, GLPF
remains limited by its lack of spatial expressiveness, whereas
the CNN generalizes effectively from the training set.

3) Model Prediction Visualization: In Figure 3, we visual-
ize the outputs of human perception models and highlight two
representative scenarios where NHPM outperforms GLPF. In
the top row, the robot transmits an image looking down a
hallway, and the human adds a distant wall appearing in the
center of the image. NHPM accurately predicts this behavior,
but the psychometric function assigns a low probability due to
the wall’s distance. In the bottom row, the human mistakenly
marks a wall close by, misjudging its distance from the first-
person view image. Despite never encountering this exact test
scenario, NHPM correctly anticipates the error by generalizing
from similar patterns in the training set.

B. User Study

We investigate the following question: Can IG-MCTS,
under reduced communication constraints, lower human cog-
nitive load while maintaining task performance comparable
to teleoperation and instruction-following? To address this,
we conduct a within-subject user study.

Independent Variables. The study compares IG-MCTS
to two baseline interaction methods:

Teleoperation: Participants manually control the robot’s
low-level movements by providing actions ulow

t ∈ U low at
each timestep t using keyboard arrow keys. The robot deter-
ministically executes these actions based on the environment’s
low-level transition function Tlow. The robot streams its front
view RGB images, providing real-time visual feedback.

Instruction-following: Participants issue guidance as trajec-
tories ζ = ⟨st, . . . , st+n⟩, specifying the desired sequence of
states. The robot autonomously executes this trajectory until
the trajectory is either completed or blocked. Same as in the
teleoperation setting, the robot streams the front view RGB
images to the human.

Dependent Measures. The study measures the following
dependent variables. First, task performance metrics include
the number of robot steps, the instances of human guidance
provided, and mapping accuracy. Second, eye-tracking metrics

serve as physiological indicators of cognitive load, including
pupil diameter measurements, blink rate, and fixation shifts
between areas of interests (AOIs).

Why do we choose these eye tracking metrics? Task-evoked
pupillary responses have long been established as reliable
indicators of mental effort [26], [27], with increased cognitive
demand leading to greater pupil dilation. In this study, we
choose the mean pupil diameter and the percent change in
pupil dilation (PCPD) [28]. Blink rate, on the other hand,
is inversely correlated with cognitive load, with higher rates
indicating reduced mental effort [29], [30]. Fixation shifts
between AOIs reflect visual and cognitive resource allocation
during tasks [31]. Two AOIs are defined: the robot’s ego-
centric view (left) and the top-down global maze map (right).
A lower fixation shift rate suggests reduced cognitive effort
needed to integrate information across the AOIs.

Hypotheses. We hypothesize that IG-MCTS, compared
to teleoperation and instruction-following, will (H1) achieve
better or comparable task performance and (H2) yield eye-
tracking metrics indicative of lower cognitive load.

Participants. The study recruited 10 graduate students,
with a demographic breakdown of 80% male, 20% female.
The participants’ average age was 25.9 years (SD = 1.91).

Procedure. Participants wore the Pupil Labs Core [32]
eye tracker and completed a 5-point calibration before the
study. After providing consent, they completed three sessions
in random order, each corresponding to a different interaction
type, to control for ordering effects [33]. To minimize
confounds in pupilometry, the experiment was conducted
in controlled lighting with emotionally neutral content. Each
session began with a 30-second baseline pupil measurement
while participants read a neutral paragraph (Section V-D.2).
Participants then practiced the controls in a demo maze. This
was followed by two tasks in distinct maze layouts generated
with different seeds but similar structure (similarity scores:
0.843, 0.876; see Section V-D.4). The same layouts were
used across sessions with 90◦ or 180◦ rotations to control
difficulty and reduce memorization.

Results.
a) On H1 (Task Performance Metrics): Table II summa-

rizes the average task metrics across all participants for two
maze layouts. The results indicate that IG-MCTS requires
significantly less communication compared to teleoperation
and instruction-following, as it selectively transmits images at
specific angles and times rather than streaming continuously.
IG-MCTS also results in the fewest robot steps, indicating
more efficient task execution. Additionally, our method re-
quires less human guidance than instruction-following, demon-
strating reduced reliance on human intervention. Finally, we
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Fig. 4: Aggregate heatmaps showing gaze point distributions. Dashed red box: robot view AOI; dashed blue box: global map
AOI. Fixation rates in each AOI are labeled in white text above the boxes.
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Fig. 5: Aggregated mean pupil diameter with a 95% confi-
dence interval (Interpolation: 1000, Smoothing: 5).

METHOD PCPD (%) BLINK RATE
(/MIN)

FIXATION SHIFT
RATE (/MIN)

TELEOPERATION 32.74± 7.95 8.86± 5.88 45.69± 11.50
INSTRUCTION-FOLLOWING 20.29± 7.17 10.43± 4.46 35.18± 6.78
IG-MCTS 17.11± 7.95 12.32± 7.85 33.30± 7.39

TABLE III: Eye-tracking metrics for cognitive load: PCPD
(lower is better), blink rate (higher is better), and fixation
shift rate (lower is better).

achieve the highest mapping accuracy, outperforming both
baselines. While these observed trends cannot be concluded
as statistically significant due to the small sample size1, the
results suggest that IG-MCTS achieves at least comparable
task performance to the baselines despite significantly reduced
communication, providing preliminary support for H1.

b) On H2 (Eye tracking for Cognitive Load): Figure 5
shows the mean pupil diameter for each method, normalized
to a 0-1 time scale, interpolated at 1000 points, and smoothed
with a window size of 5. The plot reveals that pupil diameters
are overall smallest in IG-MCTS, followed by instruction-
following, and largest in teleoperation. This qualitative trend
aligns with the percent change in pupil diameter (PCPD)
statistics in Table III (see calculation details in Section V-D.3),
which also show the lowest value for IG-MCTS, followed by
instruction-following and teleoperation. Table III also shows
that IG-MCTS results in a higher blink rate than instruction-
following and teleoperation. Additionally, Figure 4 presents
the aggregate gaze heatmaps from all participants for each
method, showing the distribution of attention between the

1The eye-tracking requirement necessitated in-person recruitment, thus
limiting the sample size. We leave larger-scale studies to future work.

robot ego view and the global map. The heatmaps reveal a
clear trend in gaze allocation across methods. Teleoperation
divides attention between the ego view and the global map
due to the demand for continuous monitoring and low-level
control. Instruction-following alleviates the need for low-level
control, thus shifting more focus to the global map. IG-MCTS
concentrates gaze primarily on the global map, as it automates
low-level control and provides selective ego-view snapshots.
This observed trend is supported quantitatively by the fixation
rates of each AOI, labeled in white text above the AOI boxes
in Figure 4. This pattern is also reflected in the fixation shift
rate differences listed in Table III, where IG-MCTS results in
the lowest rate compared to the two baselines. These results
collectively support H2.

Discussion. We observe several helpful behaviors exhib-
ited by IG-MCTS during participant interactions. First, it
efficiently reaches goals by using SLAM observations to
navigate toward visible targets within its field of view, even if
the human path doesn’t reach the exact goal location. Second,
when human guidance is suboptimal, IG-MCTS evaluates
potential information gain and may pause to reorient or
capture critical snapshots, ensuring the human doesn’t miss
key details. Finally, IG-MCTS maximizes communication
efficiency by angling itself at 45° toward corners when
blocked, providing views of multiple walls in a single image.

V. CONCLUSION

We introduced IG-MCTS, an algorithm for human-robot
cooperative navigation in partially observable environments
that balances autonomous exploration with informative
communication. By leveraging a learned model of human
perception dynamics, IG-MCTS improves interaction effi-
ciency, reducing communication and cognitive load without
sacrificing task performance compared to teleoperation and
instruction-following baselines.

While promising, IG-MCTS has limitations that suggest
directions for future work. Its reliance on in-context training
data may limit generalization, motivating exploration of
meta-learning or domain adaptation. Extending the method
to continuous state and action spaces would enhance real-
world applicability. Additionally, improving the interaction
design—such as replacing static ego-view snapshots with
short video clips—could further enrich spatial understanding.
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APPENDIX

A. Task Reward Composition

The task reward Rtask in our implementation incentivizes
effective navigation and consists of three components:

Rtask(τ, ζ) = Renv(τ) +Rguidance(τ, ζ) +Rsmooth(τ). (4)

Suppose we rewrite τ as a state sequence (s1, s2, · · · , sn),
we can formally define each reward as follows:

1. The navigation environment assigns a fixed reward rg >
0 when the robot reaches a goal location for the first time:

Renv(τ) =

{
rg, sn ∈ G,
−1, otherwise.

(5)

2. A step incurs an additional cost when the robot wanders
away from the human’s guidance:

Rguidance(τ) =

{
0, sn ∈ ζ,

− log(n), otherwise.
(6)

Intuitively, Rguidance is zero when the robot stays on the
human-suggested path. The penalty is greater if the robot
has taken many steps since its previous interaction with the
human. In other words, it is better in the long run for the
robot to stop and communicate rather than straying far.

3. The smoothness reward penalizes unnecessary revisits
to previously visited states:

Rsmooth(τ) = −
n−1∑
i=1

1[si = sn]. (7)

a) Additional implementation-specific design: To reduce
the search horizon, lower estimation variance, and improve
computational efficiency, we terminate an MCTS rollout
when the agent either (a) reaches the goal or (b) performs a
communication action. However, this modification introduces
a bias toward shorter paths. To correct for this, we impose a
communication cost of c = 10 + n , where n represents the
number of unfulfilled states in the human guidance.

B. Algorithm Pseudocode

Procedure 2: EXPAND(v)
1: Choose an untried action a ∈ A
2: if a ∈ U then
3: s = last(τ)
4: τ ′ ← τ ⊕ T (s, a)
5: Create node v′ with (τ ′, x)
6: C(v)← C(v) ∪ {v′}
7: Return v′, False
8: else if a ∈ O then
9: x′ ← F (x, (τ, a))

10: Create node v′ with (τ, x′)
11: Return v′, True
12: end if

Algorithm 1 IG-MCTS

1: Input: human guidance ζ , previous state-visitation history
τ0, current human perception state x0

2: Parameters: iterations n = 100, exploration constant
k =
√
2, discount factor γ = 0.99, depth d = 100

3: Create root node v0 with (τ0, x0), initialize Q(v0)← 0,
N(v0)← 0, C(v0)← ∅

4: for each iteration i from 1 to n do
5: Set v ← v0, stopping← False
6: while v is not terminal and stopping = False do
7: if v is fully expanded then
8: v ← argmaxv′∈C(v)

(
Q(v′)
N(v′) + k

√
logN(v)
N(v′)

)
9: else

10: v, stopping← EXPAND(v)
11: end if
12: end while
13: q ← ROLLOUT(v)
14: BACKPROPAGATE(v, q)
15: end for
16: Return action of best child c⋆ = argmaxc∈C(v0) N(c)

Procedure 3: ROLLOUT(v)

1: Initialize q ← 0, depth d← 0
2: while d < T and (τ, x) not terminal do
3: Sample a ∈ A
4: if a ∈ U then
5: τ ← τ ⊕ T (s, a) where s = last(τ)
6: else if a ∈ O then
7: x′ ← F (x, (τ, a))
8: end if
9: q ← q + γdR(τ, ζ, x, x′)

10: x← x′

11: d← d+ 1
12: end while
13: Return q

Procedure 4: BACKPROPAGATE(v, q)

1: Initialize qsample = q and δ = 1
2: while v is not null do
3: Current value estimate w = Q(v)

N(v) if N(v) > 0 else 0

4: qsample ← r(v) + γ [δqsample + (1− δ)w]
5: Q(v)← Q(v) + q
6: N(v)← N(v) + 1
7: δ ← δ(v)
8: v ← parent of v
9: end while

C. Mapping Dataset Details

The dataset we use for training the NHPM includes 113
trajectories with mapping accuracy > 50%. We conduct a 95/5
train/test split for the evaluation of the model’s generalization
capability. The maze layout and robot movements in each
trajectory are generated randomly without seeds, ensuring



Fig. 6: The crowd-sourced mapping dataset contained low
quality data (grey) which we exclude from training.

Fig. 7: A snapshot from a recorded eye-tracking session. The
window in the top left shows how the software measures
pupil dilation and estimates gaze location. The yellow circle
indicates the estimated point of gaze.

diversity in the dataset. 254 trajectories were excluded due
to low accuracy (many participants clicked through for
compensation). A histogram of the overall mapping accuracy
is shown in Figure 6.

Each trajectory is segmented at time steps where the
robot initiates communication. This results in data chunks
of the form (current human perception, robot path, robot
position, sent image, human annotation). In total, we collect
1505 training segments and 137 test segments. An animated
visualization of how such a data segment is constructed is
available in the supplementary materials.

D. User Study Details

1) Eye Tracking Setup: Figure 7 shows a snapshot from the
eye-tracking recording, where the participant is controlling
the agent via teleoperation. The AR tags on the screen assist
the eye-tracking device in localizing the plane of interest. The
window in the top left visualizes how the software measures
pupil dilation and estimates gaze location. The yellow circle
marks the estimated point of gaze. A full video of the session
is available in the supplementary materials.

2) Baseline Pupil Diameter Measurement: To account for
individual differences in pupil sizes, we ask each participant
to read a brief text paragraph at the beginning of each session.
The eye-tracking data from this period is used to calculate the
mean pupil diameter as the baseline for the session’s PCPD.
We drafted these paragraphs to ensure comparable length and
maintain neutral content.

Text Before Method A (Teleoperation)

Making a sandwich begins by picking your favorite type
of bread. You can spread butter, mayonnaise, or other
condiments before adding a layer of vegetables, meat, or
cheese. Once the ingredients are in place, press the slices
together gently. Preparing a sandwich is a simple task, but
it’s also a quick and satisfying way to create a meal.

Text Before Method B (Instruction-Following)

Washing dishes starts by filling the sink with warm, soapy
water. Plates, bowls, and utensils are scrubbed clean with a
sponge to remove food residue. Once clean, they are rinsed
under running water and placed on a rack to dry. While
it’s a routine chore, it’s also a small step toward keeping
the kitchen tidy and organized.

Text Before Method C (IG-MCTS)

Sitting in a chair can be a relaxing moment during a busy
day. You adjust your position to get comfortable, letting
your body rest as you settle in. Sometimes, it’s a chance
to pause and think quietly. Whether you’re sitting to read,
work, or simply take a break, it’s a small but familiar part
of daily life.

3) PCPD Calculation: The percent change in pupil diam-
eter (PCPD) is calculated as follows:

PCPDt =
pupil diametert − baseline diameter

baseline diameter
. (8)

Here, baseline diameter is the average pupil diameter recorded
during the baseline period, as detailed in Section V-D.2. For
each recording, we compute the mean and standard deviation
of PCPD over time. These statistics are then aggregated, and
we report the averages in Table III.

4) Maze Layouts: To ensure consistency and reproducibil-
ity across participants, we generated three distinct maze
layouts using fixed random seeds on a Linux system. By fixing
the seeds and standardizing the platform, we ensured that
all participants encountered identical navigation challenges,
enabling fair comparisons across conditions. Visualizations of
the three maze layouts are provided on the following page.



Demo Layout (Seed: 234)
Similarity: 0.860
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Initial Human Map
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Layout 2 (Seed: 9)
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