
Remember the Past: Distilling Datasets
into Addressable Memories for Neural Networks

Zhiwei Deng Olga Russakovsky
Department of Computer Science

Princeton University
{zhiweid, olgarus}@cs.princeton.edu

Abstract

We propose an algorithm that compresses the critical information of a large dataset
into compact addressable memories. These memories can then be recalled to
quickly re-train a neural network and recover the performance (instead of storing
and re-training on the full original dataset). Building upon the dataset distillation
framework, we make a key observation that a shared common representation allows
for more efficient and effective distillation. Concretely, we learn a set of bases
(aka “memories”) which are shared between classes and combined through learned
flexible addressing functions to generate a diverse set of training examples. This
leads to several benefits: 1) the size of compressed data does not necessarily grow
linearly with the number of classes; 2) an overall higher compression rate with
more effective distillation is achieved; and 3) more generalized queries are allowed
beyond recalling the original classes. We demonstrate state-of-the-art results on
the dataset distillation task across six benchmarks, including up to 16.5% and 9.7%
in retained accuracy improvement when distilling CIFAR10 and CIFAR100 respec-
tively. We then leverage our framework to perform continual learning, achieving
state-of-the-art results on four benchmarks, with 23.2% accuracy improvement on
MANY. The code is released on our project webpage1.

1 Introduction

Compressing a large amount of information into a small memory storage space is one of the key
components of human intelligence [1–3] – a person can retrieve memories from the past and quickly
recover the corresponding skills. Deep learning methods have made large strides in building task-
specific models, but are shown to easily forget past knowledge when learning new tasks [4, 5].

To equip neural network learners with memorizing ability, dataset distillation [6] is proposed as a
potential solution. Concretely, a compressed set of examples (memories) is learned to summarize the
key information in a dataset that affects model training; these examples can then be used to quickly
retrain models and recover the corresponding skills. This differs from the standard reconstruction-
based compression algorithms [7–9] and shows strong performance [10–13].

A critical question in building powerful compressed memories is: what structures and representations
should we use to build the memories? An effective structure and organization of memories can lead
to different fundamental assumptions about data and affect the compression and learning behaviours.
Existing works [10, 11, 14, 12, 15, 13, 6] follow a simple representation, where a set of learnable
examples is assigned for each class. However, under this assumption, the size of the memories can
linearly grow with the number of classes, making the distillation of datasets with a large number of
classes challenging. Naturally, this can potentially lead to redundancies in the learned memories,

1https://github.com/princetonvisualai/RememberThePast-DatasetDistillation

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/princetonvisualai/RememberThePast-DatasetDistillation

due to the separation of data among classes. Furthermore, this representation is less generalizable to
continuous label space, where infinite number of label values exists.

In our paper, we make the observation that there is information shared between classes, and hypoth-
esize that a common and compact representation exists for all classes. Following this hypothesis,
we propose to formulate the problem as a memory addressing process, where the memories store a
common set of bases shared by all classes, and the recombination of bases is performed through an
addressing function. This decomposition between memories and addressing functions enables the
possibility that all common information is stored in one part of the representation, and the accessing of
the common information depends on the specific labels and is handled through an extra function. We
find that this formulation can significantly improve both the compression rate and the performance.

We adopt the back-propagation through time learning framework to train the memories and addressing
functions, and identify several critical factors that can improve the performance. Specifically, we find
that adopting the momentum term, and performing long unrolls in the inner optimization loop are both
critical. This differs from the common usage of bi-level optimization algorithm on this task [6, 16],
and leads to strong performance outperforming single-step gradient matching methods [10, 11] even
with the simple data representation.

In the experiments, we extensively evaluate our algorithm on six benchmarks of the Dataset Distilla-
tion task, and show that it consistently outperforms previous state-of-the-art by a significant margin.
For example, we achieve 66.4% accuracy on CIFAR10 with the storage space of 1 image per class,
improving over the previous state-of-the-art KIP method [12, 13] by 16.5%. We further demonstrate
our method on the continual learning tasks, and show that a simple “compress-then-recall” method
using our framework leads to state-of-the-art results on four datasets. For example, we outperform all
prior methods by 23.2% in retained accuracy on the challenging MANY [17] benchmark. Finally, we
demonstrate the generality of our approach by extending to image-based (rather than label-based)
memory recall, and synthesizing new classifiers (unseen during training) from our distilled memories.

2 Related works

Dataset Distillation. The task of dataset distillation is fundamentally a compression problem, with
a different prioritization on the information contained in data. There have been several lines of
methods, developed with different criteria to prioritize information. Generalization loss with bi-level
optimization framework [18–20] has been widely studied and is used in the early works of dataset
distillation [6, 16]. It emphasizes on the loss at the final optimization state. Gradient-matching
or score-matching methods [10, 11, 15] are adopted to directly match the induced gradients from
synthetic data. If ideally matched over the gradient field, the compressed dataset can naturally lead
to the same model parameters with gradient descent. Kernel method [13, 12] shows that with the
connection to Gaussian processes, a kernel inducing points method can be used to achieve strong
performance, but with large computation costs. These are also connected with the recent progress on
pragmatic compression methods [21, 22], which compress or match distributions based on a decision
process (in dataset distillation’s case, the gradient descent search process).

Continual learning. Broadening the learning paradigms, continual learning problem aims to build
agents that learn through a stream of tasks and accrue knowledge along the process. “Catastrophic
forgetting” [5, 23, 4] is a well-known phenomenon in this setting, where the neural network forgets
previous skills when learning new ones. Various methods [24–27, 17, 28–35] on regularization,
replay, or dynamic model, have been proposed to alleviate the issue and address the “stability-
plasticity dilemma” [36, 37]. Memory buffer has been a critical component in the past methods [24–
27, 17, 28, 38, 39], but mainly relies on a random selection of real samples with different strategies.
Recently, several works extend the usage of memory to storing random basis [39] (online setting) or
SVD bases [38] (offline setting).

3 Background: dataset distillation

The task of Dataset Distillation [6] is proposed to compress the key information of a large-scale
training dataset into a small amount of learned data, which can be stored using limited memory space
and retrieved through label indices or task information to recover the performance of a model.

2

Problem Setting. Formally, given a large datasetDtr = {(xi,yi)}Ni=1 containingN pairs of training
data (xi,yi), where xi is an image and yi is the corresponding label in C classes, a small dataset
Ds = {(x′j ,yj)}N

′

j=1, N
′ � N, can be synthesized or distilled, such that a model trained on Ds can

have the same generalization ability as ones trained on Dtr:

E(x,y)∼Dte

[
m(f(x;θ(∗)),y)

]
' E(x,y)∼Dte

[
m(f(x;θ′(∗)),y)

]
(1)

where θ(∗) and θ′(∗) are the optimized parameters using Dtr and Ds respectively, m is a metric,
e.g., accuracy, and Dte is the test dataset. The model is often a neural network classifier f(·;θ)
parameterized by θ and trained with a loss function `(f(x;θ),y).

Synthetic dataset representations. The synthetic dataset contains the core information that needs
to be learned. The representation of the synthetic data affects the compactness and effectiveness
of the distillation process. In existing methods [6, 10, 11, 14, 12, 15], the dataset Ds is defined
as a collection of learnable data samples (x′,y), and the number of samples is separately and
equally distributed across classes. This representation has several disadvantages: first, the number
of synthetic data samples needed for a dataset grows linearly with the number of classes, leading
to limited applicability when the number of classes is large or undefined (e.g., language or other
continuous labels); second, the potentially shared and common information across classes is ignored –
this results in a less compact representation of the distilled information and lower compression rate;
lastly, the representation is not able to generalize to new classes or tasks, due to the lack of common
representation learned across classes.

4 Model

Overview. In this section, first, we present a new perspective of the problem, where the Dataset
Distillation problem is formulated as a memory addressing process: instead of learning synthetic
images separately for each class, we construct and learn a common memory representation that can
be accessed through addressing matrices to construct synthetic datasets. Under this formulation,
the number of synthetic images does not need to grow linearly with the number of classes, the
shared information among classes can be exploited to reduce redundancies and improve compression
rate, and datasets can be distilled with respect to more generic queries. Second, we further show
several critical empirical facets of back-propagation through time framework, which lead to drastic
improvements on the performance and outperform the single-step gradient matching methods. This is
in contrast with the current common observation that gradient matching outperforms back-propagation
through time framework on dataset distillation tasks.

In the following, we present the two core components of our method, (1) the new formulation of
dataset distillation, with memories and addressing matrices in Sec. 4.1, and (2) the learning framework
under back-propagation through time in Sec. 4.2.

4.1 Dataset Distillation as memory addressing

Problem formulation. Given a task-specific dataset Dtr = {xi,yi}Ni=1,x ∈ X ,y ∈ Y , we aim
to learn a single compact and compressed representationM, referred to as memories, that can be
accessed through a learned addressing function A(·). A(·) takes all possible values of y as input and
recalls the corresponding synthetic data. With a set of {yi}, a synthetic dataset recalled using the
above process can train a model fθ : X → Y from scratch and obtain the same generalization ability
as trained on Dtr.

Ideally, the memoriesM and the addressing function A can jointly capture the critical information
that defines the task mapping from X to Y , such that the recalled synthetic data given a query yi
contains distinctive information that defines yi and the synthetic dataset recalled with {yi} can
satisfy eqn. 1 when used for re-training. For example, in the standard classification tasks, we can
enumerate all possible values in the label space (discrete) and address the memories, to construct the
synthetic dataset that contains critical information. Under this formulation, since we are learning a
single, shared and accessible representation for all ys, the size of memories can be defined flexibly
regardless of the number of classes, removing the linear growth limitation in the standard distillation
settings. There is also no constraint on the form of ys, which can be either discrete or continuous.
The storage budget or compression rate is calculated by considering the storage space of parameters
in both memories and addressing functions, which should be as compact as possible.

3

Label Hard-coded addressing matrix

Compressed images
(memories)

Class 0

Class 1

Query
(label, etc.)

Learnable addressing matrices

Shared
common
bases
(memories)

Both considered in the storage budget

0

1

0

0

0

𝐾
𝑟

𝑦

Figure 1: Distilling a large-scale dataset into compressed memories. Left: the standard dataset
distillation task under the formulation of memory addressing. The addressing matrices are hard-coded
with 1s and 0s to fetch the corresponding compressed image in memories. The memory size grows
linearly with number of classes. Right: learnable addressing matrix with shared common bases
(number of bases can be flexibly defined). The information sharing between classes is captured in
this representation. The queries can be generalized to any vector representation, besides one-hot
labels, i.e. for a general dataset from X to Y , it can be distilled into memories for recall and model
re-training.

Memory representation. We use a set of bases to store in the memoriesM = {b1, ..., bK}, where
each vector bk ∈ Rd has the same dimension as x ∈ Rd, and all vectors collectively define the
intrinsic components in a dataset that characterizes the task mapping from X to Y . Through re-using
the bases, we can produce a desired synthetic dataset for model re-training. Spatial redundancies
in images: note that, as a special case, images can contain redundancies spatially and be stored in a
downsampled version to improve the compression rate. The downsampled image bases can be passed
via a deterministic upsampling process (e.g., bilinear interpolation) to recover the original resolution.

Memory addressing. For each query y, we use a parameterized function A(y) to re-combine the
bases in the memoriesM. Similar to previous methods on accessing memories, we use A to produce
a set of coefficients, and linearly combine the bases to produce synthetic data. Formally, to retrieve r
synthetic examples for each y, we define a set of matrices {A1, ...,Ar},Ai ∈ Rdy×K , where dy is
the dimension size of y and r is the number of data samples that can be retrieved. With the memories
M = {b1, ..., bK}, we define:

x′Ti = yTAi[b1; ...; bK]T ,x′ ∈ Rd×1 (2)

where y ∈ Rdy×1 is in a vectorized form, such one-hot encoding of categorical labels, and v = yTAi

corresponds to a coefficient vector v that combines the bases. The produced synthetic data x′ is
paired with y as the corresponding label. Our model is shown on the right of figure 1.

Constructing a dataset. To construct a synthetic dataset Ds for model re-training, we are often
given a set of samples {yi}, or can enumerate all possible values of y (if discrete). With the set {yi},
we use eqn.2 to address and retrieve the synthetic dataset Dy=yi

s = {(x′j ,yi)}rj=1 for each yi. The
final dataset is the union of all Ds =

⋃
Dy=yi

s . The dataset Ds can be used in either a minibatch
form for stochastic gradient descent, or as a whole for batch gradient descent.

Generalized possibilities of queries. Another advantage of our formulation, besides a compact and
shared representation, is the various possibilities of queries y. In principle, under this formulation,
the label y can be flexibly defined as other forms, such as language or audio, where the representation
resides in a continuous space or follows a distribution p(h(y)) defined by a feature extractor h(·). The
set of {yi} then can be sampled from the distribution p instead of having to enumerate all possible
values. This provides a general way of compressing or distilling a large dataset without constraint on
the forms of labels.

Connection with standard Dataset Distillation. In the standard setting, dataset distillation is
defined for classification tasks with discrete labels and each label owns its unique set of synthetic
data. We can show that this is a special case of our formulation: if the bases are constructed as
the collection of those label-specific synthetic data (K = N ′, N ′ is the total size of the synthetic
dataset), the addressing matricesAi are defined in space {0, 1}C×N ′ whereAi[m,n] = 1 if n equals

4

Algorithm 1
1: hyperparameters: Momentum rate β0, β1, learning rate α0, α1 for θ and φ respectively.
2: input: Dataset Dtr, memoriesM, addressing function A, loss function `(·, ·)
3: repeat
4: Sample a subset of labels Y ′
5: Address the memoriesM and obtain synthetic dataset DY′s with eqn. 2
6: Randomly initialize model parameters θ0
7: Initialize momentumm0 = 0
8: for t = 1 to T do
9: Sample a minibatchBs = {(x′i,yi)} from DY′s

10: Compute L = 1
|Bs|

∑|Bs|
i=1 `(fθt−1(x′i), yi)

11: Update momentummt = β0mt−1 + dL
dθt−1

12: Update θt = θt−1 − α0mt

13: end for
14: Sample a minibatch B = {(xi,yi)} from Dtr with labels in Y ′

15: Compute J(φ) = 1
|B|
∑|B|

i=1 `(fθT
(xi),yi)

16: Update φ← OPT-STEP(φ, J(φ), α1, β1)
17: until Converge

to m(N ′/C) + i (ith item of mth class) and Ai[m,n] = 0 at other positions, then the "retrieval"
process can also be defined as eqn. 2.

4.2 Learning framework: back-propagation through time

In this section, we build upon the back-propagation through time algorithm and discuss in detail the
learning framework that performs the distillation process from a dataset to memories and addressing
functions.

Starting from notations, we define the parameters contained in both memories and addressing
functions as φ, which are collectively optimized. A loss function is `(·, ·) is defined on a task-specific
dataset. We denote an optimization algorithm as OPT(·, ·;α, β, `, T), where α and β are the learning
rate and the momentum rate, respectively, and T is the number of optimization steps. For a single
step optimization, we denote it as OPT-STEP(·, ·;α, β).

To learn the parameters φ = {M,A}, we follow a standard bi-level optimization framework with
back-propagation through time (BPTT), where the inner-loop uses the synthetic dataset Ds to train
a randomly initialized model starting from scratch, and a generalization loss is computed using
a minibatch B = {(xi,yi)} sampled from Dtr. The parameters φ are implicitly contained in
the synthetic dataset Ds and optimized when minimizing the generalization loss. The bi-level
optimization defines:

min J(φ) =
1

|B|

|B|∑
i=1

`(f(xi;θ
∗),yi),

subject to θ∗ = OPT
(
θ0,Ds;α0, β0, `, T

)
(3)

where θ0 represents the initializing parameters, θ∗ is the optimized model parameters in the inner
optimization loop, α0 and β0 are the learning rate and momentum rate for opt(·, ·), and J(φ) is the
generalization loss on minibatchB. In practice, for each inner loop training, we randomly sample
a subset Y ′ from ys and retrieve the corresponding subset DY′s . This reduces the computation cost
in inner loops. We empirically observe that equivalent results can be achieved with faster runtime.
The algorithm is summarized in Alg. 1, where lines 8-13 define the inner loop optimization process
OPT(·, ·;α, β, `, T), and the gradients of generalization loss (line 15) is back-propagated through
the inner loop to update φ. Note that, in principle, the inner loop optimization can be performed
using any optimizer. In this paper, we mainly rely on the standard stochastic gradient descent with
momentum to train the distilled data.

5

Critical factors in BPTT. Although being a natural choice in performing dataset distillation and
adopted in the original work [6], the BPTT framework has been shown to underperform other
algorithms, such as single-step gradient matching methods [10, 11], on various benchmarks. The
underlying causes that hinder the performance of the algorithm are still underexplored. In our work,
we investigate and identify the factors that can unleash the potential of back-propagation through
time framework on dataset distillation and lead to significant performance boosts.

Momentum term. In previous dataset distillation works [6, 16], the usage of back-propagation through
time framework omits the momentum term in the inner loop optimization. Indeed, this has been a
common practice in meta-learning tasks [18, 40]. Adding momentum terms in meta-learning can
potentially even hurt the performance and lead to less gradient diversity [40]. However, we observe
that, in dataset distillation tasks, the momentum term is crucial for making BPTT excel, even in the
relatively short inner loop optimization settings (e.g. 10 or 20 steps). We provide results and analysis
in the experiments section.

Long unrolled trajectories. Another aspect in using BPTT in dataset distillation is the length of
unrolled optimization trajectories in the inner loops. The previous usage of BPTT on this task [6, 16]
adopts relatively short inner loop optimization trajectories (e.g. 10-30 steps). Instead, we show that
unrolling the trajectories long enough (e.g. 200 steps) with momentum terms can potentially produce
θ∗ that better summarizes the information contained in memories and addressing matrices, generating
more effective gradients to learn the compressed representation.

5 Experiments

We thoroughly evaluate our model and demonstrate the benefits over previous methods. In section 5.1,
we show that using a shared representation is critical to improving the distillation performance and
compression rates. Specifically, we observe that there is strong evidence that there is information
re-using across classes. We further show the benefits of our model on standard continual learning
tasks in section 5.2. For example, we observe that a simple “compress-then-recall” method can
achieve performance outperforming state-of-the-art continual learning models with complex designs.
Finally, in section 5.3, we show that storing the compressed data enables synthesizing new classifiers
(section 5.3.1) and the shared representation formulation allows more general queries (section 5.3.2),
which can be continuous (e.g. image features).

5.1 Dataset Distillation

In this section, we follow the standard setting of dataset distillation, and perform dataset compression
that can be recalled with discrete class labels.

Datasets. We test our models on six standard dataset distillation benchmarks: MNIST [41], Fash-
ionMNIST [42], SVHN [43], CIFAR10 [44], CIFAR100 [44], and TinyImageNet [45]. MNIST
contains 10 classes with 60,000 writing digit images as training and 10,000 as test set. The images
are gray-scale with a shape of 28× 28. FashionMNIST is a dataset with clothing and shoe images
and consists of a training with size 60,000 and a test set with size 10,000. Each image is 28× 28 in
gray scale, and has a label from 10 classes. SVHN contains street digit images where each image has
shape 32× 32× 3. The dataset contains 73,257 images for training and 26,032 images for testing.
CIFAR10 and CIFAR100 are color image datasets, with 50,000 training images and 10,000 testing
images on each. CIFAR10 has 10 classes with 5,000 images per class, and CIFAR100 has 100 classes
with 500 images per class. TinyImageNet [45] contains 200 categories with images of resolution
64x64. The training and testing sets have 100,000 and 10,000 images respectively.

Experiment settings. We evaluate our distillation models under three different memory budgets for
each dataset: 1/10/50 images per class. We focus on high compression rate scenarios and consider
the 1 and 10 settings for CIFAR100. Following previous works [14, 11, 12, 15], the main network
architecture used in experiments is a simple convolutional network (ConvNet) with 3 × 3 filters,
InstanceNorm, ReLU and 2× 2 average pooling. For the evaluation protocol, each model is evaluated
on 20 randomly initialized models, trained for 300 epochs on a synthetic dataset, and tested on a
held-out testing dataset. We use one GPU per experiment run.

Memory budget calculation. Since our model uses memories and addressing matrices to store the
compressed information, we treat the total number of images as a memory storage budget. When

6

I/C DC [10] DSA [11] KIP (NN) [12] CAFE∗ [46] TM [15] DM [14] Ours

MNIST [41]
1 91.7±0.5 88.7±0.6 90.1±0.1 93.1±0.3 - 89.7±0.6 98.7±0.7

10 97.4±0.2 97.8±0.1 97.5±0.0 97.5±0.1 - 97.5±0.1 99.3±0.5
50 98.8±0.2 99.2±0.1 98.3±0.1 98.9±0.2 - 98.6±0.1 99.4±0.4

F-MNIST [42]
1 70.5±0.6 70.6±0.6 73.5±0.5 77.1±0.9 - - 88.5±0.1

10 82.3±0.4 84.6±0.3 86.8±0.1 83.0±0.3 - - 90.0±0.7
50 83.6±0.4 88.7±0.2 88.0±0.1 88.2±0.3 - - 91.2±0.3

SVHN [43]
1 31.2±1.4 27.5±1.4 57.3±0.1 42.9±3.0 - - 87.3±0.1

10 76.1±0.6 79.2±0.5 75.0±0.1 77.9±0.6 - - 89.1±0.2
50 82.3±0.3 84.4±0.4 80.5±0.1 82.3±0.4 - - 89.5±0.2

CIFAR10 [44]
1 28.3±0.5 28.8±0.7 49.9±0.2 31.6±0.8 46.3±0.8 26.0±0.8 66.4±0.4

10 44.9±0.5 52.1±0.5 62.7±0.3 50.9±0.5 65.3±0.7 48.9±0.6 71.2±0.4
50 53.9±0.5 60.6±0.5 68.6±0.2 62.3±0.4 71.6±0.2 63.0±0.4 73.6±0.5

CIFAR100 [44] 1 12.8±0.3 13.9±0.3 15.7±0.2 14.0±0.3 24.3±0.3 11.4±0.3 34.0±0.4
10 25.2±0.3 32.3±0.3 28.3±0.1 31.5±0.2 40.1±0.4 29.7±0.3 42.9±0.7

TinyImageNet [45] 1 - - - - 8.8±0.3 3.9±0.2 16.0±0.7

Table 1: We compare our method with previous works on ConvNet recovered accuracy. Our algorithm
consistently outperforms all previous methods and achieves state-of-the-art. ∗Note that we selected
the best results from baseline model variants. I/C is images per class (storage budget eqn. 4).

comparing with N images for C classes, we ensure

size(bases) + size(addressing matrices) ≈ NCsize(image) (4)

where size(·) is the total size of a tensor, assuming the numbers are stored as floats. For a given
number of bases, we calculate the corresponding maximum number of addressing matrices allowed
using eqn. 4 and use the integer lowerbound as the final value.

8(307) 16(115) 20(76) 24(51) 32(19)
#bases (#addr-mat) (1 I/C)

60

70

80

Ac
cu

ra
cy

CIFAR10
SVHN

Figure 2: Validation set

Model details. We use bases with spatial resolution downsampled
by a factor of 2 in both height and width from the standard image
size based on datasets. All models are trained for 50k iterations
with SGD optimizer. For the inner loop optimization, we set the
momentum rate as 0.9, and use 150 steps for small memory budgets 1
and 10, and 200 steps for budget 50. The number of bases is selected
on the held-out validation set (10% of training set), an example is
shown in figure 2, where different numbers of bases and addressing
matrices (calculated with eqn. 4) have impacts on accuracies; more details in the appendix.

Result 1: state-of-the-art accuracy. We compare our model with previous methods: Dataset Con-
densation (DC) [10], Differentiable Siamese Augmentation (DSA) [11], Kernel Inducing Points
(KIP) [12], Distribution Matching (DM) [14], Aligning Features (CAFE) [46] and Trajectory Match-
ing (TM) [15]. The results are summarized in table 1. Following previous methods [11, 12, 15], we
adopt simple data augmentations and preprocessing: flip and rotation on CIFAR10 and CIFAR100
datasets, and ZCA on SVHN, CIFAR10 and CIFAR100. As shown in table 1, our model consistently
outperforms previous methods, especially under high compression rate cases where only 1 image is
allowed per class. For example, we achieve 87.3% and 66.4% on SVHN and CIFAR10 with 1 image
per class, outperforming prior arts by 30% and 16.5% under the same storage budget, respectively,
and even beat the performance of previous methods using 10 images per class.

Analysis: information sharing across classes. The core observation in our method is that a common
representation can enable information sharing across classes and reduce redundancies. To verify this,
we calculate the average coefficients v̄ = 1

r

∑r−1
i=0 y

TAi for each class y and visualize the cosine
similarities of v̄ from two classes. The visualizations are shown in fig. 3. Higher cosine similarity
scores indicate that two classes are utilizing similar bases components in the memories to produce
synthetic images. For example, in CIFAR100 (right one of figure 3), classes maple, oak, palm, pine
and willow trees have strong sharing, while lawn mower and rocket are distinct from each other.
Similar patterns can be found in CIFAR10 dataset, shown in the left one of figure 3.

Result 2: back-propagation through time is a strong baseline. In figure 4 and table 2, we show
that a vanilla BPTT variant is already a strong baseline which outperforms previous single-step
gradient methods [10] by 40.4% on SVHN and 20.3% on SVHN and CIFAR10 under 1 image
per class. Note that the performance on SVHN has doubled the accuracy 31.2% obtained using
single-step gradient matching methods [10]. In the vanilla BPTT variant, no downsampling (ds) or

7

ai
rp

la
ne

au
to

m
ob

ile
bi

rd
ca

t
de

er
do

g
fro

g
ho

rs
e

sh
ip

tru
ck

airplane
automobile

bird
cat

deer
dog
frog

horse
ship

truck 0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

m
ap

le
 tr

ee
oa

k
tre

e
pa

lm
 tr

ee
pi

ne
 tr

ee
wi

llo
w

tre
e

bi
cy

cle
bu

s
m

ot
or

cy
cle

pi
ck

up
 tr

uc
k

tra
in

la
wn

 m
ow

er
ro

ck
et

st
re

et
ca

r
ta

nk
tra

ct
or

maple tree
oak tree

palm tree
pine tree

willow tree
bicycle

bus
motorcycle

pickup truck
train

lawn mower
rocket

streetcar
tank

tractor 0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Similarity matrices of learned addressing coefficients for
the CIFAR10 dataset (left) and a subset of CIFAR100 classes (right).

1 10 20 50 100 150 200
Number of inner opt steps

30

40

50

60

70

Ac
cu

ra
cy

CIFAR10-BPTT-w/ m
CIFAR10-BPTT-w/o m
SVHN-BPTT-w/ m
SVHN-BPTT-w/o m

Figure 4: Analysis on BPTT
steps and momentums.

I/C Single-step GM OursBPTT OursBPTT+ds OursFull w/o Aug. OursFull

CIFAR10
1 28.8±0.7 49.1±0.6 55.2±0.5 64.2±0.6 66.4±0.4

10 52.1±0.5 62.4±0.4 65.9±0.4 70.9±0.4 71.2±0.4
50 60.6±0.5 70.5±0.4 71.1±0.5 72.1±0.5 73.8±0.4

CIFAR100 1 13.9±0.3 21.3±0.6 25.9±0.4 33.5±0.2 34.0±0.4
10 32.3±0.3 34.7±0.5 36.5±0.4 40.6±0.3 42.9±0.7

Table 2: Ablation studies of every component and comparison with single-step gradient matching [10].
ds: downsampling. Aug.: data augmentation.

memory addressing formulation is used. We also analyze the effects of long unrolls and momentum
terms on vanilla BPTT in figure 4. It is observed that on both short inner loops (10 steps) and long
ones (100 steps), adding momentum terms can consistently lead to a strong performance boost, e.g.
7.0% and 9.2% on CIFAR10. Using longer inner loop trajectories can also increase the recovered
accuracy, e.g. 18.2% and 42.3% on CIFAR10 and SVHN, respectively, compared to 1 step cases.

Ablation studies. To further analyze the effects of different components in our algorithm, we
perform ablation studies on CIFAR10 and CIFAR100. Besides the vanilla BPTT, the ablation results
of components (downsampling, augmentation and memory addressing formulation) are summarized
in table 2. We show that downsampling can indeed reduce spatial redundancies (e.g. improve results
from 49.1% to 55.2% on CIFAR10 with 1 image per class), and memory addressing formulation can
further increase the recovered accuracy (from 55.2% to 64.2% on CIFAR10 with 1 image per class).
It is also shown that our model is quite robust to the ablation of data augmentation, which has a small
effect (1-2%) on the results. The resulting algorithm is a simple and effective framework that uses
memory addressing formulation and BPTT with long unrolls to distill datasets.

Cross-architecture generalization. Our memories and addressing matrices are also generalizable
across various architectures. We test our algorithm on ConvNet, ResNet12 and AlexNet for training
and testing. The results are summarized in the appendix, section ??, table ??.

5.2 Continual learning

One of the key usages of memories is to prevent forgetting when a model continually learns through
tasks. In this section, we evaluate our algorithm on the standard continual learning benchmarks and
show that, due to the strong performance, a simple “compress-then-recall” method with our model
can already rival with previous state-of-the-arts with complex designs.

Efficient lifelong learning. Following [47], we work with the problem where all tasks are streamed
in mini-batches and learned in a single pass. A learner is allowed to be equipped with a small
memory buffer. The data samples after seen will not be available unless stored in the buffer. We use a
mini-batch size of 10 to stream the data, following previous works [28, 24].

Evaluation. The learner’s performance after learning on the task stream is commonly evaluated
under two metrics: retained accuracy (RA) and backward-transfer and interference (BTI). RA is the
average accuracy of the final trained model on all tasks, and BTI measures the performance difference
between after it was learned and after the full training process. Note that our algorithm does not
perform actual learner training on the data streams and BTI is not applicable.

8

Rotations Permutations MANY CIFAR-100

RA↑ BTI↓ RA↑ BTI↓ RA↑ BTI↓ RA↑ BTI↓
ONLINE 53.38±1.53 -5.44 55.42±0.65 -13.76 32.62±0.43 -19.06 32.62±0.43 -19.06
EWC [48] 57.96±1.33 -20.42 62.32±1.34 -13.32 33.10±0.14 -18.50 - -
GEM [24] 67.38±1.75 -18.02 55.42±1.10 -24.42 39.50±0.62 -17.50 48.27±1.10 -13.7
MER [17] 77.42±0.78 -5.60 73.46±0.45 -9.96 51.00±0.54 -13.57 51.38±1.05 -12.83
La-M [28] 77.42±0.65 -8.64 74.34±0.67 -7.60 50.43±0.21 -10.00 61.18±1.44 -9.00
sp-La [30] 77.77±0.58 -8.16 76.88±0.72 -8.39 50.81±0.79 -13.73 - -
Ours 80.32±0.28 N/A 78.48±0.76 N/A 74.07±0.51 N/A 62.58±1.1 N/A

Table 3: We show that “compress-then-recall" is a strong baseline that outperforms previous methods
on four continual learning benchmarks. Baseline numbers are from [28] or obtained from public
official repos.

Benchmarks. We evaluate our method on three tasks widely used in previous Continual Learning
works. MNIST Rotations [24] contains 20 tasks with 1,000 samples in each. Every task consists of
images rotated by a fixed angle from 0 to 180 degrees. MNIST Permutations [48] has 20 tasks, and
each task contains 1,000 images generated through shuffling the image pixels by a fixed permutation.
MANY Permutations [17] is a longer variant with 100 tasks in total and 200 samples in each.
Incremental CIFAR-100 [29, 24] splits the CIFAR100 dataset into 20 5-way classification tasks as
the task stream for learning.

Our model. Based on our distillation method, we adopt a simple framework to perform continual
learning: “compress then recall”. During the training phase, we do not perform learning on neural
networks, instead, the dataset of each task is distilled to memories and the paired addressing matrices.
During test phase, we simply fetch the corresponding memories and addressing matrices for each task,
and train a new model from scratch to perform classification. Memory buffer designs. When a new
task starts, we use the full remaining memory buffer to store the samples and perform distillation with
both buffer samples and streamed samples. After a task ends, the distilled memories and addressing
matrices are stored in the buffer, taking 1/T of the space, where T is the total number of tasks.
Namely, the buffer size keeps shrinking when more compressed representation of tasks is stored.
Note that we compare our model with previous methods under the exact same memory sizes for fair
comparisons. See the appendix for more details on model and memory designs.

Results. We show that this simple method is already a strong baseline that outperforms prior arts
on four benchmarks, summarized in table 3. Our method is compared with: Online, EWC [48],
GEM [24], MER [17], C-MAML [28], La-MAML [28] and Sparse-LaMAML [30]. For example, we
can obtain a 23% boost on MNIST MANY benchmark: from 50.81% to 74.07%.

We further compare our model with previous works Kernel Continual Learning [39] and Stable
SGD [37] following their settings, where each task in MNIST Rotation and MNIST Permutation
contains 60,000 samples instead of 1,000 samples. Our model achieves 87.3±0.92 and 88.3±0.58 on
Permutated MNIST and Rotated MNIST under their setting, outperforming both KCL (85.5±0.78 and
81.8±0.60) and Stable SGD (80.1±0.51 and 70.8±0.78). Interestingly, our results also are higher than
the multitask upperbound (86.5±0.21 and 87.3±0.47), potentially due to that there is task interference
in joint training, which can be naturally avoided in our method.

5.3 Synthesizing new classifiers after learning

If we want to memorize the past, what is the benefit of storing the compressed representation rather
than a trained model? In this section, we show that our compressed representation can enable flexible
synthesis of new classifiers after the learning. Specifically, we demonstrate extrapolating between
tasks to train new models, and performing memory recall with images instead of labels, showing the
generalizability of our framework on other query forms.

5.3.1 Extrapolating between tasks

In the real world, tasks often do not come together and a learner, therefore, cannot observe all tasks at
once. In current machine learning paradigms, when models are separately trained for disjoint tasks,
it has difficulty extrapolating between tasks to build new classifiers. This is different from human
learning. We show that storing our compressed representation enables a learner to extrapolate and
synthesize new classifiers after learning separately on each task. Specifically, we separate CIFAR100

9

into 20 disjoint 5-way classification tasks as training tasks. For testing, we select classes that are not
seen together during training by randomly choosing k tasks and picking 1 class from each selected
task. We use k = 2 and k = 5 to construct 2-way and 5-way classification tasks, and sample 1,000
tasks each for evaluation. To train our models, we independently distill the datasets for 20 training
tasks into corresponding memories. For each testing task, the class labels are used as queries to recall
the synthetic data from the corresponding memories. The recalled data for each label, although not
seen together during training, are used for re-training a k-way classifier from scratch. We find that
the compressed data can indeed train classifiers on new combinations, for example, we can achieve
72.53%±8.74 on 2-way classification, and 46.54%±6.42 on 5-way classification, with 1 image per
class storage budget. The upperbound with the full real dataset is 92.23%±4.76 and 82.72%±4.29.

5.3.2 Dataset Distillation extension – recall the past with images

We extend the standard setting to recall the past with images: when the label information and task
scopes are missing, but a few visual observations can be made, we would like to build classifiers
based on the visual data. For example, when we see a bear image and a deer image, but cannot recall
the exact word or category, can we recall the memories with images and build a classifier? This is
possible with our problem formulation, where the forms of queries are not constrained to labels and
we can distill a dataset to memories addressable by images.

Methods 1 shot 5 shot
Nearest neighbor 48.55 61.72
classify-then-recall 50.58 58.46
image addressing 55.74 71.20

Table 4: Few-shot perf. recovery.

We formulate the problem as follows. Formally, after observ-
ing a training dataset Dtr with Y = {0, ..., C-1}, we would
like to flexibly build classifiers for a subtask Yg ⊂ Y based on
visual observations Xg from Yg, when the actual information
of Yg is unknown. We work with 1-shot and 5-shot observation
cases. As a baseline, we build a nearest neighbor classifier,
which is pretrained on Dtr and takes features of few-shot data
to classify test images. As a model variant, we could also “classify-then-recall”, using a classifier
trained on Dtr to map the image shots into labels and turning into the standard setup. Benefiting from
the general design of our formulation, we show that a model can directly perform “image addressing”,
where a feature network can provide query vectors y in fig.1. The feature network, memories and
addressing matrices can be jointly trained on Dtr. We evaluate the above models and baselines
on CIFAR100 and summarize the results in table 4. As shown in the table, our model is not only
able to successfully perform the continuous query addressing with image feature vectors, but also
outperforms two strong baselines on constructing new classifiers. More analysis is in the appendix.

6 Conclusion and limitations

In this paper, we propose a framework that distills a large dataset into compact addressable memories.
This framework introduces several benefits, including removing the linear growth contraints on the
compressed data size, allowing more general queries besides categorical labels, and most importantly,
achieving high compression rate with strong re-training performance, outperforming previous state-
of-the-arts in dataset distillation. We also demonstrate a “compress-then-recall” method using our
framework, leading to new state-of-the-arts in continual learning on four datasets. Our full model has
potential limitations on the costly inner optimization loop, which might be time-consuming on larger
models or datasets. This limitation might be solved by combining the memory formulation with a
different learning framework. One potential societal concern with dataset distillation in general is
that the distilled dataset may not contain the full diversity of the original data distribution, causing
the retrained classifier to perform especially poorly on minority populations; our method arguably
takes a step towards mitigating that concern through improving the retrained accuracy.

7 Acknowledgements

This material is based upon work supported by the National Science Foundation under Grants No.
2107048 and 2112562. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation. We would also like to thank Vishvak Murahari, Sunny Cui, Ruth Fong, Vikram
Ramaswamy, and Zeyu Wang for discussions.

10

References
[1] Timothy F Brady, Talia Konkle, and George A Alvarez. Compression in visual working

memory: using statistical regularities to form more efficient memory representations. Journal
of Experimental Psychology: General, 138(4):487, 2009.

[2] Geoffrey R Loftus and Elizabeth F Loftus. Human memory: The processing of information.
Psychology Press, 2019.

[3] John R Anderson and Gordon H Bower. Human associative memory. Psychology press, 2014.

[4] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

[5] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[6] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
arXiv preprint arXiv:1811.10959, 2018.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

[8] Ian Gemp, Brian McWilliams, Claire Vernade, and Thore Graepel. Eigengame: Pca as a nash
equilibrium. In International Conference on Learning Representations, 2020.

[9] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[10] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
In International Conference on Learning Representations, 2021.

[11] Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
International Conference on Machine Learning, 2021.

[12] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with
infinitely wide convolutional networks. Advances in Neural Information Processing Systems,
34, 2021.

[13] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel
ridge-regression. In International Conference on Learning Representations, 2021.

[14] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. arXiv preprint
arXiv:2110.04181, 2021.

[15] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 4750–4759, 2022.

[16] Ilia Sucholutsky and Matthias Schonlau. Soft-label dataset distillation and text dataset distilla-
tion. arXiv preprint arXiv:1910.02551, 2019.

[17] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Ger-
ald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing
interference. arXiv preprint arXiv:1810.11910, 2018.

[18] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126–1135.
PMLR, 2017.

[19] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International Conference on Machine
Learning, pages 1165–1173. PMLR, 2017.

11

[20] Aniruddh Raghu, Maithra Raghu, Simon Kornblith, David Duvenaud, and Geoffrey Hinton.
Teaching with commentaries. In International Conference on Learning Representations, 2020.

[21] Sid Reddy, Anca Dragan, and Sergey Levine. Pragmatic image compression for human-in-the-
loop decision-making. Advances in Neural Information Processing Systems, 34, 2021.

[22] Shengjia Zhao, Abhishek Sinha, Yutong He, Aidan Perreault, Jiaming Song, and Stefano Ermon.
Comparing distributions by measuring differences that affect decision making. In International
Conference on Learning Representations, 2021.

[23] Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning
and forgetting functions. Psychological review, 97(2):285, 1990.

[24] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30:6467–6476, 2017.

[25] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

[26] Tom Veniat, Ludovic Denoyer, and Marc’Aurelio Ranzato. Efficient continual learning with
modular networks and task-driven priors. arXiv preprint arXiv:2012.12631, 2020.

[27] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual
learning. arXiv preprint arXiv:1710.10628, 2017.

[28] Gunshi Gupta, Karmesh Yadav, and Liam Paull. La-maml: Look-ahead meta learning for
continual learning. arXiv preprint arXiv:2007.13904, 2020.

[29] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[30] Johannes Von Oswald, Dominic Zhao, Seijin Kobayashi, Simon Schug, Massimo Caccia,
Nicolas Zucchet, and João Sacramento. Learning where to learn: Gradient sparsity in meta and
continual learning. Advances in Neural Information Processing Systems, 34, 2021.

[31] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that
questions our progress in continual learning. In European conference on computer vision, pages
524–540. Springer, 2020.

[32] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis,
Gregory Slabaugh, and Tinne Tuytelaars. Continual learning: A comparative study on how to
defy forgetting in classification tasks. arXiv preprint arXiv:1909.08383, 2(6), 2019.

[33] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Con-
tinual learning in deep neural networks. Trends in cognitive sciences, 24(12):1028–1040,
2020.

[34] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[35] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. In International Conference on Learning Representations,
2018.

[36] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: In-
vestigating the continuum from catastrophic forgetting to age-limited learning effects. Frontiers
in psychology, 4:504, 2013.

[37] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Under-
standing the role of training regimes in continual learning. Advances in Neural Information
Processing Systems, 33:7308–7320, 2020.

12

[38] Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning.
In International Conference on Learning Representations, 2020.

[39] Mohammad Mahdi Derakhshani, Xiantong Zhen, Ling Shao, and Cees Snoek. Kernel continual
learning. In International Conference on Machine Learning, pages 2621–2631. PMLR, 2021.

[40] Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2(3):4, 2018.

[41] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[42] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[43] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[44] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[45] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[46] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe learning to condense dataset by aligning features. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition 2022, 2022.

[47] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

[48] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were

chosen)? [Yes] Details are in main paper and more in the supplementary materials.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g.,

type of GPUs, internal cluster, or cloud provider)? [Yes] More details are in the
supplementary materials.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

13

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Related works
	Background: dataset distillation
	Model
	Dataset Distillation as memory addressing
	Learning framework: back-propagation through time

	Experiments
	Dataset Distillation
	Continual learning
	Synthesizing new classifiers after learning
	Extrapolating between tasks
	Dataset Distillation extension – recall the past with images

	Conclusion and limitations
	Acknowledgements

