
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A CONTINUAL LEARNING PERSPECTIVE TO ENTROPY
REGULARIZED DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Research on Continual Learning (CL) tackles learning with non-stationary data
distributions. The non-stationary nature of data is also one of the challenges of
deep Reinforcement Learning (RL), and as a consequence, both CL and deep RL
rely on similar approaches to stabilize learning, from the use of replay buffers to
the choice of regularization terms. However, while dynamic neural architectures
that grow in size to learn new tasks without forgetting older ones are well re-
searched in CL, it remains a largely understudied research direction in RL. In this
paper, we argue that Policy Mirror Descent (PMD), a regularized policy iteration
RL algorithm, would naturally benefit from dynamic neural architectures as the
current policy is a function of the sum of all past Q-functions. To avoid indefi-
nitely increasing the neural architecture, we study PMD-like algorithms that only
keep in memory the last M Q-functions, and show that a convergent algorithm
can be derived if M is large enough. This theoretical analysis provides insights on
how to utilise a fixed budget of Q-functions to reduce catastrophic forgetting in the
policy. We implement this algorithm using a new neural architecture that stacks
the last M Q-functions as 3-dimensional tensors to allow for fast GPU computa-
tions. StaQ, the resulting algorithm, is competitive with state-of-the-art deep RL
baselines and typically exhibits lower variance in performance. Beyond its per-
formance, we argue that the simplicity and strong theoretical guarantees of StaQ’s
policy update makes it an ideal research tool over which we can further build a
fully stable deep RL algorithm.

1 INTRODUCTION

Continual Learning (CL) moves from the usual i.i.d assumption of supervised learning towards a
more general assumption that data distributions change through time (Parisi et al., 2019; Lesort
et al., 2020; De Lange et al., 2021; Wang et al., 2024). A CL setting usually goes in pair with mem-
ory constraints, limiting the storage of past data. As it cannot access old data, it is desirable for a
CL learner to possess i) stability, which is the ability to retain prior knowledge ii) plasticity, which
is the ability to learn new knowledge. When training a neural network (NN), these two properties
are typically conflicting and we talk of the plasticity-stability dilemma (Grossberg, 1988), which if
not handled properly can lead to catastrophic forgetting (McCloskey & Cohen, 1989), i.e. a sudden
loss of prior knowledge when trying to acquire new knowledge. To fight catastrophic forgetting,
CL applies methods that can be categorized in three groups (De Lange et al., 2021): a) rehearsal
methods (Robins, 1995; Rolnick et al., 2019) that keep samples from older data distributions to peri-
odically retrain a learner on them, b) regularization-based methods (Li & Hoiem, 2016; Kirkpatrick
et al., 2017; Zenke et al., 2017), that prevent an NN from changing too fast and c) parameter isola-
tion methods (Rusu et al., 2016; Xu & Zhu, 2018; Yoon et al., 2018; Li et al., 2019) that grow an
NN, usually while freezing older weights, to increase plasticity without compromising on stability.

Somewhat independently, deep RL has known rapid development in the past decade, achieving
super-human results on several decision making tasks (Mnih et al., 2015; Silver et al., 2016; Wur-
man et al., 2022). RL is not always a true CL setting in the sense that an agent may not need
to continually adapt to remain optimal, as most environments considered in RL are of a station-
ary nature, unlike in CL (Abel et al., 2023). However, deep RL and CL both face non-stationary
datasets. This non-stationarity coupled with the use of neural networks makes deep RL very sen-
sitive to hyper-parameters (Henderson, 2018) and makes its empirical behavior often poorly align

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of StaQ, showing a continual training of a Q-function (left), from which we periodically
“stack” frozen weight snapshots to form the policy (right). See Sec. 5 for more details. At each iteration k,
two steps are performed. i) Policy evaluation, where we generate a dataset Dk of transitions that are gathered
by a behavior policy πb

k, typically derived from πk, and then learn Qπk from Dk. ii) Policy update, performed
by “stacking” the NN of Qπk into the current policy. The policy update is optimization-free and theoretically
grounded (Sec. 4), thus only the choice of πb

k and the policy evaluation algorithm remain sources of instabilities
in this deep RL setting.

with our theoretical understandings (Ilyas et al., 2020; Kumar et al., 2020; van Hasselt et al., 2018).
As they face similar problems, deep RL and CL often end-up using similar remedies (see discussion
in Sec. 2.4.3 of Lesort et al. (2020)). For instance, the rehearsal methods in CL have their counter-
part in the use of replay buffers in DQN (Mnih et al., 2015) or SAC (Haarnoja et al., 2018). As for
regularization-based CL methods, approaches such as EWC (Kirkpatrick et al., 2017) and its online
version (Chaudhry et al., 2018) are extremely similar to TRPO (Schulman et al., 2015)—contrast
the regularized cost of Eq. 5 in Chaudhry et al. (2018) with the Kullback-Leibler divergence (further
referred to as DKL) in regularized policy update of TRPO, they are identical up to differences in
loss functions between supervised learning and RL. However, while parameter isolation methods
have been tested in continual RL settings (Rusu et al., 2016), their use in single task RL problems
remains largely understudied.

In this paper, our main inspiration from the CL research community is the use of growing neural
architectures to implement our policy update. Such neural architectures belong to the class of pa-
rameter isolation methods in the CL literature, which offer some of the best stability-performance
trade-offs (see Sec. 6 in De Lange et al. (2021)). While the policy’s growing architecture eliminates
catastrophic forgetting in the policy by construction, it still seems to be present in the Q-function net-
work (Sec. 6.3), causing instabilities of the learning process. We provide some ad hoc workarounds
in this paper, but we believe several CL approaches—as those discussed in Sec. 7—could be helpful
to further stabilize deep RL, and we hope that one side effect of this paper is to further encourage
the transfer of ideas between the RL and CL communities.

Our policy update that uses a growing neural architecture is from a class of Policy Mirror Descent
algorithms (PMD, Neu et al. (2017); Abbasi-Yadkori et al. (2019); Geist et al. (2019); Zhan et al.
(2023)). PMD with DKL-regularization is a policy iteration algorithm where the policy at iteration
k is given by a weighted average of past Q-functions, such that

πk ∝ exp

(
α

k∑
i=0

βiQk−i

)
, (1)

for temperature α > 0 and decay factor β ∈ [0, 1], where β is strictly < 1 if an entropy bonus is
used in addition to the DKL regularizer (see Sec. 3 for more details). The averaging over previous
Q-functions induced by the DKL regularizer is known to average out approximation errors over the
true Q-functions and has stabilizing properties in practice (Geist et al., 2019; Abbasi-Yadkori et al.,
2019). The policy in Eq. 1 naturally calls for a parameter isolation approach that would store all
past Q-functions, leading to exact entropy-regularized policy update. Abbasi-Yadkori et al. (2019)
performed an experiment of the sort on an Atari RL task (Bellemare et al., 2013), keeping in memory
the past 10 Q-functions, and noted increased stability and performance over vanilla DQN.

Overall, this paper extends prior work on PMD (Abbasi-Yadkori et al., 2019; Lazic et al., 2021;
Zhan et al., 2023) in several ways. i) We propose an NN architecture called Stacked NNs (SNNs)
that stacks NN weights through a third dimension (representing the iteration number, see Sec. 5
for more details), allowing us to efficiently compute on a GPU several hundreds of Q-functions,
approaching the exact policy formulation in Eq. 1. ii) We study theoretically the convergence of
PMD-like algorithms that store up to M most recent Q-functions, replacing the oldest Q-function
with the newest one when k > M . These theoretical results extend those of (Zhan et al., 2023) that

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

studied PMD with an inexact policy update. In Eq. 1, when β < 1, one can clearly see that the
weight of old Q-functions decays to 0 as k goes to infinity. Thus, by choosing a large enough M , we
can control the error stemming from the use of a finite number of Q-functions. A more subtle result
of our theoretical analysis is that Q-functions become increasingly similar as learning progresses.
As a result, deleting an old Q-function affects less and less the policy, and we can show that there
is a finite M—that depends on β and the discount factor γ of the decision task—large enough to
ensure convergence to the optimal policy without residual error, although at a reduced rate than exact
PMD. iii) Experiments on a large set of tasks confirm the preliminary results of Abbasi-Yadkori et al.
(2019): the averaging over past Q-functions stabilizes learning and improves performance in several
cases. The proposed algorithm, which we call StaQ, uses a closed-form policy update that reduces
the sources of errors and increase the overall stability. Still, some instabilities may remain coming
from the choice of the behavior policy (see Fig. 1) or the policy evaluation algorithm. Yet, we
believe that the simplicity of StaQ’s policy update, its strong theoretical foundation and its empirical
behavior brings us closer to a completely stable deep RL algorithm.

2 RELATED WORK

Entropy-regularization in RL. Entropy regularization has seen widespread usage in RL. It was
used with (natural) policy gradient (Kakade, 2001; Schulman et al., 2015), policy search (Deisen-
roth et al., 2013), policy iteration (Abbasi-Yadkori et al., 2019; Zhan et al., 2023) and value iteration
methods (Fox et al., 2016; Vieillard et al., 2020). Common choices of regularizers include mini-
mizing the DKL between the current and previous policy (Azar et al., 2012; Schulman et al., 2015)
or encouraging high Shannon entropy (Fox et al., 2016; Haarnoja et al., 2018), but other forms of
entropy regularizers exist (Lee et al., 2019; Alfano et al., 2023). We refer the reader to Neu et al.
(2017); Geist et al. (2019) for a broader categorization of entropy regularizers and their relation to
existing deep RL methods. In this paper, we use both a DKL penalization w.r.t. the previous policy
and a Shannon entropy bonus in a policy iteration context. In Vieillard et al. (2020), both types of
regularizers were used but in a value iteration context. Abbasi-Yadkori et al. (2019); Lazic et al.
(2021) are policy iteration methods but only use DKL penalization. Finally, Zhan et al. (2023) is in
the same setting as our work but is mostly theoretical. In this paper, we study a family of practical
deep RL algorithms that extend the analysis of the approximate algorithms in Zhan et al. (2023),
and provide both a theoretical analysis and an extensive empirical evaluation of these algorithms.

Continual Learning (CL) and RL. In CL a learner faces non-stationary data distributions (com-
monly referred to as tasks) and aims at obtaining good performance (e.g. classification accuracy)
on the newest task without hindering performance on previous tasks (De Lange et al., 2021; Wang
et al., 2024). RL and CL connect in several ways: some continual supervised learning settings can
be formulated as RL problems (Kumar et al., 2023), while RL can be extended to the CL setting by
having non-stationary rewards or environment dynamics (Rusu et al., 2016; Khetarpal et al., 2020).
Even when the rewards and dynamics are stationary—setting which we refer to as single task RL—
data in RL can still arrive in a non-stationary fashion as in CL. As such, both RL and CL can end-up
using surprisingly similar approaches, as discussed in the previous section. Nonetheless, not all
research in CL might be relevant to single task RL and vice versa. For example, in RL, the learner
can (indirectly) control the data distribution, providing additional mechanisms to reduce catastrophic
forgetting which are not always possible in CL (see Sec. 6.3 for an example).

Growing neural architectures in RL. Saving past Q-functions was investigated in the context of
policy evaluation. In Tosatto et al. (2017), a first Q-function is learned then frozen and a new
network is added, learning the residual error. Anschel et al. (2017) extended DQN by saving the
past 10 Q-functions, and using them to compute lower variance target values. Both Girgin & Preux
(2008) and Della Vecchia et al. (2022) use a special neural architecture called the cascade-correlation
network (Fahlman & Lebiere, 1989) to grow neural policies. The former work studies such policies
in combination with LSPI (Lagoudakis & Parr, 2003), without entropy regularization. The latter
work is closer to ours, as it uses a DKL-regularizer but does not include a deletion mechanism. As
such the policy grows indefinitely, limiting the scaling of the method. Finally, Abbasi-Yadkori et al.
(2019) save the past 10 Q-functions to compute the policy in Eq. 1 for the specific case of β = 1,
but do not study the impact of deleting older Q-functions as we do in this paper. Growing neural
architectures are more common in the neuroevolution community (Stanley & Miikkulainen, 2002).
Such evolutionary approaches were already used for RL tasks but are beyond the scope of this paper.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES

Let a Markov Decision Problem (MDP) be defined by the tuple (S,A,R, P, γ), such that S and A
are finite state and action spaces, R is a bounded reward function R : S×A 7→ [−Rx, Rx] for some
positive constant Rx, P defines the (Markovian) transition probabilities of the decision process and
γ is a discount factor. The algorithms presented in this paper can be extended to more general state
spaces. However, the limitation to a finite A is non-trivial to lift because of the sampling from
softmax distributions as in Eq. 1. We discuss in Sec. 7 potential ways to address this limitation.

Let ∆(A) be the space of probability distributions over A, and h be the negative entropy given by
h : ∆(A) 7→ R, h(p) = p · log p, where · is the dot product and the log is applied element-wise to
the vector p. Let π : S 7→ ∆(A) be a stationary stochastic policy mapping states to distributions
over actions. We denote the entropy regularized V-function for policy π and regularization weight
τ > 0 as V π

τ : S 7→ R, which is defined by:

V π
τ (s) = Eπ

[∞∑
t=0

γt{R(st, at)− τh(π(st))}

∣∣∣∣∣s0 = s

]
. (2)

In turn, the entropy regularized Q-function is given by Qπ
τ (s, a) = R(s, a) + γEs′ [V

π
τ (s′)]. The

V-function can be written as the expectation of the Q-function plus the current state entropy, i.e.
V π
τ (s) = Ea [Q

π
τ (s, a)]− τh(π(s)) which leads to the Bellman equation:

Qπ
τ (s, a) = R(s, a) + γEs′,a′ [Qπ

τ (s
′, a′)− τh(π(s′))] . (3)

In the following, we will write policies of the form π(s) ∝ exp(Q(s, ·)) for all s ∈ S more suc-
cinctly as π ∝ exp(Q). We define optimal V and Q functions by

for all s ∈ S, a ∈ A, V ⋆
τ (s) := max

π
V π
τ (s), Q⋆

τ (s, a) := max
π

Qπ
τ (s, a).

Moreover, the policy π⋆ ∝ exp
(

Q⋆
τ

τ

)
satisfies Qπ⋆

τ = Q⋆
τ and V π⋆

τ = V ⋆
τ simultaneously for all

s ∈ S (Zhan et al., 2023). In the following, we will overload notations of real functions defined on
S × A and allow them to only take a state input and return a vector in R|A|. For example, Qπ

τ (s)
denotes a vector for which the ith entry i ∈ {1, . . . , |A|} is equal to Qπ

τ (s, i). Finally we define

R̄ :=
Rx + γτ log |A|

1− γ
, (4)

as the finite upper-bound of ∥Qπ
τ ∥∞ for any policy π, that can be computed by assuming the agent

collects the highest reward and entropy possible at every step.

3.1 ENTROPY-REGULARIZED POLICY MIRROR DESCENT

To find π⋆, we focus on Entropy-regularized Policy Mirror Descent (EPMD) methods (Neu et al.,
2017; Abbasi-Yadkori et al., 2019; Lazic et al., 2021) and notably on those that regularize both the
policy update and the Q-function (Zhan et al., 2023; Lan, 2022). The PMD setting discussed here is
also equivalent to the regularized natural policy gradient algorithm on softmax policies of Cen et al.
(2022). Let πk be the policy at iteration k of EPMD, and Qk

τ := Qπk
τ its Q-function. The next policy

in EPMD is the solution of the following optimization problem:

for all s ∈ S, πk+1(s) = argmax
p∈∆(A)

{
Qk

τ (s) · p− τh(p)− ηDKL(p;πk(s))
}
, (5)

∝ πk(s)
η

η+τ exp

(
Qk

τ (s)

η + τ

)
, (6)

where DKL(p; p
′) = p·(log p−log p′) and η > 0 is the DKL regularization weight. The closed form

expression in Eq. 6 is well-known and its proof can be checked in Zhan et al. (2023) for instance.
We let α = 1

η+τ and β = η
η+τ , hereafter referred to as a step-size and a decay factor respectively.

Our paper focuses on single task RL but sees the policy update in Eq. 5 through the lens of CL.
Please see App. E for more details. Let ξk be a real function of S×A for any positive integer k. We

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

assume as the initial condition that π0 ∝ exp(ξ0) with ξ0 = 0, i.e. π0 is uniform over the actions.
At every iteration of EPMD, the update in Eq. 6 yields the following logits update

πk+1 ∝ exp(ξk+1), ξk+1 = βξk + αQk
τ . (7)

From the recursive definition of ξk+1, it can easily be verified that ξk+1 = α
∑k

i=0 β
k−iQi

τ . The
convergence of EPMD is characterized by the following theorem
Theorem 3.1 (Adapted from Zhan et al. (2023), Thm. 1). At iteration k of EPMD, the Q-function
of πk satisfies

∥∥Q⋆
τ −Qk

τ

∥∥
∞ ≤ γdk−1

(∥∥Q⋆
τ −Q0

τ

∥∥
∞ + 2β ∥Q⋆

τ∥∞
)
, with d = β + γ(1− β) < 1.

The above theorem shows that by following EPMD, we have a linear convergence of Qk
τ towards

Q⋆
τ , with a convergence rate of d. In the next section, we will be interested in an approximate version

of EPMD, where the Q-function Qk
τ is computed exactly but where ξk is limited to summing at most

M Q-functions. We name this setting finite-memory EPMD. In the main paper, we only focus for
clarity on error introduced in the policy update introduced by this deletion mechanism. Results for
additional errors in the policy evaluation are deferred to App. A.

4 FINITE-MEMORY POLICY MIRROR DESCENT

Let M > 0 be a positive integer defining the maximum number of Q-functions we are allowed to
store. As a warm-up, we first show in Sec. 4.1 a straightforward implementation of finite-memory
EPMD, where we simply truncate the sum of the Q-functions in Eq. 1 to the last M Q-functions. The
convergence analysis of this algorithm is largely based on the analysis of the approximate EPMD of
Zhan et al. (2023), which assumes a bounded sub-optimality of the policy update procedure (Eq. 5).
Compared to the proof from the prior work, the main step in our setting consists in quantifying
the effect of the finite-memory assumption to the policy improvement step. As in the class of ap-
proximate algorithms analyzed in Zhan et al. (2023), the algorithm in Sec. 4.1 always exhibits an
irreducible error for a finite M . To address this issue, we introduce a weight corrected algorithm
that rescales the policy in Eq. 1 to account for its finite-memory nature. This rescaling introduces
long range dependencies that complicate the analysis, but can result in convergence to Q⋆

τ , provided
a large enough M .

4.1 VANILLA FINITE-MEMORY EPMD

Consider an approximate EPMD setting where the update to ξk is given by

ξk+1 = βξk + α
(
Qk

τ − βMQk−M
τ

)
, (8)

with Qk−M
τ := 0 whenever k − M < 0. Compared to ξk+1 in Eq. 7, we simultaneously add the

new Qk
τ and ‘delete’ an old Q-function by subtracting Qk−M

τ in Eq. 8. As a result, ξk+1 can now be
written as ξk+1 = α

∑M−1
i=0 βiQk−i

τ , and thus it is a finite-memory EPMD algorithm using at most
M Q-functions.

We now want to investigate if we have any convergence guarantees of Qk
τ towards Q⋆

τ as for EPMD.
Let the policy π̃k be defined by π̃k ∝ exp(ξ̃k) with ξ̃k = α

∑M−2
i=0 βiQk−1−i

τ . Here, ξ̃k = ξk −
αβM−1Qk−M

τ , i.e. it is obtained by deleting the oldest Q-function from ξk and thus is a sum of
M − 1 Q-functions. The update in Eq. 8 can now be rewritten as ξk+1 = βξ̃k + αQk

τ . From Sec. 3,
we recognize this update as the result of the following optimization problem:

for all s ∈ S, πk+1(s) = argmax
p∈∆(A)

{
Qk

τ (s) · p− τh(p)− ηDKL(p; π̃k(s))
}
. (9)

In this approximate scheme, we compute the DKL regularization w.r.t. π̃k instead of the previous
policy πk. This can negatively impact the quality of πk+1 as it might force πk+1 to stay close to the
potentially bad policy π̃k. In the following theorem, we provide a form of an approximate policy
improvement of πk+1 on πk, that depends on how close π̃k is to πk. This theorem applies to a
generic policy π̃k, therefore it can be of interest beyond the scope of this paper.
Theorem 4.1 (Approximate policy improvement). Let πk ∝ exp(ξk) be a policy with associated
Q-function Qk

τ . Let π̃k ∝ exp(ξ̃k) be an arbitrary policy. Let πk+1 be the policy optimizing Eq. 9

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

w.r.t. the hereby defined Qk
τ and π̃k, then the Q-function Qk+1

τ of πk+1 satisfies

Qk+1
τ ≥ Qk

τ − γη
maxs∈S ∥(πk − π̃k)(s)∥1

∥∥∥ξk − ξ̃k

∥∥∥
∞

1− γ
. (10)

The proof of Thm. 4.1 and all future proofs are given in App. A. Applying Thm. 4.1 to our setting
gives the following policy improvement lower bound
Corollary 4.1.1. Let πk ∝ exp(ξk) be a policy with associated Q-function Qk

τ , such that ξk =

α
∑M−1

i=0 βiQk−1−i
τ . Let π̃k ∝ exp(ξ̃k) be the policy such that ξ̃k = α

∑M−2
i=0 βiQk−1−i

τ . Let πk+1

be the policy optimizing Eq. 9, then the Q-function Qk+1
τ of πk+1 satisfies

Qk+1
τ ≥ Qk

τ − γβM min
{
2, αβM−1R̄

}
R̄

1− γ
. (11)

In vanilla EPMD, it is guaranteed that Qk+1
τ ≥ Qk

τ (Zhan et al., 2023). In this approximate setting,
we can bring the error arbitrarily close to 0 through the term βM by choosing a large enough M ,
since β < 1.

Having quantified the error in the policy improvement step, we follow the general steps of the proof
of approximate EPMD of Zhan et al. (2023) and come to the following convergence guarantees.
Theorem 4.2 (Convergence of vanilla finite-memory EPMD). After k ≥ 0 iterations of Eq. 8, we
have that

∥∥Q⋆
τ −Qk

τ

∥∥
∞ ≤ γdk

(
∥Q⋆

τ∥∞ +
∥∥Q0

τ

∥∥
∞

)
+ γβk

∥∥Q0
τ

∥∥
∞ + βMC1, with d = β+ γ(1−

β) < 1 and C1 = γR̄
1−γ

[
γ min{2,αβM−1R̄}

(1−β)(1−γ) + 2

]
.

Since β < d < 1, the slowest term vanishes at a rate of d as with exact EPMD. However, we
eventually reach an error of βMC1, that does not decrease as k increases, and that we can only
control by increasing the memory size M . A problem with the current algorithm is that even if all
past Q-functions are equal to Q⋆

τ , then τξk = (1 − β)
∑M−1

i=0 βiQ⋆
τ = (1− βM)Q⋆

τ , whereas we
know that asymptotically ξk should converge to the logits of π⋆ (Sec. 3) which are Q⋆

τ

τ . This suggests
a slightly modified algorithm that rescales ξk by 1− βM , which we analyze in the next section.

4.2 WEIGHT CORRECTED FINITE-MEMORY EPMD

Consider now the alternative update to ξk given by

ξk+1 = βξk + αQk
τ +

αβM

1− βM
(Qk

τ −Qk−M
τ), (12)

where Qk−M
τ := 0 whenever k −M < 0. In contrast to the vanilla algorithm in Sec. 4.1, we now

delete the oldest Q-function in ξk and also slightly overweight the most recent Q-function to ensure
that the Q-function weights sum to 1. Indeed, assuming that ξ0 := 0, we can show (see App. A.4.1
for a proof) for all k ≥ 0 that the logits only use the past M Q-functions and are given by

ξk+1 =
α

1− βM

M−1∑
i=0

βiQk−i
τ . (13)

Similar to the previous section, we introduce a policy π̃k ∝ exp(ξ̃k) with ξ̃k = ξk + αβM−1

1−βM (Qk
τ −

Qk−M
τ) such that logits of πk+1 are given by ξk+1 = βξ̃k + αQk

τ . This form of ξk+1 implies that
πk+1 satisfies the policy update in Eq. 9, and thus Thm. 4.1 applies and we have
Corollary 4.1.2. Let πk ∝ exp(ξk) be a policy with associated Q-function Qk

τ , such that ξk =
α

1−βM

∑M−1
i=0 βiQk−1−i

τ . Let π̃k ∝ exp(ξ̃k) be the policy such that ξ̃k = ξk+
αβM−1

1−βM (Qk
τ−Qk−M

τ).
Let πk+1 be the policy optimizing Eq. 9 with the hereby defined Qk

τ and π̃k, then the Q-function Qk+1
τ

of πk+1 satisfies

Qk+1
τ ≥ Qk

τ − 2γβM

∥∥Qk
τ −Qk−M

τ

∥∥
∞

(1− γ)(1− βM)
. (14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Compared to the approximate policy improvement of Sec. 4.1, we see that the lower-bound in Eq. 14
depends on

∥∥Qk
τ −Qk−M

τ

∥∥
∞ instead of just

∥∥Qk−M
τ

∥∥
∞. Thus, we can expect that as the Q-

functions converge to Q⋆
τ , we get tighter and tighter guarantees on the policy improvement step,

which in turn guarantees convergence to Q⋆
τ without the residual error of Sec. 4.1. The next two

results show that indeed, for M large enough, the finite-memory EPMD scheme defined by Eq. 12
leads to convergence to Q⋆

τ . Lem. 4.3 provides an upper bounding sequence for
∥∥Q⋆

τ −Qk
τ

∥∥
∞.

Lemma 4.3. Let xk+1 = d1xk + d2xk−M be a sequence such that ∀k < 0, xk =
∥Q⋆

τ∥∞
γ , x0 =

∥Q⋆
τ∥∞ +

∥∥Q0
τ

∥∥
∞, d1 := β + γ 1−β

1−βM + γc2, d2 := 2c1γ
2

1−γ , c1 := βM

1−βM , and c2 :=
(

1+γ
1−γ − β

)
c1.

After k ≥ 0 iterations of Eq. 12, we have that
∥∥Q⋆

τ −Qk
τ

∥∥
∞ ≤ xk.

Then, we compute values of M for which the sequence xk converges to 0 and characterize the
convergence rate of

∥∥Q⋆
τ −Qk

τ

∥∥
∞ through Thm. 4.4.

Theorem 4.4 (Convergence of weight corrected finite-memory EPMD). With the definitions of
Lemma 4.3, if M > log (1−γ)2(1−β)

γ2(3+β)+1−β (log β)
−1 then limk→∞ xk = 0. Moreover, ∀k ≥ 0,∥∥Q⋆

τ −Qk
τ

∥∥
∞ ≤ (d1+d2d

−1
3)k max

{
∥Q⋆

τ∥∞
γ , ∥Q⋆

τ∥∞+
∥∥Q0

τ

∥∥
∞

}
, where d3 :=

(
dM1 + d2

1−dM
1

1−d1

)
and limM→∞ d1 + d2d

−1
3 = β + γ(1− β).

Thm. 4.4 defines a minimum memory size that guarantees convergence to Q⋆
τ . This minimum M

depends only on β and γ, and is usually within the range of practical values: for example, with
γ = 0.99 and β = 0.95, the minimum M suggested by Thm. 4.4 is 265, which is reasonable in
terms of memory and computation with current GPUs (we used M = 300 in all our experiments).
As can be expected, these values of M are generally pessimistic and in practice we did not observe
better performance when using as large M as suggested by Thm. 4.4.

In terms of convergence rate, d1+d2d
−1
3 given in Thm 4.4 tends to d—the convergence rate of exact

EPMD—as M goes to infinity. Thus, it is slower than exact EPMD, and slower than the algorithm
in Sec. 4.1, but unlike the latter it does not have an irreducible error and converges to Q⋆

τ .

5 STACKED NEURAL NETWORKS

To study finite-memory EPMD in the memory regimes suggested by Thm. A.6, we propose the
Stacked NN architecture (SNN, illustrated in Fig. 1) that makes efficient use of GPUs to compute
multiple Q-values in parallel, and we call the resulting algorithm StaQ. An SNN is parameterized by
M , the maximum number of networks kept in memory. The main operation of an SNN is a push
function, that “stacks” an input NN into an SNN. The stacking consists in building tensors with one
extra dimension for every weight matrix of the NN Q-function. For instance, let Ak be a 256× 256
weight matrix of a hidden layer of (the neural approximation of) Qk

τ . Let Ak be a k × 256 × 256
tensor of the SNN that stores all past Ai weight matrices for i ≤ k. In the forward pass of the SNN,
to compute past Q-functions Qi

τ for i ≤ k, we use the batch matrix operation of PyTorch (Paszke
et al., 2017) on Ak to make full use of the GPU parallel computing power. Finally, if the SNN
contains more than M NNs after a push operation, the oldest NN is deleted from the SNN in a
”first in first out” fashion. This push operation of SNNs currently supports multi-layer Perceptron
NN architectures only. We leave the extension to other neural architectures such as CNNs (LeCun
et al., 2015) or LSTMs (Hochreiter & Schmidhuber, 1997) to future work.

To further reduce the impact of a large M , we pre-compute ξk for all entries in the replay buffer1 at
the start of policy evaluation. The logits ξk are used to sample on-policy actions when computing
the targets for Qk

τ . As a result of the pre-computation, during policy evaluation, forward and back-
ward passes only operate on the current Q-function and hence the impact of large M is minimized.
Beyond policy evaluation, computing ξk is also used in data collection by the behavior policy πb

k
that typically relies on computing πk (see Sec. 6). Conversely, the policy update consists only of the
above push operation, and thus, is optimization free and (almost) instantaneous. Table 1 shows the
training time of StaQ over 5 million steps as a function of M for two environments. Varying M (up
to 500) or the size of the state space has little impact on the runtime of StaQ when running on GPU.

1Since we use small replay buffer sizes of 50K transitions, we are likely to process each transition multiple
times (25.6 times in expectation in our experiments) making this optimization worthwhile.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Memory size M 1 50 100 300 500

Hopper-v4 Training time (hrs) 9.8 10.1 10.3 10.3 10.9

Ant-v4 Training time (hrs) 10.4 10.7 10.3 11 10.5

Table 1: Training times for StaQ (5 million steps), as a function of M , on Hopper-v4 (state dim.=11)
and Ant-v4 (state dim. = 105), computed on an NVIDIA Tesla V100 and averaged over 3 seeds.

0 1 2 3 4 5

Env steps (1M)

-80

-75

-70

-65

-60

Un
di

sc
ou

nt
ed

 P
ol

ic
y

Re
tu

rn Acrobot-v1

0 1 2 3 4 5

Env steps (1M)

0

1000

2000

3000

4000
Walker2d-v4

0 1 2 3 4 5

Env steps (1M)

500

1000

1500

2000

2500

3000

Ant-v4

0 1 2 3 4 5

Env steps (1M)

0

1000

2000

3000

4000

5000

Humanoid-v4

0 1 2 3 4 5

Env steps (1M)

0

50

100

150

200

250

MinAtar/SpaceInvaders-v1

StaQ PPO TRPO M-DQN DQN

Figure 2: Policy return of StaQ, compared with deep RL baselines. Plots show mean and one
standard deviation computed over 10 seeds. StaQ matches or exceeds state-of-the-art on several
tasks and has generally lower variance. Even when the variance appears to be of the same order
than the deep RL baselines, the oscillations within runs are generally reduced, see e.g. Fig. 3. See
App. B.1 for all results.

6 EXPERIMENTS

In this section, we assess the empirical merits of StaQ, paying attention to both the performance and
stability. Note that, in the context of Continual Learning, we can relate this to the stability-plasticity
trade-off, since plasticity in this single-task setting is measured by the policy return. Regarding sta-
bility, we check if the averaging over the large number of Q-functions (several hundred) done by
SNN improves the stability of the learning process, in terms of reducing performance oscillations
across iterations of the same seed. Naturally, we also investigate the hyper-parameter M to deter-
mine values for which the above stability might manifest. Finally, we discuss some of the limitations
of our algorithm and how they open new perspectives towards a fully reliable deep RL solver.

Environments. We use all 9 environments suggested by Ceron & Castro (2021) for comparing
deep RL algorithms with finite action spaces, comprising 4 classic control tasks from Gymna-
sium (Towers et al., 2023) and all MinAtar tasks (Young & Tian, 2019). To that we add 5 Mujoco
tasks (Todorov et al., 2012), adapted to discrete action spaces by considering only extreme actions
similarly to (Seyde et al., 2021). To illustrate, the discrete version of a Mujoco task with action
space A = [−1, 1]d consists in several d dimensional vectors that have zeroes everywhere except at
entry i ∈ {1, . . . , d} that can either take a value of 1 or −1; to that we add the zero action, leading
to a total of 2d+ 1 actions.

Baselines. We compare StaQ against the value iteration algorithm DQN (Mnih et al., 2015)
and its entropy-regularized variant M-DQN (Vieillard et al., 2020), the policy gradient algorithm
TRPO (Schulman et al., 2015) as it uses a DKL regularizer and PPO (Schulman et al., 2017)2.
SAC (Haarnoja et al., 2018) is another popular deep RL baseline that uses entropy regularization but
is not adapted for discrete action environments, as discussed in App. D. Comparisons with baselines
are averaged over 10 seeds and show the mean and standard deviation of the return. The return is
computed by evaluating every 100K steps the current deterministic policy by averaging 50 rollouts.
Hyperparameters for StaQ and the baselines are provided in App. F.

StaQ’s components. We consider the behavior policy πb
k that is an ϵ-softmax policy over πk —

by analogy with ϵ-greedy policies, which mixes the softmax policy πk and a uniform policy with
probabilities (1 − ϵ) and ϵ respectively. We use the ϵ-softmax policy instead of πk as we found
that using only πk can cause catastrophic forgetting in the Q-function, as discussed in Sec. 6.3. For

2For TRPO and PPO, we use the implementation provided in stable-baselines3 (Raffin et al., 2021),
while we implemented our own PyTorch version of (M)-DQN.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5
Env step (1M)

1000

750

500

250

0

250

500

750

1000

De
vi

at
io

n
fro

m
 m

ea
n

re
tu

rn

Hopper-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Hopper-v4
TRPO

(a) Return of individual runs, centered at each step.

0 1 2 3 4 5
Env step (1M)

1000

2000

3000

4000

5000

Un
di

sc
ou

nt
ed

 p
ol

icy
 re

tu
rn

Humanoid-v4

M=100
M=50
M=500
M=300

0 1 2 3 4 5
Env step (1M)

74

72

70

68

66

64

62

60
Acrobot-v1

M=1
M=5
M=100
M=50
M=500
M=300

(b) Impact of memory size M.

Figure 3: Left: Deviation from mean policy returns for individual runs on Hopper, comparing StaQ
and the closest performing baseline TRPO. Returns are centered at every timestep by subtracting the
mean across 10 seeds. In general, individual runs of StaQ have significantly lower variance across
timesteps compared to TRPO. For clarity, we only plot the first three seeds. See App B.2 for further
environments and algorithms. Right: Policy returns under different choice of M . On the simpler
Acrobot task, M > 5 seems sufficient but on Humanoid, even M = 100 seems insufficient. Plots
showing mean and one standard deviation computed over 5 seeds.

learning Qk
τ , we used a similar approach to SAC (Haarnoja et al., 2018), sampling an action from the

current policy and use an ensemble of two target Q-functions updated in a hard manner. At the start,
the NN for Q0

τ is initialized with the zero output, so that π0 is a uniform policy, for all consecutive
iterations the NN for Qk

τ is initialized at the computed Qk−1
τ (to make the transfer from Qk

τ to
Qk−1

τ smoother). When computing the Q-values in the next states, we aggregate the target values
by taking either the min or the mean of the two Q-functions. We discuss the impact of this choice
in App. B.5. For the full set of hyperparameters consult App. F. To account for the varying action
dimension |A| of the environments, we set the scaled entropy coefficient τ̄ as a hyperparameter,
defined by τ̄ = τ log |A|, rather than directly setting τ . Furthermore, the entropy weight is linearly
annealed from its minimum and maximum values over the first 1 million timesteps.

6.1 STABILITY AND PERFORMANCE OF STAQ

A comparison of StaQ to deep RL baselines is shown for a selection of environments in Fig. 2,
and for all environments in App. B.1. In general, the performance matches or exceeds previous
state-of-the-art algorithms, with lower variance and less performance oscillation. The improved
stability of StaQ is more clearly seen when we look at the variability within individual runs. An
example of this is shown in Fig. 3 (Left) for Hopper, where we plot the return for each seed, centered
by subtracting the mean return across all seeds at each evaluation timestep. More comparisons
are provided in App. B.2. These experiments confirm the preliminary results of Abbasi-Yadkori
et al. (2019) that a policy averaging over multiple Q-functions stabilizes learning. While prior work
considered only saving the last 10 Q-functions, we show next that, on more complex tasks, saving
an order of magnitude more Q-functions can still have positive effects on stability and performance.

6.2 THE IMPACT OF THE MEMORY-SIZE M

According to Sec. 4.2, M is a crucial parameter that should be large enough to guarantee the con-
vergence. The M estimation obtained from Thm. A.6 may be very conservative in practice. In
Fig. 3 (Right), we present the results for different choices of M for Acrobot and Humanoid. De-
spite that some low M ≤ 100 (M ≤ 10 for Acrobot) can still give us decent average performance,
stability is negatively affected, which is especially pronounced for more challenging environment
such as Humanoid. Conversely, higher M = 500, while being more expensive to compute, does
not lead to any improvement either in terms of performance or stability. Thus, M = 300 is the best
compromise between stability and compute time. More environments are shown in App B.2.

6.3 CATASTROPHIC FORGETTING IN THE Q-FUNCTION

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Policy return of
StaQ for two different ϵ-
softmax behavior policies,
with ϵ = 0.05 or ϵ =
0. Plot shows mean and
one standard deviation over
5 seeds.

As illustrated in Fig. 4, when the behavior policy πb
k is the current soft-

max policy πk, there are more performance drops than when using an
ϵ-softmax policy introduced earlier. To understand this behavior, we
have recorded the Q-values across 100 states for two variants of StaQ
that only differ in whether or not the behavior policy adds a probability
ϵ = 0.05 of picking actions uniformly at random. The results are shown
in App. B.4. On several states, the Q-values show larger variability when
ϵ = 0.0 than when ϵ = 0.05, which itself creates instability in the policy
as discussed in App. B.4. While ϵ = 0.05 improves stability, the plot
in the appendix still shows occurrences of large and sudden changes in
the Q-values, which can still negatively impact performance. Moreover,
ϵ-softmax policies, similarly to ϵ-greedy ones, might prevent deep explo-
ration (Osband et al., 2016) and their off-policy nature might complicate
learning (Kumar et al., 2020). In this paper, we focus on the instability
of the policy; we believe that proper continual learning treatment of the Q-function, as discussed in
Sec. 7, could potentially fix all remaining instabilities in deep RL.

6.4 ENTROPY REGULARIZATION DOES NOT SOLVE EXPLORATION IN RL

StaQ is generally competitive with the state-of-the-art, but it might fail on some environments such
as MountainCar or a few MinAtar environments. These environments are considered as hard explo-
ration ones by Ceron & Castro (2021), and the combination of a deterministic policy with ϵ-greedy
exploration seems to fare better in some tasks than the softmax policies of StaQ, PPO and TRPO, as
also discussed by Vieillard et al. (2020), App. B.2. This is especially evident in MountainCar, where
the initial maximum-entropy policy that picks an action uniformly at random always observes the
same reward and remains close to the uniform policy throughout the learning process. To address
this challenge, we have experimented with ϵ-greedy behavior policies in MountainCar as discussed
in App. B.5, which improves performance. Although we used a fixed entropy weight for all experi-
ments, we found that on the harder MinAtar environments, tuning the values of the entropy weight
can improve performance, as presented in App. B.5. Overall, we believe that exploration is an or-
thogonal problem to the stability of the policy update we address in this paper, and while entropy
regularization is often used as an exploration heuristic, we only use its stabilizing properties here,
and leave the development of theoretically sound exploration strategies to future work.

7 DISCUSSION AND FUTURE WORK

In this paper, we have proposed to stabilize the policy update of approximate policy iteration by
averaging over a very large number M of past Q-functions. Surprisingly, even when M is large, the
final computational burden is small on modern hardware mostly thanks to the proposed SNN archi-
tecture. The resulting policy update has a solid theoretical foundation and clear empirical benefits
as it greatly reduces learning instability on several tasks. Yet, while the policy update is more stable,
instability in learning the Q-function remains and would benefit from a more thorough continual
learning treatment. To prevent the catastrophic forgetting of low probability actions, one promising
idea would be to better manage the replay buffer to keep representative samples, as done in CL by
Aljundi et al. (2019) for example. Another interesting line of research from the CL community is
the dual architecture based on the complementary learning systems theory (e.g. Lee et al. (2016)).
Adapted to RL, the Q-function would be split between a fast learning—but potentially unstable—
component that adapts to the most recent samples and a slower learning component that is stabilized
using, for example, growing neural architectures as in this work to avoid catastrophic forgetting. If
the neural architecture of the Q-function is much larger than the one used in this paper, it might be
relevant to compress periodically the policy during learning as done in CL (Schwarz et al., 2018).
Finally, extending StaQ to continuous action domains could be done as in SAC (Haarnoja et al.,
2018), using an extra actor network learned by minimizing the DKL to a soft policy. This will lose
the optimization-free and exact nature of the policy update but may still result in improved stabil-
ity if we replace the soft policy exp(Qk

τ) used by SAC with exp(ξk) which stabilizes the target by
averaging over a large number of past Q-functions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We provide the code of StaQ with the examples of launching files in the supplementary material. In
addition, we carefully report the hyperparameters used for all runs of StaQ and baseline algorithms,
see App. F. The code for reproducing the baselines results is withheld for anonymity reasons, as it
uses a publicly available in-house library.

REFERENCES

Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellert
Weisz. POLITEX: Regret bounds for policy iteration using expert prediction. In International
Conference on Machine Learning, 2019.

David Abel, Andre Barreto, Benjamin Van Roy, Doina Precup, Hado P van Hasselt, and Satinder
Singh. A definition of continual reinforcement learning. In Advances in Neural Information
Processing Systems, 2023.

Carlo Alfano, Rui Yuan, and Patrick Rebeschini. A novel framework for policy mirror descent with
general parameterization and linear convergence. In Advances in Neural Information Processing
Systems, 2023.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems, 2019.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-DQN: Variance reduction and stabiliza-
tion for deep reinforcement learning. In International Conference on Machine Learning, 2017.

Mohammad Gheshlaghi Azar, Vicenç Gómez, and Hilbert J. Kappen. Dynamic policy programming.
Journal of Machine Learning Research, 2012.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
2013.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of
natural policy gradient methods with entropy regularization. Operations Research, 2022.

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insight-
ful and inclusive deep reinforcement learning research. In International Conference on Machine
Learning, 2021.

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Rieman-
nian walk for incremental learning: Understanding forgetting and intransigence. In European
Conference on Computer Vision, 2018.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

M. P. Deisenroth, G. Neumann, and J. Peters. A Survey on Policy Search for Robotics. Foundations
and Trends in Robotics, 2013.

Riccardo Della Vecchia, Alena Shilova, Philippe Preux, and Riad Akrour. Entropy regularized
reinforcement learning with cascading networks. arXiv, 2022.

Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture. Advances in
neural information processing systems, 2, 1989.

Roy Fox, Ari Pakman, and Naftali Tishby. G-learning: Taming the noise in reinforcement learning
via soft updates. In Conference on Uncertainty in Artificial Intelligence, 2016.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized Markov decision
processes. In Proceedings of the 36th International Conference on Machine Learning (ICML),
2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sertan Girgin and Philippe Preux. Basis function construction in reinforcement learning using
cascade-correlation learning architecture. In IEEE International Conference on Machine Learn-
ing and Applications, 2008.

S. Grossberg. Studies of Mind and Brain: Neural Principles of Learning, Perception, Development,
Cognition, and Motor Control. Boston studies in the philosophy of science. D. Reidel, 1988.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17. JMLR.org, 2017.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Algo-
rithms and Applications. In International Conference on Machine Learning (ICML), 2018.

Peter Henderson. Reproducibility and reusability in deep reinforcement learning. Master’s thesis,
McGill University, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 1997.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A closer look at deep policy gradients. In International Con-
ference on Learning Representations, 2020.

Sham M Kakade. A natural policy gradient. In Advances in Neural Information Processing Systems,
2001.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-
ment learning: A review and perspectives. Journal of Artificial Intelligence Research, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
2017.

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforcement
learning via distribution correction. In Advances in Neural Information Processing Systems, 2020.

Saurabh Kumar, Henrik Marklund, Ashish Rao, Yifan Zhu, Hong Jun Jeon, Yueyang Liu, and Ben-
jamin Van Roy. Continual learning as computationally constrained reinforcement learning. arXiv,
2023.

Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of Machine Learn-
ing Research, 2003.

Guanghui Lan. Policy mirror descent for reinforcement learning: linear convergence, new sampling
complexity, and generalized problem classes. Mathematical Programming, 2022.

Nevena Lazic, Dong Yin, Yasin Abbasi-Yadkori, and Csaba Szepesvari. Improved regret bound
and experience replay in regularized policy iteration. In International Conference on Machine
Learning, 2021.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015.

Kyungjae Lee, Sungyub Kim, Sungbin Lim, Sungjoon Choi, and Songhwai Oh. Tsallis reinforce-
ment learning: A unified framework for maximum entropy reinforcement learning. arXive, 2019.

Sang-Woo Lee, Chung-Yeon Lee, Dong-Hyun Kwak, Jiwon Kim, Jeonghee Kim, and Byoung-
Tak Zhang. Dual-memory deep learning architectures for lifelong learning of everyday human
behaviors. In International Joint Conference on Artificial Intelligence, 2016.

Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and Natalia
Dı́az-Rodrı́guez. Continual learning for robotics: Definition, framework, learning strategies, op-
portunities and challenges. Information Fusion, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In International Conference
on Machine Learning, 2019.

Zhizhong Li and Derek Hoiem. Learning without forgetting. In European Conference on Computer
Vision, 2016.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation. Academic Press, 1989.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 2015.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
decision processes. arXiv, 2017.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in Neural Information Processing Systems, 2016.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In Advances in Neural Information Processing Systems Workshop, 2017.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 1995.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. In Advances in Neural Information Processing Systems, 2019.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR, 2016.

John Schulman, Sergey Levine, Michael Jordan, and Pieter Abbeel. Trust Region Policy Optimiza-
tion. International Conference on Machine Learning, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv, 2017.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
ual learning. In Proceedings of the 35th International Conference on Machine Learning, 2018.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Wulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous control with
bernoulli policies. In Advances in Neural Information Processing Systems, 2021.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 2016.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation, 2002.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In International Conference on Intelligent Robots and Systems (IROS), 2012.

13

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Samuele Tosatto, Matteo Pirotta, Carlo d’Eramo, and Marcello Restelli. Boosted fitted q-iteration.
In International Conference on Machine Learning, pp. 3434–3443. PMLR, 2017.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, March 2023. URL https://zenodo.org/record/8127025.

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Mo-
dayil. Deep reinforcement learning and the deadly triad. arXiv, 2018.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement learning. In Ad-
vances in Neural Information Processing Systems, 2020.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani
Gilpin, Piyush Khandelwal, Varun Raj Kompella, HaoChih Lin, Patrick MacAlpine, Declan Oller,
Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory
Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Kitano. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 2022.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. In Advances in Neural Information Pro-
cessing Systems, 2018.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In International Conference on Learning Representations, 2018.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, 2017.

Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D. Lee, and Yuejie Chi. Policy
mirror descent for regularized reinforcement learning: A generalized framework with linear con-
vergence. SIAM Journal on Optimization, 2023.

Brian D. Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal
Entropy. 7 2018.

A PROOFS

This section includes proofs of the lemmas and theorems of the main paper.

A.1 PROPERTIES OF ENTROPY REGULARIZED BELLMAN OPERATORS

We first start with a reminder of some basic properties of the (entropy regularized) Bellman oper-
ators, as presented in (Geist et al., 2019). Within the MDP setting defined in Sec. 3, let Tπ

τ be the
operator defined for any map f : S ×A 7→ R by

(Tπ
τ f) (s, a) = R(s, a) + γEs′,a′ [f(s′, a′)− τh(π(s′))], (15)

For this operator we will need the three following properties.

Proposition A.1 (Contraction). Tπ
τ is a γ-contraction w.r.t. the ∥.∥∞ norm, i.e. ∥Tπ

τ f − Tπ
τ g∥∞ ≤

γ ∥f − g∥∞ for any real functions f and g of S ×A.

Proposition A.2 (Fixed point). Qπ
τ is the unique fixed point of the operator Tπ

τ , i.e. Tπ
τ Q

π
τ = Qπ

τ .

14

https://zenodo.org/record/8127025

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Let f , g be two real functions of S×A. We say that f ≥ g iff f(s, a) ≥ g(s, a) for all (s, a) ∈ S×A.

Proposition A.3 (Monotonicity). Tπ
τ is monotonous, i.e. if f ≥ g then Tπ

τ f ≥ Tπ
τ g.

Let the Bellman optimality T ⋆
τ operator be defined by

(T ⋆
τ f) (s, a) = R(s, a) + γEs′

[
max

p∈∆(A)
f(s′) · p− τh(p)

]
. (16)

For the Bellman optimality operator we need the following two properties.

Proposition A.4 (Contraction). T ⋆
τ is a γ-contraction w.r.t. the ∥.∥∞ norm, i.e. ∥T ⋆

τ f − T ⋆
τ g∥∞ ≤

γ ∥f − g∥∞ for any real functions f and g of S ×A.

Proposition A.5 (Optimal fixed point). T ⋆
τ admits Q⋆

τ as a unique fixed point, satisfying T ⋆
τ Q

⋆
τ =

Q⋆
τ .

Finally, we will make use of the well known property that the softmax distribution is entropy maxi-
mizing (Geist et al., 2019). Specifically, we know that the policy πk as defined in Eq. 7 satisfies the
following property

for all s ∈ S, πk(s) = argmax
p∈∆(A)

ξk(s) · p− h(p), (17)

A.2 PROOF OF THEOREM 4.1

We present in this appendix proofs for a more general setting where the Q-functions are inexact.
Results with exact policy evaluation of the main paper can be recovered by simply setting the policy
evaluation error ϵeval, as defined below, to zero and by replacing Q̃τ by Qτ .

Assumption A.1. We assume that we can only compute Qk
τ approximately, which is a Q-value

function of πk. We use Q̃k
τ to denote the approximate Qk

τ and we assume that there exists ϵeval < ∞
such that the following holds for any k∥∥∥Qk

τ − Q̃k
τ

∥∥∥
∞

≤ ϵeval. (18)

Note that Eq. 18 implies that for any s, a,

|Qk
τ (s, a)− Q̃k

τ (s, a)| ≤ ϵeval (19)

or equivalently

−ϵeval ≤ Qk
τ (s, a)− Q̃k

τ (s, a) ≤ ϵeval. (20)

As the exact Qk
τ is no longer available, the policy update is done in the inexact policy evaluation

with Q̃k
τ :

for all s ∈ S, πk+1(s) = argmax
p∈∆(A)

{
Q̃k

τ (s) · p− τh(p)− ηDKL(p; π̃k(s))
}
. (21)

We restate below the approximate policy improvement theorem in its more general form, and Theo-
rem 4.1 can be recovered for ϵeval = 0.

Theorem A.1 (Approximate policy improvement with inexact policy evaluation). Let πk ∝ exp(ξk)

be a policy with associated evaluated Q-function Q̃k
τ . Let π̃k ∝ exp(ξ̃k) be an arbitrary policy. Let

πk+1 be the policy optimizing Eq. 21 w.r.t. the hereby defined Q̃k
τ and π̃k, then the Q-function Qk+1

τ
of πk+1 satisfies

Qk+1
τ ≥ Q̃k

τ − γη
maxs∈S ∥(πk − π̃k)(s)∥1

∥∥∥ξk − ξ̃k

∥∥∥
∞

1− γ
− ϵeval

1− γ
. (22)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. Let πk ∝ exp(ξk) and let π̃k ∝ exp(ξ̃k) with X := ξk− ξ̃k. Define πk+1 as in Eq. 21. From
Sec. 3, we have that πk+1 ∝ exp(ξk+1) with the change that now an approximate Q̃k

τ is used in the
update:

ξk+1 = βξ̃k + αQ̃k
τ . (23)

From the optimality of πk+1 w.r.t. the policy update optimization problem in Eq. 21 we have

Q̃k
τ (s) · πk(s)− τh(πk(s)) ≤ Q̃k

τ (s) · πk+1(s)− τh(πk+1(s))

− ηDKL(πk+1(s); π̃k(s)) + ηDKL(πk(s); π̃k(s)),
(24)

≤ Q̃k
τ (s) · πk+1(s)− τh(πk+1(s)) + ηDKL(πk(s); π̃k(s)), (25)

where the last inequality is due to the non-negativity of the DKL. Let us try now to upper bound
DKL(πk(s); π̃k(s)) for any s ∈ S. For clarity, we will drop s from the notations, and only write
for e.g. ξ(a) instead of ξk(s, a). We define Z =

∑
a exp(ξ(a)) and Z̃ =

∑
a exp(ξ̃(a)), where the

sums are over all a ∈ A.

DKL(πk; π̃k) = Eπ[log π(a)− log π̃(a)], (26)

= Eπ

[
log

exp ξ(a)

Z
− log

exp ξ̃(a)

Z̃

]
, (27)

= Eπ

[
ξ(a)− ξ̃(a)− log

Z

Z̃

]
, (28)

= Eπ

[
X(a)− log

∑
a′ exp(X(a′)) exp(ξ̃(a′))∑

a′ exp(ξ̃(a′))

]
, (29)

(i)
≤ Eπ [X(a)− Eπ̃ [X(a′)]] , (30)
= (π − π̃) ·X, (31)

where (i) is due to Jensen’s inequality. Replacing Eq. 31 into Eq. 25 yields

Q̃k
τ (s) · πk(s)− τh(πk(s)) ≤ Q̃k

τ (s) · πk+1(s)− τh(πk+1(s)) + η(π − π̃)(s) ·X(s). (32)

For any s ∈ S, we have that

η(π − π̃)(s) ·X(s) ≤ ηmax
s∈S

|(π − π̃)(s) ·X(s)|, (33)

(i)

≤ ηmax
s∈S

∥(π − π̃)(s)∥1 ∥X(s)∥∞ , (34)

= ηmax
s∈S

∥(π − π̃)(s)∥1 ∥X∥∞ , (35)

:= ϵ, (36)

where we applied Hölder’s inequality in (i). Combining Eq. 36 with Eq. 32 and using the definition
of the operator Tπ

τ as in Eq. 15 yields for any s ∈ S and a ∈ A

R(s, a) + γEs′

[
Q̃k

τ (s
′) · πk − τh(πk(s

′))
]
≤ R(s, a) + γEs′ [Q̃

k
τ (s

′) · πk+1(s
′)

− τh(πk+1(s
′)) + ϵ],

(37)

=⇒ (T k
τ Q̃

k
τ)(s, a) ≤ (T k+1

τ Q̃k
τ)(s, a) + γϵ, (38)

where ϵ = ηmaxs∈S ∥(π − π̃)(s)∥1 ∥X∥∞. Since Eq. 38 is valid for any s and a, then

T k
τ Q̃

k
τ ≤ T k+1

τ Q̃k
τ + γϵ, (39)

Let us have a closer look at T k
τ Q̃

k
τ , if we use Eq. 18 and by the fixed point property of Prop. A.2 we

have

T k
τ Q̃

k
τ = T k

τ Q
k
τ + γEs′

[
(Q̃k

τ −Qk
τ) · πk

]
≥ Qk

τ − γϵeval. (40)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

This implies

Qk
τ ≤ T k+1

τ Q̃k
τ + γϵ+ γϵeval. (41)

The addition of γ(ϵ + ϵeval) in the above expression is performed element-wise for all states and
actions. Using the monotonicity property of Prop. A.3 on Eq. 41, we have

T k+1
τ Qk

τ ≤ T k+1
τ

(
T k+1
τ Q̃k

τ + γ(ϵ+ ϵeval)
)
, (42)

≤ (T k+1
τ)2Q̃k

τ + γ2(ϵ+ ϵeval), (43)

=⇒ Qk
τ ≤ (T k+1

τ)2Q̃k
τ + γ(ϵ+ ϵeval) + γ2(ϵ+ ϵeval). (44)

By repeating the same process one can easily show by induction that

Qk
τ ≤ (T k+1

τ)nQ̃k
τ +

n∑
i=1

γi(ϵ+ ϵeval). (45)

Taking the limit of Eq. 45 for n → ∞ yields by the uniqueness of the fixed point of T k+1
τ

Qk
τ ≤ Qk+1

τ +
γ(ϵ+ ϵeval)

1− γ
, (46)

Finally,

Q̃k
τ ≤ Qk+1

τ +
γϵ

1− γ
+

ϵeval
1− γ

(47)

= Qk+1
τ + γη

maxs∈S ∥(π − π̃)(s)∥1
∥∥∥ξk − ξ̃k

∥∥∥
∞

1− γ
+

ϵeval
1− γ

. (48)

A.3 APPROXIMATE FINITE-MEMORY EPMD

A.3.1 PROOF OF COROLLARY 4.1.1

Cor. 4.1.1 is a direct application of Thm. 4.1 with the specific values for ξk and ξ̃k of finite-memory
EPMD as defined in Sec. 4.1.

Proof. To prove Cor. 4.1.1, we will bound the two terms η
∥∥∥ξk − ξ̃k

∥∥∥
∞

and maxs∈S ∥(π − π̃)(s)∥1
individually, using the fact that

ξk − ξ̃k = αβM−1Q̃k−M
τ . (49)

Let us first start with the term

η
∥∥∥ξk − ξ̃k

∥∥∥
∞

(i)
= βM

∥∥∥Q̃k−M
τ

∥∥∥
∞

(50)

≤ βM R̄. (51)

In (i) we used the fact that ηα = β, whereas the second inequality comes from the bounded nature
of Qπ

τ for any π, where R̄ is defined in Eq. 4.

For maxs∈S ∥(π − π̃)(s)∥1, we can either upper-bound it by 2, or use the fact that π and π̃ are close
given large enough M . First, note that the gradient of the negative entropy is given by

∇h(p) = ∇(p · log p), (52)
= log p+ 1. (53)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

As the negative entropy is 1-strongly convex w.r.t. the ∥.∥1 norm (a.k.a. Pinsker’s inequality), we
have for all s ∈ S, where the s dependency is dropped

∥πk − π̃k∥21 ≤ (πk − π̃k) · (∇h(πk)−∇h(π̃k)), (54)
= (πk − π̃k) · (log πk − log π̃k), (55)
(i)
= (πk − π̃k) · (ξk − ξ̃k), (56)

≤ ∥πk − π̃k∥1
∥∥∥ξk − ξ̃k

∥∥∥
∞

, (57)

= ∥πk − π̃k∥1 αβ
M−1

∥∥∥Q̃k−M
τ

∥∥∥
∞

, (58)

=⇒ ∥πk − π̃k∥1 ≤ αβM−1
∥∥∥Q̃k−M

τ

∥∥∥
∞

, (59)

≤ αβM−1(R̄+ ϵeval). (60)

In (i), the normalizing constants logZ = log
∑

a exp(ξ(a)) and log Z̃ = log
∑

a exp(ξ̃(a)) do not
appear because their dot product with π − π̃k is equal to 0, as they have constant values for all
actions. Combining both results, we have

∥πk − π̃k∥1 ≤ min
{
2, αβM−1(R̄+ ϵeval)

}
. (61)

which holds for all s ∈ S and thus also for the state argmaxs∈S ∥(π − π̃)(s)∥1.

In the case of an update

ξk+1 = βξk + α
(
Q̃k

τ − βM Q̃k−M
τ

)
, (62)

we get that for any k ≥ 0 holds

Qk+1
τ ≥ Q̃k

τ −min
{
2, αβM−1(R̄+ ϵeval)

}
γβM R̄+ ϵeval

1− γ
− ϵeval

1− γ
. (63)

For simplicity, we will further analyse the case of

Qk+1
τ ≥ Q̃k

τ − 2γβM R̄+ ϵeval
1− γ

− ϵeval
1− γ

. (64)

Note that for k ≤ M , Eq. 64 can be replaced by a stronger Qk+1
τ ≥ Q̃k

τ − ϵeval

1−γ as ξk − ξ̃k = 0, but
for simplicity we only consider Eq. 64.

A.3.2 PROOF OF THEOREM 4.2

To prove Thm. 4.2, we first need the following Lemma, that uses the approximate policy improve-
ment bounds of vanilla finite-memory EPMD in Cor. 4.1.1, to show a relation between the Q-
function Qk

τ and the sum of Q-functions ξk. Further, we show the final error that is introduced
by having an approximate policy evaluation and how it affects the final convergence results.

Lemma A.2. After k ≥ 0 iterations of Eq. 62, we have
∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤ γ ∥Q⋆
τ − τξk+1∥∞ +

1−βM

1−β γϵ+ 1−βM+1

1−β ϵeval + γβM R̄, where ϵ = 2γβM R̄+ϵeval

1−γ + ϵeval

1−γ .

Proof. For all s ∈ S and a ∈ A

(Q⋆
τ −Qk+1

τ)(s, a) = (T ⋆
τ Q

⋆
τ)(s, a)−

(
R(s, a) + γEs′,a′ [Qk+1

τ (s′, a′)− τh(πk+1(s
′))]
)

(65)

= (T ⋆
τ Q

⋆
τ)(s, a)−

(
R(s, a) + γEs′,a′ [τξk+1(s

′, a′)− τh(πk+1(s
′))]

+ γEs′,a′ [Qk+1
τ (s′, a′)− τξk+1(s

′, a′)]
)
.

(66)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Looking at the first inner term, using the entropy maximizing nature of πk+1 as defined in Eq. 17,
and using the definition of the Bellman optimality operator T ⋆

τ gives

R(s, a) + γEs′ [τξk+1(s
′) · πk+1(s

′)− τh(πk+1(s
′))] = R(s, a)

+ γEs′ [max
p∈∆(A)

τξk+1(s
′) · p− τh(p)]

(67)
= (T ⋆

τ τξk+1)(s, a) (68)

For the second inner term, using the definition of ξk+1, the fact that τα = 1 − β and the definition
of ϵ, we have for all s ∈ S and a ∈ A

Qk+1
τ − τξk+1 = Qk+1

τ − (1− β)

M−1∑
i=0

βiQ̃k−i
τ (69)

=

M∑
i=0

βiQk+1−i
τ −

M∑
i=1

βiQk+1−i
τ +

M−1∑
i=0

βi+1Q̃k−i
τ −

M−1∑
i=0

βiQ̃k−i
τ (70)

=

M−1∑
i=0

βi(Qk+1−i
τ − Q̃k−i

τ) +

M∑
i=1

βi(Q̃k+1−i
τ −Qk+1−i

τ) + βMQk+1−M
τ (71)

≥ −
M−1∑
i=0

βiϵ− βM R̄+

M∑
i=1

βi(Q̃k+1−i
τ −Qk+1−i

τ) (72)

= −1− βM

1− β
ϵ− βM R̄+

M∑
i=1

βi(Q̃k+1−i
τ −Qk+1−i

τ). (73)

Using successively Eq. 68 and Eq. 73 back into Eq. 66 yields

(Q⋆
τ −Qk+1

τ)(s, a) = (T ⋆
τ Q

⋆
τ)(s, a)− (T ⋆

τ τξk+1)(s, a)

− γEs′,a′ [Qk+1
τ (s′, a′)− τξk+1(s

′, a′)],
(74)

≤ (T ⋆
τ Q

⋆
τ)(s, a)− (T ⋆

τ τξk+1)(s, a)

+
γ(1− βM)

1− β
ϵ+ γβM R̄− γEs′,a′

M∑
i=1

βi(Q̃k+1−i
τ −Qk+1−i

τ).
(75)

Since Q⋆
τ − Qk+1

τ ≥ 0 and using the triangle inequality, the fact that Es,a[X] ≤ ∥X∥∞ and the
contraction property of T ⋆

τ completes the proof∥∥∥Q⋆
τ − Q̃k+1

τ

∥∥∥
∞

≤
∥∥Q⋆

τ −Qk+1
τ

∥∥
∞ +

∥∥∥Qk+1
τ − Q̃k+1

τ

∥∥∥
∞

(76)

(i)

≤ ∥T ⋆
τ Q

⋆
τ − T ⋆

τ τξk+1∥∞ +
γ(1− βM)

1− β
ϵ+ γβM R̄

+

M∑
i=0

βi
∥∥∥Q̃k+1−i

τ −Qk+1−i
τ

∥∥∥
∞

,

(77)

≤ γ ∥Q⋆
τ − τξk+1∥∞ +

γ(1− βM)

1− β
ϵ+ γβM R̄+

1− βM+1

1− β
ϵeval. (78)

Here (i) is due to Eq. 75 and γ < 1. This completes the proof.

Theorem A.3 (Convergence of approximate vanilla finite-memory EPMD). After k ≥ 0 iterations
of Eq. 8, we have that

∥∥∥Q⋆
τ − Q̃k

τ

∥∥∥
∞

≤ γdk ∥Q⋆
τ∥∞+C1β

M+ ϵeval

(1−γ)2(1−β) , with d = β+γ(1−β) <

1, C1 = 2γR̄
1−γ

(
1 + γ(1−βM)

(1−β)(1−γ)

)
+ (2−γ)γϵeval

(1−γ)2(1−β) .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

This theorem states that the approximate vanilla finite-memory EPMD algorithm converges to an er-
ror that consists of two components: the first one scales with βM and thus should become negligible
for large enough M and the second one fully depends on ϵeval and is small only if ϵeval is small too.

Proof. From the definition of ξk+1 in Eq. 62 and the triangle inequality we get

∥Q⋆
τ − τξk+1∥∞ =

∥∥∥Q⋆
τ − βτξk − (1− β)Q̃k

τ + (1− β)βM Q̃k−M
τ

∥∥∥
∞

, (79)

≤ β ∥Q⋆
τ − τξk∥∞ + (1− β)

∥∥∥Q⋆
τ − Q̃k

τ

∥∥∥
∞

+ (1− β)βM
∥∥∥Q̃k−M

τ

∥∥∥
∞

, (80)

≤ β ∥Q⋆
τ − τξk∥∞

+ (1− β)γ ∥Q⋆
τ − τξk∥∞ + γ(1− βM)ϵ+ (1− βM+1)ϵeval

+ (1− β)γβM R̄+ (1− β)βM
∥∥∥Q̃k−M

τ

∥∥∥
∞

,

(81)

≤ (β + γ(1− β)) ∥Q⋆
τ − τξk∥∞ + γ(1− βM)ϵ

+ (1 + γ)(1− β)βM R̄+ (1 + βM)ϵeval.
(82)

Where in the last inequality we used the fact that
∥∥∥Q̃k−M

τ

∥∥∥
∞

≤ R̄ + ϵeval and 1 − βM+1 + (1 −
β)βM = 1 + βM − 2βM+1 ≤ 1 + βM . Letting

d := β + γ(1− β), (83)

one can show by induction, using the fact that ξ0 = 0, that

∥Q⋆
τ − τξk+1∥∞ ≤ dk+1 ∥Q⋆

τ∥∞

+

k∑
i=0

di
[
γ(1− βM)ϵ+ (1 + γ)(1− β)βM R̄+ (1 + βM)ϵeval

]
,

(84)

≤ dk+1 ∥Q⋆
τ∥∞ +

γ(1− βM)ϵ+ (1 + γ)(1− β)βM R̄+ (1 + βM)ϵeval
1− d

,

(85)

= dk+1 ∥Q⋆
τ∥∞ +

(1 + γ)βM R̄

1− γ
+

γ(1− βM)ϵ+ (1 + βM)ϵeval
(1− γ)(1− β)

. (86)

For Eq. 85, we used the fact that
∑k

i=0 d
i = 1−dk+1

1−d ≤ 1
1−d . Using Eq. 86 in Eq. 78 finally gives∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤ γdk+1 ∥Q⋆
τ∥∞

+

[
γβM +

(1 + γ)γβM

1− γ

]
R̄

+

[
γ2(1− βM)

(1− γ)(1− β)
+

γ(1− βM)

1− β

]
ϵ

+

[
γ(1 + βM)

(1− γ)(1− β)
+

1− βM+1

1− β

]
ϵeval

(87)

Now, let us analyse more closely the constants in front of R̄ and ϵeval. First, let us simplify the
constant in front of ϵ, we get γ2(1−βM)

(1−γ)(1−β) +
γ(1−βM)

1−β = γ(1−βM)
1−β

(
γ

1−γ + 1
)

= γ(1−βM)
(1−γ)(1−β) . By

inserting the value of ϵ from Lemma A.2 we obtain the following coefficient for R̄

γβM +
(1 + γ)γβM

1− γ
+

γ(1− βM)

(1− γ)(1− β)

2γβM

1− γ
=

2γβM

1− γ

(
1 +

γ(1− βM)

(1− β)(1− γ)

)
(88)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

and ϵeval

γ(1 + βM)

(1− γ)(1− β)
+

1− βM+1

1− β
+

γ(1− βM)

(1− γ)(1− β)

2γβM + 1

1− γ

(i)
<

γ(1 + βM)

(1− γ)(1− β)
+

1− βM+1

1− β
+

γ(1 + βM)

(1− γ)2(1− β)

(ii)

≤ γ + γβM + 1− γ

(1− γ)(1− β)
+

γ(1 + βM)

(1− γ)2(1− β)

=
1

(1− γ)(1− β)

(
1 +

γ

1− γ

)
+

(1− γ + 1)γβM

(1− γ)2(1− β)

=
1

(1− γ)2(1− β)
+

(2− γ)γβM

(1− γ)2(1− β)
,

(89)

where in (i) we use γ(1−βM)(2γβM+1) = 2γ2βM−2γ2β2M+γ−γβM < 2γβM−γβM+γ =
γ(1 + βM) and in (ii) we cancel the negative components. Combining Eq. 87, Eq. 88 and Eq. 89,
we complete the proof.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.4 APPROXIMATE WEIGHT-CORRECTED FINITE-MEMORY EPMD

A.4.1 PROOF OF THE LOGITS EXPRESSION IN SEC. 4.2

Proof. For k = 0,

ξ1 = β0 + αQ̃0
τ +

αβM

1− βM
(Q̃0

τ − 0), (90)

= α

(
1 +

βM

1− βM

)
Q̃0

τ , (91)

=
α

1− βM
Q̃0

τ . (92)

If it is true for k, then

ξk+1 = β
α

1− βM

M−1∑
i=0

βiQ̃k−1−i
τ + αQ̃k

τ +
αβM

1− βM
(Q̃k

τ − Q̃k−M
τ), (93)

=
α

1− βM

M−2∑
i=0

βi+1Q̃k−1−i
τ +

αβM

1− βM
(Q̃k−M

τ − Q̃k−M
τ) +

α

1− βM
Q̃k

τ , (94)

=
α

1− βM

M−1∑
i=0

βiQ̃k−i
τ (95)

A.4.2 PROOF OF COROLLARY 4.1.2

Proof. The proof is immediate from Thm. 4.1, upper-bounding maxs∈S ∥(πk − π̃k)(s)∥1 by 2,

using the definition of ξ̃k − ξk = αβM−1

1−βM (Q̃k
τ − Q̃k−M

τ) in
∥∥∥ξk − ξ̃k

∥∥∥
∞

and using the fact that
αη = β.

Note that, as in Cor. 4.1.1, we could have used the expression of the logits of π and π̃ to have a
bound of ∥(πk − π̃k)(s)∥1 that depends on

∥∥∥ξk − ξ̃k

∥∥∥
∞

and ultimately on
∥∥∥Q̃k

τ − Q̃k−M
τ

∥∥∥
∞

. This

bound becomes tighter as k goes to infinity for M large enough, since we show below that Q̃k
τ

converges to Q⋆
τ and thus maxs∈S ∥(πk − π̃k)(s)∥1 converges to 0. Nonetheless, using this tighter

bound would introduce quadratic terms
∥∥∥Q̃k

τ − Q̃k−M
τ

∥∥∥2
∞

that would complicate the overall analysis

of the algorithm, and thus we use the more crude bound of 2 for maxs∈S ∥(πk − π̃k)(s)∥1 in the
remainder of the proofs for Sec. 4.2.

Given Theorem A.1 and Corollary 4.1.2, and in case of an update

ξk+1 = βξk + αQ̃k
τ +

αβM

1− βM
(Q̃k

τ − Q̃k−M
τ), (96)

we get

Qk+1
τ ≥ Q̃k

τ − 2γβM

∥∥∥Q̃k
τ − Q̃k−M

τ

∥∥∥
∞

(1− γ)(1− βM)
− ϵeval

1− γ
. (97)

A.5 PROOF OF LEMMA 4.3

As with Thm. 4.2, we first need an intermediary Lemma connecting
∥∥Q⋆

τ −Qk+1
τ

∥∥
∞ and

∥Q⋆
τ − τξk+1∥∞ before proving Lem. 4.3.

Lemma A.4. After k ≥ 0 iterations of Eq. 96, we have
∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤ γ ∥Q⋆
τ − τξk+1∥∞ +

γβk+1
∥∥Q0

τ

∥∥
∞ + γ

∑k
i=0 β

iϵ′k−i +
ϵeval

(1−γ)(1−β) , with ϵ′k =
(

1+γ
1−γ − β

)
βM

1−βM

∥∥∥Q̃k−M
τ − Q̃k

τ

∥∥∥
∞

.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof. Define ϵk as

ϵk :=
2βM

1− βM

∥∥∥Q̃k−M
τ − Q̃k

τ

∥∥∥
∞

, (98)

For all s ∈ S and a ∈ A

(Q⋆
τ −Qk+1

τ)(s, a) = (T ⋆
τ Q

⋆
τ)(s, a)−

(
R(s, a) + γEs′,a′ [Qk+1

τ (s′, a′)− τh(πk+1(s
′))]
)

(99)

= (T ⋆
τ Q

⋆
τ)(s, a)−

(
R(s, a) + γEs′,a′ [τξk+1(s

′, a′)− τh(πk+1(s
′))]+

γEs′,a′ [Qk+1
τ (s′, a′)− τξk+1(s

′, a′)]
)

(100)
Looking at the first inner term and using the entropy maximizing nature of πk+1 as defined in Eq. 17
gives

R(s, a) + γEs′ [τξk+1(s
′) · πk+1(s

′)− τh(πk+1(s
′))] (101)

= R(s, a) + γEs′ [max
p∈∆(A)

τξk+1(s
′) · p− τh(p)] = (T ⋆

τ τξk+1)(s, a) (102)

For the second inner term, using the recursive definition of ξk+1 in Eq. 96 gives

Qk+1
τ − τξk+1 = Qk+1

τ −
(
βτξk + (1− β)Q̃k

τ +
(1− β)βM

1− βM
(Q̃k

τ − Q̃k−M
τ)

)
, (103)

= β(Q̃k
τ − τξk) +Qk+1

τ − Q̃k
τ − (1− β)βM

1− βM
(Q̃k

τ − Q̃k−M
τ), (104)

≥ β(Qk
τ − τξk)−

γϵk
1− γ

− (1− β)ϵk
2

− ϵeval
1− γ

+ β
(
Q̃k

τ −Qk
τ

)
. (105)

Letting

ϵ′k :=
γϵk
1− γ

+
(1− β)ϵk

2
=

(
1 + γ

1− γ
− β

)
βM

1− βM

∥∥∥Q̃k−M
τ − Q̃k

τ

∥∥∥
∞

, (106)

one can easily show by induction that

Qk+1
τ − τξk+1 ≥ βk+1Q0

τ −
k∑

i=0

βiϵ′k−i −
k∑

i=0

βi ϵeval
1− γ

− β(1− βk+1)

1− β
ϵeval (107)

≥ βk+1Q0
τ −

k∑
i=0

βiϵ′k−i −
ϵeval

(1− γ)(1− β)
− βϵeval

1− β
. (108)

The inequality uses the fact that ξ0 = 0. Using successively Eq. 102 and Eq. 108 back into Eq. 100
yields
(Q⋆

τ −Qk+1
τ)(s, a) = (T ⋆

τ Q
⋆
τ)(s, a)− (T ⋆

τ τξk+1)(s, a)− γEs′,a′ [Qk+1
τ (s′, a′)− τξk+1(s

′, a′)],

(109)

≤ (T ⋆
τ Q

⋆
τ)(s, a)− (T ⋆

τ τξk+1)(s, a)− γEs′,a′ [βk+1Q0
τ (s

′, a′)]

+ γ

k∑
i=0

βiϵ′k−i +
γβ

1− β
ϵeval +

γϵeval
(1− γ)(1− β)

.
(110)

Since Q⋆
τ −Qk+1

τ ≥ 0 and using the triangle inequality, the fact that Es,a[Q
0
τ (s, a)] ≤

∥∥Q0
τ

∥∥
∞, and

the contraction property of T ⋆
τ gives us∥∥Q⋆

τ −Qk+1
τ

∥∥
∞ ≤ ∥T ⋆

τ Q
⋆
τ − T ⋆

τ τξk+1∥∞ + γβk+1
∥∥Q0

τ

∥∥
∞

+ γ

k∑
i=0

βiϵ′k−i +
γβ

1− β
ϵeval +

γϵeval
(1− γ)(1− β)

(111)

≤ γ ∥Q⋆
τ − τξk+1∥∞ + γβk+1

∥∥Q0
τ

∥∥
∞

+ γ

k∑
i=0

βiϵ′k−i +
γβ

1− β
ϵeval +

γϵeval
(1− γ)(1− β)

.
(112)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Finally, using∥∥∥Q⋆
τ − Q̃k+1

τ

∥∥∥
∞

≤
∥∥Q⋆

τ −Qk+1
τ

∥∥
∞ +

∥∥∥Qk+1
τ − Q̃k+1

τ

∥∥∥
∞

≤
∥∥Q⋆

τ −Qk+1
τ

∥∥
∞ + ϵeval (113)

and also simplifying the constants γβ
1−β + 1 = 1−β+γβ

1−β ≤ 1
1−β and 1

1−β + γ
(1−γ)(1−β) = 1

1−β (1 +
γ

1−γ) =
1

(1−γ)(1−β) , we obtain the statement of the lemma.

We now state a more general form of Lemma 4.3 and prove it.

Lemma A.5. Let xk+1 = d1xk + d2xk−M + ϵeval

1−γ be a sequence such that ∀k < 0, xk =
∥Q⋆

τ∥∞
γ ,

x0 = ∥Q⋆
τ∥∞ +

∥∥∥Q̃0
τ

∥∥∥
∞

+ ϵeval

(1−γ)(1−β) , d1 := β + γ 1−β
1−βM + γc2, d2 := 2c1γ

2

1−γ , c1 := βM

1−βM , and

c2 :=
(

1+γ
1−γ − β

)
c1. After k ≥ 0 iterations of Eq. 12, we have that

∥∥∥Q⋆
τ − Q̃k

τ

∥∥∥
∞

≤ xk.

Proof. Define the following constants

c1 :=
βM

1− βM
, and c2 :=

(
1 + γ

1− γ
− β

)
c1. (114)

Let a sequence xk defined by ∀k < 0, xk =
∥Q⋆

τ∥∞
γ and let

x0 = ∥Q⋆
τ∥∞ +

∥∥Q0
τ

∥∥
∞ +

ϵeval
(1− γ)(1− β)

. (115)

For subsequent terms, we define xk by the recursive definition, ∀k ≥ 0

xk+1 = γ

(
1− β

1− βM

M−1∑
i=0

βixk−i + βk+1

∥∥Q0
τ

∥∥
∞

γ
+ c2

k∑
i=0

βi(xk−i + xk−i−M)

)
+

ϵeval
(1− γ)(1− β)

.

(116)

Note that x0 can also be recovered by Eq. 116, for k = −1. Now, let us simplify Eq. 116. Using
this recursive definition, we have ∀k ≥ 0

xk+1 = γ
1− β

1− βM

M−1∑
i=0

βixk−i + βk+1
∥∥Q0

τ

∥∥
∞ + c2γ

k∑
i=0

βi(xk−i + xk−i−M)

+
ϵeval

(1− γ)(1− β)
,

(117)

= β

(
γ(1− β)

1− βM

M−1∑
i=0

βixk−1−i + βk
∥∥Q0

τ

∥∥
∞ + γc2

k−1∑
i=0

βi(xk−1−i + xk−1−i−M)

+
ϵeval

(1− γ)(1− β)

)
+

γ(1− β)

1− βM

(
xk − βMxk−M

)
+ γc2 (xk + xk−M)

+
ϵeval
1− γ

,

(118)

(i)
= βxk + γ

(
1− β

1− βM

(
xk − βMxk−M

)
+ c2 (xk + xk−M)

)
+

ϵeval
1− γ

, (119)

=

(
β + γ

1− β

1− βM
+ γc2

)
xk + γ

(
c2 −

βM (1− β)

1− βM

)
xk−M +

ϵeval
1− γ

(120)

=

(
β + γ

1− β

1− βM
+ γc2

)
xk +

2c1γ
2

1− γ
xk−M +

ϵeval
1− γ

(121)

In (i) we used the recursive definition of xk which is also valid for x0. Letting

d1 := β + γ
1− β

1− βM
+ γc2, and d2 :=

2c1γ
2

1− γ
, (122)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

xk+1 for all k ≥ 0 can be more compactly defined by

xk+1 = d1xk + d2xk−M +
ϵeval
1− γ

. (123)

Let us now prove that
∥∥∥Q⋆

τ − Q̃k
τ

∥∥∥
∞

≤ xk by induction. For k = 0, we have that∥∥∥Q⋆
τ − Q̃0

τ

∥∥∥
∞

≤
∥∥Q⋆

τ −Q0
τ

∥∥
∞ +

∥∥∥Q0
τ − Q̃0

τ

∥∥∥
∞

(124)

≤ ∥Q⋆
τ∥∞ +

∥∥Q0
τ

∥∥
∞ + ϵeval, (125)

≤ x0. (126)

and for k < 0, we have that ∥∥∥Q⋆
τ − Q̃k

τ

∥∥∥
∞

= ∥Q⋆
τ∥∞ , (127)

≤
∥Q⋆

τ∥∞
γ

, (128)

= xk. (129)

Now assume that
∥∥∥Q⋆

τ − Q̃i
τ

∥∥∥
∞

≤ xi is true for all i ≤ k and let us prove that
∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤
xk+1. First, we note that

∥Q⋆
τ − τξk+1∥∞ =

∥∥∥∥∥Q⋆
τ − τ

α

1− βM

M−1∑
i=0

βiQ̃k−i
τ

∥∥∥∥∥
∞

, (130)

=

∥∥∥∥∥ 1− β

1− βM

M−1∑
i=0

βiQ⋆
τ − 1− β

1− βM

M−1∑
i=0

βiQ̃k−i
τ

∥∥∥∥∥
∞

, (131)

≤ 1− β

1− βM

M−1∑
i=0

βi
∥∥∥Q⋆

τ − Q̃k−i
τ

∥∥∥
∞

, (132)

≤ 1− β

1− βM

M−1∑
i=0

βixk−i. (133)

We also have that

ϵ′k = c2

∥∥∥Q̃k−M
τ − Q̃k

τ

∥∥∥
∞

, (134)

≤ c2

(∥∥∥Q⋆
τ − Q̃k−M

τ

∥∥∥
∞

+
∥∥∥Q⋆

τ − Q̃k
τ

∥∥∥
∞

)
(135)

≤ c2(xk + xk−M). (136)

Finally, using Eq. 133, Eq. 136 and
∥∥Q0

τ

∥∥
∞ ≤ ∥Q0

τ∥∞
γ into Lemma A.4 completes the proof

∥∥∥Q⋆
τ − Q̃k+1

τ

∥∥∥
∞

≤ γ

(
∥Q⋆

τ − τξk+1∥∞ + βk+1
∥∥Q0

τ

∥∥
∞ +

k∑
i=0

βiϵ′k−i

)
+

ϵeval
(1− γ)(1− β)

,

(137)

≤ γ

(
1− β

1− βM

M−1∑
i=0

βixk−i + βk+1

∥∥Q0
τ

∥∥
∞

γ
+ c2

k∑
i=0

βi(xk−i + xk−i−M)

)
+

ϵeval
(1− γ)(1− β)

,

(138)
= xk+1. (139)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.6 PROOF OF THEOREM 4.4

We state a more general form for Theorem 4.4 that includes policy evaluation error and prove it
below.
Theorem A.6 (Convergence of approximate weight corrected finite-memory EPMD). With the def-
initions of Lemma 4.3, if M > log (1−γ)2(1−β)

γ2(3+β)+1−β (log β)
−1 then limk→∞ xk ≤ ϵeval

(1−γ)(1−d1−d2)
.

Moreover, ∀k ≥ 0,
∥∥∥Q⋆

τ − Q̃k
τ

∥∥∥
∞

≤ (d1 + d2d
−1
3)k max

{
∥Q⋆

τ∥∞
γ , ∥Q⋆

τ∥∞ +
∥∥Q0

τ

∥∥
∞

}
+

ϵeval

(1−γ)(1−d1−d2)
, where d3 :=

(
dM1 + d2

1−dM
1

1−d1

)
and limM→∞ d1 + d2d

−1
3 = β + γ(1− β).

Proof. Let us find a value of M such that

d1 + d2 < 1, (140)

⇔β(1− βM) + γ(1− β) + γ

(
1 + γ

1− γ
− β

)
βM +

2γ2βM

1− γ
< 1− βM , (141)

⇔β − βM+1 − γβ + γ
1 + γ

1− γ
βM − γβM+1 + βM +

2γ2βM

1− γ
< 1− γ, (142)

⇔(1− γ)β +
γ2(3 + β) + 1− β

1− γ
βM < 1− γ, (143)

⇔βM <
(1− γ)2(1− β)

γ2(3 + β) + 1− β
, (144)

⇔M log β < log
(1− γ)2(1− β)

γ2(3 + β) + 1− β
, (145)

⇔M > log
(1− γ)2(1− β)

γ2(3 + β) + 1− β
(log β)−1. (146)

We will now show that for the values of M that satisfy Eq. 146, the sequence xk converges to
some finite error that depends on ϵeval as k goes to infinity. To simplify the analysis of xk we
study a slightly modified version thereof that has the same recursive definition xk+1 = d1xk +

d2xk−M+ ϵeval

1−γ but replaces the terms x−k, ∀k ≥ 0 with x−k = max
{

∥Q⋆
τ∥∞
γ , ∥Q⋆

τ∥∞+
∥∥Q0

τ

∥∥
∞+

ϵeval

(1−γ)(1−β)

}
. Clearly, this modified sequence upper-bounds the previous sequence.

To simplify the analysis, we first analyse another sequence yk that for k ≤ 0 is identical to xk,
but for k ≥ 0 it evolves following the next law yk+1 = d1yk + d2yk−M . Now, if M is such that
d1 + d2 < 1, then the sequence yk is constant from y−M to y0 and is strictly decreasing thereafter,
since for y1 we have

y1 = d1y0 + d2y−M , (147)
= (d1 + d2)y0, (148)
< y0. (149)

Then, ∀k ≥ 1

yk+1 = d1yk + d2yk−M , (150)
< d1yk−1 + d2yk−M−1, (151)
= yk. (152)

Since the sequence is decreasing and lower bounded by 0, it has a limit due to the monotone conver-
gence theorem. Let us study the convergence of a sub-sequence. Let for any integer a > 0

yaM+a = d1yaM+a−1 + d2yaM+a−1−M , (153)
< (d1 + d2)yaM+a−1−M , (154)
= (d1 + d2)y(a−1)M+(a−1), (155)

< (d1 + d2)
ay0. (156)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Thus, lima→∞ yaM+a = 0, which implies that limk→∞ yk = 0.

Further, let us show that for all k,

xk ≤ yk +

k−1∑
i=0

(d1 + d2)
i ϵeval
1− γ

= yk + C(k)
ϵeval
1− γ

, (157)

and therefore, if we simplify the above expression, then for all k

xk ≤ yk +
ϵeval

(1− γ)(1− d1 − d2)
. (158)

We do it by mathematical induction. First,

x1 = d1x0 + d2x−M +
ϵeval
1− γ

= d1y0 + d2y−M +
ϵeval
1− γ

= y1 +
ϵeval
1− γ

. (159)

Then, let us assume that Eq. 157 holds for any i ≤ k, now we show that it also holds for k + 1

xk+1 = d1xk + d2xk−M +
ϵeval
1− γ

(160)

≤ d1

(
yk + C(k)

ϵeval
1− γ

)
+ d2

(
yk−M + C(k −M)

ϵeval
1− γ

)
+

ϵeval
1− γ

(161)

≤ yk+1 +max {C(k), C(k −M)} (d1 + d2)
ϵeval
1− γ

+
ϵeval
1− γ

(162)

(i)
= yk+1 + C(k)(d1 + d2)

ϵeval
1− γ

+
ϵeval
1− γ

(163)

= yk+1 +

k∑
i=0

(d1 + d2)
i ϵeval
1− γ

. (164)

Here, in (i) we use the definition of C(k) from Eq. 157 and its monotonicity that comes out of it.
Therefore, we get that limk→∞ xk ≤ limk→∞

(
yk +

∑k−1
i=0 (d1 + d2)

i ϵeval

1−γ

)
= 0 +

∑∞
i=0(d1 +

d2)
i ϵeval

1−γ = ϵeval

(1−γ)(1−(d1+d2))
, which completes the first part of our proof. Now, let us have a closer

look on the convergence speed.

To better characterize the convergence of xk, we again analyse the sequence yk. First, we note that
the constant d1 ≥ β + γ(1 − β) is typically very close to 1, whereas d2 → 0 as M → ∞. The
sequence yk thus behaves almost as dk1y0. A much tighter upper-bounding sequence than that of
Eq. 156 can be obtained using the following inequalities

yk = d1yk−1 + d2yk−1−M , (165)

= dM1 yk−M + d2

M−1∑
i=0

di1yk−1−M−i, (166)

≥
(
dM1 + d2

1− dM1
1− d1

)
yk−M , (167)

where we have used in the last inequality the fact that yk is a decreasing sequence. Let

d3 :=

(
dM1 + d2

1− dM1
1− d1

)
, (168)

then we can upper bound the sequence yk by

yk+1 =
(
d1 + d2d

−1
3

)
yk + d2(yk−M − d−1

3 yk), (169)

≤
(
d1 + d2d

−1
3

)
yk + d2(yk−M − d−1

3 d3yk−M), (170)

=
(
d1 + d2d

−1
3

)
yk, (171)

≤
(
d1 + d2d

−1
3

)k+1
y0. (172)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 5: Evolution of xk for two successive values of M , one being large enough for xk to con-
verge. The plot additionally shows the sequence x′

k introduced by Thm. 4.4 that closely follows the
behavior of xk. See text for more details.

Now to study the limit limM→∞ d1 + d2d
−1
3 , let us first start with the rightmost term

d2d
−1
3 ≤ d2

dM1
, (173)

≤ d2
(β + γ(1− β))M

, (174)

=
1

(β + γ(1− β))M
2βMγ2

(1− γ)(1− βM)
, (175)

=

(
β

β + γ(1− β)

)M
2γ2

(1− γ)(1− βM)
. (176)

Since β < β + γ(1 − β), then clearly limM→∞ d2d
−1
3 = 0, and from the definition of d1 one can

see that limM→∞ d1 = β + γ(1 − β). Combining the result above with Eq. 158, we obtain the
statement of the theorem.

To illustrate how close the sequence
(
d1 + d2d

−1
3

)k
x0 is to xk, let us take a numerical example

with γ = 0.99 and β = 0.95. In this case, we have that d1 + d2 < 1 whenever M ≥ 265. At
M = 265 we have that d1 ≈ 0.9997 and d2 ≈ 0.0002. In Fig. 5 we plot the three sequences xk,
x′
k =

(
d1 + d2d

−1
3

)k
x0 and x′′

k = (d1+d2)
k/(M+1)x0 for M = 264 and M = 265 and we see that

x′
k converges to zero for the same M as xk and is almost indistinguishable from the latter, whereas

x′′
k is a much more loose upper-bounding sequence at M = 265.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENT RESULTS

B.1 COMPARISON WITH DEEP RL BASELINES

We summarize all performance comparisons in Fig. 6 and Table 2.

0 1 2 3 4 5
2.5

3

3.5

4

4.5

5

5.5

Re
tu

rn
 (x

10
0)

CartPole-v1

0 1 2 3 4 5
-0.8

-0.75

-0.7

-0.65

-0.6
Acrobot-v1

0 1 2 3 4 5
-2

-1

0

1

2

3

LunarLander-v2

0 1 2 3 4 5

-2

-1.8

-1.6

-1.4

-1.2

-1

MountainCar-v0

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

Re
tu

rn
 (1

K)

Hopper-v4

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4
Walker2d-v4

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5
HalfCheetah-v4

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3
Ant-v4

0 1 2 3 4 5
0

1

2

3

4

5

Humanoid-v4

0 1 2 3 4 5

Env steps (1M)

0

2.5

5

7.5

10

12.5

15

17.5

20

Re
tu

rn

MinAtar/Asterix-v1

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50
MinAtar/Breakout-v1

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50

60
MinAtar/Freeway-v1

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50
MinAtar/Seaquest-v1

0 1 2 3 4 5

Env steps (1M)

0

50

100

150

200

MinAtar/SpaceInvaders-v1

StaQ PPO TRPO M-DQN DQN

Figure 6: Policy performance across all environments.

StaQ PPO TRPO M-DQN DQN

CartPole-v1 500 500 500 457 463
Acrobot-v1 -62 -63 -64 -63 -69
LunarLander-v2 285 227 222 88 265
MountainCar-v0 -200 -141 -118 -100 -113

Hopper-v4 3196 2411 2672 2600 2279
Walker2d-v4 3550 2799 3010 1364 1424
HalfCheetah-v4 3061 2001 1731 2098 2294
Ant-v4 2910 2277 2452 1776 1871
Humanoid-v4 5273 588 700 2580 2887

MinAtar/Asterix-v1 1 2 2 17 15
MinAtar/Breakout-v1 37 14 9 30 32
MinAtar/Freeway-v1 32 36 26 59 58
MinAtar/Seaquest-v1 14 3 5 51 47
MinAtar/SpaceInvaders-v1 204 44 54 193 132

Table 2: Final performance on all environments.

B.2 STABILITY PLOTS (VARIATION WITHIN INDIVIDUAL RUNS)

In this section we provide further stability plots to complement Fig. 3 (Left). In Fig. 7-8 we plot the
returns of the first three seeds of the full results (shown in Fig. 6). At each timestep, the returns for

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

each individual seed are normalised by subtracting and then dividing by the mean across all seeds.
We only include environments where all algorithms learn a decent policy to enable a fair comparison.
We can see from Fig. 7-8 that Approximate Policy Iteration (API) algorithms (StaQ, TRPO, PPO)
generally exhibit less variation within runs than Approximate Value Iteration (AVI) ones (DQN, M-
DQN). In simple environments, such as CartPole, all three API algorithms have stable performance,
but on higher dimensional tasks, only StaQ retains a similar level of stability while maintaining good
performance. This is especially striking on Hopper, where runs show comparatively little variation
within iterations while having the highest average performance, as shown in Fig. 6. We attribute this
improved stability in the performance of the evaluation policy by the averaging over a very large
number of Q-functions (M = 300) of StaQ, which reduces the infamous performance oscillation of
deep RL algorithms in many cases.

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

CartPole-v1
StaQ

0 1 2 3 4 5
Env step (1M)

CartPole-v1
DQN

0 1 2 3 4 5
Env step (1M)

CartPole-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

CartPole-v1
TRPO

0 1 2 3 4 5
Env step (1M)

CartPole-v1
PPO

0 1 2 3 4 5
Env step (1M)

-20

-15

-10

-5

0

5

10

15

20

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Acrobot-v1
StaQ

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
DQN

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
TRPO

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
PPO

0 1 2 3 4 5
Env step (1M)

-100

-75

-50

-25

0

25

50

75

100

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

LunarLander-v2
StaQ

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
DQN

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
M-DQN

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
TRPO

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
PPO

Figure 7: Stability plots showing normalized performance of the first three individual runs for each
algorithm. See text for more details. Figures continue on the next page.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Hopper-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Hopper-v4
DQN

0 1 2 3 4 5
Env step (1M)

Hopper-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

Hopper-v4
TRPO

0 1 2 3 4 5
Env step (1M)

Hopper-v4
PPO

0 1 2 3 4 5
Env step (1M)

-100

-75

-50

-25

0

25

50

75

100

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Walker2d-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
DQN

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
TRPO

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
PPO

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

HalfCheetah-v4
StaQ

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
DQN

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
TRPO

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
PPO

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Ant-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Ant-v4
DQN

0 1 2 3 4 5
Env step (1M)

Ant-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

Ant-v4
TRPO

0 1 2 3 4 5
Env step (1M)

Ant-v4
PPO

Figure 8: Stability plots showing normalized performance of the first three individual runs for each
algorithm. See text for more details.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5

Env steps (1M)

0.5

1

1.5

2

2.5

3

3.5

Re
tu

rn
 (1

K)

Hopper-v4

0 1 2 3 4 5

Env steps (1M)

0.5

1

1.5

2

2.5

3

3.5

4
Walker2d-v4

0 1 2 3 4 5

Env steps (1M)

1

1.5

2

2.5

3

3.5
HalfCheetah-v4

0 1 2 3 4 5

Env steps (1M)

1

1.5

2

2.5

3

Ant-v4

0 1 2 3 4 5

Env steps (1M)

1

2

3

4

5

Humanoid-v4

M=1 M=50 M=100 M=300 M=500 M = 300 (=0)

Figure 9: Ablation study for different memory sizes M for ϵ = 0, on all MuJoCo environments.
Results showing then mean and one standard deviation averaged over 5 seeds.

B.3 THE IMPACT OF THE MEMORY-SIZE M AND VALUE OF ϵ

Figure 9 shows the performance of StaQ for different choices of M and for the hyper-parameter
ϵ = 0 instead of ϵ = 0.05 on additional MuJoCo tasks. Setting M = 1 corresponds to no KL-
regularization as discussed in App. D and can be seen as an adaptation of SAC to discrete action
spaces. M = 1 is unstable on both Hopper and Walker, in addition to Acrobot as shown in Fig. 3 in
the main paper. Adding KL-regularization and averaging over at least 50 Q-functions greatly helps
to stabilize performance except on the Humanoid task, as shown in Fig. 3, where M = 50 was still
unstable compared to M = 300. Finally, the default setting of ϵ = 0.05 outperforms a pure softmax
policy with ϵ = 0 on all but the Ant environment. We discuss some of the likely reasons for the need
of ϵ-softmax exploration in App. B.4.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(a) Q-functions recorded at a given state across 1000
iterations for StaQ’s behavior policy hyper-parameter
ϵ = 0 and ϵ = 0.05. Seed 0.

(b) Q-functions recorded at a given state across 1000
iterations for StaQ’s behavior policy hyper-parameter
ϵ = 0 and ϵ = 0.05. Seed 1.

(c) Q-functions recorded at a given state across 1000
iterations for StaQ’s behavior policy hyper-parameter
ϵ = 0 and ϵ = 0.05. Seed 2.

(d) Q-functions recorded at a given state across 1000
iterations for StaQ’s behavior policy hyper-parameter
ϵ = 0 and ϵ = 0.05. Seed 3.

Figure 10: Q-values at some fixed states across 1000 iterations of StaQ, using an ϵ-softmax behavior
policy to collect data in the replay, with ϵ = 0.05 or ϵ = 0. With ϵ = 0, we noticed very large
variations in the Q-function between iterations that are reduced when using ϵ = 0.05.

B.4 CATASTROPHIC FORGETTING IN THE Q-FUNCTION

To understand why adding an ϵ-softmax policy on top of the softmax policy πk stabilizes perfor-
mance on Hopper-v4 as shown in Fig. 4, we have conducted the following experiment. We first
launched two runs of StaQ with an ϵ-softmax policy on top of πk, with ϵ being either 0.05 or 0. From
these two runs, we collected 100 states spread along both training processes. We then launched 5
independent runs for each value of ϵ, and recorded for these 100 states the learned Q-values at each
iteration. Upon manual inspection of the Q-values, we immediately notice that when ϵ = 0, the
Q-values vary more wildly across time for all the actions. Fig. 10 shows a few examples for four
different seeds. To understand whether these variations have any tangible impact on the instability
of the policy, we have performed the following test: we compute the logits ξk at every iteration fol-
lowing the EPMD formula (Eq. 7) and rank the actions according to ξk. At each iteration k, we then
compute the proportion of states, out of 100 reference states, in which an action has both the highest
and the lowest rank in the next iterations k′ ≥ k. The results are shown in Fig. 11, where we can
see that when ϵ = 0, the fraction of states in which an action is considered as either being the best
or the worst remains higher than when ϵ = 0.05, which might result in performance drops across
iterations. Thus the observed Q-function oscillations that appear more pronounced for ϵ = 0 have
a quantifiable impact on the stability of the policy, resulting in more states seeing actions switching
from best to worst or vice versa.

It is hard to know exactly what causes the Q-values to oscillate more when ϵ = 0. On the one hand,
as these instabilities generally happen after the policy reached its peak performance, they could be
because of some actions having very low probability of being selected in some states thus becoming

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 11: The percentage of states (out of 100 states) in which from iteration k and onward, an
action was considered both the best and the worst according to ξk of EPMD. The difference of
stability in the Q-values between ϵ = 0.05 and ϵ = 0 noted in Fig. 10 causes a difference in
stability of policies, where actions switch more frequently from being worst to best when ϵ = 0.
The comparison is performed over 5 seeds showing the median and interquartile range.

0 1 2 3 4 5
Env steps (1M)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
di

sc
ou

nt
ed

 P
ol

icy
 R

et
ur

n

MinAtar/Asterix-v1

0 1 2 3 4 5
Env steps (1M)

0

50

100

150

200

250

300
MinAtar/SpaceInvaders-v1

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60
MinAtar/Freeway-v1

StaQ
StaQ (high ent.)
StaQ (low ent.)

0 1 2 3 4 5

Env steps (1M)

-200

-180

-160

-140

-120

-100

Re
tu

rn

MountainCar-v0

DQN
M-DQN
TRPO
PPO
StaQ

Figure 12: Left three panels: Effect of different entropy weights on the MinAtar environments.
Right panel: Policy returns for StaQ (with additional tweaks to StaQ , see text for details) and deep
RL baselines on MountainCar.

under-represented in the replay buffer Dk. Setting ϵ > 0 ensures that all actions have a non-zero
probability of being sampled at any given state. On the other hand, due to the convexity3 of DKL, i.e.
DKL ((1− ϵ)π + ϵp, (1− ϵ)π′ + ϵp′) ≤ (1 − ϵ)DKL(π, π

′) + ϵDKL(p, p
′), if πb

k is an ϵ-softmax
strategy of πk, then DKL(π

b
k, π

b
k+1) ≤ (1 − ϵ)DKL(πk, πk+1) for any ϵ > 0. This implies that

successive replay buffers should be more similar when ϵ > 0, which stabilizes the learning due to
smoother transfer from Qk

τ to Qk+1
τ . Nonetheless, a case of ϵ > 0 is not without its own challenges

as discussed in Sec. 6.3, and we can see in Fig. 10 that it still exhibits sudden changes in the Q-
function which could harm stability. While the averaging over past Q-functions of an EPMD policy
can stabilize learning to some extent, we believe that the catastrophic forgetting in the Q-function
itself should be addressed to fully stabilize deep RL.

B.5 ENTROPY REGULARIZATION DOES NOT SOLVE EXPLORATION IN RL

Entropy regularization is a common technique to improve exploration and robustness of the pol-
icy (see e.g. Ziebart (2018); Haarnoja et al. (2017)), however overly-strong regularization can harm
learning. In our main experimental results we fix the initial and final (scaled) entropy weight τ̄
across all environments, however we find that certain environments benefit from adjusting the en-
tropy weight. This is illustrated in the left three panels of Fig. 12, where we vary the entropy
weights, linearly annealed from 5 to 1 (1 to 0.05) for “high ent” (“low ent”) over the first 1 million
timesteps. In addition to environments such as Asterix and SpaceInvaders that absolutely prefer high
or low entropy, some environments such as Freeway have complex dependence on the entropy that

3See e.g. https://statproofbook.github.io/P/kl-conv.html for the proof.

34

https://statproofbook.github.io/P/kl-conv.html

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

suggests that a constant or linearly-decaying entropy is insufficient. Future work could find best τ̄
automatically, for example as in SAC (Haarnoja et al., 2018).

For MountainCar, we find that having overly stable updates at the start of the training can prevent
it from finding the sparse reward signal. StaQ can learn on such an environment (see right panel of
Fig. 12), without tuning the entropy or DKL weights, but with additional tweaks, such as increasing
a scale of NN weights upon initialization (by ×20), decreasing the policy update interval (from
5000 to 500 steps) and using an ϵ-greedy strategy on top of ξk as a behavior policy, rather than
an ϵ-softmax policy used for the main experiments. The ϵ-greedy strategy is also used in DQN and
M-DQN that outperform other baselines on MountainCar. Note that even though StaQ still performs
worse than most other baselines, this is because some runs do not see a reward signal early enough
in training and the inherent stability of StaQ prevents them from seeing it after the initial exploration
period is over.

Policy evaluation and exploration. We find that using the min of the two Q-functions to compute
the target values results in more stable training. min gives a more conservative target that is robust
to overestimation bias in the Q-functions, and this allows us to reduce the KL weight. However,
such a strategy struggles with sparse rewards, and hard exploration problems such as MountainCar-
v0 and MinAtar/Seaquest-v1. Therefore we instead use the mean in Classic/MinAtar environments.
Future work could use a more sophisticated approach that is both robust to overestimation bias and
yet sensitive to weak reward signals.

C TRAINING AND INFERENCE TIME COMPARISONS

Memory size M 1 50 100 300 500

Hopper-v4 Training time (hrs) 9.8 10.1 10.3 10.3 10.9
Inference speed (steps/s) 610 610 620 640 600

Ant-v4 Training time (hrs) 10.4 10.7 10.3 11 10.5
Inference speed (steps/s) 540 570 560 540 560

Table 3: Training and inference times for StaQ, as a function of M , on Hopper-v4 (state dim.=11)
and Ant-v4 (state dim. = 105), computed on an NVIDIA Tesla V100 and averaged over 3 seeds.

StaQ PPO TRPO M-DQN DQN

Hopper-v4 Training time (hrs) 10.3 3.7 3.2 5.6 4.9
Inference speed (steps/s) 640 1040 1020 1550 1460

Ant-v4 Training time (hrs) 11 4.3 3.6 6.1 5.3
Inference speed (steps/s) 540 830 850 1110 1040

Table 4: Training and inference times for StaQ (M = 300) vs baselines, on the Hopper-v4 and
Ant-v4 environments. Timings are computed on an NVIDIA Tesla V100, averaged over 3 seeds.

In this section, we report the training time and inference speed of StaQ, as a function of memory size
M and state space dimension. We also compare it to the deep RL baselines. All timing experiments
were computed on an NVIDIA Tesla V100, and averaged over 3 seeds. The training time is defined
as the time required to train StaQ for 5 million timesteps, while the inference speed is measured by
the number of environment steps per second that can be evaluated during inference. Table 3 shows
that memory size and dimension of the state space have a negligible impact on training and inference
times, as discussed in Sec 6. Table 4 compares the training and inference time of StaQ (M = 300)
with the baselines.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

D COMPARISON WITH SOFT ACTOR-CRITIC

In this appendix, we explain why Soft Actor-Critic (SAC, Haarnoja et al. (2018)) was not used as
a baseline and how SAC relates to M-DQN and StaQ with M = 1. SAC is not used as a baseline
because StaQ is a discrete action algorithm evaluated on discrete action environments, while SAC is
not compatible with discrete action spaces. However, M-DQN can be seen as an adaptation of SAC
to discrete action spaces with an additional KL-divergence regularizer. Please see the discussion
in Vieillard et al. (2020) on page 3, between Eq. (1) and (2). Vieillard et al. (2020) also describe
Soft-DQN in Eq. (1) as a straightforward discrete-action version of SAC, that can be obtained from
M-DQN by simply setting the KL-divergence regularization weight to zero. Soft-DQN was not
included as a baseline because the results of Vieillard et al. (2020) suggest that M-DQN generally
outperforms Soft-DQN.

We also note that by setting M = 1 in StaQ, we remove the KL-divergence regularization and only
keep the entropy bonus. This baseline can also be seen as an adaptation of SAC to discrete action
spaces: indeed, if we set M = 1 in Eq. (13) we recover the policy logits

ξk+1 =
α

1− βM

M−1∑
i=0

βiQk−i
τ

=
α

1− β
Qk

τ

=
Qk

τ

τ
,

where the last line is due to ατ = 1 − β. This results in a policy of the form πk+1 ∝ exp
(

Qk
τ

τ

)
.

Meanwhile, for SAC, the actor network is obtained by minimizing the following problem (Eq. 14 in
Haarnoja et al. (2018))

πk+1 = argminKL

π

∣∣∣∣∣∣
exp

(
Qk

τ

τ

)
Znorm.

 .

However, in the discrete action setting, we can sample directly from exp
(

Qk
τ

τ

)
—which is the min-

imizer of the above KL-divergence term—and we do not need an explicit actor network. As such
StaQ with M = 1 could be seen as an adaptation of SAC to discrete action spaces.

E CONTINUAL LEARNING VIEW OF POLICY UPDATE

In Continual RL (Lesort et al., 2020), a learner is presented with a sequence of MDPs and a one
evaluates whether the learner is able learn on the new MDPs while retaining information of older
ones. In our setting, a learner sees only one MDP and its performance is only measured on this one
MDP. Studying if knowledge is retained on older tasks or whether knowledge transfers among tasks
is beyond the scope of this paper.

Despite being limited to a single MDP, single-task RL has still strong ties with CL because of the
sequential nature in which data arrives. As mentioned in Sec. 1, we are not the first to draw this
parallel, but drawing this connection is interesting because it opens up a plethora of CL methods
that are not well researched in the deep RL context, but are applicable even in a single task setting.
Specifically, in this paper we focus on the entropy regularized policy update problem described
below (Eq. 5 of the paper)

for all s ∈ S, πk+1(s) = argmax
p∈∆(A)

{
Qk

τ (s) · p− τh(p)− ηDKL(p;πk(s))
}
.

The objective of this update can be seen as CL, as we receive a new ”task” which is to find p
a maximum entropy distribution over actions that puts its largest mass on actions with high Q-
values, yet, through the KL-divergence term above, we do not want to differ too much from πk, and
forget the solution of the previous ”task”. Because of this similarity with CL, existing methods to
solve this problem can be categorized with the CL literature lens, for example: Lazic et al. (2021)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

used a rehearsal method (replay buffer/experience replay in deep RL terminology) to tackle the
above policy update, while Schulman et al. (2015) uses a parameter regularization approach. These
methods cover two of the three main classes of CL methods De Lange et al. (2021), and the novelty
of this paper is in investigating a method pertaining to the third class (parameter isolation) to tackle
this problem, as this class of methods has strong performance in CL benchmarks (See Sec. 6 of
De Lange et al. (2021)), yet remains largely understudied in deep RL.

F HYPERPARAMETERS

Here, we provide the full list of hyperparameters used in our experiments. StaQ’s hyperparameters
are listed in Table 5, while the hyperparameters for our baselines are provided in Tables 6-8. In all
environments, we enforce a time limit of 5000 steps. This is particularly useful for Seaquest-v1,
since an agent can get stuck performing an infinitely long rollout during data collection. Further-
more, to account for different scales of reward signals in different environments, we apply different
reward scales between Classic/MuJoCo environments and MinAtar. Note that this is equivalent to
inverse-scaling the entropy weight τ and KL weight η, ensuring that ξk is of the same order of
magnitude for all environments.

Hyperparameter Classic MuJoCo MinAtar

Discount (γ) 0.99 0.99 0.99
Memory size (M) 300 300 300

Policy update interval 5000 5000 5000
Ensembling mode mean min mean

Target type hard hard hard
Target update interval 200 200 200

Epsilon 0.05 0.05 0.05
Reward scale 10 10∗ 200
KL weight (η) 20 10 20

Initial scaled ent. weight 2.0 2.0 2.0
Final scaled ent. weight 0.4 0.4 0.4

Decay steps 500K 1M 1M
Architecture 256× 2 256× 2 256× 2

Activation function ReLu ReLu ReLu
Learning rate 0.0001 0.0001 0.0001

Replay capacity 50K 50K 50K
Batch size 256 256 256

Table 5: StaQ hyperparameters, with parameters which vary across environment types in bold.
∗Hopper-V4 uses a reward scale of 1.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Horizon 2048 2048 1024

Num. epochs 10 10 3
Learning starts 5000 20000 20000

GAE parameter 0.95 0.95 0.95
VF coefficient 0.5 0.5 1

Entropy coefficient 0 0 0.01
Clipping parameter 0.2 0.2 0.1× α

Architecture 64× 2 64× 2 ∗ 256× 2
Activation function Tanh Tanh Tanh

Learning rate 3× 10−4 3× 10−4 2.5× 10−4 × α
Replay capacity 1M 1M 50K

Batch size 64 64 32

Table 6: PPO hyperparameters, based on (Schulman et al., 2017). In the MinAtar environments α is
linearly annealed from 1 to 0 over the course of learning. ∗Humanoid-v4 uses a hidden layer size of
256.

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Horizon 2048 2048 2048

Learning starts 5000 20000 20000

GAE parameter 0.95 0.95 0.95
Stepsize 0.01 0.01 0.01

Architecture 64× 2 64× 2 ∗ 256× 2
Activation function Tanh Tanh Tanh

Learning rate 3× 10−4 3× 10−4 3× 10−4

Replay capacity 1M 1M 1M
Batch size 64 64 64

Table 7: TRPO hyperparameters, based on (Schulman et al., 2015). ∗Humanoid-v4 uses a hidden
layer size of 256.

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Target update interval 100 8000 8000

Epsilon 0.1 0.1 0.1
Decay steps 20K 20K 20K

M-DQN temperature 0.03 0.03 0.03
M-DQN scaling term 1.0 0.9 0.9

M-DQN clipping value -1 -1 -1

Architecture 512× 2 128× 2 128× 2
Activation function ReLu ReLu ReLu

Learning rate 1× 10−3 5× 10−5 5× 10−5

Replay capacity 50K 1M 1M
Batch size 128 32 32

Table 8: MDQN and DQN hyperparameters, based on (Vieillard et al., 2020; Ceron & Castro, 2021)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

G PSEUDOCODE OF STAQ

We provide in this section the pseudocode of StaQ in Alg. 1. As an approximate policy itera-
tion algorithm, StaQ comprises three main steps: i) data collection, ii) policy evaluation iii) policy
improvement. Data collection (Line 4-5) consist in interacting with the environment to collect tran-
sitions of type (state, action, reward, next state) that are stored in a replay buffer. A policy evaluation
algorithm is then called to evaluation the current Q-function Qk

τ using the replay buffer. Finally, the
policy update is optimization-free and simply consists in stacking the Q-function in the SNN policy
as discussed in Sec. 5. After K iterations, the last policy is returned.

Algorithm 1 StaQ (Finite-memory entropy regularized policy mirror descent)

1: Input: An MDP M, a memory-size M , Number of samples per iteration N , Replay buffer size
D, Initial behavior policy πb

0, entropy weight τ , ϵ-softmax exploration parameter
2: Output: Policy πK ∝ exp(ξK)
3: for k = 0 to K − 1 do
4: Interact with M using the behavior policy πb

k for N times steps
5: Update replay buffer Dk to contain the last D transitions
6: Learn Qk

τ from Dk using a policy evaluation algorithm
7: Obtain logits ξk+1 by stacking the last M Q-functions (see Sec. 5) following the finite-

memory EPMD update of Eq. 12.
8: Set πk+1 ∝ exp(ξk+1) and πb

k+1 to an ϵ-softmax policy over πk+1

9: end for

39

	Introduction
	Related Work
	Preliminaries
	Entropy-regularized policy mirror descent

	Finite-memory policy mirror descent
	Vanilla finite-memory EPMD
	Weight corrected finite-memory EPMD

	Stacked Neural Networks
	Experiments
	Stability and performance of StaQ
	The impact of the memory-size M
	Catastrophic forgetting in the Q-function
	Entropy regularization does not solve exploration in RL

	Discussion and future work
	Proofs
	Properties of entropy regularized Bellman operators
	Proof of Theorem 4.1
	Approximate finite-memory EPMD
	Proof of Corollary 4.1.1
	Proof of Theorem 4.2

	Approximate weight-corrected finite-memory EPMD
	Proof of the logits expression in Sec. 4.2
	Proof of Corollary 4.1.2

	Proof of Lemma 4.3
	Proof of Theorem 4.4

	Additional experiment results
	Comparison with deep RL baselines
	Stability plots (variation within individual runs)
	The impact of the memory-size M and value of
	Catastrophic forgetting in the Q-function
	Entropy regularization does not solve exploration in RL

	Training and Inference Time Comparisons
	Comparison with Soft Actor-Critic
	Continual learning view of policy update
	Hyperparameters
	Pseudocode of StaQ

