

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SYMBOLIC MIXTURE-OF-EXPERTS: ADAPTIVE SKILL-BASED ROUTING FOR HETEROGENEOUS REASONING

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Combining existing pre-trained expert LLMs is a promising avenue for scalably
 014 tackling large-scale and diverse tasks. However, selecting experts at the task level
 015 is often too coarse-grained, as heterogeneous tasks may require different expertise
 016 for each instance. To enable adaptive instance-level mixing of pre-trained LLM
 017 experts, we propose SYMBOLIC-MOE, a symbolic, text-based, and gradient-free
 018 Mixture-of-Experts framework. SYMBOLIC-MOE takes a fine-grained approach
 019 to selection by emphasizing skills, i.e., specialized subcategories such as algebra
 020 in mathematics. We propose a skill-based recruiting strategy that dynamically se-
 021 lects the most relevant set of expert LLMs for diverse reasoning tasks based on
 022 their strengths. Each selected expert then generates its own reasoning, resulting
 023 in k outputs from k experts, which are then synthesized into a final high-quality
 024 response by an aggregator, chosen based on its ability to integrate diverse out-
 025 puts. We show that instance-level expert selection improves performance by a
 026 large margin but – when implemented naively – can introduce a high computa-
 027 tional overhead due to the need for constant model loading and offloading. To
 028 address this, we implement a batch inference strategy that groups instances based
 029 on their assigned experts, ensuring each model will only be loaded once. This
 030 allows us to integrate 16 models *on a single GPU* with a time cost comparable
 031 to prior multi-agent baselines using 4 GPUs. Through extensive evaluations on
 032 diverse benchmarks (MMLU-Pro, GPQA, AIME, and MedMCQA), we show that
 033 SYMBOLIC-MOE outperforms prior multi-agent approaches, with an absolute av-
 034 erage improvement of 8.15% over the best baseline. Moreover, SYMBOLIC-MOE
 035 generalizes well to unseen tasks and removes the need for expensive multi-round
 036 discussions, outperforming discussion baselines with less computation.¹

1 INTRODUCTION

037 A core strength of humans is our ability to communicate and coordinate with each other using
 038 language (Clark, 1996; Yow & Lim, 2019; Xu et al., 2023). This allows diverse experts to contribute
 039 specialized knowledge towards solving a problem. Like humans, large language models (LLMs)
 040 often have differing skills and strengths, derived from differences in their architectures and training
 041 regimens. For instance, math-specific models like MetaMath (Yu et al., 2023) or QwenMath (Yang
 042 et al., 2024) are post-trained with mathematical reasoning data, making them particularly adept at
 043 math tasks – often at the cost of performance on out-of-distribution tasks (Kumar et al., 2022; Chu
 044 et al., 2025) like commonsense or medical reasoning (Lobo et al., 2024). Even within specialized
 045 domains, differences in pre-training data can lead to nuanced variations in expertise: one math-
 046 focused model may excel at algebra, while another is better suited for geometry. This motivates
 047 our development of an automated, skill-based framework designed to identify and select the most
 048 suitable set of expert models *for each problem*.

049
 050 Indeed, combining multiple “expert” models via Mixture-of-Experts (MoE) is well-studied (Jacobs
 051 et al., 1991; Eigen et al., 2013) and has been applied widely for large pre-trained models, enabling
 052 better performance at a lower computational cost (Shazeer et al., 2017a; Fedus et al., 2022; Riquelme

053 ¹Code is provided in the supplement materials.

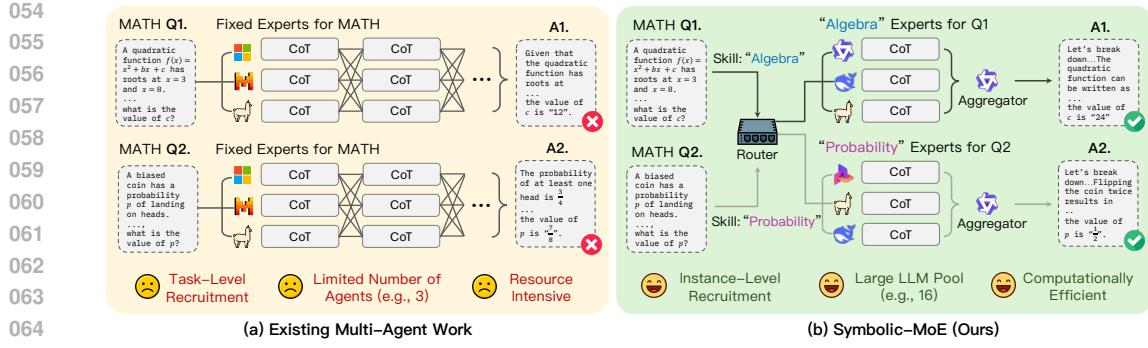


Figure 1: (a) In prior work, a fixed set of task-level experts is recruited to solve mathematical problems, while heterogeneous questions may differ in the skills required to solve them (e.g., Q1 requires algebra, while Q2 focuses on probability). The recruited experts generate outputs for multiple rounds, making these methods inefficient. (b) In contrast, SYMBOLIC-MOE adaptively recruits instance-level experts based on skills needed (“Algebra” experts for Q1 and a different set of “Probability” experts for Q2). By generating only a single round of responses with an aggregator to synthesize the final output, our approach is both more performant and more efficient.

et al., 2021). However, in the conventional MoE settings, experts are typically sub-models, i.e., subsets of parameters within a larger model, where at test time, they are combined in the model’s parameter space. This generally requires end-to-end training from scratch, which is often computationally expensive and precludes the re-use of the vast pool of already-trained LLMs. Building on recent efforts in combining a fixed set of models through multi-agent discussions (Chen et al., 2024b; Du et al., 2023; Liang et al., 2023; Wang et al., 2024a), we propose exploring a new *training-free* paradigm for large-scale MoEs: a symbolic mixture of experts (SYMBOLIC-MOE). Rather than using information encoded in the model’s hidden state, SYMBOLIC-MOE uses symbolic structures in two ways: First, SYMBOLIC-MOE infers a set of discrete skills needed to solve a problem, measuring the abilities of each model in a pool of candidate expert models. It then uses skill-based performance as a “router” to recruit a sparse subset of experts *for each problem*. Secondly, SYMBOLIC-MOE combines pre-trained experts through a symbolic channel, i.e., language, which is a common protocol already shared by all LLMs. To take advantage of the diverse set of expert LLMs, we must address two key challenges: (1) **Effective Expert Selection**: Given a large set of LLMs, how can we choose the best experts for each instance? (2) **Scalable Expert Mixing**: How can we serve a large number of experts (e.g. 16) without increasing the demand for GPUs?

(1) Effective Expert Selection: The increasing diversity of benchmarks (Miranda et al., 2024) and the growing number of models means that experts must be selected not at the level of tasks, but at the level of individual queries. Even at the task level, manual selection can be labor-intensive, and the performance of multi-agent frameworks can be sensitive to the agents chosen for a task (Chen et al., 2024b; Liang et al., 2023; Wang et al., 2024b). For instance, as shown in Fig. 1 (a), while a given subset of models may perform well on math tasks on average, their proficiency in specific subfields like algebra or probability might vary – that is, using a fixed subset of models on all math samples might hurt performance on particular subtasks. This underscores the need for an automated, fine-grained selection mechanism, as shown in Fig. 1 (b). **(2) Scalable Expert Mixing:** Past work has often relied on multiple rounds of inference, leading to significant GPU demands. Moreover, it does not scale to a dynamic setting like the one we consider, where the number of GPUs required would be equal to the number of potential models available (in our case, 16), making this option prohibitively expensive. We instead propose a **batch inference mechanism** that groups samples into batches per model. We then run *all queries* assigned to a given model in a single batch, which is far faster than sequential processing. While this strategy accommodates up to 16 models *on a single GPU*, it can also be parallelized across multiple GPUs. This flexibility ensures both speedups with increased computing power, and accessibility for users with limited hardware resources.

We evaluate SYMBOLIC-MOE on 6 diverse benchmarks across math, science, and medical reasoning, using a diverse model pool. We show that our automated skill-based recruiting yields an average accuracy improvement of 8.15% over the best multi-agent baseline. Moreover, despite primarily using LLMs with 7-8 billion (B) parameters, SYMBOLIC-MOE achieves comparable perfor-

108 mance with 70B models. Also, SYMBOLIC-MOE consistently surpasses all baselines, whereas the
 109 strongest baseline changes across tasks. Thus, our method eliminates the need to evaluate and compare
 110 a large number of baselines for each task. Notably, using a single GPU, SYMBOLIC-MOE has
 111 44% less inference run-time than a mixture-of-agents baseline (Wang et al., 2024a); when four GPUs
 112 are available for both methods, we obtain an almost $2\times$ speedup. Finally, our analysis shows that
 113 SYMBOLIC-MOE generalizes well to unseen tasks, and selecting a task-specific aggregator achieves
 114 performance comparable to multi-round discussion while requiring substantially less compute.

2 RELATED WORK

119 **Mixture-of-Agents.** Traditional Mixture-of-Experts (MoE) models (Jacobs et al., 1991; Jordan &
 120 Jacobs, 1994; Chen et al., 1999; Yuksel et al., 2012) distribute computation across multiple “expert”
 121 submodels, with growing interest in sparsity-driven approaches. The Sparse MoE (SMoE)
 122 approach (Shazeer et al., 2017a) improves efficiency by activating only the most relevant experts
 123 per input, enhancing scalability for high-dimensional data. This method has been widely applied
 124 in vision tasks (Riquelme et al., 2021; Wang et al., 2020; Yang et al., 2019; Abbas & Andreopoulos,
 125 2020), language tasks (Lepikhin et al., 2021; Zhang et al., 2021; Zuo et al., 2022; Jiang et al.,
 126 2021) and multimodal learning (Kudugunta et al., 2021; Yun et al., 2024). Unlike SYMBOLIC-
 127 MOE, standard MoE approaches require experts to be trained jointly, with communication taking
 128 place in the parameter spaces of the submodels. **Routing LLMs** has also been an active research
 129 area. **DER** formulates routing as a Markov Decision Process and dynamically selects an optimal
 130 answering route (Hu et al., 2024). **Router-R1** formulates routing and aggregation as a sequential
 131 decision process Zhang et al. (2025). **On the test-time mixture side**, **LLM-Blender** proposes ranking
 132 and fusing multiple models’ output (Jiang et al., 2023). **MoA** (Wang et al., 2024a) combine LLM
 133 agents into ensembles that rely on a fixed set of agents. This approach requires multiple rounds
 134 of generation and aggregation before producing a final answer. Similarly, **Self-MoA** (Li et al.,
 135 2025) suggest that optimal performance can be achieved by invoking the task-best model multiple
 136 times alongside the task-best aggregator. Our work differs from MoA and Self-MoA by introducing
 137 *adaptive, instance-level, skill-based routing* while avoiding costly multi-model discussions in favor
 138 with streamlined aggregation. We also find that mixing different LLMs is advantageous when paired
 139 with effective routing and aggregation strategies.

140 **Multi-Agent Reasoning.** Multi-agent reasoning has emerged as a promising paradigm for enhancing
 141 complex problem-solving and decision-making in AI systems. Early approaches employed re-
 142 enforcement learning-based coordination (Lowe et al., 2017; Foerster et al., 2018; Jaques et al.,
 143 2019), while recent efforts leverage LLM-based multi-agent frameworks. One line of research ex-
 144 plores student-teacher paradigms (Magister et al., 2022; Fu et al., 2023; Ho et al., 2022; Du et al.,
 145 2023; Chen et al., 2024a), where reasoning capabilities are distilled from stronger to weaker agents.
 146 Another approach investigates multi-agent debate frameworks, where agents interact to refine argu-
 147 ments and enhance collective decision-making; this has been explored with multiple instances of
 148 a single model (Liang et al., 2023; Xiong et al., 2023; Chan et al., 2023) or debates between mul-
 149 tiple LLM types (Chen et al., 2024b). In both cases, the set of models is predefined by the user.
 In contrast, our approach automatically selects models based on inferred skills. Additionally, our
 150 framework achieves superior efficiency by avoiding multi-round discussions.

3 METHODOLOGY

3.1 PROBLEM SETUP

151 Given a pool of n models $\mathcal{M} = \{M_i\}_{i=1}^n$, where each model represents a distinct LLM with poten-
 152 tially different pre-training datasets and architectures, our goal is to optimize performance through
 153 dynamic allocation – solving each problem with the most suitable subset of k models, allowing ex-
 154 perts to combine information to enhance reasoning. To achieve this, we assume access to a small
 155 validation set to obtain (1) model profiles $P_i \forall i \leq n$, and (2) aggregator profiles that benchmark the
 156 ability of each model to act as an aggregator. We use these profiles to recruit experts (at the instance
 157 level) and to select the aggregator (at the task level).

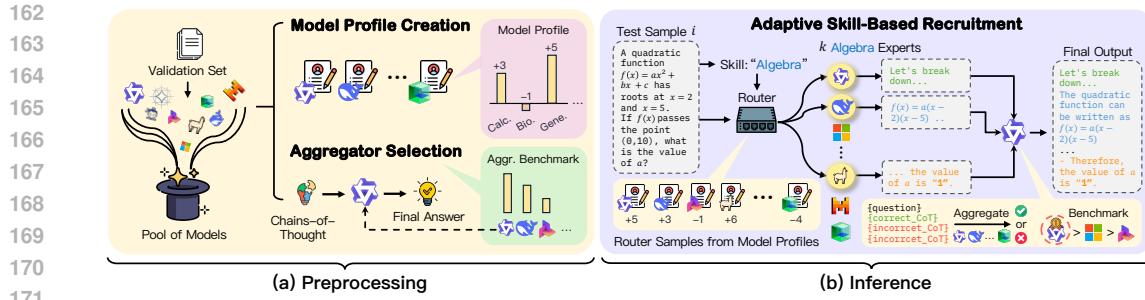


Figure 2: Overview of SYMBOLIC-MOE. (a) Preprocessing: Given a validation set and a pool of agents, we create model profiles and select an aggregator. (b) Inference-Time: For each test example, SYMBOLIC-MOE activates the most relevant models (experts) based on skill-based routing, using model profiles determined during preprocessing. These models generate CoT responses, which the aggregator (chosen based on its ability to select correct answers) synthesizes into a final answer.

3.2 PREPROCESSING

3.2.1 MODEL PROFILE CREATION

To recruit the k most suitable experts for a given question, we assess each model’s specialized skills across various problem-solving domains, illustrated in Fig. 2 (a). This is done by evaluating their performance on the validation set for each task (see Table 12 for sizes), thereby constructing a model profile P_i for each model M_i . For each question in the validation set, we first prompt an LLM – referred to as the “Keyword LLM” – to identify the essential skills required to solve the problem. For consistency, we use Qwen2.5-7B-Instruct (Qwen Team, 2024) as the Keyword LLM. Later in Table 13, we show that the choice of the keyword LLM has little effect on the performance. To reduce noise, we generate keyword annotations for each question five times, and retain only those that appear more than once for each question. These extracted skills represent core knowledge areas necessary for solving the problem – for instance, a given college-level math problem may require skills such as algebra, calculus, and geometry. Once all questions are annotated with their required skills, each model M_i in the pool attempts to solve them using Chain-of-Thought reasoning (Wei et al., 2022). A correct answer increases the score of each associated skill by +1, while an incorrect answer results in a -1 penalty. At the end of this process, each model has a profile P_i represented as a dictionary, e.g., {‘Algebra’: 10, ‘Biology’: 3, ‘Chemistry’: -6, ...}.

3.2.2 AGGREGATOR SELECTION

An aggregator is a model that consolidates k outputs into a single high-quality response. Our pilot experiments, along with findings from Wang et al. (2024a) and Li et al. (2025), indicate that the aggregator model plays a crucial role in the final performance, and selecting the most effective model for aggregation is non-trivial. We find that *a strong reasoning model is not necessarily a strong aggregator and vice versa*; qualitatively, we show this later in Table 3. We also find that adaptively selecting an aggregator on the instance level based on model profiles is less effective, motivating us to choose the aggregator based on its ability to select correct answers. To identify the best aggregator per task, we construct a synthetic task using the same validation set. From the profile creation process, we obtain outputs from all models, some correct and some incorrect. For each question, we sample one correct reasoning chain and two incorrect ones, structuring the input as follows: {question}, {correct_CoT}, {incorrect_CoT}, {incorrect_CoT}. We shuffle the order of the CoTs and instruct each model to act as an aggregator (using the prompt shown in Appendix O), synthesizing a final output with a predicted answer. We then benchmark each model’s aggregation ability and select the best-performing aggregator for each task.

216 3.3 INFERENCE
217218 3.3.1 SKILL-BASED RECRUITING
219

220 At inference time (see Fig. 2 (b)), we follow the same keyword annotation procedure as in Section 3.2.1 to generate relevant keywords for the test sample. To align a test sample’s keywords with
221 those in the model profiles, we employ Sentence-BERT (Reimers & Gurevych, 2020) to match key-
222 words via the cosine similarity between their embeddings. This ensures that every keyword gets
223 matched to the closest counterpart in the model profile. Next, expert recruitment is performed by
224 selecting the top k models whose profiles best match the required skills of the test sample. This is
225 determined by two factors: **(1) local suitability score** and **(2) global competency**. For each model
226 M_i , its *local suitability score* for a test sample q , $\mathcal{S}(M_i, q)$ is computed as the sum of its skill scores
227 over the set of keywords needed for q (denoted as K_q). It can be expressed as follows:

$$228 \quad 229 \quad 230 \quad \mathcal{S}(M_i, q) = \sum_{k_j \in K_q} s_{k_j}^{(i)}$$

231 where $s_{k_j}^{(i)}$ represents the score of model M_i for the j -th skill in the test sample q . This results in an
232 model ranking distribution \mathcal{D}_q for each test sample q : $\mathcal{D}_q = \{\mathcal{S}(M_1, q), \mathcal{S}(M_2, q), \dots, \mathcal{S}(M_n, q)\}$.
233

234 Intuitively, suppose M_1 has scores of +3, +5, and -2 for algebra, calculus, and geometry, respec-
235 tively, which are needed for a given sample; its total score for this sample would be $3 + 5 - 2 = 6$.
236 Calculating this score for all models yields a distribution of model strengths for the given sample,
237 e.g., $\{M_1: 6, M_2: 3, \dots, M_n: -10\}$, which is the ranking of *how suitable a model is for a sample*.

238 We also take into account each model’s overall strength in a task, i.e., *global competency*. This
239 is easily obtained by summing a model’s score across all keywords in its profile, and normalizing
240 it by the total sum of all models’ scores. We denote this global strength as γ_i , representing a
241 model’s overall task performance *relative to others*. Finally, the expert selection is performed by
242 sampling from the product of the local suitability score, $\mathcal{S}(M_i, q)$ (from a model rank distribution
243 \mathcal{D}_q) and the global competency γ_i . That is, the relevance score of a model M_i for a test sample q is:
244 $w_q^{(i)} = \gamma_i \mathcal{S}(M_i, q)$. We apply a softmax function with the temperature set to 0.5 to this distribution
245 $\{w_q^{(i)}\}_{i=1}^n$, and then sample k experts with replacement for each problem, i.e.,

$$246 \quad 247 \quad E_q^{(i)} \sim \text{Categorical}(w_q^{(1)}, w_q^{(2)}, \dots, w_q^{(n)}), \quad i = \{1, 2, \dots, k\}$$

248 To enhance efficiency, we trim low-frequency experts, i.e., those who appear in fewer than 5% of
249 test cases. For example, given a test set with 100 samples, where 3 experts are recruited per sample
250 (totaling 300 selections), any expert appearing fewer than $300 \times 5\% = 6$ times is discarded and
251 resampled from the remaining higher-frequency experts. To visualize this, we provide the expert
252 distribution before and after trimming in Fig. 4.

253 3.3.2 FINAL ANSWER GENERATION
254

255 After expert recruitment, each sample will be passed to the experts, i.e., the input for each expert is
256 the test problem, $x_0 = q$. These experts generate their reasoning paths to the problem in the form
257 of Chain-of-Thought (Wei et al., 2022): $y_0^{(i)} = E^{(i)}(x_0) \forall i \in \{1, 2, \dots, k\}$. Then, the task-specific
258 aggregator A^* is introduced to synthesize the k outputs into a high-quality final answer (Wang
259 et al., 2024a). That is, the final answer is produced by: $y = A^*(\|_{i=1}^k y_0^{(i)})$, where $\|$ denotes the
260 concatenation operation. In Appendix P, we provide a detailed discussion on SYMBOLIC-MOE in
261 the context of sparse MoE frameworks and how it shares its design principles.

262 3.3.3 SCALABLE BATCHED INFERENCE
263

264 In our experiments, we mostly consider 7B–8B parameter LLMs, which have a substantial memory
265 footprint. Due to the adaptive nature of the recruitment process, the set of participating LLMs may
266 change dynamically for different problems. For instance, one sample may require Qwen, Llama, and
267 Mistral, while another may need Gemma, Exaone, and Phi. A naive implementation of this approach
268 can lead to high latency, particularly when the required models change frequently. To mitigate
269 these computational challenges, we introduce a novel batching strategy to maximize throughput.

Table 1: Comparison of SYMBOLIC-MOE with single-model and multi-model baselines. SYMBOLIC-MOE outperforms all multi-agent baselines and achieves performance comparable to strong proprietary models like GPT4o-mini, as well as 70B models, while primarily operating with 7-8B models. Notably, no single baseline consistently secures the second-best performance, even when the strongest models for each task are known. We **bold** the best results and underline the second-best (excluding methods using bigger or proprietary models, shown in gray).

Category	Method	Model	AIME	MMLU-Pro	MedMCQA	GPQA	Avg.
Close-Source Single Model	Zero-Shot CoT	GPT4o-mini	10.00	63.95	68.18	42.93	46.27
	Zero-Shot CoT	Gemini 1.5 Pro	36.67	76.38	72.68	61.62	61.84
	Zero-Shot CoT	DeepSeekV3	26.00	76.29	74.09	60.10	59.12
Open-Source 70B Model	Zero-Shot CoT	Qwen2.5 72B	25.55 ± 3.85	71.54 ± 0.88	69.02 ± 0.32	51.02 ± 0.27	54.28
	Zero-Shot CoT	Llama3.3 70B	32.22 ± 3.85	69.26 ± 0.47	59.78 ± 0.74	51.44 ± 0.62	53.18
Open-Source 7B Model	Zero-Shot CoT	QwenR1	55.93 ± 5.16	52.57 ± 0.45	38.72 ± 0.44	44.95 ± 1.49	48.04
	Zero-Shot CoT	Task-Best	55.93 ± 5.16	54.89 ± 0.53	55.44 ± 0.50	48.43 ± 3.10	53.62
Advanced Single Model	Self-Refine (SR)	Task-Best	53.33 ± 3.34	53.74 ± 0.20	49.57 ± 0.59	50.84 ± 3.65	51.87
	Self-Consistency (SC)	Task-Best x5	67.78 ± 1.57	56.71 ± 0.14	56.85 ± 0.11	53.54 ± 0.36	58.72
Single-Model Multi-Agent	Multi-Agent Debate	Task-Best x3	56.67 ± 6.67	56.21 ± 0.55	51.63 ± 0.80	50.51 ± 0.51	53.76
	Self-MoA	Task-Best x3	55.56 ± 5.09	55.43 ± 0.72	53.27 ± 0.60	52.86 ± 1.46	54.28
Multi-Model Multi-Agent	MoA	Top-3	41.11 ± 5.09	61.78 ± 0.25	59.29 ± 0.32	52.86 ± 3.37	53.76
	ReConcile	Top-3	50.00 ± 7.20	56.46 ± 0.10	60.74 ± 0.43	47.98 ± 2.32	53.80
	SYMBOLIC-MOE	Adaptive	68.88 ± 5.08	63.71 ± 0.43	59.35 ± 0.14	57.78 ± 2.09	62.43

Specifically, for a given set of instances, we precompute (using inferred skills) which LLMs will be called for each instance. We then group instances based on their required experts, as illustrated in Fig. 3 (III) and Algorithm 1 in Algorithm 1. In other words, each active expert receives all assigned instances at once, ensuring that each expert is loaded only once per batch. This enables efficient batched inference on *a single GPU* while supporting a pool of 16 LLMs. Moreover, this approach is flexible, as more GPUs can further accelerate inference through parallelization.

4 RESULTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

We evaluate 16 LLMs with sizes ranging from 3.5B to 12B parameters, with the majority falling in the 7–8B range. These include general-purpose instruction-tuned models, domain-specific fine-tuned variants on math and biology, and models distilled from DeepSeek R1’s trajectories (DeepSeek-AI et al., 2025a). A complete list of models is provided in Table 8. We measure performance on a diverse range of datasets, chosen to require expertise in a number of domains. First, we consider MMLU-Pro (Wang et al., 2024c), which is a harder version of MMLU (Hendrycks et al., 2021), containing a variety of questions across 14 college-level subjects. Given its large test set of 12,000 samples and the computational cost of evaluating proprietary models, we employ stratified sampling to create a subset of 2,100 samples, ensuring each category contains 150 samples. We also evaluate on AIME 2024, which is a challenging mathematics competition dataset containing math Olympiad problems. For more science-specific reasoning, we test on GPQA Diamond (Rein et al., 2023), which contains questions across a variety of science fields written by experts, explicitly designed to be difficult to answer even by skilled humans with web access. Finally, we include MedMCQA (Pal et al., 2022), which covers questions sourced from medical entrance exams across 21 medical subjects. For each dataset, we sample around 350 samples as the validation set to create the model profiles.² Full dataset statistics are provided in Table 12, and the model pool we consider is shown in Appendix E. For baselines, we consider (i) the strongest task-specific LLM in the single-model setting and (ii) the top three models per task in the multi-model setting. *These task-best model selections for the baselines are also based on validation performance*, which is summarized in Table 9. Further details on baselines are provided in Appendix C and Appendix D.

4.2 MAIN RESULTS

SYMBOLIC-MOE consistently outperforms all baselines. We present the main results in Table 1. Across all domains, SYMBOLIC-MOE shows superior performance compared to all baselines, beat-

²For AIME, we sample validation questions from prior years’ problems (2012–2023).

324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823<br

378 **Role and selection of the aggregator.** Unlike most of our
 379 discussion-based multi-agent baselines, SYMBOLIC-MOE
 380 collects a single CoT and answer from each expert and com-
 381 bines them via an aggregator. This provides efficiency gains,
 382 as shown in Table 6; here, we investigate the role of the ag-
 383 ggregator in our framework. While experts are selected per
 384 instance, the aggregator is chosen per task, as we find that
 385 reasoning ability does not necessarily translate to effective
 386 aggregation. Table 3 compares three strategies: (1) a randomly
 387 chosen aggregator from the model
 388 pool (**Random**), (2) an instance-level aggregator selection based
 389 on model profiling (**Adaptive**), and (3) a task-specific aggregator determined
 390 by task-level performance (**Task-specific**). Eval-
 391 uated on MMLU-Pro and GPQA, the results indicate that a random
 392 aggregator substantially degrades
 393 performance, showing that the aggregator plays a crucial role. While the instance-level aggregator
 394 improves outcomes on both datasets, the task-specific aggregator outperforms it on MMLU-Pro and
 395 performs comparably on GPQA. We further find that the similar performance of instance-specific
 396 and task-specific aggregation on GPQA is due to a high degree of overlap in selected aggregators.
 397 Overall, this suggests that good reasoners will not always be good aggregators, supporting our task-
 398 based selection.

399 **Synergy between expert and aggregator selection.** As
 400 demonstrated that the selection of an aggregator plays an
 401 important role, we further investigate the synergy be-
 402 tween good aggregator selection and good expert selec-
 403 tion. In Table 4, we experiment with two expert selection
 404 strategies: (1) randomly recruiting k experts without us-
 405 ing model profiles, and (2) using our model profiles to
 406 recruit experts. We also employ three settings for ag-
 407 ggregator selection: (1) based on the task performance
 408 as SYMBOLIC-MOE uses, (2) randomly selecting an ag-
 409 ggregator, and (3) using majority vote to select the final answer without using any aggregator. Our
 410 findings indicate that the combination of strong models with a task-specific aggregator yields the
 411 highest performance. When the aggregator is suboptimal, majority voting can serve as a robust al-
 412 ternative. However, when the expert models themselves are weak (chosen randomly), even a strong
 413 aggregator cannot compensate for the performance drop.

414 **Utility of model profile.** SYMBOLIC-MOE profiles mod-
 415 els based on their skills and leverages this information to
 416 recruit experts effectively. To underscore the importance of
 417 this step, we compare several alternative selection strate-
 418 gies in Table 5, evaluating accuracy on GPQA. In the top- k
 419 approach, experts are fixed as the best-performing models
 420 for the task, whereas in the random- k strategy, the selected
 421 experts vary across instances. Our results demonstrate that
 422 skill-based selection is essential. Notably, although select-
 423 ing the top k experts for a task may seem intuitive, it con-
 424 sistently underperforms compared to SYMBOLIC-MOE’s
 425 adaptive instance-level expert selection. Interestingly, top-5
 426 selection performs worse than top-3 selection, suggesting that a broader selection increases the like-
 427 lihood of including weaker models, leading to performance degradation. Additionally, the random
 428 selection strategy consistently harms performance, showing a 12.86% to 15.61% drop compared to
 429 SYMBOLIC-MOE, likely also due to the inclusion of weaker experts.

425 4.4 EFFICIENCY ANALYSIS

426 **Run time efficiency.** Enabling our batch inference strategy (Fig. 3) substantially re-
 427 duces inference time. We evaluate average run-time on GPQA and compare SYMBOLIC-
 428 MOE to a naive sequential implementation and to MoA (Table 6). As expected,
 429 sequential inference yields the highest latency, since the model must be repeatedly
 430 loaded and offloaded for each instance. In contrast, SYMBOLIC-MOE achieves 44%
 431 lower latency than MoA on a single GPU—while also delivering higher accuracy.

Table 3: Ablations on different ag-
 gregators in our full setting.

Aggregator	MMLU-Pro	GPQA
Random	52.29	48.92
Adaptive	57.12	58.01
Task-specific	63.71	57.78

Table 4: Comparison of different expert
 selection and aggregation strategies.

Expert	Aggregator	GPQA
Random	Task-Specific	31.82
Recruited	Random	51.52
Recruited	Majority Vote	53.54
Recruited	Task-Specific	57.78

Table 5: Comparison of different re-
 cruiting strategies on GPQA.

Recruiting Strategy	Acc.
Top-3 Experts	52.86
Top-5 Experts	47.68
3 Random Experts	42.61
5 Random Experts	44.92
Model Profile (Ours)	57.78

Notably, SYMBOLIC-MOE on a single GPU matches the run-time of MoA on 4 GPUs, and when scaled to 4 GPUs, SYMBOLIC-MOE attains nearly a $2\times$ speedup over MoA. We also report token usage in Appendix I, showing that SYMBOLIC-MOE achieves the best trade-off between efficiency and performance among multi-agent baselines. While our batch inference strategy does assume that test samples arrive in batches (so expert assignments can be pre-determined), this assumption is not restrictive in practice: many widely-used inference acceleration techniques make the same assumption (e.g., vLLM (Kwon et al., 2023)), and popular services like ChatGPT (OpenAI, 2025) and Gemini (Gemini, 2025) also support batched inference for efficiency.

Methodological efficiency. Like multi-agent discussion baselines, SYMBOLIC-MOE can also operate in a discussion-based manner. Instead of immediately aggregating initial responses, models first engage in three rounds of discussion—observing each other’s outputs and generating refined responses—before submitting them to the aggregator. Table 7 reports results for this setting, comparing the adaptive aggregator (suboptimal), the task-best aggregator (suboptimal), and the task-specific aggregator (optimal) on MMLU-Pro and GPQA. With the task-specific aggregator, discussion yields only marginal gains on MMLU-Pro (63.83 vs. 63.71) and a slight drop on GPQA (57.72 vs. 57.78). While round-wise discussion can improve performance incrementally, the final outcome is primarily determined by the strength of the aggregator. Consequently, SYMBOLIC-MOE with a strong task-specific aggregator can skip the costly multi-round discussion, reducing runtime and improving methodological efficiency, while surpassing the performance of discussion-based baselines, as shown in Table 6.

5 DISCUSSION AND CONCLUSION

A key feature highlighted in Table 1 is the *consistency* of SYMBOLIC-MOE’s performance. While baseline methods occasionally do well in isolated settings (e.g., MoA on MMLU-Pro, ReConcile on MedMCQA), it is important to highlight that no baseline does well consistently across settings. This means that – without SYMBOLIC-MOE – getting a strong overall result would require evaluating all the baseline methods and choosing the best settings manually. In contrast, SYMBOLIC-MOE achieves high performance by automatically recruiting the experts based on skills needed for each instance, serving as a robust recipe that generalizes across domains.

Modularity. Another key advantage of SYMBOLIC-MOE is its modularity. Unlike typical Mixture-of-Experts (MoE) frameworks, which need to be trained end-to-end from scratch in a centralized manner, SYMBOLIC-MOE uses the symbolic output channel of existing models to combine experts. This gradient-free approach enables seamless integration of pre-trained models without updates, allowing them to be trained independently and distributedly. Moreover, while standard MoEs have a fixed size determined before training, SYMBOLIC-MOE can *adaptively grow and evolve* as models are updated. Given the rapid advancements in LLMs, state-of-the-art models are often replaced within months. SYMBOLIC-MOE’s modular and gradient-free design simplifies the incorporation of these updates, requiring only a few calls to obtain a new model’s profile, which can then be easily plugged into this framework. It is also straightforward to increase the number of experts recruited at test time, which is usually fixed in the typical MoE setting.

Conclusion. We introduced SYMBOLIC-MOE, a scalable MoE framework that coordinates models through symbolic outputs (i.e., natural language discussion). SYMBOLIC-MOE identifies the skills required for a given problem, recruits the corresponding experts, and aggregates their responses into

Table 6: Efficiency comparison of MoA and SYMBOLIC-MOE on the GPQA test set. Run time is averaged per sample.

Method	# GPUs	Run Time (s)
Sequential	1	196.92
MoA	1	45.98
MoA	4	21.66
SYMBOLIC-MOE	1	25.76
SYMBOLIC-MOE	4	10.85

Table 7: Comparison of with and without discussion across varying aggregators. We show that using a task-specific aggregator leads to the best performance, and while multi-round discussion stabilizes performance with suboptimal aggregators, it *has little effect* with an optimal aggregator.

Discuss	Aggr.	MMLU-Pro	GPQA
✓	Adaptive	59.07	57.01
✗	Adaptive	57.12	58.01
✓	Task-best	57.81	57.78
✗	Task-best	56.67	57.01
✓	Task-specific	63.83	57.72
✗	Task-specific	<u>63.71</u>	<u>57.78</u>

486 a single high-quality answer. Across four diverse reasoning datasets, SYMBOLIC-MOE consistently
 487 outperforms inference-time scaling methods, debate frameworks, and recent mixture-of-agents
 488 approaches, delivering strong and stable performance even as the best baseline varies across domains.
 489 Its average performance on heterogeneous tasks also matches advanced proprietary systems such as
 490 GPT-4o-mini and larger 70B-parameter models. Detailed analysis shows that both expert selection
 491 and the choice of aggregator are crucial for downstream performance, and with a strong aggregator,
 492 costly multi-round discussions can often be skipped without sacrificing quality. Finally, SYMBOLIC-
 493 MOE introduces a novel batching strategy that runs efficiently on a *single GPU*, while retaining the
 494 flexibility to scale further with additional GPUs—achieving both high performance and efficiency.
 495

496 ETHICS STATEMENT

497 In this work, we propose an inference-time method, SYMBOLIC-MOE, which operates without the
 498 need for additional training or fine-tuning. Consequently, the LLMs utilized by SYMBOLIC-MOE
 499 may still exhibit stereotypes, biases, and other negative traits inherent in their pre-training data (Wei-
 500 dinger et al., 2021), over which we have no control. Therefore, the outputs produced by SYMBOLIC-
 501 MOE carry the same potential for misuse as those from other test-time methods. Further research is
 502 necessary to assess and mitigate these biases in LLMs.
 503

504 REPRODUCIBILITY STATEMENT

505 We are making our code available in the supplementary materials to enable replication of our find-
 506 ings. We also provide implementation details of SYMBOLIC-MOE in Appendix D and prompts in
 507 Appendix O. The datasets we use are all publicly available.
 508

510 LIMITATIONS

511 In cases where expert-grouped batches do not form, e.g., when traffic is very sparse or mixed, our
 512 proposed batch inference strategy simply reverts to the standard inference setup. Concretely: (1)
 513 With k GPUs, we load one expert model per GPU and run them independently. (2) With a single
 514 GPU, we load experts sequentially and collect their outputs. We acknowledge that this strategy is
 515 designed to improve efficiency under typical online traffic or benchmark evaluations. As with most
 516 batching methods, its efficiency benefits are less pronounced under extremely small or irregular
 517 batches, but it wouldn't affect the correctness or operation of the system.
 518

521 REFERENCES

522 Alhabib Abbas and Yiannis Andreopoulos. Biased mixtures of experts: Enabling computer vision
 523 inference under data transfer limitations. *IEEE Transactions on Image Processing*, 29:7656–7667,
 524 2020.

525 Meta AI. Meta-llama-3.1-8b-instruct. Hugging Face Model Hub, 2024. URL <https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct>. Accessed: 2024-01-31.

529 AI@Meta. Llama 3.3 model card. 2024. URL https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md.

531 Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
 532 Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. *arXiv*
 533 preprint *arXiv:2308.07201*, 2023.

534 Justin Chen, Swarnadeep Saha, Elias Stengel-Eskin, and Mohit Bansal. Magdi: Structured dis-
 535 tillation of multi-agent interaction graphs improves reasoning in smaller language models. In
 536 *Forty-first International Conference on Machine Learning*, 2024a.

538 Justin Chih-Yao Chen, Swarnadeep Saha, and Mohit Bansal. Reconcile: Round-table conference
 539 improves reasoning via consensus among diverse llms, 2024b. URL <https://arxiv.org/abs/2309.13007>.

540 Ke Chen, Lei Xu, and Huisheng Chi. Improved learning algorithms for mixture of experts in multi-
 541 class classification. *Neural networks*, 12(9):1229–1252, 1999.

542

543 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
 544 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
 545 model post-training. *arXiv preprint arXiv:2501.17161*, 2025. URL <https://arxiv.org/abs/2501.17161>.

546

547 Herbert H Clark. *Using language*. Cambridge university press, 1996.

548

549 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 550 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning ca-
 551 pability in llms via reinforcement learning, 2025a. URL <https://arxiv.org/abs/2501.12948>.

552

553 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
 554 gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-
 555 v3 technical report. 2025b. URL <https://arxiv.org/abs/2412.19437>.

556

557 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
 558 ing factuality and reasoning in language models through multiagent debate. *arXiv preprint
 arXiv:2305.14325*, 2023.

559

560 David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
 561 mixture of experts. *arXiv preprint arXiv:1312.4314*, 2013.

562

563 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
 564 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
 2022. URL <http://jmlr.org/papers/v23/21-0998.html>.

565

566 Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
 567 Counterfactual multi-agent policy gradients. In *Proceedings of the AAAI conference on artificial
 568 intelligence*, volume 32, 2018.

569

570 Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
 571 models towards multi-step reasoning. In *International Conference on Machine Learning*, pp.
 10421–10430. PMLR, 2023.

572

573 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao
 574 Ma, Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghai-
 575 ran Quan, Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao
 576 Chang. Omni-MATH: A universal olympiad level mathematic benchmark for large language
 577 models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
<https://openreview.net/forum?id=yaqPf0KA1N>.

578

579 Gemini. Batch prediction with gemini, 2025. URL <https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/batch-prediction-gemini>.

580

581 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 582 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-
 583 tional Conference on Learning Representations (ICLR)*, 2021.

584

585 Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers.
arXiv preprint arXiv:2212.10071, 2022.

586

587 Jinwu Hu, Yufeng Wang, Shuhai Zhang, Kai Zhou, Guohao Chen, Yu Hu, Bin Xiao, and Mingkui
 588 Tan. Dynamic ensemble reasoning for llm experts. *arXiv preprint arXiv:2412.07448*, 2024.

589

590 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
 591 local experts. *Neural computation*, 3(1):79–87, 1991.

592

593 Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
 594 Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
 595 reinforcement learning. In *International conference on machine learning*, pp. 3040–3049. PMLR,
 2019.

594 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
 595 with pairwise ranking and generative fusion. *arXiv preprint arXiv:2306.02561*, 2023.

596

597 Hao Jiang, Ke Zhan, Jianwei Qu, Yongkang Wu, Zhaoye Fei, Xinyu Zhang, Lei Chen, Zhicheng
 598 Dou, Xipeng Qiu, Zikai Guo, et al. Towards more effective and economic sparsely-activated
 599 model. *arXiv preprint arXiv:2110.07431*, 2021.

600 Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
 601 *Neural computation*, 6(2):181–214, 1994.

602

603 Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin, Minh-Thang
 604 Luong, and Orhan Firat. Beyond distillation: Task-level mixture-of-experts for efficient in-
 605 ference. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih
 606 (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event*
 607 / *Punta Cana, Dominican Republic, 16-20 November, 2021*, pp. 3577–3599. Association for
 608 Computational Linguistics, 2021. doi: 10.18653/v1/2021.findings-emnlp.304. URL <https://doi.org/10.18653/v1/2021.findings-emnlp.304>.

609

610 Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-
 611 tuning can distort pretrained features and underperform out-of-distribution. In *International Con-
 612 ference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=UYneFzXSJWh>.

613

614 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 615 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 616 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 617 Systems Principles*, 2023.

618

619 Gregory Kang Ruey Lau, Wenyang Hu, Diwen Liu, Jizhuo Chen, See-Kiong Ng, and Bryan
 620 Kian Hsiang Low. Dipper: Diversity in prompts for producing large language model ensembles
 621 in reasoning tasks, 2025. URL <https://arxiv.org/abs/2412.15238>.

622

623 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 624 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with con-
 625 ditional computation and automatic sharding. In *9th International Conference on Learning Rep-
 626 resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021. URL
<https://openreview.net/forum?id=qrwe7XHTmYb>.

627

628 Wenzhe Li, Yong Lin, Mengzhou Xia, and Chi Jin. Rethinking mixture-of-agents: Is mixing differ-
 629 ent large language models beneficial? *arXiv preprint arXiv:2502.00674*, 2025.

630

631 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
 632 Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-
 633 agent debate. *arXiv preprint arXiv:2305.19118*, 2023.

634

635 Elita Lobo, Chirag Agarwal, and Himabindu Lakkaraju. On the impact of fine-tuning on chain-of-
 636 thought reasoning. *arXiv preprint arXiv:2411.15382*, 2024.

637

638 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
 639 agent actor-critic for mixed cooperative-competitive environments. *Advances in neural informa-
 640 tion processing systems*, 30, 2017.

641

642 MAA. American invitational mathematics examination - aime. in american invitational
 643 mathematics examination, 2 2024. URL <https://maa.org/math-competitions/american-invitational-mathematics-examination-aime>.

644

645 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 646 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Ma-
 647 jumder, Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement
 648 with self-feedback, 2023.

649

650 Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn.
 651 Teaching small language models to reason. *arXiv preprint arXiv:2212.08410*, 2022.

648 Brando Miranda, Alycia Lee, Sudharsan Sundar, and Sanmi Koyejo. Beyond scale: the diversity
 649 coefficient as a data quality metric demonstrates LLMs are pre-trained on formally diverse data,
 650 2024. URL <https://openreview.net/forum?id=506Sxc0Adp>.

651

652 Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi. Di-
 653 versity of thought improves reasoning abilities of llms, 2024. URL <https://arxiv.org/abs/2310.07088>.

654

655 OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024. URL <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>.

656

657 OpenAI. Batch api, 2025. URL <https://platform.openai.com/docs/guides/batch>.

658

659

660 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
 661 multi-subject multi-choice dataset for medical domain question answering. In *Conference on
 662 health, inference, and learning*, pp. 248–260. PMLR, 2022.

663

664

665 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 666 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 667 Jianxin Yang, Jiaxi Yang, Jingren Zhou, et al. Qwen2.5 technical report. 2025. URL <https://arxiv.org/abs/2412.15115>.

668

669 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

670

671

672 Nils Reimers and Iryna Gurevych. Making monolingual sentence embeddings multilingual using
 673 knowledge distillation. In *Proceedings of the 2020 Conference on Empirical Methods in Natural
 674 Language Processing*. Association for Computational Linguistics, 11 2020. URL <https://arxiv.org/abs/2004.09813>.

675

676

677 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 678 Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
 679 benchmark, 2023. URL <https://arxiv.org/abs/2311.12022>.

680

681 Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
 682 Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
 683 *Advances in Neural Information Processing Systems*, 34:8583–8595, 2021.

684

685 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 686 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 687 *arXiv preprint arXiv:1701.06538*, 2017a.

688

689 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
 690 Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
 691 experts layer. In *5th International Conference on Learning Representations, ICLR 2017, Toulon,
 692 France, April 24-26, 2017, Conference Track Proceedings*. OpenReview.net, 2017b. URL
<https://openreview.net/forum?id=B1ckMDqlg>.

693

694 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 695 et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,
 696 2024a. URL <https://arxiv.org/abs/2403.05530>.

697

698 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
 699 patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
 700 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024b.

701 Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
 702 large language model capabilities. *arXiv preprint arXiv:2406.04692*, 2024a.

702 Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, and Yangqiu Song. Rethinking the bounds
 703 of LLM reasoning: Are multi-agent discussions the key? In Lun-Wei Ku, Andre Martins, and
 704 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 705 putational Linguistics (Volume 1: Long Papers)*, pp. 6106–6131, Bangkok, Thailand, August
 706 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.331. URL
 707 <https://aclanthology.org/2024.acl-long.331/>.

708 Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang, Azalia Mirhoseini, Trevor Darrell, and
 709 Joseph E Gonzalez. Deep mixture of experts via shallow embedding. In *Uncertainty in artificial
 710 intelligence*, pp. 552–562. PMLR, 2020.

711 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
 712 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 713 models. In *ICLR*. OpenReview.net, 2023a. URL <https://openreview.net/pdf?id=1PL1NIMMrw>.

714 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
 715 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 716 models. In *The Eleventh International Conference on Learning Representations*, 2023b. URL
 717 <https://openreview.net/forum?id=1PL1NIMMrw>.

718 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 719 Ren, Aaran Arulraj, Xuan He, Ziyi Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
 720 Fan, Xiang Yue, and Wenhui Chen. MMLU-Pro: A More Robust and Challenging Multi-Task
 721 Language Understanding Benchmark. In *The Thirty-eight Conference on Neural Information
 722 Processing Systems Datasets and Benchmarks Track*, November 2024c.

723 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 724 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 725 neural information processing systems*, 35:24824–24837, 2022.

726 Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
 727 Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm
 728 from language models. *arXiv preprint arXiv:2112.04359*, 2021. URL <https://arxiv.org/abs/2112.04359>.

729 Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining inter-consistency of large lan-
 730 guage models collaboration: An in-depth analysis via debate. *arXiv preprint arXiv:2305.11595*,
 731 2023.

732 Enwei Xu, Wei Wang, and Qingxia Wang. The effectiveness of collaborative problem solving in
 733 promoting students' critical thinking: A meta-analysis based on empirical literature. *Human-
 734 ities and Social Sciences Communications*, 10(1):16, 2023. ISSN 2662-9992. doi: 10.1057/
 735 s41599-023-01508-1. URL <https://doi.org/10.1057/s41599-023-01508-1>.

736 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 737 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 738 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical
 739 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024. URL <https://arxiv.org/abs/2409.12122>.

740 Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. Condconv: Conditionally parame-
 741 terized convolutions for efficient inference. *Advances in Neural Information Processing Systems*,
 742 32, 2019.

743 W. Quin Yow and Tony Zhao Ming Lim. Sharing the same languages helps us work better together.
 744 *Palgrave Communications*, 5(1):154, 2019. ISSN 2055-1045. doi: 10.1057/s41599-019-0365-z.
 745 URL <https://doi.org/10.1057/s41599-019-0365-z>.

746 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
 747 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
 748 for large language models. *arXiv preprint arXiv:2309.12284*, 2023.

756 Seniha Esen Yuksel, Joseph N. Wilson, and Paul D. Gader. Twenty years of mixture of experts.
 757 *IEEE Transactions on Neural Networks and Learning Systems*, 23(8):1177–1193, 2012. doi:
 758 10.1109/TNNLS.2012.2200299.

759

760 Sukwon Yun, Inyoung Choi, Jie Peng, Yangfan Wu, Jingxuan Bao, Qiyiwen Zhang, Jiayi Xin,
 761 Qi Long, and Tianlong Chen. Flex-moe: Modeling arbitrary modality combination via the flexible
 762 mixture-of-experts. *arXiv preprint arXiv:2410.08245*, 2024.

763

764 Chenrui Zhang, Lin Liu, Jinpeng Wang, Chuyuan Wang, Xiao Sun, Hongyu Wang, and Mingchen
 765 Cai. Prefer: Prompt ensemble learning via feedback-reflect-refine, 2023. URL <https://arxiv.org/abs/2308.12033>.

766

767 Haozhen Zhang, Tao Feng, and Jiaxuan You. Router-r1: Teaching llms multi-round routing and
 768 aggregation via reinforcement learning. In *The Thirty-ninth Annual Conference on Neural Infor-*
 769 *mation Processing Systems*, 2025.

770

771 Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Moefica-
 772 tion: Conditional computation of transformer models for efficient inference. *arXiv preprint*
 773 *arXiv:2110.01786*, 2021.

774

775 Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Jianfeng Gao,
 776 and Tuo Zhao. Taming sparsely activated transformer with stochastic experts. In *International*
 777 *Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=B72HXs80q4>.

778

779 APPENDIX

780 A THE USE OF LARGE LANGUAGE MODELS (LLMs)

781 We use ChatGPT³ for grammar correction and refinement. The model was only used to polish
 782 text written by the authors and was not used to contribute to research ideation or the generation of
 783 original content.

784 B ILLUSTRATIONS OF VARIATIONS IN BATCH INFERENCE

785 As discussed in Section 3.3, there are mainly three different ways to serve multiple LLMs to solve
 786 every instance adaptively. We illustrate these variations in Fig. 3. Our batch inference method allows
 787 for the speedups featured in Table 6.

788 C BASELINES DETAILS

789 We compare against four categories of baselines.

- 790 • **Zero-shot single-model methods:** This category includes proprietary models such as GPT-4o-
 791 mini (OpenAI, 2024), Gemini 1.5 Pro (Team et al., 2024a), and DeepSeek-V3 (DeepSeek-AI
 792 et al., 2025b); high-capacity open-source models like Qwen2.5 72B (Qwen et al., 2025) and
 793 Llama 3.3 70B (AI@Meta, 2024); and strong distilled 7B models such as QwenR1 (DeepSeek-
 794 AI et al., 2025a). For reference, we also report the best task-specific model from our pool for each
 795 task, denoted as Task-Best.
- 796 • **Advanced single-model baselines with inference-time compute:** We evaluate methods that
 797 enhance inference-time reasoning, specifically Self-Refine (SR) (Madaan et al., 2023) and Self-
 798 Consistency (SC) (Wang et al., 2023b). To ensure a fair comparison, we set SC’s sample size to
 799 5, aligning with the number of large language model (LLM) calls in SYMBOLIC-MOE, which
 800 engages three experts and one aggregator model.⁴ Additionally, for these baselines, we use the
 801

802 ³<https://chatgpt.com/>

803 ⁴We use an odd number of SC calls to avoid ties.

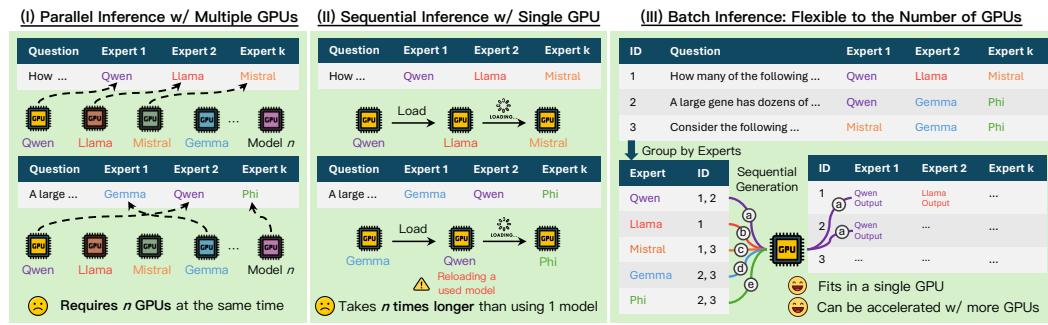


Figure 3: Different approaches to achieving adaptiveness in SYMBOLIC-MOE, which uses different models for each instance. In a naive setup (I), k GPUs must be hosted simultaneously, allowing immediate access to outputs from each model. Another naive setup (II) requires only a single GPU but involves constant loading and offloading of models to obtain outputs from the corresponding model. Our scalable batch inference process (III) strikes a balance between (I) and (II). When models are assigned to problems, we group samples by model and sequentially load the corresponding LLM onto a single GPU to generate outputs efficiently. Moreover, this approach still allows us to parallelize across GPUs if they are available.

best-performing LLM for each task, inferred on the same dev set used for our agent profile creation.

- **Single-model multi-agent baselines:** To isolate the impact of SYMBOLIC-MOE’s recruitment strategy, we compare against methods where multiple instances of the same model collaborate. Specifically, we consider Multi-Agent Debate (Debate) (Du et al., 2023) and Self-Mixture-of-Agents (Self-MoA) (Li et al., 2025), both of which rely on iterative, multi-round discussions using a single model. These baselines employ three agents, each using the same task-best model, and conduct two rounds of discussion, resulting in a total of 6 LLM calls per sample.
- **Multi-model multi-agent baselines:** We also evaluate approaches leveraging diverse models in a multi-agent setup. This includes Mixture-of-Agents (MoA) (Wang et al., 2024a) and ReConcile (Chen et al., 2024b), both of which incorporate a fixed set of models in multi-round interactions. To ensure a fair comparison with our approach, particularly in the use of the validation set, we select the top three performing models from the validation set and conduct multi-round interactions. In MoA, agents participate in two rounds of discussion, while agents in ReConcile engage in three rounds, leading to 6 and 9 LLM calls per sample, respectively.

D IMPLEMENTATION DETAILS

We conduct our experiments for SYMBOLIC-MOE and other single-model baselines on a single A6000 GPU with 48 GB of memory, while MoA and ReConcile are executed on 8 A6000 GPUs for parallelization. For the 70B models, we use the original version without quantization and perform inference on 4 A6000 GPUs. All open-source models utilize vLLM (Kwon et al., 2023) for inference. The temperature is set to 0.7 for all methods. The maximum output token length is fixed at 4096 for all models, except for QwenR1 and LlamaR1, which have a limit of 32768 since they are trained with longer trajectories and tend to generate longer outputs. All results, except those from proprietary models (due to budget constraints), are averaged over three random seeds. Further details on the model pool, distribution of the expert recruited, and all the prompts we use can be found in Table 8 and Appendix O.

E MODEL POOL

We provide the full list of our model pool in Table 8, including their names, sizes, and publicly available checkpoints on Huggingface. Most of the model sizes are 7 to 8 billion.

864

865

Table 8: The models constituting the model pool.

866

867

Model Name	Size	Huggingface Link
BioLlama	8B	ContactDoctor/Bio-Medical-Llama-3-8B
DeepSeekMath	7B	deepseek-ai/deepseek-math-7b-instruct
Exaone	7.8B	LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct
Gemma2	9B	google/gemma-2-9b-it
GLM4	9B	zai-org/glm-4-9b-chat
Granite	8B	ibm-granite/granite-3.1-8b-instruct
InternLM3	8B	internlm/internlm3-8b-instruct
Llama3.1	8B	meta-llama/Llama-3.1-8B-Instruct
LlamaR1	8B	deepseek-ai/DeepSeek-R1-Distill-Llama-8B
Mathstral	7B	mistralai/Mathstral-7B-v0.1
Mistral	12B	mistralai/Mistral-Nemo-Instruct-2407
Phi3.5-mini	3.5B	microsoft/Phi-3.5-mini-instruct
Qwen2.5	7B	Qwen/Qwen2.5-7B-Instruct
Qwen2.5-Coder	7B	Qwen/Qwen2.5-Coder-7B-Instruct
Qwen2.5-Math	7B	Qwen/Qwen2.5-Math-7B-Instruct
QwenR1	7B	deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

883

884

F PERFORMANCE ON THE VALIDATION SET

885

Table 9 shows the performance of each model on the validation set. We highlight the top-1 and top-3 models in bold font and yellow background, respectively. This information is also used for the baselines we compare against in Table 1.

890

891

Table 9: Comparison of model performance on the validation set. The best model on each task is **bolded**, and the top 3 models on each task are highlighted in yellow.

892

893

Model	MMLU-Pro	AIME	GPQA	MedMCQA
BioLlama	37.71	0.85	27.31	42.86
DeepSeekMath	32.57	3.32	28.11	35.71
Exaone	52.29	25.99	32.13	56.35
Gemma	53.71	7.73	36.95	64.29
GLM	50.29	7.37	30.92	58.33
Granite	43.43	5.92	34.14	56.15
InternLM	43.14	7.91	36.14	55.56
Llama	46.00	6.78	33.73	66.87
LlamaR1	54.29	51.98	56.22	53.37
Mathstral	34.57	3.11	36.55	52.38
Mistral	45.14	1.41	33.73	46.43
Phi	46.57	1.41	47.79	65.87
Qwen	54.00	13.56	37.35	67.06
QwenCode	46.29	9.89	30.52	50.79
QwenMath	31.71	11.13	28.51	36.90
QwenR1	53.43	57.06	51.41	37.90

911

912

913

914

G PERFORMANCE OF EACH MODEL AS AN AGGREGATOR

915

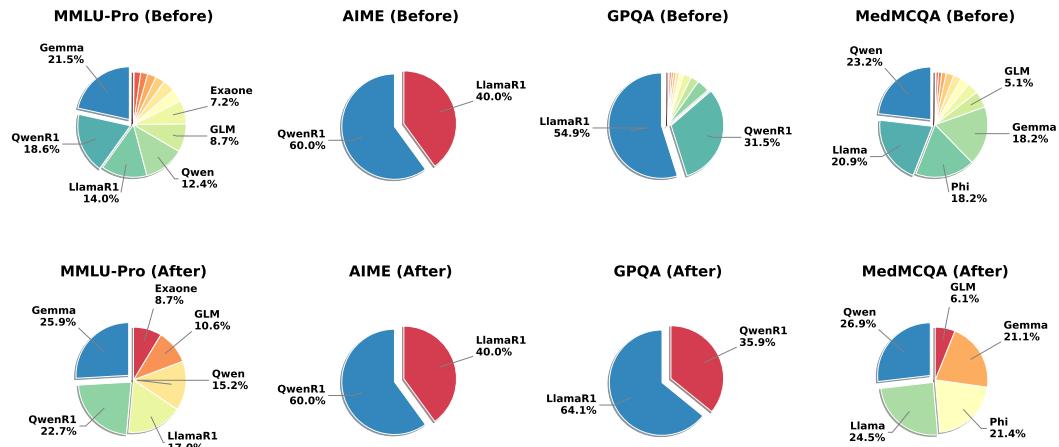
Table 10 shows the performance of each model when acting as an aggregator. Note that the best-performing model in Table 9 can be different from the best aggregator model in Table 10, motivating us to choose the aggregator based on this synthetic task described in Section 3.2.2.

918
 919 Table 10: Performance of each model when used as an aggregator, on the validation set. The best
 920 model on each task is **bolded**, and is selected as the task-specific aggregator.

Model	MMLU-Pro	AIME	GPQA	MedMCQA
BioLlama	37.31	21.47	30.12	42.46
DeepSeekMath	32.57	5.37	21.69	35.71
Exaone	57.43	47.92	35.34	52.58
Gemma	49.71	3.11	31.73	53.37
GLM	52.57	26.27	35.34	51.39
Granite	48.86	36.44	38.96	48.02
InternLM	55.14	16.95	42.57	51.59
Llama	51.14	11.86	40.56	50.60
LlamaR1	59.71	53.67	46.18	49.01
Mathstral	41.71	26.27	35.74	46.43
Mistral	48.00	18.93	33.33	46.43
Phi	27.71	9.04	26.10	25.40
Qwen	56.86	38.14	39.36	53.37
QwenCode	51.14	29.66	38.96	50.79
QwenMath	31.71	5.93	16.06	36.90
QwenR1	58.00	57.63	48.59	45.44

H DISTRIBUTION OF EXPERTS

We present the distribution of recruited experts across different datasets in Fig. 4. As noted in Section 3.2.1, we trim experts with occurrences below 5% to reduce model loading time. In Fig. 4, the top row shows the distribution before trimming, and the bottom row shows the distribution after trimming. The distribution varies significantly across datasets – on more diverse datasets such as MMLU-Pro, the recruited experts are also more varied. In contrast, for AIME and GPQA, which focus more on math and science, the recruited experts are dominated by a few models.



964
 965 Figure 4: Distribution of the recruited experts across datasets. Top row: the distribution before
 966 trimming. Bottom row: the distribution after trimming and resampling.

I TEST-TIME TOKEN COUNT ANALYSIS

971 In addition to measuring GPU run time in Table 6, we compare the test-time token count with multi-
 972 agent baselines. As shown in Fig. 5, SYMBOLIC-MoE uses fewer tokens than Self-MoA while

achieving a significant performance gain. However, compared to MoA and ReConcile, SYMBOLIC-MOE generates more tokens, particularly on GPQA. The primary reason, as illustrated in Fig. 4, is that SYMBOLIC-MOE predominantly recruits LlamaR1 and QwenR1, both of which are trained with long reasoning trajectories, resulting in substantially longer outputs compared to other models. This explains why SYMBOLIC-MOE requires less GPU run time despite producing more tokens: by skipping the expensive multi-round discussions, we eliminate the time spent loading and offloading models. However, the inherent verbosity of the R1 models contributes to the higher token count.

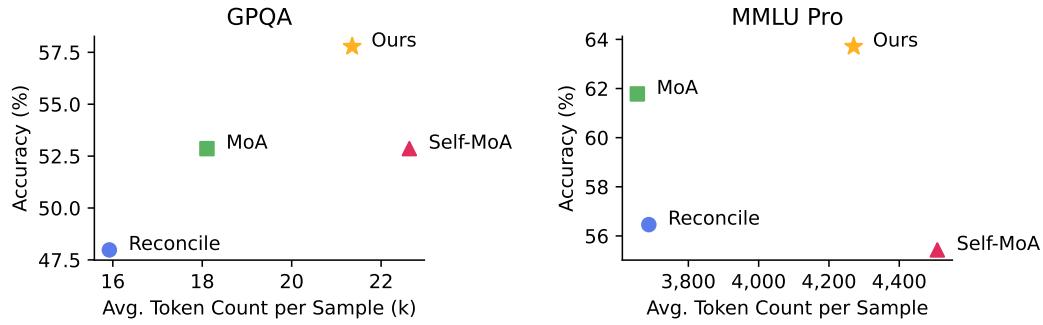


Figure 5: Comparison of the test-time token count used in different methods.

J THE EFFECT OF TRIMMING AND RE-SAMPLING

As described in Section 3.3.1, we trim the recruited experts if their occurrence falls below 5% of the total selections. Here, we analyze the impact of this trimming process. Without trimming, the diversity of selected experts increases, but the model loading time also increases. Table 11 presents a quantitative comparison of accuracy and GPU run time using 4 GPUs. As expected, trimming reduces GPU run time across both datasets by minimizing the need to load infrequently used models. Interestingly, we also observe that trimming improves accuracy on GPQA. This improvement may be due to the fact that after trimming, only LlamaR1 and QwenR1 remain as the recruited experts, which are particularly effective on this task.

K KEYWORD DISTRIBUTION IN VALIDATION DATA

We provide the annotated keyword distribution in the validation set in Fig. 6.

Table 11: Trimming the low-frequent experts improves both accuracy and efficiency.

	MMLU-Pro		GPQA	
	Acc ↑	Time ↓	Acc ↑	Time ↓
w/o Trimming	63.94	18.83	55.26	21.78
w/ Trimming	63.71	12.27	57.78	10.85

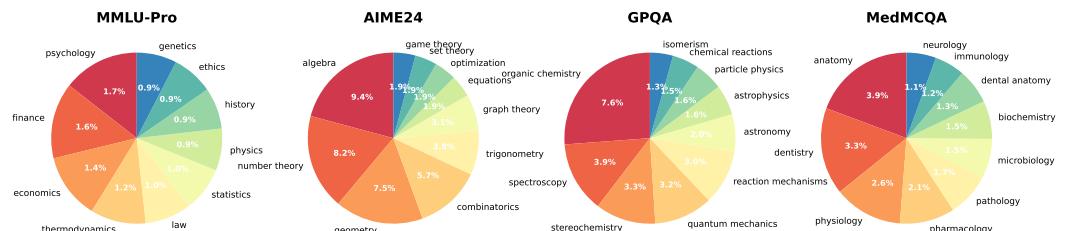


Figure 6: Keyword distribution in the validation set. For brevity, we show only the top 10 keywords.

1026 **L DATASET STATISTICS AND LICENSES**
10271028 We provide the sample sizes and licenses of the datasets used in this work in Table 12. All the
1029 datasets are in English, and all datasets are used in a fashion consistent with their intended use.
10301031
1032 **Table 12: The statistics and licenses of the datasets we use in this work.**

	Validation Size	Test Size	License
MMLU-Pro (Wang et al., 2024c)	350	2,100	Apache License
AIME (MAA, 2024)	354	30	CC0
GPQA (Rein et al., 2023)	249	198	MIT License
MedMCQA (Pal et al., 2022)	504	4,183	MIT License

1033 **M SENSITIVITY TO THE KEYWORD LLM**
10341035 We choose Qwen 2.5 7B (Qwen Team, 2024) as the “Key-
1036 word LLM” to generate the required skills for each in-
1037 stance during both preprocessing and inference. Here, we
1038 investigate the sensitivity of the results to the choice of
1039 the Keyword LLM, testing three different models: Qwen
1040 2.5 7B (Qwen Team, 2024), Llama 3.1 8B (AI, 2024), and
1041 Gemma 2 9B (Team et al., 2024b). As shown in Table 13,
1042 the final performance remains consistent regardless of the
1043 chosen model, indicating that the selection of the Key-
1044 word LLM has minimal influence on performance.
10451046 **N ALGORITHM**
10471048 We provide the algorithm for our batched inference strategy in Algorithm 1.
10491050 **Algorithm 1** BatchedInference1051 **Require:** Test samples \mathcal{Q} , Model pool \mathcal{M} 1052 **Ensure:** Inference results for all samples

```

1: expert_sample_map  $\leftarrow \emptyset$  ▷ Expert-to-samples mapping
2: for  $q \in \mathcal{Q}$  do
3:    $E_q^{(1)}, E_q^{(2)}, \dots, E_q^{(k)} \leftarrow \text{RECRUITEXPERTS}(q, \mathcal{M})$  ▷ Select  $k$  experts per sample (§3.3.1)
4:   for  $e \in E_q$  do
5:     expert_sample_map[ $e$ ]  $\leftarrow \text{expert\_sample\_map}[e] \cup \{q\}$ 
6:   end for
7: end for
8:
9: results  $\leftarrow \emptyset$  ▷ Results collection
10: for  $(e, q_e) \in \text{expert\_sample\_map}$  do
11:   results  $\leftarrow \text{results} \cup e.\text{GENERATE}(q_e)$  ▷ Batch inference per expert
12: end for
13: return results

```

1053 **Table 13: Keyword LLM has little effect on the final performance.**

Keyword LLM	MMLU-Pro	GPQA
Llama 3.1 8B	64.19	56.62
Gemma 2 9B	64.02	57.01
Qwen 2.5 7B	63.71	57.78

1080
1081 **O PROMPTS**1082 **Prompt for the Keyword LLM to Generate Keywords**1083
1084 Question: {question}1085
1086 What are the core knowledge, subjects or skills needed to solve this problem? List 2-5 key-
1087
1088 words separated in comma. Example keywords: psychology, virology, behavioral theory,
1089
1090 microbiology, diplomacy, political science, property law, finance, business. Give ONLY the
1091
1092 keywords, no other words or explanation.1093
1094 Follow this format: Keywords: <keyword1>, <keyword2>...1095 **Prompt for Zero-shot Chain-of-Thought Generation (Multiple Choice)**1096
1097 Question: {question}1098
1099 Provide your step-by-step reasoning first, and then print “The answer is (X)” where X is the
1100
1101 answer choice (one capital letter), at the end of your response.1102 **Prompt for Zero-shot Chain-of-Thought Generation (Math)**1103
1104 Question: {question}1105
1106 Provide your step-by-step reasoning first, and then print “The answer is \boxed{X}”, where
1107
1108 X is the final answer, at the end of your response.1109 **Prompt for the Aggregator (Wang et al., 2024a)**1110
1111 You have been provided with a set of responses from various open-source models to the latest
1112 user query. Your task is to synthesize these responses into a single, high-quality response. It is
1113 crucial to critically evaluate the information provided in these responses, recognizing that some
1114 of it may be biased or incorrect. Your response should not simply replicate the given answers
1115 but should offer a refined, accurate, and comprehensive reply to the instruction. Ensure your
1116 response is well-structured, coherent, and adheres to the highest standards of accuracy and
1117 reliability.1118
1119 Responses from models:1120
1121 {model_1_response}1122
1123 {model_2_response}1124
1125 {model_3_response}1126
1127 Question: {question}1128
1129 Provide your step-by-step reasoning first, and then print “The answer is (X)” where X is the
1130
1131 answer choice (one capital letter), at the end of your response.1132 **P SYMBOLIC-MOE AS A SPARSE MIXTURE-OF-EXPERT**1133
1134 In the Sparse Mixture-of-Experts (SMoE) framework (Shazeer et al., 2017a), a trainable router dy-
1135
1136 namically selects a subset of experts for each input. Formally, given an input x , the output of an
1137
1138 SMoE layer, y is computed as:

1139
1140
1141
$$y = \sum_{i=1}^k \mathcal{R}(x)_i \cdot f_i(x), \quad (1)$$

1142
1143
$$\mathcal{R}(x) = \text{softmax}(\text{Top-K}(g(x)), k)$$

1134 where $f_i(x)$ represents the response of the i -th expert, and $\mathcal{R}(x)$ is a trainable router that assigns
 1135 selection probabilities to each expert based on $g(x)$, typically a small feedforward network (Shazeer
 1136 et al., 2017b; Riquelme et al., 2021). The Top- k operation retains only the top k experts, setting
 1137 the probabilities of others to zero after the softmax operation.

1138 However, directly applying SMoE in our framework presents key challenges. Unlike SMoE, our
 1139 method operates in a symbolic, text-based space and is designed for test-time inference, meaning that
 1140 we do not rely on a trainable router to learn expert selection, nor do the experts in our method refer to
 1141 model parameters. Instead, we introduce a skill-based routing mechanism to select relevant experts
 1142 based on predefined competencies rather than learned gating functions. Formally, our aggregation
 1143 process can be expressed as:

$$\begin{aligned} 1145 \quad y &= A^*(\|_{i=1}^k y^{(i)}) \\ 1146 \quad y^{(i)} &= E^{(i)}(x) \forall i \in \{1, 2, \dots, k\} \\ 1147 \quad E^{(i)} &\sim \text{Categorical}(w^{(1)}, w^{(2)}, \dots, w^{(n)}) \forall i \leq k \end{aligned} \quad (2)$$

1150 where A^* is the aggregator model determined via validation set, and $\|$ denotes the concatenation of
 1151 experts' responses, i.e., $y^{(\cdot)}$. Here, $y^{(j)}$ represents the output of expert j 's forward response given
 1152 an input x , defined as $E^{(j)}(x)$. Each expert $E^{(i)}$, $\forall i \leq k$ is selected from our proposed skill-
 1153 based routing strategy (Section 3.3.1). In short, we construct model profiles using a validation set to
 1154 evaluate each model's specialization across different skills. This allows us to estimate a probability
 1155 distribution $w^{(j)}$ over models based on both their suitability for the required skills and their global
 1156 competence relative to other experts.

1157 This skill-based routing framework retains the core benefits of SMoE while removing the reliance
 1158 on a trainable gating mechanism. Specifically, the aggregator model A^* in SYMBOLIC-MOE plays
 1159 a role analogous to the weighted sum (\sum) operation in SMoE, synthesizing outputs from selected
 1160 experts. Likewise, the recruited agent $E^{(i)}$ corresponds to the Top- k operation in SMoE, ensuring
 1161 that only the most relevant and specialized experts contribute to the final output. We inherit the
 1162 key conceptual benefits of SMoE – dynamic expert selection and response aggregation – while
 1163 also introducing additional advantages. SYMBOLIC-MOE is gradient-free, eliminating the need for
 1164 retraining, and is entirely automatic, leveraging a large pool of pre-trained models to deliver a better
 1165 performance.

1167 Q DISCUSSION WITH DIVERSITY-BASED PROMPT ENSEMBLES

1170 Recent work has explored improving LLM performance through prompt diversity using a single
 1171 model. PREFER (Zhang et al., 2023) employs an AdaBoost-inspired framework in which prompts
 1172 serve as weak learners, iteratively refined through a feedback-reflect-refine loop that converts training
 1173 errors into natural language feedback for prompt optimization. The method then ensembles
 1174 these learned prompts via weighted voting, with weights determined by each prompt's performance
 1175 on reweighted training instances. DIPPER (Lau et al., 2025) takes a training-free approach, generating
 1176 diverse candidate prompts and selecting a subset that maximizes a Fidelity-Adjusted Semantic
 1177 Volume (FASV) metric, which balances semantic diversity (computed from response embeddings)
 1178 with task fidelity. Diversity of Thought (Naik et al., 2024) similarly leverages prompt diversity by
 1179 using an LLM to extract different reasoning approaches and personas, and then augmenting few-shot
 1180 examples with these extracted strategies. Collectively, these methods operate on the hypothesis that
 1181 varied prompting strategies can elicit more comprehensive reasoning from a single model, aggregating
 1182 responses that originate from the same LLM prompted in different ways.

1183 Symbolic-MoE addresses an orthogonal dimension, focusing on model diversity rather than prompt
 1184 diversity. While the above methods ask “can we prompt one model in multiple ways?”, we ask “can
 1185 we leverage complementary expertise across heterogeneous models?” This distinction yields several
 1186 unique advantages. First, Symbolic-MoE breaks the single-model capability ceiling. Prompt diversity
 1187 is fundamentally limited by the base model's knowledge and reasoning abilities; no amount
 1188 of rephrasing can make a general-purpose model match a domain specialist on its specialty (for
 1189 example, a medical model on clinical reasoning or a math-specialized model on olympiad prob-

1188 lems). Symbolic-MoE sidesteps this by recruiting models with genuinely different training data,
1189 architectures, and areas of specialization. Second, it enables adaptive instance-level routing. Rather
1190 than applying a fixed set of prompts to all problems, the system dynamically selects which expert
1191 models to activate based on inferred skills for each instance. Third, it provides inference efficiency.
1192 Prompt-diversity methods such as PREFER require iterative refinement phases, and methods like
1193 DIPPER or Diversity of Thought still generate and evaluate many candidate prompts per instance.
1194 Symbolic-MoE achieves superior performance (8.15% average improvement over the best baseline
1195 in Table 1) with a single forward pass per recruited expert, and completes inference in 44% less time
1196 than multi-round discussion baselines such as MoA (Table 6).

1197 These two directions are ultimately complementary, since one could combine prompt diversity with
1198 model diversity. However, our results show that model heterogeneity alone already provides sub-
1199 stantial gains, and that skill-based routing effectively identifies which models to activate without
1200 requiring prompt-level optimization.

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241