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ABSTRACT

Combining existing pre-trained expert LLMs is a promising avenue for scalably
tackling large-scale and diverse tasks. However, selecting experts at the task level
is often too coarse-grained, as heterogeneous tasks may require different expertise
for each instance. To enable adaptive instance-level mixing of pre-trained LLM
experts, we propose SYMBOLIC-MOE, a symbolic, text-based, and gradient-free
Mixture-of-Experts framework. SYMBOLIC-MOE takes a fine-grained approach
to selection by emphasizing skills, i.e., specialized subcategories such as algebra
in mathematics. We propose a skill-based recruiting strategy that dynamically se-
lects the most relevant set of expert LLMs for diverse reasoning tasks based on
their strengths. Each selected expert then generates its own reasoning, resulting
in k outputs from k experts, which are then synthesized into a final high-quality
response by an aggregator, chosen based on its ability to integrate diverse out-
puts. We show that instance-level expert selection improves performance by a
large margin but – when implemented naively – can introduce a high computa-
tional overhead due to the need for constant model loading and offloading. To
address this, we implement a batch inference strategy that groups instances based
on their assigned experts, ensuring each model will only be loaded once. This
allows us to integrate 16 models on a single GPU with a time cost comparable
to prior multi-agent baselines using 4 GPUs. Through extensive evaluations on
diverse benchmarks (MMLU-Pro, GPQA, AIME, and MedMCQA), we show that
SYMBOLIC-MOE outperforms prior multi-agent approaches, with an absolute av-
erage improvement of 8.15% over the best baseline. Moreover, SYMBOLIC-MOE
generalizes well to unseen tasks and removes the need for expensive multi-round
discussions, outperforming discussion baselines with less computation. 1

1 INTRODUCTION

A core strength of humans is our ability to communicate and coordinate with each other using
language (Clark, 1996; Yow & Lim, 2019; Xu et al., 2023). This allows diverse experts to contribute
specialized knowledge towards solving a problem. Like humans, large language models (LLMs)
often have differing skills and strengths, derived from differences in their architectures and training
regimens. For instance, math-specific models like MetaMath (Yu et al., 2023) or QwenMath (Yang
et al., 2024) are post-trained with mathematical reasoning data, making them particularly adept at
math tasks – often at the cost of performance on out-of-distribution tasks (Kumar et al., 2022; Chu
et al., 2025) like commonsense or medical reasoning (Lobo et al., 2024). Even within specialized
domains, differences in pre-training data can lead to nuanced variations in expertise: one math-
focused model may excel at algebra, while another is better suited for geometry. This motivates
our development of an automated, skill-based framework designed to identify and select the most
suitable set of expert models for each problem.

Indeed, combining multiple “expert” models via Mixture-of-Experts (MoE) is well-studied (Jacobs
et al., 1991; Eigen et al., 2013) and has been applied widely for large pre-trained models, enabling
better performance at a lower computational cost (Shazeer et al., 2017a; Fedus et al., 2022; Riquelme

1Code is provided in the supplement materials.
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Figure 1: (a) In prior work, a fixed set of task-level experts is recruited to solve mathematical
problems, while heterogeneous questions may differ in the skills required to solve them (e.g., Q1
requires algebra, while Q2 focuses on probability). The recruited experts generate outputs for multi-
ple rounds, making these methods inefficient. (b) In contrast, SYMBOLIC-MOE adaptively recruits
instance-level experts based on skills needed (“Algebra” experts for Q1 and a different set of “Prob-
ability” experts for Q2). By generating only a single round of responses with an aggregator to
synthesize the final output, our approach is both more performant and more efficient.

et al., 2021). However, in the conventional MoE settings, experts are typically sub-models, i.e., sub-
sets of parameters within a larger model, where at test time, they are combined in the model’s
parameter space. This generally requires end-to-end training from scratch, which is often compu-
tationally expensive and precludes the re-use of the vast pool of already-trained LLMs. Building
on recent efforts in combining a fixed set of models through multi-agent discussions (Chen et al.,
2024b; Du et al., 2023; Liang et al., 2023; Wang et al., 2024a), we propose exploring a new training-
free paradigm for large-scale MoEs: a symbolic mixture of experts (SYMBOLIC-MOE). Rather than
using information encoded in the model’s hidden state, SYMBOLIC-MOE uses symbolic structures
in two ways: First, SYMBOLIC-MOE infers a set of discrete skills needed to solve a problem,
measuring the abilities of each model in a pool of candidate expert models. It then uses skill-
based performance as a “router” to recruit a sparse subset of experts for each problem. Secondly,
SYMBOLIC-MOE combines pre-trained experts through a symbolic channel, i.e., language, which
is a common protocol already shared by all LLMs. To take advantage of the diverse set of expert
LLMs, we must address two key challenges: (1) Effective Expert Selection: Given a large set of
LLMs, how can we choose the best experts for each instance? (2) Scalable Expert Mixing: How
can we serve a large number of experts (e.g. 16) without increasing the demand for GPUs?

(1) Effective Expert Selection: The increasing diversity of benchmarks (Miranda et al., 2024) and
the growing number of models means that experts must be selected not at the level of tasks, but at
the level of individual queries. Even at the task level, manual selection can be labor-intensive, and
the performance of multi-agent frameworks can be sensitive to the agents chosen for a task (Chen
et al., 2024b; Liang et al., 2023; Wang et al., 2024b). For instance, as shown in Fig. 1 (a), while
a given subset of models may perform well on math tasks on average, their proficiency in specific
subfields like algebra or probability might vary – that is, using a fixed subset of models on all math
samples might hurt performance on particular subtasks. This underscores the need for an automated,
fine-grained selection mechanism, as shown in Fig. 1 (b). (2) Scalable Expert Mixing: Past work
has often relied on multiple rounds of inference, leading to significant GPU demands. Moreover, it
does not scale to a dynamic setting like the one we consider, where the number of GPUs required
would be equal to the number of potential models available (in our case, 16), making this option
prohibitively expensive. We instead propose a batch inference mechanism that groups samples
into batches per model. We then run all queries assigned to a given model in a single batch, which is
far faster than sequential processing. While this strategy accommodates up to 16 models on a single
GPU, it can also be parallelized across multiple GPUs. This flexibility ensures both speedups with
increased computing power, and accessibility for users with limited hardware resources.

We evaluate SYMBOLIC-MOE on 6 diverse benchmarks across math, science, and medical rea-
soning, using a diverse model pool. We show that our automated skill-based recruiting yields an
average accuracy improvement of 8.15% over the best multi-agent baseline. Moreover, despite pri-
marily using LLMs with 7-8 billion (B) parameters, SYMBOLIC-MOE achieves comparable perfor-
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mance with 70B models. Also, SYMBOLIC-MOE consistently surpasses all baselines, whereas the
strongest baseline changes across tasks. Thus, our method eliminates the need to evaluate and com-
pare a large number of baselines for each task. Notably, using a single GPU, SYMBOLIC-MOE has
44% less inference run-time than a mixture-of-agents baseline (Wang et al., 2024a); when four GPUs
are available for both methods, we obtain an almost 2× speedup. Finally, our analysis shows that
SYMBOLIC-MOE generalizes well to unseen tasks, and selecting a task-specific aggregator achieves
performance comparable to multi-round discussion while requiring substantially less compute.

2 RELATED WORK

Mixture-of-Agents. Traditional Mixture-of-Experts (MoE) models (Jacobs et al., 1991; Jordan &
Jacobs, 1994; Chen et al., 1999; Yuksel et al., 2012) distribute computation across multiple “ex-
pert” submodels, with growing interest in sparsity-driven approaches. The Sparse MoE (SMoE)
approach (Shazeer et al., 2017a) improves efficiency by activating only the most relevant experts
per input, enhancing scalability for high-dimensional data. This method has been widely applied
in vision tasks (Riquelme et al., 2021; Wang et al., 2020; Yang et al., 2019; Abbas & Andreopou-
los, 2020), language tasks (Lepikhin et al., 2021; Zhang et al., 2021; Zuo et al., 2022; Jiang et al.,
2021) and multimodal learning (Kudugunta et al., 2021; Yun et al., 2024). Unlike SYMBOLIC-
MOE, standard MoE approaches require experts to be trained jointly, with communication taking
place in the parameter spaces of the submodels. Routing LLMs has also been an active research
area. DER formulates routing as a Markov Decision Process and dynamically selects an optimal
answering route (Hu et al., 2024). Router-R1 formulates routing and aggregation as a sequential
decision process Zhang et al. (2025). On the test-time mixture side, LLM-Blender proposes ranking
and fusing multiple models’ output (Jiang et al., 2023). MoA (Wang et al., 2024a) combine LLM
agents into ensembles that rely on a fixed set of agents. This approach requires multiple rounds
of generation and aggregation before producing a final answer. Similarly, Self-MoA (Li et al.,
2025) suggest that optimal performance can be achieved by invoking the task-best model multiple
times alongside the task-best aggregator. Our work differs from MoA and Self-MoA by introducing
adaptive, instance-level, skill-based routing while avoiding costly multi-model discussions in favor
of streamlined aggregation. We also find that mixing different LLMs is advantageous when paired
with effective routing and aggregation strategies.

Multi-Agent Reasoning. Multi-agent reasoning has emerged as a promising paradigm for enhanc-
ing complex problem-solving and decision-making in AI systems. Early approaches employed re-
inforcement learning-based coordination (Lowe et al., 2017; Foerster et al., 2018; Jaques et al.,
2019), while recent efforts leverage LLM-based multi-agent frameworks. One line of research ex-
plores student-teacher paradigms (Magister et al., 2022; Fu et al., 2023; Ho et al., 2022; Du et al.,
2023; Chen et al., 2024a), where reasoning capabilities are distilled from stronger to weaker agents.
Another approach investigates multi-agent debate frameworks, where agents interact to refine argu-
ments and enhance collective decision-making; this has been explored with multiple instances of
a single model (Liang et al., 2023; Xiong et al., 2023; Chan et al., 2023) or debates between mul-
tiple LLM types (Chen et al., 2024b). In both cases, the set of models is predefined by the user.
In contrast, our approach automatically selects models based on inferred skills. Additionally, our
framework achieves superior efficiency by avoiding multi-round discussions.

3 METHODOLOGY

3.1 PROBLEM SETUP

Given a pool of n modelsM = {Mi}ni=1, where each model represents a distinct LLM with poten-
tially different pre-training datasets and architectures, our goal is to optimize performance through
dynamic allocation – solving each problem with the most suitable subset of k models, allowing ex-
perts to combine information to enhance reasoning. To achieve this, we assume access to a small
validation set to obtain (1) model profiles Pi ∀i ≤ n, and (2) aggregator profiles that benchmark the
ability of each model to act as an aggregator. We use these profiles to recruit experts (at the instance
level) and to select the aggregator (at the task level).

3
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Figure 2: Overview of SYMBOLIC-MOE. (a) Preprocessing: Given a validation set and a pool of
agents, we create model profiles and select an aggregator. (b) Inference-Time: For each test example,
SYMBOLIC-MOE activates the most relevant models (experts) based on skill-based routing, using
model profiles determined during preprocessing. These models generate CoT responses, which the
aggregator (chosen based on its ability to select correct answers) synthesizes into a final answer.

3.2 PREPROCESSING

3.2.1 MODEL PROFILE CREATION

To recruit the k most suitable experts for a given question, we assess each model’s specialized skills
across various problem-solving domains, illustrated in Fig. 2 (a). This is done by evaluating their
performance on the validation set for each task (see Table 12 for sizes), thereby constructing a model
profile Pi for each model Mi. For each question in the validation set, we first prompt an LLM –
referred to as the “Keyword LLM” – to identify the essential skills required to solve the problem.
For consistency, we use Qwen2.5-7B-Instruct (Qwen Team, 2024) as the Keyword LLM. Later in
Table 13, we show that the choice of the keyword LLM has little effect on the performance. To
reduce noise, we generate keyword annotations for each question five times, and retain only those
that appear more than once for each question. These extracted skills represent core knowledge areas
necessary for solving the problem – for instance, a given college-level math problem may require
skills such as algebra, calculus, and geometry. Once all questions are annotated with their required
skills, each model Mi in the pool attempts to solve them using Chain-of-Thought reasoning (Wei
et al., 2022). A correct answer increases the score of each associated skill by +1, while an incorrect
answer results in a −1 penalty. At the end of this process, each model has a profile Pi represented
as a dictionary, e.g., {‘Algebra’: 10, ‘Biology’: 3, ‘Chemistry’: -6, ...}.

3.2.2 AGGREGATOR SELECTION

An aggregator is a model that consolidates k outputs into a single high-quality response. Our pilot
experiments, along with findings from Wang et al. (2024a) and Li et al. (2025), indicate that the
aggregator model plays a crucial role in the final performance, and selecting the most effective
model for aggregation is non-trivial. We find that a strong reasoning model is not necessarily a
strong aggregator and vice versa; qualitatively, we show this later in Table 3. We also find that
adaptively selecting an aggregator on the instance level based on model profiles is less effective,
motivating us to choose the aggregator based on its ability to select correct answers. To identify the
best aggregator per task, we construct a synthetic task using the same validation set. From the profile
creation process, we obtain outputs from all models, some correct and some incorrect. For each
question, we sample one correct reasoning chain and two incorrect ones, structuring the input as
follows: {question}, {correct CoT}, {incorrect CoT}, {incorrect CoT}. We
shuffle the order of the CoTs and instruct each model to act as an aggregator (using the prompt
shown in Appendix O), synthesizing a final output with a predicted answer. We then benchmark
each model’s aggregation ability and select the best-performing aggregator for each task.
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3.3 INFERENCE

3.3.1 SKILL-BASED RECRUITING

At inference time (see Fig. 2 (b)), we follow the same keyword annotation procedure as in Sec-
tion 3.2.1 to generate relevant keywords for the test sample. To align a test sample’s keywords with
those in the model profiles, we employ Sentence-BERT (Reimers & Gurevych, 2020) to match key-
words via the cosine similarity between their embeddings. This ensures that every keyword gets
matched to the closest counterpart in the model profile. Next, expert recruitment is performed by
selecting the top k models whose profiles best match the required skills of the test sample. This is
determined by two factors: (1) local suitability score and (2) global competency. For each model
Mi, its local suitability score for a test sample q, S(Mi, q) is computed as the sum of its skill scores
over the set of keywords needed for q (denoted as Kq). It can be expressed as follows:

S(Mi, q) =
∑

kj∈Kq

s
(i)
kj

where s
(i)
kj

represents the score of model Mi for the j-th skill in the test sample q. This results in an
model ranking distribution Dq for each test sample q: Dq = {S(M1, q),S(M2, q), ...,S(Mn, q)}.
Intuitively, suppose M1 has scores of +3, +5, and −2 for algebra, calculus, and geometry, respec-
tively, which are needed for a given sample; its total score for this sample would be 3 + 5− 2 = 6.
Calculating this score for all models yields a distribution of model strengths for the given sample,
e.g., {M1: 6, M2: 3, ..., Mn: -10}, which is the ranking of how suitable a model is for a sample.

We also take into account each model’s overall strength in a task, i.e., global competency. This
is easily obtained by summing a model’s score across all keywords in its profile, and normaliz-
ing it by the total sum of all models’ scores. We denote this global strength as γi, representing a
model’s overall task performance relative to others. Finally, the expert selection is performed by
sampling from the product of the local suitability score, S(Mi, q) (from a model rank distribution
Dq) and the global competency γi. That is, the relevance score of a model Mi for a test sample q is:
w

(i)
q = γiS(Mi, q). We apply a softmax function with the temperature set to 0.5 to this distribution
{w(i)

q }ni=1, and then sample k experts with replacement for each problem, i.e.,

E(i)
q ∼ Categorical(w(1)

q , w(2)
q , ..., w(n)

q ), i = {1, 2, ..., k}

To enhance efficiency, we trim low-frequency experts, i.e., those who appear in fewer than 5% of
test cases. For example, given a test set with 100 samples, where 3 experts are recruited per sample
(totaling 300 selections), any expert appearing fewer than 300 × 5% = 6 times is discarded and
resampled from the remaining higher-frequency experts. To visualize this, we provide the expert
distribution before and after trimming in Fig. 4.

3.3.2 FINAL ANSWER GENERATION

After expert recruitment, each sample will be passed to the experts, i.e., the input for each expert is
the test problem, x0 = q. These experts generate their reasoning paths to the problem in the form
of Chain-of-Thought (Wei et al., 2022): y(i)0 = E(i)(x0) ∀ i ∈ {1, 2, ..., k}. Then, the task-specific
aggregator A∗ is introduced to synthesize the k outputs into a high-quality final answer (Wang
et al., 2024a). That is, the final answer is produced by: y = A∗(

∥∥k
i=1

y
(i)
0 ), where

∥∥ denotes the
concatenation operation. In Appendix P, we provide a detailed discussion on SYMBOLIC-MOE in
the context of sparse MoE frameworks and how it shares its design principles.

3.3.3 SCALABLE BATCHED INFERENCE

In our experiments, we mostly consider 7B–8B parameter LLMs, which have a substantial memory
footprint. Due to the adaptive nature of the recruitment process, the set of participating LLMs may
change dynamically for different problems. For instance, one sample may require Qwen, Llama, and
Mistral, while another may need Gemma, Exaone, and Phi. A naive implementation of this approach
can lead to high latency, particularly when the required models change frequently. To mitigate
these computational challenges, we introduce a novel batching strategy to maximize throughput.
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Table 1: Comparison of SYMBOLIC-MOE with single-model and multi-model baselines.
SYMBOLIC-MOE outperforms all multi-agent baselines and achieves performance comparable to
strong proprietary models like GPT4o-mini, as well as 70B models, while primarily operating with
7-8B models. Notably, no single baseline consistently secures the second-best performance, even
when the strongest models for each task are known. We bold the best results and underline the
second-best (excluding methods using bigger or proprietary models, shown in gray).

Category Method Model AIME MMLU-Pro MedMCQA GPQA Avg.

Zero-Shot CoT GPT4o-mini 10.00 63.95 68.18 42.93 46.27
Zero-Shot CoT Gemini 1.5 Pro 36.67 76.38 72.68 61.62 61.84Close-Source

Single Model Zero-Shot CoT DeepSeekV3 26.00 76.29 74.09 60.10 59.12

Open-Source Zero-Shot CoT Qwen2.5 72B 25.55 ± 3.85 71.54 ± 0.88 69.02 ± 0.32 51.02 ± 0.27 54.28
70B Model Zero-Shot CoT Llama3.3 70B 32.22 ± 3.85 69.26 ± 0.47 59.78 ± 0.74 51.44 ± 0.62 53.18

Open-Source
7B Model

Zero-Shot CoT QwenR1 55.93 ± 5.16 52.57 ± 0.45 38.72 ± 0.44 44.95 ± 1.49 48.04
Zero-Shot CoT Task-Best 55.93 ± 5.16 54.89 ± 0.53 55.44 ± 0.50 48.43 ± 3.10 53.62

Advanced
Single Model

Self-Refine (SR) Task-Best 53.33 ± 3.34 53.74 ± 0.20 49.57 ± 0.59 50.84 ± 3.65 51.87
Self-Consistency (SC) Task-Best x5 67.78 ± 1.57 56.71 ± 0.14 56.85 ± 0.11 53.54 ± 0.36 58.72

Single-Model
Multi-Agent

Multi-Agent Debate Task-Best x3 56.67 ± 6.67 56.21 ± 0.55 51.63 ± 0.80 50.51 ± 0.51 53.76
Self-MoA Task-Best x3 55.56 ± 5.09 55.43 ± 0.72 53.27 ± 0.60 52.86 ± 1.46 54.28

Multi-Model
Multi-Agent

MoA Top-3 41.11 ± 5.09 61.78 ± 0.25 59.29 ± 0.32 52.86 ± 3.37 53.76
ReConcile Top-3 50.00 ± 7.20 56.46 ± 0.10 60.74 ± 0.43 47.98 ± 2.32 53.80
SYMBOLIC-MOE Adaptive 68.88 ± 5.08 63.71 ± 0.43 59.35 ± 0.14 57.78 ± 2.09 62.43

Specifically, for a given set of instances, we precompute (using inferred skills) which LLMs will be
called for each instance. We then group instances based on their required experts, as illustrated in
Fig. 3 (III) and Algorithm 1 in Algorithm 1. In other words, each active expert receives all assigned
instances at once, ensuring that each expert is loaded only once per batch. This enables efficient
batched inference on a single GPU while supporting a pool of 16 LLMs. Moreover, this approach
is flexible, as more GPUs can further accelerate inference through parallelization.

4 RESULTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

We evaluate 16 LLMs with sizes ranging from 3.5B to 12B parameters, with the majority falling
in the 7–8B range. These include general-purpose instruction-tuned models, domain-specific
fine-tuned variants on math and biology, and models distilled from DeepSeek R1’s trajectories
(DeepSeek-AI et al., 2025a). A complete list of models is provided in Table 8. We measure perfor-
mance on a diverse range of datasets, chosen to require expertise in a number of domains. First, we
consider MMLU-Pro (Wang et al., 2024c), which is a harder version of MMLU (Hendrycks et al.,
2021), containing a variety of questions across 14 college-level subjects. Given its large test set of
12,000 samples and the computational cost of evaluating proprietary models, we employ stratified
sampling to create a subset of 2,100 samples, ensuring each category contains 150 samples. We
also evaluate on AIME 2024, which is a challenging mathematics competition dataset containing
math Olympiad problems. For more science-specific reasoning, we test on GPQA Diamond (Rein
et al., 2023), which contains questions across a variety of science fields written by experts, explic-
itly designed to be difficult to answer even by skilled humans with web access. Finally, we include
MedMCQA (Pal et al., 2022), which covers questions sourced from medical entrance exams across
21 medical subjects. For each dataset, we sample around 350 samples as the validation set to create
the model profiles.2 Full dataset statistics are provided in Table 12, and the model pool we con-
sider is shown in Appendix E. For baselines, we consider (i) the strongest task-specific LLM in the
single-model setting and (ii) the top three models per task in the multi-model setting. These task-best
model selections for the baselines are also based on validation performance, which is summarized
in Table 9. Further details on baselines are provided in Appendix C and Appendix D.

4.2 MAIN RESULTS

SYMBOLIC-MOE consistently outperforms all baselines. We present the main results in Table 1.
Across all domains, SYMBOLIC-MOE shows superior performance compared to all baselines, beat-

2For AIME, we sample validation questions from prior years’ problems (2012-2023).
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ing single-model baselines (e.g., SR, SC) using the best overall model, multi-agent debate with a
single model (e.g., Debate, Self-MoA), as well as multi-model multi-agent baselines (e.g., MoA,
ReConcile). SYMBOLIC-MOE outperforms the most competitive multi-agent baseline, Self-MoA,
by 8.15% (absolute) on average, with consistent improvements across domains (e.g., 8.28% gain on
MMLU-Pro, 13.45% on AIME, 4.92% on GPQA, 6.08% on MedMCQA). These gains are also seen
when comparing to multi-model baselines like MoA and ReConcile that use the top three strongest
models per domain. SYMBOLIC-MOE also substantially outperforms test-time scaling methods,
such as SR (Madaan et al., 2023) and SC (Wang et al., 2023a). Surprisingly, with the task-best
model, SC beats multi-agent debate baselines (e.g., Self-MoA, MoA), though it still underperforms
SYMBOLIC-MOE by an average of 3.71%. This indicates that scaling test-time compute with the
task-best model is a simple yet effective way to improve performance, and adaptively selecting suit-
able experts leads to further improvements.

SYMBOLIC-MOE generalizes well across tasks. No single baseline in Table 1 is universally effec-
tive across all tasks. For instance, while MoA performs well on MMLU-Pro, it struggles on AIME;
ReConcile excels in MedMCQA but fails to generalize to GPQA. Therefore, knowing which method
works best for a task is nontrivial. In contrast, SYMBOLIC-MOE consistently delivers strong perfor-
mance across all domains. Moreover, while SC with the task-best model is the most competitive set-
ting on AIME and GPQA, it falls short on MMLU-Pro and MedMCQA, where multi-agent baselines
perform better. This discrepancy may stem from the broader subject diversity in MMLU-Pro and
MedMCQA, whereas AIME is more math-focused, and the task-best model, QwenR1 (DeepSeek-AI
et al., 2025a), delivers strong solo performance already. While QwenR1 demonstrates exceptional
math and code reasoning capabilities (55.93% on AIME), leading to strong Self-Consistency perfor-
mance (67.78%), it struggles to generalize to other domains such as MedMCQA, highlighting the
need for a robust and flexible framework like SYMBOLIC-MOE to generalize across diverse tasks.

SYMBOLIC-MOE matches strong proprietary models and larger 70B models. In Table 1, we
also find that SYMBOLIC-MOE achieves a similar average performance to models that have sub-
stantially more parameters. For example, SYMBOLIC-MOE outperforms Llama3.3 70B on AIME
and GPQA and roughly matches it on MedMCQA, despite requiring only four 7-8B models (three
for the experts and one for the aggregator). Similarly, SYMBOLIC-MOE outperforms or matches
a number of strong proprietary models on average – for instance, it matches Gemini 1.5 Pro and
outperforms GPT4o-mini, driven in part by sizable gains on AIME and GPQA.

4.3 ADDITIONAL ANALYSIS

Table 2: Accuracy on OmniMATH, with the
model profiles from MMLU-Pro and AIME.

Profile From
Model MMLU-Pro AIME

O
m

ni
A

cc
. Debate 34.51 42.93

MoA 31.55 47.36
Self-MoA 14.63 48.75
ReConcile 22.01 42.62

Symbolic-MoE 49.32 52.03

SYMBOLIC-MOE generalizes to unseen tasks.
Given the constant introduction of new, unseen
data in LLM deployments, we evaluate whether
SYMBOLIC-MOE can generalize using existing
model profiles on an additional benchmark: Om-
niMATH (Gao et al., 2025), an Olympiad-level
math dataset with 4.4k test samples. In Ta-
ble 2, we reuse model profiles constructed from
MMLU-Pro and AIME’s validation set, and di-
rectly test on OmniMATH. All multi-agent base-
lines also use top-3 models selected from the
same validation sets. When using the MMLU-
Pro profile, multi-agent baselines struggle on OmniMATH because MMLU-Pro is broad and diverse,
whereas OmniMATH is highly math-focused. This domain discrepancy, combined with the fact that
the baselines rely on a fixed set of task-best models, leads to a -14.81% accuracy gap between the
best baseline (Debate) and SYMBOLIC-MOE. In contrast, SYMBOLIC-MOE mitigates the profile-
domain gap by leveraging fine-grained skill representations: rather than committing to a fixed model
set, it dynamically recruits experts at the instance level based on the specific skills required. As
skills transfer more readily across domains than task-specific model selections, SYMBOLIC-MOE is
more robust to domain shift. Switching to the AIME profile allows the baselines to leverage math-
specialized models, substantially improving their performance. Nonetheless, SYMBOLIC-MOE’s
instance-level recruitment still surpasses the strongest baseline (Self-MoA) by 3.28%.
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Table 3: Ablations on different ag-
gregators in our full setting.

Aggregator MMLU-Pro GPQA
Random 52.29 48.92
Adaptive 57.12 58.01
Task-specific 63.71 57.78

Role and selection of the aggregator. Unlike most of our
discussion-based multi-agent baselines, SYMBOLIC-MOE
collects a single CoT and answer from each expert and com-
bines them via an aggregator. This provides efficiency gains,
as shown in Table 6; here, we investigate the role of the ag-
gregator in our framework. While experts are selected per
instance, the aggregator is chosen per task, as we find that
reasoning ability does not necessarily translate to effective
aggregation. Table 3 compares three strategies: (1) a randomly chosen aggregator from the model
pool (Random), (2) an instance-level aggregator selection based on model profiling (Adaptive),
and (3) a task-specific aggregator determined by task-level performance (Task-specific). Evalu-
ated on MMLU-Pro and GPQA, the results indicate that a random aggregator substantially degrades
performance, showing that the aggregator plays a crucial role. While the instance-level aggregator
improves outcomes on both datasets, the task-specific aggregator outperforms it on MMLU-Pro and
performs comparably on GPQA. We further find that the similar performance of instance-specific
and task-specific aggregation on GPQA is due to a high degree of overlap in selected aggregators.
Overall, this suggests that good reasoners will not always be good aggregators, supporting our task-
based selection.

Table 4: Comparison of different expert
selection and aggregation strategies.

Expert Aggregator GPQA
Random Task-Specific 31.82
Recruited Random 51.52
Recruited Majority Vote 53.54

Recruited Task-Specific 57.78

Synergy between expert and aggregator selection. As
demonstated that the selection of an aggregator plays an
important role, we further investigate the synergy be-
tween good aggregator selection and good expert selec-
tion. In Table 4, we experiment with two expert selection
strategies: (1) randomly recruiting k experts without us-
ing model profiles, and (2) using our model profiles to
recruit experts. We also employ three settings for ag-
gregator selection: (1) based on the task performance
as SYMBOLIC-MOE uses, (2) randomly selecting an ag-
gregator, and (3) using majority vote to select the final answer without using any aggregator. Our
findings indicate that the combination of strong models with a task-specific aggregator yields the
highest performance. When the aggregator is suboptimal, majority voting can serve as a robust al-
ternative. However, when the expert models themselves are weak (chosen randomly), even a strong
aggregator cannot compensate for the performance drop.

Table 5: Comparison of different re-
cruiting strategies on GPQA.

Recruiting Strategy Acc.
Top-3 Experts 52.86
Top-5 Experts 47.68

3 Random Experts 42.61
5 Random Experts 44.92

Model Profile (Ours) 57.78

Utility of model profile. SYMBOLIC-MOE profiles mod-
els based on their skills and leverages this information to
recruit experts effectively. To underscore the importance of
this step, we compare several alternative selection strate-
gies in Table 5, evaluating accuracy on GPQA. In the top-k
approach, experts are fixed as the best-performing models
for the task, whereas in the random-k strategy, the selected
experts vary across instances. Our results demonstrate that
skill-based selection is essential. Notably, although select-
ing the top k experts for a task may seem intuitive, it con-
sistently underperforms compared to SYMBOLIC-MOE’s
adaptive instance-level expert selection. Interestingly, top-5
selection performs worse than top-3 selection, suggesting that a broader selection increases the like-
lihood of including weaker models, leading to performance degradation. Additionally, the random
selection strategy consistently harms performance, showing a 12.86% to 15.61% drop compared to
SYMBOLIC-MOE, likely also due to the inclusion of weaker experts.

4.4 EFFICIENCY ANAYLSIS

Run time efficiency. Enabling our batch inference strategy (Fig. 3) substantially re-
duces inference time. We evaluate average run-time on GPQA and compare SYMBOLIC-
MOE to a naive sequential implementation and to MoA (Table 6). As expected,
sequential inference yields the highest latency, since the model must be repeatedly
loaded and offloaded for each instance. In contrast, SYMBOLIC-MOE achieves 44%
lower latency than MoA on a single GPU—while also delivering higher accuracy.
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Table 6: Efficiency comparison of MoA
and SYMBOLIC-MOE on the GPQA test
set. Run time is averaged per sample.

Method # GPUs Run Time (s)
Sequential 1 196.92

MoA 1 45.98
MoA 4 21.66

SYMBOLIC-MOE 1 25.76
SYMBOLIC-MOE 4 10.85

Notably, SYMBOLIC-MOE on a single GPU matches
the run-time of MoA on 4 GPUs, and when scaled to
4 GPUs, SYMBOLIC-MOE attains nearly a 2× speedup
over MoA. We also report token usage in Appendix I,
showing that SYMBOLIC-MOE achieves the best trade-
off between efficiency and performance among multi-
agent baselines. While our batch inference strategy does
assume that test samples arrive in batches (so expert as-
signments can be pre-determined), this assumption is not
restrictive in practice: many widely-used inference ac-
celeration techniques make the same assumption (e.g,
vLLM (Kwon et al., 2023)), and popular services like ChatGPT (OpenAI, 2025) and Gemini (Gem-
ini, 2025) also support batched inference for efficiency.

Table 7: Comparison of with and with-
out discussion across varying aggregators.
We show that using a task-specific aggre-
gator leads to the best performance, and
while multi-round discussion stabilizes per-
formance with suboptimal aggregators, it has
little effect with an optimal aggregator.

Discuss Aggr. MMLU-Pro GPQA
✓ Adaptive 59.07 57.01
✗ Adaptive 57.12 58.01
✓ Task-best 57.81 57.78
✗ Task-best 56.67 57.01

✓ Task-specific 63.83 57.72
✗ Task-specific 63.71 57.78

Methodological efficiency. Like multi-agent dis-
cussion baselines, SYMBOLIC-MOE can also oper-
ate in a discussion-based manner. Instead of im-
mediately aggregating initial responses, models first
engage in three rounds of discussion—observing
each other’s outputs and generating refined re-
sponses—before submitting them to the aggregator.
Table 7 reports results for this setting, comparing
the adaptive aggregator (suboptimal), the task-best
aggregator (suboptimal), and the task-specific ag-
gregator (optimal) on MMLU-Pro and GPQA. With
the task-specific aggregator, discussion yields only
marginal gains on MMLU-Pro (63.83 vs. 63.71) and
a slight drop on GPQA (57.72 vs. 57.78). While
round-wise discussion can improve performance in-
crementally, the final outcome is primarily deter-
mined by the strength of the aggregator. Consequently, SYMBOLIC-MOE with a strong task-specific
aggregator can skip the costly multi-round discussion, reducing runtime and improving methodolog-
ical efficiency, while surpassing the performance of discussion-based baselines, as shown in Table 6.

5 DISCUSSION AND CONCLUSION

A key feature highlighted in Table 1 is the consistency of SYMBOLIC-MOE’s performance. While
baseline methods occasionally do well in isolated settings (e.g., MoA on MMLU-Pro, ReConcile on
MedMCQA), it is important to highlight that no baseline does well consistently across settings. This
means that – without SYMBOLIC-MOE – getting a strong overall result would require evaluating
all the baseline methods and choosing the best settings manually. In contrast, SYMBOLIC-MOE
achieves high performance by automatically recruiting the experts based on skills needed for each
instance, serving as a robust recipe that generalizes across domains.

Modularity. Another key advantage of SYMBOLIC-MOE is its modularity. Unlike typical Mixture-
of-Experts (MoE) frameworks, which need to be trained end-to-end from scratch in a centralized
manner, SYMBOLIC-MOE uses the symbolic output channel of existing models to combine experts.
This gradient-free approach enables seamless integration of pre-trained models without updates,
allowing them to be trained independently and distributedly. Moreover, while standard MoEs have a
fixed size determined before training, SYMBOLIC-MOE can adaptively grow and evolve as models
are updated. Given the rapid advancements in LLMs, state-of-the-art models are often replaced
within months. SYMBOLIC-MOE’s modular and gradient-free design simplifies the incorporation
of these updates, requiring only a few calls to obtain a new model’s profile, which can then be easily
plugged into this framework. It is also straightforward to increase the number of experts recruited at
test time, which is usually fixed in the typical MoE setting.

Conclusion. We introduced SYMBOLIC-MOE, a scalable MoE framework that coordinates models
through symbolic outputs (i.e., natural language discussion). SYMBOLIC-MOE identifies the skills
required for a given problem, recruits the corresponding experts, and aggregates their responses into
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a single high-quality answer. Across four diverse reasoning datasets, SYMBOLIC-MOE consistently
outperforms inference-time scaling methods, debate frameworks, and recent mixture-of-agents ap-
proaches, delivering strong and stable performance even as the best baseline varies across domains.
Its average performance on heterogeneous tasks also matches advanced proprietary systems such as
GPT-4o-mini and larger 70B-parameter models. Detailed analysis shows that both expert selection
and the choice of aggregator are crucial for downstream performance, and with a strong aggregator,
costly multi-round discussions can often be skipped without sacrificing quality. Finally, SYMBOLIC-
MOE introduces a novel batching strategy that runs efficiently on a single GPU, while retaining the
flexibility to scale further with additional GPUs—achieving both high performance and efficiency.

ETHICS STATEMENT

In this work, we propose an inference-time method, SYMBOLIC-MOE, which operates without the
need for additional training or fine-tuning. Consequently, the LLMs utilized by SYMBOLIC-MOE
may still exhibit stereotypes, biases, and other negative traits inherent in their pre-training data (Wei-
dinger et al., 2021), over which we have no control. Therefore, the outputs produced by SYMBOLIC-
MOE carry the same potential for misuse as those from other test-time methods. Further research is
necessary to assess and mitigate these biases in LLMs.

REPRODUCIBILITY STATEMENT

We are making our code available in the supplementary materials to enable replication of our find-
ings. We also provide implementation details of SYMBOLIC-MOE in Appendix D and prompts in
Appendix O. The datasets we use are all publicly available.

LIMITATIONS

In cases where expert-grouped batches do not form, e.g., when traffic is very sparse or mixed, our
proposed batch inference strategy simply reverts to the standard inference setup. Concretely: (1)
With k GPUs, we load one expert model per GPU and run them independently. (2) With a single
GPU, we load experts sequentially and collect their outputs. We acknowledge that this strategy is
designed to improve efficiency under typical online traffic or benchmark evaluations. As with most
batching methods, its efficiency benefits are less pronounced under extremely small or irregular
batches, but it wouldn’t affect the correctness or operation of the system.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use ChatGPT3 for grammar correction and refinement. The model was only used to polish
text written by the authors and was not used to contribute to research ideation or the generation of
original content.

B ILLUSTRATIONS OF VARIATIONS IN BATCH INFERENCE

As discussed in Section 3.3, there are mainly three different ways to serve multiple LLMs to solve
every instance adaptively. We illustrate these variations in Fig. 3. Our batch inference method allows
for the speedups featured in Table 6.

C BASELINES DETAILS

We compare against four categories of baselines.

• Zero-shot single-model methods: This category includes proprietary models such as GPT-4o-
mini (OpenAI, 2024), Gemini 1.5 Pro (Team et al., 2024a), and DeepSeek-V3 (DeepSeek-AI
et al., 2025b); high-capacity open-source models like Qwen2.5 72B (Qwen et al., 2025) and
Llama 3.3 70B (AI@Meta, 2024); and strong distilled 7B models such as QwenR1 (DeepSeek-
AI et al., 2025a). For reference, we also report the best task-specific model from our pool for each
task, denoted as Task-Best.

• Advanced single-model baselines with inference-time compute: We evaluate methods that
enhance inference-time reasoning, specifically Self-Refine (SR) (Madaan et al., 2023) and Self-
Consistency (SC) (Wang et al., 2023b). To ensure a fair comparison, we set SC’s sample size to
5, aligning with the number of large language model (LLM) calls in SYMBOLIC-MOE, which
engages three experts and one aggregator model.4 Additionally, for these baselines, we use the

3https://chatgpt.com/
4We use an odd number of SC calls to avoid ties.
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ID Question Expert 1 Expert 2 Expert k

1 How many of the following … Qwen Llama Mistral

2 A large gene has dozens of … Qwen Gemma Phi

3 Consider the following … Mistral Gemma Phi

Expert ID

Qwen 1, 2

Llama 1

Mistral 1, 3

Gemma 2, 3

Phi 2, 3

a
b
c
d

e

ID Expert 1 Expert 2 Expert k

1 Qwen 
Output

Llama 
Output

…
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Output

… …

3 … … …

a
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(III) Batch Inference: Flexible to the Number of GPUs(I) Parallel Inference w/ Multiple GPUs

Qwen Llama Mistral

…

Model n

Requires n GPUs at the same time

Question Expert 1 Expert 2 Expert k

How  … Qwen Llama Mistral
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(II) Sequential Inference w/ Single GPU
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Question Expert 1 Expert 2 Expert k

A large ... Gemma Qwen Phi

Fits in a single GPU
Can be accelerated w/ more GPUs

Qwen Llama Mistral

…

Model nGemma

Sequential
Generation

Group by Experts

Load

Reloading a 
used model

Load

Figure 3: Different approaches to achieving adaptiveness in SYMBOLIC-MOE, which uses different
models for each instance. In a naive setup (I), k GPUs must be hosted simultaneously, allowing
immediate access to outputs from each model. Another naive setup (II) requires only a single GPU
but involves constant loading and offloading of models to obtain outputs from the corresponding
model. Our scalable batch inference process (III) strikes a balance between (I) and (II). When mod-
els are assigned to problems, we group samples by model and sequentially load the corresponding
LLM onto a single GPU to generate outputs efficiently. Moreover, this approach still allows us to
parallelize across GPUs if they are available.

best-performing LLM for each task, inferred on the same dev set used for our agent profile cre-
ation.

• Single-model multi-agent baselines: To isolate the impact of SYMBOLIC-MOE’s recruitment
strategy, we compare against methods where multiple instances of the same model collaborate.
Specifically, we consider Multi-Agent Debate (Debate) (Du et al., 2023) and Self-Mixture-of-
Agents (Self-MoA) (Li et al., 2025), both of which rely on iterative, multi-round discussions
using a single model. These baselines employ three agents, each using the same task-best model,
and conduct two rounds of discussion, resulting in a total of 6 LLM calls per sample.

• Multi-model multi-agent baselines: We also evaluate approaches leveraging diverse models in
a multi-agent setup. This includes Mixture-of-Agents (MoA) (Wang et al., 2024a) and ReConcile
(Chen et al., 2024b), both of which incorporate a fixed set of models in multi-round interactions.
To ensure a fair comparison with our approach, particularly in the use of the validation set, we
select the top three performing models from the validation set and conduct multi-round interac-
tions. In MoA, agents participate in two rounds of discussion, while agents in ReConcile engage
in three rounds, leading to 6 and 9 LLM calls per sample, respectively.

D IMPLEMENTATION DETAILS

We conduct our experiments for SYMBOLIC-MOE and other single-model baselines on a single
A6000 GPU with 48 GB of memory, while MoA and ReConcile are executed on 8 A6000 GPUs
for parallelization. For the 70B models, we use the original version without quantization and per-
form inference on 4 A6000 GPUs. All open-source models utilize vLLM (Kwon et al., 2023) for
inference. The temperature is set to 0.7 for all methods. The maximum output token length is fixed
at 4096 for all models, except for QwenR1 and LlamaR1, which have a limit of 32768 since they
are trained with longer trajectories and tend to generate longer outputs. All results, except those
from proprietary models (due to budget constraints), are averaged over three random seeds. Further
details on the model pool, distribution of the expert recruited, and all the prompts we use can be
found in Table 8 and Appendix O.

E MODEL POOL

We provide the full list of our model pool in Table 8, including their names, sizes, and publicly
available checkpoints on Huggingface. Most of the model sizes are 7 to 8 billion.
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Table 8: The models constituting the model pool.

Model Name Size Huggingface Link
BioLlama 8B ContactDoctor/Bio-Medical-Llama-3-8B
DeepSeekMath 7B deepseek-ai/deepseek-math-7b-instruct
Exaone 7.8B LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct
Gemma2 9B google/gemma-2-9b-it
GLM4 9B zai-org/glm-4-9b-chat
Granite 8B ibm-granite/granite-3.1-8b-instruct
InternLM3 8B internlm/internlm3-8b-instruct
Llama3.1 8B meta-llama/Llama-3.1-8B-Instruct
LlamaR1 8B deepseek-ai/DeepSeek-R1-Distill-Llama-8B
Mathstral 7B mistralai/Mathstral-7B-v0.1
Mistral 12B mistralai/Mistral-Nemo-Instruct-2407
Phi3.5-mini 3.5B microsoft/Phi-3.5-mini-instruct
Qwen2.5 7B Qwen/Qwen2.5-7B-Instruct
Qwen2.5-Coder 7B Qwen/Qwen2.5-Coder-7B-Instruct
Qwen2.5-Math 7B Qwen/Qwen2.5-Math-7B-Instruct
QwenR1 7B deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

F PERFORMANCE ON THE VALIDATION SET

Table 9 shows the performance of each model on the validation set. We highlight the top-1 and
top-3 models in bold font and yellow background, respectively. This information is also used for the
baselines we compare against in Table 1.

Table 9: Comparison of model performance on the validation set. The best model on each task is
bolded, and the top 3 models on each task are highlighted in yellow.

Model MMLU-Pro AIME GPQA MedMCQA
BioLlama 37.71 0.85 27.31 42.86
DeepSeekMath 32.57 3.32 28.11 35.71
Exaone 52.29 25.99 32.13 56.35
Gemma 53.71 7.73 36.95 64.29
GLM 50.29 7.37 30.92 58.33
Granite 43.43 5.92 34.14 56.15
InternLM 43.14 7.91 36.14 55.56
Llama 46.00 6.78 33.73 66.87
LlamaR1 54.29 51.98 56.22 53.37
Mathstral 34.57 3.11 36.55 52.38
Mistral 45.14 1.41 33.73 46.43
Phi 46.57 1.41 47.79 65.87
Qwen 54.00 13.56 37.35 67.06
QwenCode 46.29 9.89 30.52 50.79
QwenMath 31.71 11.13 28.51 36.90
QwenR1 53.43 57.06 51.41 37.90

G PERFORMANCE OF EACH MODEL AS AN AGGREGATOR

Table 10 shows the performance of each model when acting as an aggregator. Note that the best-
performing model in Table 9 can be different from the best aggregator model in Table 10, motivating
us to choose the aggregator based on this synthetic task described in Section 3.2.2.
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Table 10: Performance of each model when used as an aggregator, on the validation set. The best
model on each task is bolded, and is selected as the task-specific aggregator.

Model MMLU-Pro AIME GPQA MedMCQA
BioLlama 37.31 21.47 30.12 42.46
DeepSeekMath 32.57 5.37 21.69 35.71
Exaone 57.43 47.92 35.34 52.58
Gemma 49.71 3.11 31.73 53.37
GLM 52.57 26.27 35.34 51.39
Granite 48.86 36.44 38.96 48.02
InternLM 55.14 16.95 42.57 51.59
Llama 51.14 11.86 40.56 50.60
LlamaR1 59.71 53.67 46.18 49.01
Mathstral 41.71 26.27 35.74 46.43
Mistral 48.00 18.93 33.33 46.43
Phi 27.71 9.04 26.10 25.40
Qwen 56.86 38.14 39.36 53.37
QwenCode 51.14 29.66 38.96 50.79
QwenMath 31.71 5.93 16.06 36.90
QwenR1 58.00 57.63 48.59 45.44

H DISTRIBUTION OF EXPERTS

We present the distribution of recruited experts across different datasets in Fig. 4. As noted in
Section 3.2.1, we trim experts with occurrences below 5% to reduce model loading time. In Fig. 4,
the top row shows the distribution before trimming, and the bottom row shows the distribution after
trimming. The distribution varies significantly across datasets – on more diverse datasets such as
MMLU-Pro, the recruited experts are also more varied. In contrast, for AIME and GPQA, which
focus more on math and science, the recruited experts are dominated by a few models.
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Figure 4: Distribution of the recruited experts across datasets. Top row: the distribution before
trimming. Bottom row: the distribution after trimming and resampling.

I TEST-TIME TOKEN COUNT ANALYSIS

In addition to measuring GPU run time in Table 6, we compare the test-time token count with multi-
agent baselines. As shown in Fig. 5, SYMBOLIC-MOE uses fewer tokens than Self-MoA while
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achieving a significant performance gain. However, compared to MoA and ReConcile, SYMBOLIC-
MOE generates more tokens, particularly on GPQA. The primary reason, as illustrated in Fig. 4,
is that SYMBOLIC-MOE predominantly recruits LlamaR1 and QwenR1, both of which are trained
with long reasoning trajectories, resulting in substantially longer outputs compared to other models.
This explains why SYMBOLIC-MOE requires less GPU run time despite producing more tokens: by
skipping the expensive multi-round discussions, we eliminate the time spent loading and offloading
models. However, the inherent verbosity of the R1 models contributes to the higher token count.
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Figure 5: Comparison of the test-time token count used in different methods.

J THE EFFECT OF TRIMMING AND RE-SAMPLING

Table 11: Trimming the low-frequent experts im-
proves both accuracy and efficiency.

MMLU-Pro GPQA
Acc ↑ Time ↓ Acc ↑ Time ↓

w/o Trimming 63.94 18.83 55.26 21.78
w/ Trimming 63.71 12.27 57.78 10.85

As described in Section 3.3.1, we trim the re-
cruited experts if their occurrence falls below
5% of the total selections. Here, we analyze the
impact of this trimming process. Without trim-
ming, the diversity of selected experts increases,
but the model loading time also increases. Ta-
ble 11 presents a quantitative comparison of ac-
curacy and GPU run time using 4 GPUs. As ex-
pected, trimming reduces GPU run time across both datasets by minimizing the need to load infre-
quently used models. Interestingly, we also observe that trimming improves accuracy on GPQA.
This improvement may be due to the fact that after trimming, only LlamaR1 and QwenR1 remain
as the recruited experts, which are particularly effective on this task.

K KEYWORD DISTRIBUTION IN VALIDATION DATA

We provide the annotated keyword distribution in the validation set in Fig. 6.
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Figure 6: Keyword distribution in the validation set. For brevity, we show only the top 10 keywords.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

L DATASET STATISTICS AND LICENSES

We provide the sample sizes and licenses of the datasets used in this work in Table 12. All the
datasets are in English, and all datasets are used in a fashion consistent with their intended use.

Table 12: The statistics and licenses of the datasets we use in this work.

Validation Size Test Size License

MMLU-Pro (Wang et al., 2024c) 350 2,100 Apache License
AIME (MAA, 2024) 354 30 CC0
GPQA (Rein et al., 2023) 249 198 MIT License
MedMCQA (Pal et al., 2022) 504 4,183 MIT License

M SENSITIVITY TO THE KEYWORD LLM

Table 13: Keyword LLM has little ef-
fect on the final performance.

Keyword LLM MMLU-Pro GPQA
Llama 3.1 8B 64.19 56.62
Gemma 2 9B 64.02 57.01

Qwen 2.5 7B 63.71 57.78

We choose Qwen 2.5 7B (Qwen Team, 2024) as the “Key-
word LLM” to generate the required skills for each in-
stance during both preprocessing and inference. Here, we
investigate the sensitivity of the results to the choice of
the Keyword LLM, testing three different models: Qwen
2.5 7B (Qwen Team, 2024), Llama 3.1 8B (AI, 2024), and
Gemma 2 9B (Team et al., 2024b). As shown in Table 13,
the final performance remains consistent regardless of the
chosen model, indicating that the selection of the Key-
word LLM has minimal influence on performance.

N ALGORITHM

We provide the algorithm for our batched inference strategy in Algorithm 1.

Algorithm 1 BatchedInference
Require: Test samples Q, Model poolM
Ensure: Inference results for all samples

1: expert sample map← ∅ ▷ Expert-to-samples mapping
2: for q ∈ Q do
3: E

(1)
q , E

(2)
q , ..., E

(k)
q ← RECRUITEXPERTS(q,M) ▷ Select k experts per sample (§3.3.1)

4: for e ∈ Eq do
5: expert sample map[e]← expert sample map[e] ∪{q}
6: end for
7: end for
8:
9: results← ∅ ▷ Results collection

10: for (e, qe) ∈ expert sample map do
11: results← results ∪ e.GENERATE(qe) ▷ Batch inference per expert
12: end for
13: return results
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O PROMPTS

Prompt for the Keyword LLM to Generate Keywords

Question: {question}
What are the core knowledge, subjects or skills needed to solve this problem? List 2-5 key-
words separated in comma. Example keywords: psychology, virology, behavioral theory,
microbiology, diplomacy, political science, property law, finance, business. Give ONLY the
keywords, no other words or explanation.

Follow this format: Keywords: <keyword1>, <keyword2>...

Prompt for Zero-shot Chain-of-Thought Generation (Multiple Choice)

Question: {question}
Provide your step-by-step reasoning first, and then print “The answer is (X)” where X is the
answer choice (one capital letter), at the end of your response.

Prompt for Zero-shot Chain-of-Thought Generation (Math)

Question: {question}
Provide your step-by-step reasoning first, and then print “The answer is \\boxed{X}”, where
X is the final answer, at the end of your response.

Prompt for the Aggregator (Wang et al., 2024a)

You have been provided with a set of responses from various open-source models to the latest
user query. Your task is to synthesize these responses into a single, high-quality response. It is
crucial to critically evaluate the information provided in these responses, recognizing that some
of it may be biased or incorrect. Your response should not simply replicate the given answers
but should offer a refined, accurate, and comprehensive reply to the instruction. Ensure your
response is well-structured, coherent, and adheres to the highest standards of accuracy and
reliability.

Responses from models:

{model 1 response}
{model 2 response}
{model 3 response}
Question: {question}
Provide your step-by-step reasoning first, and then print “The answer is (X)” where X is the
answer choice (one capital letter), at the end of your response.

P SYMBOLIC-MOE AS A SPARSE MIXTURE-OF-EXPERT

In the Sparse Mixture-of-Experts (SMoE) framework (Shazeer et al., 2017a), a trainable router dy-
namically selects a subset of experts for each input. Formally, given an input x, the output of an
SMoE layer, y is computed as:

y =

k∑
i=1

R(x)i · fi(x),

R(x) = softmax(Top-K(g(x)), k)

(1)
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where fi(x) represents the response of the i-th expert, and R(x) is a trainable router that assigns
selection probabilities to each expert based on g(x), typically a small feedforward network (Shazeer
et al., 2017b; Riquelme et al., 2021). The Top-K operation retains only the top k experts, setting
the probabilities of others to zero after the softmax operation.

However, directly applying SMoE in our framework presents key challenges. Unlike SMoE, our
method operates in a symbolic, text-based space and is designed for test-time inference, meaning that
we do not rely on a trainable router to learn expert selection, nor do the experts in our method refer to
model parameters. Instead, we introduce a skill-based routing mechanism to select relevant experts
based on predefined competencies rather than learned gating functions. Formally, our aggregation
process can be expressed as:

y = A∗(
∥∥k
i=1

y(i))

y(i) = E(i)(x) ∀ i ∈ {1, 2, ..., k}
E(i) ∼ Categorical(w(1), w(2), ..., w(n)) ∀i ≤ k

(2)

where A∗ is the aggregator model determined via validation set, and
∥∥ denotes the concatenation of

experts’ responses, i.e., y(·). Here, y(j) represents the output of expert j’s forward response given
an input x, defined as E(j)(x). Each expert E(i), ∀i ≤ k is selected from our proposed skill-
based routing strategy (Section 3.3.1). In short, we construct model profiles using a validation set to
evaluate each model’s specialization across different skills. This allows us to estimate a probability
distribution w(j) over models based on both their suitability for the required skills and their global
competence relative to other experts.

This skill-based routing framework retains the core benefits of SMoE while removing the reliance
on a trainable gating mechanism. Specifically, the aggregator model A∗ in SYMBOLIC-MOE plays
a role analogous to the weighted sum (

∑
) operation in SMoE, synthesizing outputs from selected

experts. Likewise, the recruited agent E(i) corresponds to the Top-k operation in SMoE, ensuring
that only the most relevant and specialized experts contribute to the final output. We inherit the
key conceptual benefits of SMoE – dynamic expert selection and response aggregation – while
also introducing additional advantages. SYMBOLIC-MOE is gradient-free, eliminating the need for
retraining, and is entirely automatic, leveraging a large pool of pre-trained models to deliver a better
performance.

Q DISCUSSION WITH DIVERSITY-BASED PROMPT ENSEMBLES

Recent work has explored improving LLM performance through prompt diversity using a single
model. PREFER (Zhang et al., 2023) employs an AdaBoost-inspired framework in which prompts
serve as weak learners, iteratively refined through a feedback-reflect-refine loop that converts train-
ing errors into natural language feedback for prompt optimization. The method then ensembles
these learned prompts via weighted voting, with weights determined by each prompt’s performance
on reweighted training instances. DIPPER (Lau et al., 2025) takes a training-free approach, gener-
ating diverse candidate prompts and selecting a subset that maximizes a Fidelity-Adjusted Semantic
Volume (FASV) metric, which balances semantic diversity (computed from response embeddings)
with task fidelity. Diversity of Thought (Naik et al., 2024) similarly leverages prompt diversity by
using an LLM to extract different reasoning approaches and personas, and then augmenting few-shot
examples with these extracted strategies. Collectively, these methods operate on the hypothesis that
varied prompting strategies can elicit more comprehensive reasoning from a single model, aggregat-
ing responses that originate from the same LLM prompted in different ways.

Symbolic-MoE addresses an orthogonal dimension, focusing on model diversity rather than prompt
diversity. While the above methods ask “can we prompt one model in multiple ways?”, we ask “can
we leverage complementary expertise across heterogeneous models?” This distinction yields several
unique advantages. First, Symbolic-MoE breaks the single-model capability ceiling. Prompt diver-
sity is fundamentally limited by the base model’s knowledge and reasoning abilities; no amount
of rephrasing can make a general-purpose model match a domain specialist on its specialty (for
example, a medical model on clinical reasoning or a math-specialized model on olympiad prob-
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lems). Symbolic-MoE sidesteps this by recruiting models with genuinely different training data,
architectures, and areas of specialization. Second, it enables adaptive instance-level routing. Rather
than applying a fixed set of prompts to all problems, the system dynamically selects which expert
models to activate based on inferred skills for each instance. Third, it provides inference efficiency.
Prompt-diversity methods such as PREFER require iterative refinement phases, and methods like
DIPPER or Diversity of Thought still generate and evaluate many candidate prompts per instance.
Symbolic-MoE achieves superior performance (8.15% average improvement over the best baseline
in Table 1) with a single forward pass per recruited expert, and completes inference in 44% less time
than multi-round discussion baselines such as MoA (Table 6).

These two directions are ultimately complementary, since one could combine prompt diversity with
model diversity. However, our results show that model heterogeneity alone already provides sub-
stantial gains, and that skill-based routing effectively identifies which models to activate without
requiring prompt-level optimization.
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