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ABSTRACT

The LogSumExp function, also known as the free energy, plays a central role
in many important optimization problems, including entropy-regularized optimal
transport and distributionally robust optimization (DRO). It is also the dual to the
Kullback-Leibler (KL) divergence, which is widely used in machine learning. In
practice, when the number of exponential terms inside the logarithm is large or
infinite, optimization becomes challenging since computing the gradient requires
differentiating every term. Previous approaches that replace the full sum with a
small batch introduce significant bias. We propose a novel approximation to Log-
SumExp that can be efficiently optimized using stochastic gradient methods. This
approximation is rooted in a sound modification of the KL divergence in the dual,
resulting in a new f-divergence called the safe KL divergence. The accuracy of
the approximation is controlled by a tunable parameter and can be made arbitrarily
small. Like the LogSumExp, our approximation preserves convexity. Moreover,
when applied to an L-smooth function bounded from below, the smoothness con-
stant of the resulting objective scales linearly with L. Experiments in DRO and
continuous optimal transport demonstrate the advantages of our approach over
state-of-the-art baselines and the effective treatment of numerical issues associ-
ated with the standard LogSumExp and KL.

1 INTRODUCTION

Optimization problems arising in various fields involve the LogSumExp function, or, more generally,
the log-partition functional

F(gii) =1n / e°@) du(x) € (—o0, o] ()

mapping a measurable function ¢ to (—o0, 00| based on a probability measure p. The goal in such
optimization problems is to minimize an objective involving F’ w.r.t. (o over some class.

LogSumExp function appears commonly in optimization objectives, e.g., multiclass classifica-
tion with softmax probabilities (Bishop & Nasrabadi, [2006), semi-dual formulation of entropy-
regularized optimal transport (OT) (Peyré & Cuturi, 2019; |Genevay et al., |2016), minimax prob-
lems (Pee & Royset,2011)), distributionally robust optimization (DRO) (Hu & Hong; Ben-Tal et al.,
2013 |Kuhn et al.,[2024), maximum likelihood estimation (MLE) for exponential families and graph-
ical models (Wainwright et al.| [2008)), variational Bayesian methods (Khan & Nielsen, 2018} [Khan
& Rue, 2023), information geometry (Amari & Nagaokal [2000), KL-regularized Markov decision
processes (Tiapkin et al., 2024). These problems involve minimizing F'(p; 1) w.r.t. a function ¢,
potentially parameterized by a vector 6, e.g., a vector of neural network weights. Such optimization
is characterized by two challenges. First, the decision variable ¢ or 6 often has large or infinite
dimension. Second, the support of the measure x can also be large or infinite. The first challenge is
usually addressed by the use of first-order methods like Stochastic Gradient Descent (SGD), which
are suitable for high-dimensional problems due to their cheap iterations. Unfortunately, there is no
universal way to tackle the second challenge. If the number of exponential terms under the loga-
rithm is large or infinite, i.e., the Monte Carlo estimate log Zi\il e®(@i) for a large N, the gradient
computation requires differentiating each term, and, to the best of our knowledge, no cheap unbiased
stochastic gradient have been proposed.
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In the current work, we propose a general-purpose approach to tackle both mentioned challenges. To
that end, we use a SoftPlus approximation of F'(¢; i) that allows using stochastic gradient methods
while remaining close to the original objective. We start with a variational formulation analogous to
the one in the Gibbs principle, but with the KL-divergence replaced with another f-divergence — the
safe KL divergence. The corresponding variational problem can be of interest itself, as it possesses
some properties which can be beneficial compared to the KL penalty — e.g., uniform density bound.
Moreover, it can be also viewed as an approximation of a conditional value at risk functional (CVaR).
In fact, the same functional (with different parameters) appeared in|Soma & Yoshidal (2020) in the
context of smooth CVaR approximation. Thus, we demonstrate that it generates a family of problems
including CVaR and LogSumExp minimization as limit cases.

Related works. We are not aware of any universal way to efficiently treat optimization objectives
involving the LogSumExp functional (T), especially in infinite-dimensional settings. This functional
appeared in different applications and was treated on a case-by-case basis. [Bouchard (2007) studies
three upper bounds on LogSumExp for approximate Bayesian inference. One of them is a partic-
ular case of the approximation proposed in the present work. [Titsias| (2016) constructs a bound on
softmax probabilities and shows that it leads to a bound on LogSumExp in the context of multiclass
classification. Nielsen & Sun| (2016) approximate LogSumExp in the context of estimating diver-
gences between mixture models. Their approximation combines LogSumExp bounds based on min
and max. Tucker et al.| (2017); [Luo et al.[| (2020) propose and study unbiased estimators for latent
variable models based on Russian Roulette truncation. |Lyne et al.| (2015); Spring & Shrivastava
(2017) focus on estimating the partition function itself, and do not consider questions of optimiza-
tion involving the partition function. [Hu & Hong| and, susequently, [Levy et al.| (2020) study DRO
problems with f-divergences. They propose a batch-based approximation. When the ambiguity set
is the unit simplex, and KL divergence penalty is used, the original objective is the LogSumExp of
the losses over the entire dataset, while the approximation replaces it with the average of LogSum-
Exp terms computed on individual batches. This approximation introduces bias, which can only be
reduced by using large batch sizes. Deterministic LogSumExp maximization and minimization were
considered in|Selvi et al.|(2020) and |Kan et al.|(2023)), respectively. For stabilizing numerics related
to evaluation of LogSumExp function, we refer to Blanchard et al.|(2021)); [Higham| (2021).

Contributions. Our main contributions are as follows:

1. We introduce a general-purpose and computationally efficient approach for handling the Log-
SumExp function in large-scale optimization problems by proposing a novel relaxation of
this function. The proposed relaxation preserves key properties of the original LogSum-
Exp function, such as convexity and smoothness, and enables the use of stochastic gradient
methods for machine learning tasks. Furthermore, our method only requires a simple and
tunable scalar parameter, allowing the relaxation to be made arbitrarily close to the original
LogSumExp objective as desired.

2. We provide the theoretical backbone of this approximation, demonstrating that it is due to
a modified version of the KL-divergence in the dual formulation. We termed the resulting
f-divergence the (Overflow-)Safe KL divergence. It can be applied to various applications
where KL-divergence is used.

3. We empirically demonstrate the effectiveness of our approach on tasks, including computing
continuous entropy-regularized OT and various DRO formulations. Our method outperforms
existing state-of-the-art baselines in these applications and circumvents the overflow issue
(Remark [3.T). It can also be combined with existing techniques. Therefore, it serves as a
versatile tool for solving large-scale optimization problems.

4. Additionally, we provide insights into a few remarkable connections between the proposed
approximation and existing notions such as the conditional value-at-risk.

Notation. Given a,a,...,a, € R, we define LogSumExp(ay,...,a,) = log(}." , e*) and
SoftPlus(a) := log(1 + e*). Given a measurable space X, by P(X) we denote the space of prob-
ability measures on X, and by C(X") the space of continuous functions on X. Let u,v € P(X).
Define Kullback-Leibler (KL) divergence as

log ¥ (z) du(z) p<v
D — fX dv ’
KL (i) {—|—oo otherwise,

where log is the natural logarithm and ;1 < v denotes that p is absolutely continuous w.r.t. v.
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2  SOFTPLUS APPROXIMATION OF LOG-PARTITION FUNCTION

In this section, we present our approximation to the log-partition function (I)) and describe its theo-
retical properties. Recall that by the Gibbs variational principle

F(w;u)=Sgp{/Xs0(:r)dV(w)—DKL(v,u vePX /Iw )| dv(z <00} 2)

with the maximum attained at the Gibbs measure dv*(z) = e?(®)=F(@) dy(x), once F(p; i) < oo,
see (Gibbs|, 1902, Chapter XI, Theorem VI) or (Polyanskiy & Wul 2025| Proposition 4.7) for the
modern treatment.

We are going to construct an approximation of I’ with better regularity properties by changing D,
to another f-divergence. Specifically, for any 0 < p < 1, let us define the following.

Definition 2.1 (Safe KL entropy). We define the safe KL entropy generator f,: [0,00) — R by

tlogt+ 1+ =Lllog(1 —pt), 0<t<1i,
nm:{ p losll =0 -7 ®

400, otherwise.

The resulting f,-divergence, which we refer to as the safe KL divergence, is given by
d
D) = L et (@) dutw). v < "
400, otherwise.

It is easy to see that f,(t) — fo(t) == tlogt +1 —¢
S as p — 0. Since fy induces the standard KL-divergence,
e D, is its approximation with accuracy regulated by the

— flt)=tlogt—t+1

parameter p.

Using the variational representation, we define
Futgi =su{ [ plo)avte) - Do)

vePX /|g0 )| dv(z <oo} (5)

(i.e., F,(-; ) is the convex conjugate of D, (-, 11)). Note
that the last term in f, prevents the density d” from being

0 2 4 6 8 10
t

Figure 1: f,(t) for different values of p. too large. In particular, it can not be greater than 1 > This

can make the safe KL divergence a reasonable choice for

unbalanced OT or DRO, as it imposes a hard constraint
on the reweighting unlike the standard D . Moreover, it can also be used instead of the entropy
penalization in regularized OT (cf. capacity constrained transport in (Benamou et al.l 2015} sec-
tion 5.2)).

Again, by the convex duality and the variational principle (see Birrell et al., 2022 Theorem 6), we
state the following properties.

Lemma 2.2. The functional I, defined by @) has an equivalent variational representation
Fy(4i 1) =Ma+/f 7) - o) du(z).

It is straightforward to check the following.
Lemma 2.3. The conjugate function to f, is a rescaled SoftPlus, specifically,

1
f,(s) = sup st — f,(t) = —log (1 + pe”) — 1.
teR, P
Therefore, we obtain

1
) = i _ - o(r)—a
Fy(o; 1) olérgl%a 1+ P /X log (1 + pe ) du(z). (6)
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In essence, we have replaced the exponential function with a rescaled SoftPlus. Furthermore, it is
easy to see that the optimal o* satisfies

ep(z)—a” d ) .
/XW p(x) =1, (7

in particular, o* < F(p;u). Moreover, the maximum in is attained at dv;(s) =

ﬂd ( Note that 0 dV;(I) 1
1+ peel@)—ar p(x). Note that 0 < Ies < 2,

tlogt explodes at 0, preventing reaching the constraint.

< which is due to the fact that the derivative of

The next proposition (proved in Appendix [A]) ensures that F, is a valid approximation of F.
Proposition 2.4. Let i € P(X) and  be a measurable function on X.
(i) Forall0 < p < p' <1, itholds Fy(p;p) < F,(p; p).

(i) As p = 0+, F,(p; 1) = Fo(es p) = F (5 p).
(iii) If F(2p; u) < oo, then forall 0 < p < %eQF(“’?”)_F(Q“’;")

Fy(ip) = Flpi ) + & — apelGem—2r(em), @®)
(iv) If o(x) < M forall x € X, then F,(; 1) > F(p; 1) — peM=F(&:1) for p e (O,QF(%H)—M).

In particular, (i) and (iii) show that F}, — O(p) < F < F),, and thus the parameter p allows one
to control the approximation accuracy. In the case of LogSumExp, the above proposition yields the
following simple bounds.

Corollary 2.5. Letay,...,a, € R Thenforany 0 < p <1

1 n
LogSumExp(ay,...,a,) —p < in%oc —14- Z log(1 4+ pe®~*) < LogSumExp(ay, ..., ay,).
ac
i=1

For p = 1 our approximation coincides with Bouchard’s bound for LogSumExp (Bouchard, 2007).

2.1 LINKS TO CVAR

Recall that the conditional value at risk (CVaR) w.r.t. a probability measure p € P(X) at level
p € (0,1), associated with a function ¢, can be defined (in the case of continuous distribution) as

1
CVaR,(p; ) = Ex~p [p(X)[p(X) 2 Q1-,] = */ o(z) dp(),
p ‘P(I)EQlfp
where (Q1_, is the (1 — p)-quantile of p(X), X ~ p (Rockafellar et al) 2000). Moreover, by
Theorem 1 inRockafellar et al.|(2000) CVaR also has the following variational formulation:

* | 6@ - ) dute). ©)
PJx

Remarkably, in [Soma & Yoshidal (2020) the authors obtained a smooth approximation to CVaR
which, up to an additive constant, has the same form as F},. However, they considered the approx-
imation w.r.t. a different parameter—a “temperature” inside SoftPlus. Finally, |[Levy et al.| (2020)
proposed another similar smoothed version of CVaR (KL-regularized CVaR) in the context of DRO.
For our approximation, we obtain the following bounds.

Proposition 2.6. Forall0 < p < land X >0

1) = inf
CVaR, (p; 1) inf a +

1
CVaR,(¢; p) + Alog p — 1) < AF,(p/A; 1) < CVaR,(p; 1) + A (logp —1+ p) . (10)

2.2 THE CASE OF PARAMETRIC MODELS

In some applications, the function ¢ is defined as the parametric loss function L(z, 6) and the goal
is to minimize objective involving (I)) w.r.t. parameter 6 to find the best model from the parametric
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family. In this section, we study our approximation to (I) in this parametric setting. Fix some closed
parameter set © C R? and a loss function L: X x © — R. Combining our approximation (@) and
the minimization w.r.t. parameter 6, we obtain the following minimization problem (note that we
shifted o by log p compared to (6)))

1
eegiileR Gp(0,0) =a+logp—1+ ;/X log (1 + eL(””g)_") dp(z).
Clearly, G, is convex in «. Moreover, if L is convex in § for p-a.e. z, then G, is jointly convex,
meaning that our approximation preserves convexity.

Note that f,(t) = % ((pt)log(pt) + (1 — pt)log(1l — pt))+1—tlog p. Thus, unlike the KL entropy
function tlogt 4 1 — t, f, possesses the following favorable properties:

Lemma 2.7. The entropy function f, is p-strongly convex. Its conjugate function f is %-smooth.

The above properties are important from the computational optimization point of view. Recall that

% log(1+e€t) = 1_7_; =: o(t). Thus, we immediately obtain the following formulas for the gradient:

VoG,(0,a) = %/X o (L(z,0) — ) VoL(x,0)du(z),

1
0.G,(0,00) =1 — ;/XU (L(z,0) — o) du(x).

This yields, in particular, that the variance of the (naive) stochastic gradient is bounded by % and

the second moment of VyL(X,0), X ~ p. In the same way one can calculate the Hessian of
G, see Appendix [C} By Proposition|[C.2] if L(x, ) is bounded from below, then G, is smooth on
O x (—00, a] for any a € R meaning that our approximation preserves smoothness of the loss L.

3 APPLICATIONS

In this section we consider several particular applications involving the objective and show nu-
merically, that our general-purpose approach based on approximation (6)) leads to better performance
of SGD-type algorithms than the baseline algorithms designed specifically for these applications.
Source code for all experiments can be found in supplementary material.

3.1 CONTINUOUS ENTROPY-REGULARIZED OT

The classical optimal transport (Monge—Kantorovich) problem consists in finding a coupling of
two probablility measures p, v € P(X) which minimizes the integral of a given measurable cost
function c: X x X — Ry (e.g., adistance), i.e., W(u,v) = inf cn, ) [ c(z, 2) dr(z, ), where
II(u,v) C P(X x X) is the set of couplings (transport plans) of x and v (see Kantorovich, [1942;
Villani, |2008; |Santambrogio} |2015)). For simplicity of demonstration, we assume that the measures
are defined on the same space X, but the results extend trivially to the case of two different spaces.
Following |Cuturi| (2013)), we consider entropy-regularized optimal transport (eOT) problem:

min / c(x,z)dn(z, z) + eDirp(m,v @ ) (11)
me€ll(v,u) Jx«x

where v ® p is the product measure. It is known that eOT admits the following dual and semi-dual
formulations (see, e.g.,|Genevay et al.| (2016)):

W)= max ] fpuodu@ i) = m [ e ),

u,vEC(X) veEC(X)

dual semi-dual

where

Fo( 9, 0,0) = () + o(y) — e exp (“(” el C“’y)) | (12)

neteo) = [ otant) —tos ([ oo (LT ) o ay

3
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Figure 2: Test-set eOT semi-dual objective vs. iteration for different regularization strengths ¢ (left
to right: 1, 10-2, 10*4). Lines show the mean across 5 runs; shaded areas are + one standard
deviation. We compare LSOT (red) with our method (colored by p). Dashed black curves are
examples where LSOT with Ir=10"* terminates early due to overflow, while Ir=1075 results in a
prohibitively slow convergence (nearly horizontal red lines for ¢ = 1072,10~*). Our proposed
method remains stable and efficient for all .

and ¢ > 0 is the regularization coefficient. In the LSOT framework (Seguy et al [2018)), the poten-
tials u and v are parameterized by neural networks and optimized via SGD. While Appendix [B.T]
contains a more detailed literature review, we briefly position LSOT among other solvers to moti-
vate its selection as a baseline. LSOT offers two key advantages relevant to our goals: it is less
computationally intensive than modern solvers requiring adversarial training 2023}
Gushchin et al},[2023} [Asadulaev et al.|[2024) or iterative Langevin dynamics 2024
and it supports a general cost function—contrary to other efficient solvers like (Korotin et al.| 2024)
tailored to the quadratic cost. Therefore, to solve eOT with a general cost function under modest
computational constraints, we adopt the LSOT framework as our primary baseline. In Appendix [B.2]
we compare also to (Genevay et all, 2016) who use an RKHS parametrization for the potentials u
and v.

Remark 3.1 (The overflow issue). The main drawback of this approach is the presence of the ex-
ponent in the dual objective (and consequently in the SGD updates). Specifically, exponents are
prone to floating-point exceptions [1991), especially if the regularization parameter ¢ is
relatively small, which is often the case. For example, if e = 0.01 and z > 7.1, then e*/¢ exceeds the
representable range of a double-precision (float64) floating-point number — an overflow happens.
When single precision (float32) is used, an overflow happens even for z > 0.89.

Our approach. If we consider instead the semi-dual formulation and use the approximation (6)),
we arrive at the problem

max / / he(,y, 0, o) du(z) du(y) (14)
) XXX

v,a€C(X

with he(z,y,v, ) = v(y) — a(z) — = log (1 + pe(”(y)*c(w’y)*o‘(m))/g) —g, (15)
p

which also admits neural network parameterization and optimization via SGD. One can show, in the
same way as in|Genevay et al| (2016), that this corresponds to the regularized OT problem (TI)) with
Safe KL divergence D, rather than the usual KL, i.e.

min / c(x,z)dn(z, z) + eDy(m, v @ p).
mell(v,p) Jxxx

Note that this problem, in turn, can be viewed as a combination of the entropy-regularized and the

capacity-constrained optimal transport. For p > 0, this approach is much more stable than the

previous one when used in SGD. We illustrate this in the following experiments.

Experiments. We consider the MNIST 2012) and EMNIST-letters (Cohen et al.}, 2017)

datasets as samples from the distributions x (digits) and v (letters). Manhattan distance ¢; is chosen
as the cost function for computing eOT between ;1 and v. We parameterize the functions u, v in
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LSOT and v, « in our proposed approach using a multilayer perceptron with two hidden layers
(dimensions 256 and 128) and ReLU activations. The batch size is 256, and the learning rate is
selected via grid search over {107%,107°,...,107!}. The objective is evaluated on the empirical
distributions of the dedicated test sets.

Figure 2] shows the performance of LSOT with the best learning rate for each regularization param-
eter ¢ € {1,1072 ,1074}. It also depicts our proposed approach with the best learning rate
for each p € {10_1 10 31075}, The baseline performs adequately under strong regularization
(e = 1). However, for weaker regularization, a learning rate of 107% is required to avoid numeri-
cal instability, which leads to prohibitively slow progress (red curves). Increasing the rate to 10~*
(dashed black curves) results in numerical overflow after only ~5k iterations, forcing us to abort the
LSOT runs at that point.

Performance of our proposed approach align with the theoretical analysis in Section 2] A large
p yields stable convergence but introduces an approximation gap, while a very small p degrades
smoothness, necessitating a smaller step size and slower training. The intermediate value p = 1073
achieves the best trade-off, providing both accuracy and sufficient smoothness. In summary, our
proposed approach to eOT is computationally efficient, accommodates general costs, and handles
weak regularization robustly, thereby overcoming a key limitation of LSOT.

3.2 DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH KL DIVERGENCE

One of the approaches to training a model that is robust to data distribution shifts and noisy ob-
servations is called Distributionally Robust Optimization (DRO) (Kuhn et al.,[2024). In contrast to
the standard Empirical Risk Minimization (ERM) approach, which minimizes the average loss on
the training sample, DRO minimizes the risk for the worst-case distribution among those close to a
reference measure (e.g., empirical distribution). A prominent example is KL divergence DRO (Hu
& Hong), which is formulated as the saddle-point problem

i zgz 0) — \D ,A s 16
min max ;p (6) = A\Dk(p, p) (16)

where 6 € O is the model parameters, ¢;(6) is the respective loss on the i-th training example, A™
is the unit simplex in R™, p € A" is the weight vector defining the empirical distribution (typically

p = %1), and D, is the Kullback-Leibler divergence which discourages distributions that are

too far from the empirical one, A > 0 is the penalty coefficient. For fixed 6, the solution of the
&fi(0)/2

maximization problem is given by p¥ () = W, which reduces the problem to
in £(0) = Al ( (O, 17
min @ og Z e 17

However, when n is large, computing the full gradient VL() = "7 | p¥(0)V{;(6) becomes costly.

A straightforward approach (Levy et all [2020) is to sample a batch D, compute the respective
%, and define a gradient estimator by

softmax weights p? (6) = =
jeD €

VpL() => pP(O)VE(0). (18)
€D

However, this introduces a bias and requires using large batch sizes to keep it sufficiently small.

Our approach. Instead, we propose to use the approximation (6)), which results in the problem

n

1 A
E : (£i(0)—c) /X
Iﬁ%{j Glo,e) = n i:l{a+ p log (1 + pet™ )} (19)

Like in the previous subsection, this can be interpreted as switching from Dy, penalty in (I6) to
Safe KL D,. The respective gradient estimators are

0G0.0) = 11y Sy (H5472) VO, V60, =1 5 50 (4552 o

€D
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Table 1: Objective value (mean =+ std across 10 runs) at epoch 50 for baseline (Levy
et all 2020) and proposed gradient estimator (20) with different p values. Results are shown
for various penalty coefficients A and batch sizes |D|, with optimal learning rates selected from

{107°,...,107*}. Best results per column are shown in bold.
| A=1/5 | A=1 A=5
Approach [ ID[=10 [D]=10% |D[=10°| [D[=10 [D|=10% |D|[=10°]| [D[=10 [D[=10 |D|=107

Baseline (T8) 26.94+0.7 15.6+6.0 9.1+4.6 [20.0+0.9 5.242.9 2.340.2| 0.874+0.01 0.88+0.00 0.7940.00
20), p=10—1 | 27.740.6 27.74+0.7 40.1+0.5|21.1+1.1 21.34+1.1 21.8+2.1| 0.87+0.01 0.87+0.01 0.88+0.02
20), p=10° | 21.2+9.8 18.6+7.7 25.3+0.1|2.14+0.0 2.1+0.0 2.5+1.2]0.76+0.02 0.78+0.00 0.78+0.00
2_,p:10*5 19.24£9.6 17.54+6.6 24.3+0.3 | 3.04£0.0 3.0£0.0 3.0+0.0 | 1.03£0.00 1.03£0.00 1.03%0.00

Experiments. Consider the California housing dataset (Pace & Barry,|1997) consisting of 20,640
objects represented by 8 features. Let ¢; be the squared error of a linear model, £;(0) = (y; —0 " ;).
We use accelerated SGD with the gradient estimator (I8) (Levy et al.,[2020) as the baseline approach
for solving (I7), and compare it to our proposed gradient estimator (20). We consider various
values of the penalty coefficient A\ € {1/5,1,5} and batch sizes |D| € {10,102,10%}. For each
configuration, we select the optimal learning rate from {107,108, ..., 10~*}. The approximation
accuracy parameter p in our method is varied across {10~*,1072,10~5}. Momentum is fixed at 0.9
(without tuning), and the least squares solution is used as the initial point for optimization.

Numerical results are presented in Table[T] showing the objective value (mean = standard deviation
across 10 runs) after 50 epochs, where the methods typically reach a plateau. In each column, the
best-performing configurations are highlighted in bold. For A\ = 1/5,|D| € {10, 10%}, no results
are displayed in bold as all configurations perform similarly. As seen from the table, the baseline
and our estimator achieve comparable performance for large batch sizes (|D| = 103). However, for
smaller batches, our method typically outperforms the baseline. Both approaches handle various A
values well, with the exception of the baseline method combined with small batch sizes.

Regarding the approximation parameter p, large values (p = 10~!) generally result in a noticeable
approximation gap, while excessively small values (p = 10~°) deteriorate the smoothness of the ob-
jective and consequently slow convergence. The intermediate value p = 1073 thus provides the best
trade-off in this experiment, offering both good approximation accuracy and favorable optimization
properties.

3.3 DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH UNBALANCED OT

In the KL divergence DRO described in the previous subsection, uncertainty set is limited to distri-
butions with the same support as the empirical measure 1 = % >, 0z,. Another popular approach,
Wasserstein DRO (WDRO) (Mohajerin Esfahani & Kuhnl 2018 [Sinha et al| [2020), considers the
worst-case risk over shifts within a Wasserstein (OT) ball around a reference measure p instead of
the KL-ball in (I6), thus including continuous probability measures. Unfortunately, this approach is
not resilient to outliers that are geometrically far from the clean distribution since OT metric is sen-
sitive to them (Nietert et al., 2023)). A natural generalization is to switch to semi-balanced OT (Liero
et al.,2018; Chizat et al.| [2019; [Kondratyev et al., [2016)), which replaces a hard constraint on one of
the marginals with a mismatch penalty function, e.g.,

Watn) = _inf [ ca2)dn(o.2) + 8 D (man),
T =V

where m; and 75 are first and second marginals of 7, respectively, 8 > 0 is the marginal penalty

parameter. Intuitively, this discrepancy measure allows to ignore some points (e.g., outliers) by
paying a small price for mismatch in marginals. The (penalty-form) DRO problem can be written as

i 00, z) dv(z) — AW,
min max /X (0,z)dv(x) (v, 1),

where A > 0 is the Lagrangian penalty parameter. Using standard duality,[Wang et al.|(2024) showed
that when 1 = 1 3~ 6, is the empirical distribution, this is equivalent to

n

i - LS 0709 with 4.(6) — A _
min F9) =\ log<n ;e ) with £;(0) == fgg{ﬁ(@,z) Ae(z, )}, 1)
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Figure 3: Performance of ERM and two DRO approaches on MNIST with noisy labels. Left: ERM
accuracy on the noisy validation set vs. clean test set. Middle: validation vs. test accuracy for DRO
approaches. Right: training loss F'(#) from .

To avoid the costly gradient computation of LogSumExp, the authors drop the logarithm and use
SGD to optimize the sum of exponents,
n

min & 3 b @/08), 22)

fceO N
i=1

The major downside of this approach is that the exponent terms have a large variance, and SGD

is prone to floating-point exceptions (overflow) unless a very small stepsize is tuned, which slows
down the convergence and can be time-consuming and unstable in practice.

Our approach. To overcome this issue, we propose leveraging the approximation (6)), which leads
to the problem

1 — B i
in = Zloe(1 (€:(0)—)/(AB) } 23
min E {a + og( + pe ) ) (23)

acR =1
where p > 0 is a parameter controlling the accuracy of the approximation. This approximation
can be efficiently optimized with SGD. Note that our method can also be applied to other DRO
algorithms such as Sinkhorn DRO (Wang et al.|[2021)), which we omit to avoid redundancy.

Experiments. We consider MNIST dataset (Deng| 2012} with train and validation labels corrupted
by feature-dependent noise (see|/Algan & Ulusoy} [2020) (noise ratio 25%), and original (clean) test
labels. Let 6 denote weights of a CNN with two convolutional layers (32 and 64 channels, kernel
size 3, ReLU activations, and 2x2 max pooling), followed by a fully connected classifier with one
hidden layer of 128 units, and let £(6; z) be its cross entropy loss on object z. In the experiment, SGD
(with batch size 1) is applied to problems @ (baseline) and (23) (proposed approach). We consider
values of the stepsize n € {107°,107°,10~%,1073}. Parameters A and /3 were set to 1 since smaller
values required a smaller stepsize and resulted in a slow convergence, while larger values pushed
the model towards fitting the noisy distribution instead of the true one. Approximation accuracy
parameter p in (23) was set to 0.1. For the inner maximization problem in (1)), just 5 iterations
of Nesterov’s accelerated gradient method were sufficient to reach plateau in terms of the objective
value. Additionally, we used SGD for the usual empirical risk minimization (ERM) to observe the
effects of conventional (non-robust) training on noisy data.

Figure [3| demonstrates the performance of different approaches with best hyperparameter 1 (103
for ERM, 10~* for the proposed approach, and 10~° for the baseline). Shaded regions indicate
+ one standard deviation across 10 runs, except that for the baseline approach (22) we excluded a
single run that caused a floating-point exception. The plot on the left illustrates that ERM fits to the
corrupted data well (accuracy on the noisy validation set is increasing) which results in decreasing
accuracy on the clean test set. In contrast, the plot in the middle shows that an increase in validation
accuracy results in the increase in test accuracy for both DRO approaches, which indicates that they
are more capable at learning the underlying clean distribution. The plot on the right shows the train
loss F(f) from . As seen from the figure, the proposed approach converges faster than the
baseline. This is caused by the fact that the baseline requires a small stepsize to avoid overflows.
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4 CONCLUSION

We introduce a novel approximation to the log partition function (and in particular, to LogSum-
Exp), which arises in numerous applications across machine learning and optimization. In the dual
formulation, it corresponds to the safe KL divergence. Our LogSumExp approximation preserves
convexity and smoothness, and can be efficiently minimized using stochastic gradient methods. Im-
portantly, the respective gradient estimator has controllable bias independent of batch size, in con-
trast to prior approaches. Our empirical results highlight the practical advantages of the proposed
approximation across tasks in continuous entropy-regularized OT and DRO. An important direc-
tion for future work is to leverage the approximation for other applications, where the LogSumExp
function and duality of the KL divergence play a role.
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A  PROOFS FOR SECTION[2]

Proof of Proposition[2.4] (i,ii) Consider the function g(t) = ln(l%t) It is decreasing and convex
on (0,00), g(t) — 1 and ¢'(t) — —1 as t — 0+. Note that

M =i — Sa(w)_a Q&(I)—Ot
Fo (i 1) érel%a 1+/X€ g (Pe ) dp(z).

Then (i) follows immediately from (6) and the monotonicity of g. The monotone convergence
theorem yields (ii) since

F(p;u)=inf a—1 +/ e W= qp(x).
a€eR X

Now, let us prove (iii). Consider the optimal v, satisfying (7). By Jensen’s inequality

(z)—ap
p(@)—a _ __re
/X In (1 + pe P) dp(x) /X In (1 T peso(x)ap) dp(x)

(1o [ ey In(1
R e ) R !
thus
1 In(1 —
Fy(o;pn) =a,— 1+ ;/ In (1 +pe‘p(m)7o‘f’) dp(z) > a, —1— n(pp) >, + g (24)
X
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_t
1+t

pe‘p(x)_a
/X T4 per) o du(z) = p.

It remains to get a lower bound on «,. By the monotonicity of
« such that

we deduce that o, > o« for any

. t 2
Slncemzt—t,

p(z)—a
/ - pe So=a dp(z) > / (pew(w)—a _ p2e2<ﬂ(ﬂc)—2a) dp(z) = peF(w;u)—a_p2€F(2¢;u)—2a.
x L+ pe x

Denoting u := e¥'(#i#*)=¢ it is enough to find u such that

uw—au®>1, where a = peF(W;“)*zF(w“) <

A~ =

Thus, taking
1
U= 2—(1—\/1—4a) <1+ 4a,
a

we obtain
ap = Fpyp) —Inu = F(p;p) —In(1+4a) = F(p; p) — 4a.
Combining this with (24), we get (8).

(iv) Finally, let ¢(z) < M for all z € X. Then by concavity
/ In (1 + pe“"(z)fo‘) dp(x) > / ef@ =My, (1+ peMﬁO‘) dp(z) = el =My (1+ peM*a)
X X

for all o € R. Therefore,
eF(os)—M
F,(p;p) > mina — 1+ ————In (1 + pe™ )
a p
1— peNI*F(WH‘) M—F(pip)
> F(p;p) — pe™—Flom),

Here we used the inequality

1-1¢
In(1-¢t)<t—1, 0<t<l.
O
Proof of Corollary[2.3] Set yu, .= = 3" | §,, € P(R). Then
LogSumExp(ay,...,a,) =Inn +1In </ xdun(m)) =1Inn+ F(id; p,)
X
and
1 n
oiérgl%a -1+ p ;ln(l + pe®iT*) = Oi%%a -1+ % /X In(1 + pe® ) du,(z)
=infa—-1+4 E/ In (1 + Bez_o‘*‘ln”) dpn (x)
a€cR P Jx n
=1Inn+ F, ), (id; pn).
Since N »
eF(id;u,,L)fmaxi a; _ Zi:l e > l > E’
nmax; e — n n
Proposition [2.4{i,iv) yields
F(id; pn) — p < Fyyn(id; pn) < F(id; ).
The claim follows. O
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Proof of Proposition[2.6] As AIn(1 + e*/*) > t, = max{0,t}, we get
<1np + ) a) dp(x)
A +

= Alnp 1) + inf o+ % /X (p(z) — )4 du(x).

1
. > 3 _ —
AE, (/s ) > )\érel%oz 1+ p /X

The infimum in the r.h.s. is the variational formula for CVaR (), thus we get the first inequality

in (IE) The second inequality can be obtained in a similar way using that AIn(1 4 e*/*) < t, +
A O

Proof of Lemma[2.7} Recall that we have
Folt) = = (o) log(pt) + (1 = pt) og(1 = pt) + 1 = o .
Simplifying, we obtain
fo(t) =tlogt + %(1 — pt)log(1 — pt) + 1.
The first derivative is calculated as follows:

d d /1
£ (tlogt) = logt +1 L 201 = pt)log(1 — pt) ) = —(log(1 — pt) + 1
dt( ogt) =logt+1, dt(p( pt) log( p)) (log(1 —pt) +1),

SO

F4(0) = (ot + 1) = (log(1 = pt) 1) = log ~ log(1 — pt) = log 1= ).

The second derivative is calculated as follows:

d 1 d P
—(logt) = — —(log(1 —pt)) = —
glost) =5, Glos(1—p) =~
thus i 1
M) = = 4 _ .
To () t+1—pt t(1— pt)
By symmetry, we can see that the minimum value of the second derivative is achieved at t* = 1,

2
and it is equal to 4p. Thus, for all t € domf,, we have that f//(t) > 4p > p. Thus, by
2018, Theorem 2.1.11), f, is p-strongly convex. By (Zhoul [2018} Theorem 1) this also implies that

its conjugate function f is %—smooth. O

B ADDITIONAL MATERIALS ON ENTROPIC OT

B.1 RELATED WORKS ON EOT

This subsection provides an overview of selected works on continuous entropy-regularized optimal
transport. In 2016), the authors tackled this problem by introducing an RKHS and
optimizing the dual function (12) with SGD. This approach was extended by [Seguy et al|(2018),
who parameterized the dual potentials with neural networks instead of an RKHS to improve scalabil-
ity. Subsequently, |[Daniels et al.| (2021)) leverage this approach to approximate the optimal transport
plan, using it to develop a score-based generative model. Although this direction mostly results in
computationally efficient methods that works with a general cost function, a key drawback is that
small values of the regularization coefficient £ cause numerical instabilities due to the exponential
term in the dual objective; see Remark 3.1} The work by (Korotin et al [2023) studies a more gen-
eral formulation known as weak OT. The authors formulate it as a maximin problem and develop a
neural-network-based algorithm under the assumption of a quadratic cost, a restriction that is later
relaxed in (Asadulaev et all, [2024). However, these methods are computationally intensive due to
their adversarial training nature. The paper by Mokrov et al| (2024)) approaches eOT from the per-
spective of energy-based models. Unfortunately, the resulting solver is computationally expensive
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as it involves iterative Langevin dynamics . Another popular approach to eOT in recent years is via
the Schrodinger bridge (SB), e.g., (Gushchin et al., 2023). While SB-based solvers are also often
computationally intensive, a more cost-efficient solution has been proposed by (Korotin et al.,{2024)).
However, it relies on the quadratic cost assumption and does not support general cost. We would
also like to note that a promising direction for future work is leveraging our approach for minimizing
the objective (8) in (Korotin et al., 2024) to further improve scalability.

B.2 EXPERIMENT WITH RKHS REPRESENTATION OF DUAL POTENTIALS

As mentioned earlier, LSOT (Seguy et al., 2018) is inspired by the continuous eOT approach of
Genevay et al.|(2016). This work considers a reproducing kernel Hilbert space (RKHS) # defined
on X, with a kernel «, and applies SGD to solve the dual problem. Such approach suffers from
the same numerical instability as LSOT, see Remark@ As an alternative, we again consider the
approximation (I3) of the semi-dual objective which can also be maximized by SGD. Although the
variable « is, in general, a function of x, we empirically found that tuning a common scalar value
a € R for all samples works well in the experiments described below.

Analytic form of SGD iterates for both objectives can be derived as follows. By the property of
RKHS, if u € H, then u(z) = (u, (-, z))#. Therefore, the derivatives of f. take the form

u(l') + 'U(y) _ C(l’,y)) Ii(',lL’),

€

o) o) cle) oo,

Vufs(zvyauav) = KJ(',CE) — eXp <

u
vvfb‘(a:?yvu’av):K/(',y)—eXp< .

Consequently, SGD iterates for the dual objective (I2) can be conveniently written as

k
(u,vk) = (WWO)‘FZ@ (k5 (i), 6 (5 9i) (25)
i=1
. . C wi—1(wq)+vi—1(vi)—c(=i.vq)
with i = - (1 s ) (26)

where (z;, y;) are i.i.d. samples from ;® v, and C' > 0 is the initial stepsize. Similarly, SGD iterates
for (I3)) are computed as follows:

k
ve =vo+ Y Bik (- ui),
i=1

k
Qp = g — ZBz with Bi = = (1 —0Op (ui71(Ii)+vi7€1(yi)76(mi’yi)))7

i=1

SlQ

t
€

where o,(t) == 5.
Experiments. Consider a setup analogous to the one described in Section 5 of |Genevay et al.
(2016). Specifically, 11 is a 1D Gaussian, and v is a mixture of two Gaussians (see Figure ] for a

plot of densities). Gaussian kernel x(z,z’) = exp (—”"D;ig/”j with a bandwidth hyperparameter

o? > 0is used. The regularization coefficient is set to & = 0.01. We consider kernel SGD
applied to the dual objective as a baseline approach (Genevay et al., 2016). We compare it to the
proposed approach, namely, kernel SGD applied to the approximate semi-dual problem (14). For
details on how the optimality gap is estimated, see Appendix [B]

When applying kernel SGD to the dual and approximate semi-dual formulations, we consider hyper-
parameters o € {0.1,1,10} (kernel bandwidth), C' € {107%,1072,...,10} (stepsize parameter),
and p € {0.03,0.1,0.3} (approximation accuracy). Double floating-point precision is used. In the
experiment, the proposed approach works best with 02 = 10, and C = 1 for p € {0.03,0.1},
C = 10 for p = 0.3. Baseline works best with 0% € {0.1,1} and C' = 1073. Figure(left) shows
performance of the two approaches. For clarity, we provide a zoomed-in view of the curves gener-
ated by the baseline in the middle. As seen from the figures, the baseline is extremely slow, which
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Figure 4: Densities of source and target distributions in the eOT experiment.
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Figure 5: Left: convergence of kernel SGD applied to the dual objective (blue and orange) and
approximate semi-dual problem (T4) (green, red and purple). Solid lines show average optimality
gap across 20 runs, shaded regions indicate & one standard deviation. Y-axis uses logarithmic scale.
Middle: a zoomed-in view of blue and orange curves from the plot on the left. Right: examples
of divergent optimality gap curves obtained by running the baseline approach with the stepsize
parameter C' = 1072,

happens due to the small stepsize. Larger values of C' lead to numerical instabilities as illustrated
by the plot on the right. Apparently, exponent causes a large magnitude of the gradient at a certain
step, which brings an iterate to a region where it stagnates. On the contrary, our approximate semi-
dual formulation permits larger stepsizes, which results in faster convergence. Indeed, the method
usually achieves a relatively low optimality gap in about 2 - 10* iterations, and plateaus after that.

B.3 COMPUTING A PROXY FOR OPTIMALITY GAP
Optimality gap in the experiment is estimated as follows:
1. Testsets {z;}Y; and {y;} , of size N = 10" are sampled from y and v. The correspond-
ing empirical distributions are denoted /i and 7, respectively.

2. Similarly to|Genevay et al.| (2016), we obtain a proxy W for W (u, v) by solving the semi-
discrete eOT problem

max Ex., h-(X,v)

veRN
1 1 & (2,v)
~ v; —c(z,y;
with h.(z,v) = N E_l v; — 810g<ﬁ E_l e = ) —e,

which corresponds to replacing the expectation Ey ., in (I3) with the average over the test
set Ey ;. We preform 10 runs of SGD, each consisting of 2 - 10° iterations, and define W

as largest achieved value on the test set, i.e., the largest Ex . he (X, V).
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3. Finally, given a potential v € C(X’), we estimate the optimality gap as W —Ex - i he(X,v),
where v = (v(y1),...,v(yn)) " is the evaluation of v on the test set.

C PROPERTIES OF SOFTPLUS

Let F(x) = log(1 4 e/(®)), then
VF(x) = o(f(x))V [f(x), 27)
V2F(z) = o(f(2))V? f(x) + o (f(2)) (1 = o(f(2))) Vf(2)V f(2) " (28)

Suppose f(x) is L-smooth (possibly non-convex). Let us derive smoothness constant of F'. We will
use the following

Lemma C.1. Consider function f,(x) = o(x) + 20’ (x)(x — a), x > a with parameter a < 0. It
holds f,(x) <2 —§.

Proof. By the properties of the sigmoid function o(z), ¢/(z) < 1 and o(z) < 1. Therefore,
Ja(z) <1+ %52 If 2 < 2, the result follows. Let us now show that the derivative

& fulw) =o' @)+ 20~ 20(x))(z — o)
is negative if > 2. Indeed, due to monotonicity of the sigmoid function o (z),

o(xz)>0(2) >0.88=2(1—20(x)) < —g.
Moreover, z — a > 2,50 3+ 2(1 — 20(z))(z — a) < 0 and - f,(z) < 0. Therefore, if 2 > 2, then
fa(z) < fa(2) <2-3. O

Proposition C.2. Let f € C1(RY) be L-smooth and bounded from below by f. € R, then F(z) =
log(1 + /®)) is smooth with parameter

ir iff. >0,
{(g—f;)L if f. < 0. @9)
Proof. W.lo.g., we can assume that f € C2. From and Lemma [C.1| we get
IV2F(@)|| < o(f@)IVf (@)l + o' (f (@) IV £ ()]

< Lo(f(x)) + 2Lo" (f(x))(f(x) — £.)

= L(o(f(x)) + 20" (f(2)) f(2)) — 2La" (f (x)) fs.
Analyzing the function h(t) := (o(t) + 2to’(t)), one can show that max; h(t) < 3. Thus, in the
case f. > 0, using the fact that ¢’ (¢) > 0 we obtain

IV?F ()| < Lh(f(x)) < - L.

IS

Now, consider the case f. < 0. Since o/ (t) = o(t)(1 — o(t)) < 1,
4

IV2F(@)]| < Lh(f(2)) = 2L’ (f(@))f. < 5L — gf*,

The claim follows.

Remark C.3. The factor % in front of —f, in can’t be improved. Indeed, consider f(x) =
1(z —a)? — a® with f. = —%a® The second derivative of F(z) = log(1 + e/®)) is
F'(z) = o(f(2)) + o(f(2)) (1 - o(f(2))) (z — a)*,
1 a2 1 f

F(0) = 0(0) + 0(0) (1= o(0)) o> = 5 + 5 = 5 — =

Proposition C.4. If f is convex, then F(z) = log(1 + ¢/(*)) is also convex.

Proof. Trivially follows from (28). O
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D LLM USAGE DISCLOSURE

In the preparation of this manuscript, large language models (LLMs) were used to improve the
readability. All substantive contributions are solely by the authors.
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