

000 001 002 003 004 005 IMPROVED STOCHASTIC OPTIMIZATION OF 006 LOGSUMEXP 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
The LogSumExp function, also known as the free energy, plays a central role in many important optimization problems, including entropy-regularized optimal transport and distributionally robust optimization (DRO). It is also the dual to the Kullback-Leibler (KL) divergence, which is widely used in machine learning. In practice, when the number of exponential terms inside the logarithm is large or infinite, optimization becomes challenging since computing the gradient requires differentiating every term. Previous approaches that replace the full sum with a small batch introduce significant bias. We propose a novel approximation to LogSumExp that can be efficiently optimized using stochastic gradient methods. This approximation is rooted in a sound modification of the KL divergence in the dual, resulting in a new f -divergence called the *safe KL divergence*. The accuracy of the approximation is controlled by a tunable parameter and can be made arbitrarily small. Like the LogSumExp, our approximation preserves convexity. Moreover, when applied to an L -smooth function bounded from below, the smoothness constant of the resulting objective scales linearly with L . Experiments in DRO and continuous optimal transport demonstrate the advantages of our approach over state-of-the-art baselines and the effective treatment of numerical issues associated with the standard LogSumExp and KL.

1 INTRODUCTION

029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Optimization problems arising in various fields involve the LogSumExp function, or, more generally, the log-partition functional

$$F(\varphi; \mu) := \ln \int e^{\varphi(x)} d\mu(x) \in (-\infty, \infty] \quad (1)$$

029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
mapping a measurable function φ to $(-\infty, \infty]$ based on a probability measure μ . The goal in such optimization problems is to minimize an objective involving F w.r.t. φ over some class.

029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
LogSumExp function appears commonly in optimization objectives, e.g., multiclass classification with softmax probabilities (Bishop & Nasrabadi, 2006), semi-dual formulation of entropy-regularized optimal transport (OT) (Peyré & Cuturi, 2019; Genevay et al., 2016), minimax problems (Pee & Royset, 2011), distributionally robust optimization (DRO) (Hu & Hong; Ben-Tal et al., 2013; Kuhn et al., 2024), maximum likelihood estimation (MLE) for exponential families and graphical models (Wainwright et al., 2008), variational Bayesian methods (Khan & Nielsen, 2018; Khan & Rue, 2023), information geometry (Amari & Nagaoka, 2000), KL-regularized Markov decision processes (Tiapkin et al., 2024). **These problems involve minimizing $F(\varphi; \mu)$ w.r.t. a function φ , potentially parameterized by a vector θ , e.g., a vector of neural network weights.** Such optimization is characterized by two challenges. First, the decision variable φ or θ often has large or infinite dimension. Second, the support of the measure μ can also be large or infinite. The first challenge is usually addressed by the use of first-order methods like Stochastic Gradient Descent (SGD), which are suitable for high-dimensional problems due to their cheap iterations. Unfortunately, there is no universal way to tackle the second challenge. If the number of exponential terms under the logarithm is large or infinite, i.e., the Monte Carlo estimate $\log \sum_{i=1}^N e^{\varphi(x_i)}$ for a large N , the gradient computation requires differentiating each term, and, to the best of our knowledge, no cheap unbiased stochastic gradient have been proposed.

In the current work, we propose a general-purpose approach to tackle both mentioned challenges. To that end, we use a SoftPlus approximation of $F(\varphi; \mu)$ that allows using stochastic gradient methods while remaining close to the original objective. We start with a variational formulation analogous to the one in the Gibbs principle, but with the KL-divergence replaced with another f -divergence – the *safe KL* divergence. The corresponding variational problem can be of interest itself, as it possesses some properties which can be beneficial compared to the KL penalty – e.g., uniform density bound. Moreover, it can be also viewed as an approximation of a conditional value at risk functional (CVaR). In fact, the same functional (with different parameters) appeared in Soma & Yoshida (2020) in the context of smooth CVaR approximation. Thus, we demonstrate that it generates a family of problems including CVaR and LogSumExp minimization as limit cases.

Related works. We are not aware of any universal way to efficiently treat optimization objectives involving the LogSumExp functional (1), especially in infinite-dimensional settings. This functional appeared in different applications and was treated on a case-by-case basis. Bouchard (2007) studies three upper bounds on LogSumExp for approximate Bayesian inference. One of them is a particular case of the approximation proposed in the present work. Titsias (2016) constructs a bound on softmax probabilities and shows that it leads to a bound on LogSumExp in the context of multiclass classification. Nielsen & Sun (2016) approximate LogSumExp in the context of estimating divergences between mixture models. Their approximation combines LogSumExp bounds based on min and max. Tucker et al. (2017); Luo et al. (2020) propose and study unbiased estimators for latent variable models based on Russian Roulette truncation. Lyne et al. (2015); Spring & Shrivastava (2017) focus on estimating the partition function itself, and do not consider questions of optimization involving the partition function. Hu & Hong and, subsequently, Levy et al. (2020) study DRO problems with f -divergences. They propose a batch-based approximation. When the ambiguity set is the unit simplex, and KL divergence penalty is used, the original objective is the LogSumExp of the losses over the entire dataset, while the approximation replaces it with the average of LogSumExp terms computed on individual batches. This approximation introduces bias, which can only be reduced by using large batch sizes. Deterministic LogSumExp maximization and minimization were considered in Selvi et al. (2020) and Kan et al. (2023), respectively. For stabilizing numerics related to evaluation of LogSumExp function, we refer to Blanchard et al. (2021); Higham (2021).

Contributions. Our main contributions are as follows:

1. We introduce a general-purpose and computationally efficient approach for handling the LogSumExp function in large-scale optimization problems by proposing a novel relaxation of this function. The proposed relaxation preserves key properties of the original LogSumExp function, such as convexity and smoothness, and enables the use of stochastic gradient methods for machine learning tasks. Furthermore, our method only requires a simple and tunable scalar parameter, allowing the relaxation to be made arbitrarily close to the original LogSumExp objective as desired.
2. We provide the theoretical backbone of this approximation, demonstrating that it is due to a modified version of the KL-divergence in the dual formulation. We termed the resulting f -divergence the (*Overflow-)*Safe KL divergence. It can be applied to various applications where KL-divergence is used.
3. We empirically demonstrate the effectiveness of our approach on tasks, including computing continuous entropy-regularized OT and various DRO formulations. Our method outperforms existing state-of-the-art baselines in these applications and circumvents the overflow issue (Remark 3.1). It can also be combined with existing techniques. Therefore, it serves as a versatile tool for solving large-scale optimization problems.
4. Additionally, we provide insights into a few remarkable connections between the proposed approximation and existing notions such as the conditional value-at-risk.

Notation. Given $a, a_1, \dots, a_n \in \mathbb{R}$, we define $\text{LogSumExp}(a_1, \dots, a_n) := \log(\sum_{i=1}^n e^{a_i})$ and $\text{SoftPlus}(a) := \log(1 + e^a)$. Given a measurable space \mathcal{X} , by $\mathcal{P}(\mathcal{X})$ we denote the space of probability measures on \mathcal{X} , and by $\mathcal{C}(\mathcal{X})$ the space of continuous functions on \mathcal{X} . Let $\mu, \nu \in \mathcal{P}(\mathcal{X})$. Define Kullback–Leibler (KL) divergence as

$$D_{KL}(\mu, \nu) := \begin{cases} \int_{\mathcal{X}} \log \frac{d\mu}{d\nu}(x) d\mu(x) & \mu \ll \nu, \\ +\infty & \text{otherwise,} \end{cases}$$

where \log is the natural logarithm and $\mu \ll \nu$ denotes that μ is absolutely continuous w.r.t. ν .

108 **2 SOFTPLUS APPROXIMATION OF LOG-PARTITION FUNCTION**
109

110 In this section, we present our approximation to the log-partition function (1) and describe its theo-
111 retical properties. Recall that by the Gibbs variational principle

112
$$F(\varphi; \mu) = \sup_{\nu} \left\{ \int_{\mathcal{X}} \varphi(x) d\nu(x) - D_{KL}(\nu, \mu) : \nu \in \mathcal{P}(\mathcal{X}), \int_{\mathcal{X}} |\varphi(x)| d\nu(x) < \infty \right\} \quad (2)$$

115 with the maximum attained at the Gibbs measure $d\nu^*(x) = e^{\varphi(x) - F(\varphi; \mu)} d\mu(x)$, once $F(\varphi; \mu) < \infty$,
116 see (Gibbs, 1902, Chapter XI, Theorem VI) or (Polyanskiy & Wu, 2025, Proposition 4.7) for the
117 modern treatment.

118 We are going to construct an approximation of F with better regularity properties by changing D_{KL}
119 to another f -divergence. Specifically, for any $0 < \rho < 1$, let us define the following.

120 **Definition 2.1** (Safe KL entropy). *We define the safe KL entropy generator $f_\rho: [0, \infty) \rightarrow \mathbb{R}$ by*

122
$$f_\rho(t) := \begin{cases} t \log t + 1 + \frac{1-\rho}{\rho} \log(1-\rho t), & 0 \leq t \leq \frac{1}{\rho}, \\ +\infty, & \text{otherwise.} \end{cases} \quad (3)$$

125 The resulting f_ρ -divergence, which we refer to as the safe KL divergence, is given by

126
$$D_\rho(\nu, \mu) := \begin{cases} \int_{\mathcal{X}} f_\rho \left(\frac{d\nu}{d\mu}(x) \right) d\mu(x), & \nu \ll \mu, \\ +\infty, & \text{otherwise.} \end{cases} \quad (4)$$

142 Figure 1: $f_\rho(t)$ for different values of ρ .

143 It is easy to see that $f_\rho(t) \rightarrow f_0(t) := t \log t + 1 - t$ as $\rho \rightarrow 0$. Since f_0 induces the standard KL-divergence,
144 D_ρ is its approximation with accuracy regulated by the parameter ρ .

145 Using the variational representation, we define

146
$$F_\rho(\varphi; \mu) := \sup_{\nu} \left\{ \int_{\mathcal{X}} \varphi(x) d\nu(x) - D_\rho(\nu, \mu) : \right.$$

147
$$\left. \nu \in \mathcal{P}(\mathcal{X}), \int_{\mathcal{X}} |\varphi(x)| d\nu(x) < \infty \right\}. \quad (5)$$

148 (i.e., $F_\rho(\cdot; \mu)$ is the convex conjugate of $D_\rho(\cdot, \mu)$). Note
149 that the last term in f_ρ prevents the density $\frac{d\nu}{d\mu}$ from being
150 too large. In particular, it can not be greater than $\frac{1}{\rho}$. This
151 can make the safe KL divergence a reasonable choice for
152 unbalanced OT or DRO, as it imposes a hard constraint

153 on the reweighting unlike the standard D_{KL} . Moreover, it can also be used instead of the entropy
154 penalization in regularized OT (cf. capacity constrained transport in (Benamou et al., 2015, sec-
155 tion 5.2)).

156 Again, by the convex duality and the variational principle (see Birrell et al., 2022, Theorem 6), we
157 state the following properties.

158 **Lemma 2.2.** *The functional F_ρ defined by (5) has an equivalent variational representation*

159
$$F_\rho(\varphi; \mu) = \inf_{\alpha \in \mathbb{R}} \alpha + \int_{\mathcal{X}} f_\rho^*(\varphi(x) - \alpha) d\mu(x).$$

160 It is straightforward to check the following.

161 **Lemma 2.3.** *The conjugate function to f_ρ is a rescaled SoftPlus, specifically,*

162
$$f_\rho^*(s) := \sup_{t \in \mathbb{R}_+} st - f_\rho(t) = \frac{1}{\rho} \log(1 + \rho e^s) - 1.$$

163 Therefore, we obtain

164
$$F_\rho(\varphi; \mu) = \inf_{\alpha \in \mathbb{R}} \alpha - 1 + \frac{1}{\rho} \int_{\mathcal{X}} \log(1 + \rho e^{\varphi(x) - \alpha}) d\mu(x). \quad (6)$$

162 In essence, we have replaced the exponential function with a rescaled SoftPlus. Furthermore, it is
 163 easy to see that the optimal α^* satisfies
 164

$$\int_{\mathcal{X}} \frac{e^{\varphi(x)-\alpha^*}}{1+\rho e^{\varphi(x)-\alpha^*}} d\mu(x) = 1, \quad (7)$$

167 in particular, $\alpha^* < F(\varphi; \mu)$. Moreover, the maximum in (5) is attained at $d\nu_\rho^*(s) =$
 168 $\frac{e^{\varphi(x)-\alpha^*}}{1+\rho e^{\varphi(x)-\alpha^*}} d\mu(x)$. Note that $0 < \frac{d\nu_\rho^*(x)}{d\mu(x)} < \frac{1}{\rho}$, which is due to the fact that the derivative of
 169 $t \log t$ explodes at 0, preventing reaching the constraint.
 170

171 The next proposition (proved in Appendix A) ensures that F_ρ is a valid approximation of F .
 172

173 **Proposition 2.4.** *Let $\mu \in \mathcal{P}(\mathcal{X})$ and φ be a measurable function on \mathcal{X} .*

174 (i) *For all $0 < \rho \leq \rho' < 1$, it holds $F_{\rho'}(\varphi; \mu) \leq F_\rho(\varphi; \mu)$.*

175 (ii) *As $\rho \rightarrow 0+$, $F_\rho(\varphi; \mu) \rightarrow F_0(\varphi; \mu) := F(\varphi; \mu)$.*

176 (iii) *If $F(2\varphi; \mu) < \infty$, then for all $0 < \rho \leq \frac{1}{4}e^{2F(\varphi; \mu)-F(2\varphi; \mu)}$*

$$177 \quad F_\rho(\varphi; \mu) \geq F(\varphi; \mu) + \frac{\rho}{2} - 4\rho e^{F(2\varphi; \mu)-2F(\varphi; \mu)}. \quad (8)$$

178 (iv) *If $\varphi(x) \leq M$ for all $x \in \mathcal{X}$, then $F_\rho(\varphi; \mu) \geq F(\varphi; \mu) - \rho e^{M-F(\varphi; \mu)}$ for $\rho \in (0, e^{F(\varphi; \mu)-M})$.*
 179

180 In particular, (i) and (iii) show that $F_\rho - O(\rho) \leq F \leq F_\rho$, and thus the parameter ρ allows one
 181 to control the approximation accuracy. In the case of LogSumExp, the above proposition yields the
 182 following simple bounds.
 183

184 **Corollary 2.5.** *Let $a_1, \dots, a_n \in \mathbb{R}$. Then for any $0 < \rho < 1$*

$$185 \quad \text{LogSumExp}(a_1, \dots, a_n) - \rho \leq \inf_{\alpha \in \mathbb{R}} \alpha - 1 + \frac{1}{\rho} \sum_{i=1}^n \log(1 + \rho e^{a_i - \alpha}) \leq \text{LogSumExp}(a_1, \dots, a_n). \quad 186$$

187 For $\rho = 1$ our approximation coincides with Bouchard's bound for LogSumExp (Bouchard, 2007).
 188

189 2.1 LINKS TO CVAR

190 Recall that the conditional value at risk (CVaR) w.r.t. a probability measure $\mu \in \mathcal{P}(\mathcal{X})$ at level
 191 $\rho \in (0, 1)$, associated with a function φ , can be defined (in the case of continuous distribution) as

$$192 \quad \text{CVaR}_\rho(\varphi; \mu) := \mathbb{E}_{X \sim \mu} [\varphi(X) | \varphi(X) \geq Q_{1-\rho}] = \frac{1}{\rho} \int_{\varphi(x) \geq Q_{1-\rho}} \varphi(x) d\mu(x), \quad 193$$

194 where $Q_{1-\rho}$ is the $(1 - \rho)$ -quantile of $\varphi(X)$, $X \sim \mu$ (Rockafellar et al., 2000). Moreover, by
 195 Theorem 1 in Rockafellar et al. (2000) CVaR also has the following variational formulation:
 196

$$197 \quad \text{CVaR}_\rho(\varphi; \mu) = \inf_{\alpha \in \mathbb{R}} \alpha + \frac{1}{\rho} \int_{\mathcal{X}} (\varphi(x) - \alpha)_+ d\mu(x). \quad (9)$$

198 Remarkably, in Soma & Yoshida (2020) the authors obtained a smooth approximation to CVaR
 199 which, up to an additive constant, has the same form as F_ρ . However, they considered the approxi-
 200 mation w.r.t. a different parameter—a "temperature" inside SoftPlus. Finally, Levy et al. (2020)
 201 proposed another similar smoothed version of CVaR (KL-regularized CVaR) in the context of DRO.
 202 For our approximation, we obtain the following bounds.
 203

204 **Proposition 2.6.** *For all $0 < \rho < 1$ and $\lambda > 0$*

$$205 \quad \text{CVaR}_\rho(\varphi; \mu) + \lambda(\log \rho - 1) \leq \lambda F_\rho(\varphi/\lambda; \mu) \leq \text{CVaR}_\rho(\varphi; \mu) + \lambda \left(\log \rho - 1 + \frac{1}{\rho} \right). \quad (10)$$

213 2.2 THE CASE OF PARAMETRIC MODELS

214 In some applications, the function φ is defined as the parametric loss function $L(x, \theta)$ and the goal
 215 is to minimize objective involving (1) w.r.t. parameter θ to find the best model from the parametric

family. In this section, we study our approximation to (1) in this parametric setting. Fix some closed parameter set $\Theta \subset \mathbb{R}^d$ and a loss function $L: \mathcal{X} \times \Theta \rightarrow \mathbb{R}$. Combining our approximation (6) and the minimization w.r.t. parameter θ , we obtain the following minimization problem (note that we shifted α by $\log \rho$ compared to (6))

$$\min_{\theta \in \Theta, \alpha \in \mathbb{R}} G_\rho(\theta, \alpha) := \alpha + \log \rho - 1 + \frac{1}{\rho} \int_{\mathcal{X}} \log \left(1 + e^{L(x, \theta) - \alpha} \right) d\mu(x).$$

Clearly, G_ρ is convex in α . Moreover, if L is convex in θ for μ -a.e. x , then G_ρ is jointly convex, meaning that our approximation preserves convexity.

Note that $f_\rho(t) = \frac{1}{\rho} ((\rho t) \log(\rho t) + (1 - \rho t) \log(1 - \rho t)) + 1 - t \log \rho$. Thus, unlike the KL entropy function $t \log t + 1 - t$, f_ρ possesses the following favorable properties:

Lemma 2.7. *The entropy function f_ρ is ρ -strongly convex. Its conjugate function f_ρ^* is $\frac{1}{\rho}$ -smooth.*

The above properties are important from the computational optimization point of view. Recall that $\frac{d}{dt} \log(1 + e^t) = \frac{e^t}{1 + e^t} =: \sigma(t)$. Thus, we immediately obtain the following formulas for the gradient:

$$\nabla_\theta G_\rho(\theta, \alpha) = \frac{1}{\rho} \int_{\mathcal{X}} \sigma(L(x, \theta) - \alpha) \nabla_\theta L(x, \theta) d\mu(x),$$

$$\partial_\alpha G_\rho(\theta, \alpha) = 1 - \frac{1}{\rho} \int_{\mathcal{X}} \sigma(L(x, \theta) - \alpha) d\mu(x).$$

This yields, in particular, that the variance of the (naïve) stochastic gradient is bounded by $\frac{1}{\rho}$ and the second moment of $\nabla_\theta L(X, \theta)$, $X \sim \mu$. In the same way one can calculate the Hessian of G_ρ , see Appendix C. By Proposition C.2, if $L(x, \theta)$ is bounded from below, then G_ρ is smooth on $\Theta \times (-\infty, a]$ for any $a \in \mathbb{R}$ meaning that our approximation preserves smoothness of the loss L .

3 APPLICATIONS

In this section we consider several particular applications involving the objective (1) and show numerically, that our general-purpose approach based on approximation (6) leads to better performance of SGD-type algorithms than the baseline algorithms designed specifically for these applications. Source code for all experiments can be found in supplementary material.

3.1 CONTINUOUS ENTROPY-REGULARIZED OT

The classical optimal transport (Monge–Kantorovich) problem consists in finding a coupling of two probability measures $\mu, \nu \in \mathcal{P}(\mathcal{X})$ which minimizes the integral of a given measurable cost function $c: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_+$ (e.g., a distance), i.e., $W(\mu, \nu) := \inf_{\pi \in \Pi(\nu, \mu)} \int c(x, z) d\pi(x, z)$, where $\Pi(\mu, \nu) \subset \mathcal{P}(\mathcal{X} \times \mathcal{X})$ is the set of couplings (transport plans) of μ and ν (see Kantorovich, 1942; Villani, 2008; Santambrogio, 2015). For simplicity of demonstration, we assume that the measures are defined on the same space \mathcal{X} , but the results extend trivially to the case of two different spaces. Following Cuturi (2013), we consider entropy-regularized optimal transport (eOT) problem:

$$\min_{\pi \in \Pi(\nu, \mu)} \int_{\mathcal{X} \times \mathcal{X}} c(x, z) d\pi(x, z) + \varepsilon D_{KL}(\pi, \nu \otimes \mu) \quad (11)$$

where $\nu \otimes \mu$ is the product measure. It is known that eOT admits the following dual and semi-dual formulations (see, e.g., Genevay et al. (2016)):

$$W_\varepsilon(\mu, \nu) = \underbrace{\max_{u, v \in \mathcal{C}(\mathcal{X})} \iint_{\mathcal{X} \times \mathcal{X}} f_\varepsilon(x, y, u, v) d\mu(x) d\nu(y)}_{\text{dual}} = \underbrace{\max_{v \in \mathcal{C}(\mathcal{X})} \int_{\mathcal{X}} h_\varepsilon(x, v) d\mu(x)}_{\text{semi-dual}},$$

where

$$f_\varepsilon(x, y, u, v) := u(x) + v(y) - \varepsilon \exp \left(\frac{u(x) + v(y) - c(x, y)}{\varepsilon} \right), \quad (12)$$

$$h_\varepsilon(x, v) := \int_{\mathcal{X}} v(y) d\nu(y) - \varepsilon \log \left(\int_{\mathcal{X}} \exp \left(\frac{v(y) - c(x, y)}{\varepsilon} \right) d\nu(y) \right) - \varepsilon, \quad (13)$$

Figure 2: Test-set eOT semi-dual objective vs. iteration for different regularization strengths ε (left to right: $1, 10^{-2}, 10^{-4}$). Lines show the mean across 5 runs; shaded areas are \pm one standard deviation. We compare LSOT (red) with our method (colored by ρ). Dashed black curves are examples where LSOT with $lr=10^{-4}$ terminates early due to overflow, while $lr=10^{-5}$ results in a prohibitively slow convergence (nearly horizontal red lines for $\varepsilon = 10^{-2}, 10^{-4}$). Our proposed method remains stable and efficient for all ε .

and $\varepsilon > 0$ is the regularization coefficient. In the LSOT framework (Seguy et al., 2018), the potentials u and v are parameterized by neural networks and optimized via SGD. While Appendix B.1 contains a more detailed literature review, we briefly position LSOT among other solvers to motivate its selection as a baseline. LSOT offers two key advantages relevant to our goals: it is **less computationally intensive** than modern solvers requiring adversarial training (Korotin et al., 2023; Gushchin et al., 2023; Asadulaev et al., 2024) or iterative Langevin dynamics (Mokrov et al., 2024), and it supports a **general cost function**—contrary to other efficient solvers like (Korotin et al., 2024) tailored to the quadratic cost. Therefore, to solve eOT with a general cost function under modest computational constraints, we adopt the LSOT framework as our primary baseline. In Appendix B.2 we compare also to (Genevay et al., 2016) who use an RKHS parametrization for the potentials u and v .

Remark 3.1 (The overflow issue). *The main drawback of this approach is the presence of the exponent in the dual objective (and consequently in the SGD updates). Specifically, exponents are prone to floating-point exceptions (Goldberg, 1991), especially if the regularization parameter ε is relatively small, which is often the case. For example, if $\varepsilon = 0.01$ and $z \geq 7.1$, then $e^{z/\varepsilon}$ exceeds the representable range of a double-precision (float64) floating-point number — an overflow happens. When single precision (float32) is used, an overflow happens even for $z \geq 0.89$.*

Our approach. If we consider instead the semi-dual formulation and use the approximation (6), we arrive at the problem

$$\max_{v, \alpha \in \mathcal{C}(\mathcal{X})} \iint_{\mathcal{X} \times \mathcal{X}} \tilde{h}_\varepsilon(x, y, v, \alpha) d\mu(x) d\nu(y) \quad (14)$$

$$\text{with } \tilde{h}_\varepsilon(x, y, v, \alpha) := v(y) - \alpha(x) - \frac{\varepsilon}{\rho} \log(1 + \rho e^{(v(y) - c(x, y) - \alpha(x))/\varepsilon}) - \varepsilon, \quad (15)$$

which also admits neural network parameterization and optimization via SGD. One can show, in the same way as in Genevay et al. (2016), that this corresponds to the regularized OT problem (11) with *Safe KL divergence* D_ρ rather than the usual KL, i.e.

$$\min_{\pi \in \Pi(\nu, \mu)} \iint_{\mathcal{X} \times \mathcal{X}} c(x, z) d\pi(x, z) + \varepsilon D_\rho(\pi, \nu \otimes \mu).$$

Note that this problem, in turn, can be viewed as a combination of the entropy-regularized and the capacity-constrained optimal transport. For $\rho > 0$, this approach is much more stable than the previous one when used in SGD. We illustrate this in the following experiments.

Experiments. We consider the MNIST (Deng, 2012) and EMNIST-letters (Cohen et al., 2017) datasets as samples from the distributions μ (digits) and ν (letters). Manhattan distance ℓ_1 is chosen as the cost function for computing eOT between μ and ν . We parameterize the functions u, v in

324 LSOT and v , α in our proposed approach using a multilayer perceptron with two hidden layers
 325 (dimensions 256 and 128) and ReLU activations. The batch size is 256, and the learning rate is
 326 selected via grid search over $\{10^{-6}, 10^{-5}, \dots, 10^{-1}\}$. The objective is evaluated on the empirical
 327 distributions of the dedicated test sets.

328 Figure 2 shows the performance of LSOT with the best learning rate for each regularization parameter
 329 $\varepsilon \in \{1, 10^{-2}, \dots, 10^{-4}\}$. It also depicts our proposed approach with the best learning rate
 330 for each $\rho \in \{10^{-1}, 10^{-3}, 10^{-5}\}$. The baseline performs adequately under strong regularization
 331 ($\varepsilon = 1$). However, for weaker regularization, a learning rate of 10^{-5} is required to avoid numerical
 332 instability, which leads to prohibitively slow progress (red curves). Increasing the rate to 10^{-4}
 333 (dashed black curves) results in numerical overflow after only $\approx 5k$ iterations, forcing us to abort the
 334 LSOT runs at that point.

335 Performance of our proposed approach align with the theoretical analysis in Section 2. A large
 336 ρ yields stable convergence but introduces an approximation gap, while a very small ρ degrades
 337 smoothness, necessitating a smaller step size and slower training. The intermediate value $\rho = 10^{-3}$
 338 achieves the best trade-off, providing both accuracy and sufficient smoothness. In summary, our
 339 proposed approach to eOT is computationally efficient, accommodates general costs, and handles
 340 weak regularization robustly, thereby overcoming a key limitation of LSOT.

342 3.2 DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH KL DIVERGENCE

344 One of the approaches to training a model that is robust to data distribution shifts and noisy ob-
 345 servations is called Distributionally Robust Optimization (DRO) (Kuhn et al., 2024). In contrast to
 346 the standard Empirical Risk Minimization (ERM) approach, which minimizes the average loss on
 347 the training sample, DRO minimizes the risk for the worst-case distribution among those close to a
 348 reference measure (e.g., empirical distribution). A prominent example is KL divergence DRO (Hu
 349 & Hong), which is formulated as the saddle-point problem

$$350 \min_{\theta \in \Theta} \max_{p \in \Delta^n} \sum_{i=1}^n p_i \ell_i(\theta) - \lambda D_{KL}(p, \hat{p}), \quad (16)$$

353 where $\theta \in \Theta$ is the model parameters, $\ell_i(\theta)$ is the respective loss on the i -th training example, Δ^n
 354 is the unit simplex in \mathbb{R}^n , $\hat{p} \in \Delta^n$ is the weight vector defining the empirical distribution (typically
 355 $\hat{p} = \frac{1}{n} \mathbf{1}$), and D_{KL} is the Kullback–Leibler divergence which discourages distributions that are
 356 too far from the empirical one, $\lambda > 0$ is the penalty coefficient. For fixed θ , the solution of the
 357 maximization problem is given by $p_i^*(\theta) := \frac{e^{\ell_i(\theta)/\lambda}}{\sum_j e^{\ell_j(\theta)/\lambda}}$, which reduces the problem to

$$359 \min_{\theta \in \Theta} \mathcal{L}(\theta) := \lambda \log \left(\frac{1}{n} \sum_{i=1}^n e^{\ell_i(\theta)/\lambda} \right). \quad (17)$$

361 However, when n is large, computing the full gradient $\nabla \mathcal{L}(\theta) = \sum_{i=1}^n p_i^*(\theta) \nabla \ell_i(\theta)$ becomes costly.
 362 A straightforward approach (Levy et al., 2020) is to sample a batch D , compute the respective
 363 softmax weights $p_i^D(\theta) := \frac{e^{\ell_i(\theta)/\lambda}}{\sum_{j \in D} e^{\ell_j(\theta)/\lambda}}$, and define a gradient estimator by

$$366 \tilde{\nabla}_D \mathcal{L}(\theta) = \sum_{i \in D} p_i^D(\theta) \nabla \ell_i(\theta). \quad (18)$$

368 However, this introduces a bias and requires using large batch sizes to keep it sufficiently small.

370 **Our approach.** Instead, we propose to use the approximation (6), which results in the problem

$$372 \min_{\theta \in \Theta} G(\theta, \alpha) := \frac{1}{n} \sum_{i=1}^n \left\{ \alpha + \frac{\lambda}{\rho} \log(1 + \rho e^{(\ell_i(\theta) - \alpha)/\lambda}) \right\}. \quad (19)$$

374 Like in the previous subsection, this can be interpreted as switching from D_{KL} penalty in (16) to
 375 $Safe\ KL\ D_\rho$. The respective gradient estimators are

$$377 \tilde{\nabla}_\theta^D G(\theta, \alpha) := \frac{1}{|D|} \sum_{i \in D} \sigma_\rho \left(\frac{\ell_i(\theta) - \alpha}{\lambda} \right) \nabla \ell_i(\theta), \quad \tilde{\nabla}_\alpha^D G(\theta, \alpha) := 1 - \frac{1}{|D|} \sum_{i \in D} \sigma_\rho \left(\frac{\ell_i(\theta) - \alpha}{\lambda} \right). \quad (20)$$

378 Table 1: Objective value (17) (mean \pm std across 10 runs) at epoch 50 for baseline (18) (Levy
379 et al., 2020) and proposed gradient estimator (20) with different ρ values. Results are shown
380 for various penalty coefficients λ and batch sizes $|D|$, with optimal learning rates selected from
381 $\{10^{-9}, \dots, 10^{-4}\}$. Best results per column are shown in bold.

Approach	$\lambda = 1/5$			$\lambda = 1$			$\lambda = 5$		
	$ D = 10$	$ D = 10^2$	$ D = 10^3$	$ D = 10$	$ D = 10^2$	$ D = 10^3$	$ D = 10$	$ D = 10^2$	$ D = 10^3$
Baseline (18)	26.9 ± 0.7	15.6 ± 6.0	9.1 ± 4.6	20.0 ± 0.9	5.2 ± 2.9	2.3 ± 0.2	0.87 ± 0.01	0.88 ± 0.00	0.79 ± 0.00
$(20), \rho = 10^{-1}$	27.7 ± 0.6	27.7 ± 0.7	40.1 ± 0.5	21.1 ± 1.1	21.3 ± 1.1	21.8 ± 2.1	0.87 ± 0.01	0.87 ± 0.01	0.88 ± 0.02
$(20), \rho = 10^{-3}$	21.2 ± 9.8	18.6 ± 7.7	25.3 ± 0.1	2.1 ± 0.0	2.1 ± 0.0	2.5 ± 1.2	0.76 ± 0.02	0.78 ± 0.00	0.78 ± 0.00
$(20), \rho = 10^{-5}$	19.2 ± 9.6	17.5 ± 6.6	24.3 ± 0.3	3.0 ± 0.0	3.0 ± 0.0	3.0 ± 0.0	1.03 ± 0.00	1.03 ± 0.00	1.03 ± 0.00

382
383
384
385
386
387
388
389 **Experiments.** Consider the California housing dataset (Pace & Barry, 1997) consisting of 20,640
390 objects represented by 8 features. Let ℓ_i be the squared error of a linear model, $\ell_i(\theta) = (y_i - \theta^\top x_i)^2$.
391 We use accelerated SGD with the gradient estimator (18) (Levy et al., 2020) as the baseline approach
392 for solving (17), and compare it to our proposed gradient estimator (20). We consider various
393 values of the penalty coefficient $\lambda \in \{1/5, 1, 5\}$ and batch sizes $|D| \in \{10, 10^2, 10^3\}$. For each
394 configuration, we select the optimal learning rate from $\{10^{-9}, 10^{-8}, \dots, 10^{-4}\}$. The approximation
395 accuracy parameter ρ in our method is varied across $\{10^{-1}, 10^{-3}, 10^{-5}\}$. Momentum is fixed at 0.9
396 (without tuning), and the least squares solution is used as the initial point for optimization.

397 Numerical results are presented in Table 1, showing the objective value (mean \pm standard deviation
398 across 10 runs) after 50 epochs, where the methods typically reach a plateau. In each column, the
399 best-performing configurations are highlighted in bold. For $\lambda = 1/5, |D| \in \{10, 10^2\}$, no results
400 are displayed in bold as all configurations perform similarly. As seen from the table, the baseline
401 and our estimator achieve comparable performance for large batch sizes ($|D| = 10^3$). However, for
402 smaller batches, our method typically outperforms the baseline. Both approaches handle various λ
403 values well, with the exception of the baseline method combined with small batch sizes.

404 Regarding the approximation parameter ρ , large values ($\rho = 10^{-1}$) generally result in a noticeable
405 approximation gap, while excessively small values ($\rho = 10^{-5}$) deteriorate the smoothness of the
406 objective and consequently slow convergence. The intermediate value $\rho = 10^{-3}$ thus provides the best
407 trade-off in this experiment, offering both good approximation accuracy and favorable optimization
408 properties.

409 3.3 DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH UNBALANCED OT

410 In the KL divergence DRO described in the previous subsection, uncertainty set is limited to distributions
411 with the same support as the empirical measure $\mu = \frac{1}{n} \sum_i \delta_{x_i}$. Another popular approach,
412 Wasserstein DRO (WDRO) (Mohajerin Esfahani & Kuhn, 2018; Sinha et al., 2020), considers the
413 worst-case risk over shifts within a Wasserstein (OT) ball around a reference measure μ instead of
414 the KL-ball in (16), thus including continuous probability measures. Unfortunately, this approach is
415 not resilient to outliers that are geometrically far from the clean distribution since OT metric is sen-
416 sitive to them (Nietert et al., 2023). A natural generalization is to switch to semi-balanced OT (Liero
417 et al., 2018; Chizat et al., 2019; Kondratyev et al., 2016), which replaces a hard constraint on one of
418 the marginals with a mismatch penalty function, e.g.,

$$420 \quad 421 \quad 422 \quad W_\beta(\nu, \mu) = \inf_{\substack{\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{X}) \\ \pi_1 = \nu}} \int_{\mathcal{X} \times \mathcal{X}} c(x, z) d\pi(x, z) + \beta D_{KL}(\pi_2, \mu),$$

423 where π_1 and π_2 are first and second marginals of π , respectively, $\beta > 0$ is the marginal penalty
424 parameter. Intuitively, this discrepancy measure allows to ignore some points (e.g., outliers) by
425 paying a small price for mismatch in marginals. The (penalty-form) DRO problem can be written as

$$426 \quad 427 \quad \min_{\theta \in \Theta} \max_{\nu \in \mathcal{P}(\mathcal{X})} \int_{\mathcal{X}} \ell(\theta, x) d\nu(x) - \lambda W_\beta(\nu, \mu),$$

428 where $\lambda > 0$ is the Lagrangian penalty parameter. Using standard duality, Wang et al. (2024) showed
429 that when $\mu = \frac{1}{n} \sum_i \delta_{x_i}$ is the empirical distribution, this is equivalent to

$$430 \quad 431 \quad \min_{\theta \in \Theta} F(\theta) := \lambda \beta \log \left(\frac{1}{n} \sum_{i=1}^n e^{\hat{\ell}_i(\theta) / (\lambda \beta)} \right) \quad \text{with } \hat{\ell}_i(\theta) := \sup_{z \in \mathcal{X}} \{\ell(\theta; z) - \lambda c(z, x_i)\}, \quad (21)$$

Figure 3: Performance of ERM and two DRO approaches on MNIST with noisy labels. Left: ERM accuracy on the noisy validation set vs. clean test set. Middle: validation vs. test accuracy for DRO approaches. Right: training loss $F(\theta)$ from (21).

To avoid the costly gradient computation of LogSumExp, the authors drop the logarithm and use SGD to optimize the sum of exponents,

$$\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n e^{\hat{\ell}_i(\theta) / (\lambda\beta)}. \quad (22)$$

The major downside of this approach is that the exponent terms have a large variance, and SGD is prone to floating-point exceptions (overflow) unless a very small stepsize is tuned, which slows down the convergence and can be time-consuming and unstable in practice.

Our approach. To overcome this issue, we propose leveraging the approximation (6), which leads to the problem

$$\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \left\{ \alpha + \frac{\lambda\beta}{\rho} \log(1 + \rho e^{(\hat{\ell}_i(\theta) - \alpha) / (\lambda\beta)}) \right\}, \quad (23)$$

where $\rho > 0$ is a parameter controlling the accuracy of the approximation. This approximation can be efficiently optimized with SGD. Note that our method can also be applied to other DRO algorithms such as Sinkhorn DRO (Wang et al., 2021), which we omit to avoid redundancy.

Experiments. We consider MNIST dataset (Deng, 2012) with train and validation labels corrupted by feature-dependent noise (see Algan & Ulusoy, 2020) (noise ratio 25%), and original (clean) test labels. Let θ denote weights of a CNN with two convolutional layers (32 and 64 channels, kernel size 3, ReLU activations, and 2×2 max pooling), followed by a fully connected classifier with one hidden layer of 128 units, and let $\ell(\theta; z)$ be its cross entropy loss on object z . In the experiment, SGD (with batch size 1) is applied to problems (22) (baseline) and (23) (proposed approach). We consider values of the stepsize $\eta \in \{10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}\}$. Parameters λ and β were set to 1 since smaller values required a smaller stepsize and resulted in a slow convergence, while larger values pushed the model towards fitting the noisy distribution instead of the true one. Approximation accuracy parameter ρ in (23) was set to 0.1. For the inner maximization problem in (21), just 5 iterations of Nesterov’s accelerated gradient method were sufficient to reach plateau in terms of the objective value. Additionally, we used SGD for the usual empirical risk minimization (ERM) to observe the effects of conventional (non-robust) training on noisy data.

Figure 3 demonstrates the performance of different approaches with best hyperparameter η (10^{-3} for ERM, 10^{-4} for the proposed approach, and 10^{-5} for the baseline). Shaded regions indicate \pm one standard deviation across 10 runs, except that for the baseline approach (22) we excluded a single run that caused a floating-point exception. The plot on the left illustrates that ERM fits to the corrupted data well (accuracy on the noisy validation set is increasing) which results in decreasing accuracy on the clean test set. In contrast, the plot in the middle shows that an increase in validation accuracy results in the increase in test accuracy for both DRO approaches, which indicates that they are more capable at learning the underlying clean distribution. The plot on the right shows the train loss $F(\theta)$ from (21). As seen from the figure, the proposed approach converges faster than the baseline. This is caused by the fact that the baseline requires a small stepsize to avoid overflows.

486 4 CONCLUSION
487

488 We introduce a novel approximation to the log partition function (and in particular, to LogSum-
489 Exp), which arises in numerous applications across machine learning and optimization. In the dual
490 formulation, it corresponds to the safe KL divergence. Our LogSumExp approximation preserves
491 convexity and smoothness, and can be efficiently minimized using stochastic gradient methods. Im-
492 portantly, the respective gradient estimator has controllable bias independent of batch size, in con-
493 trast to prior approaches. Our empirical results highlight the practical advantages of the proposed
494 approximation across tasks in continuous entropy-regularized OT and DRO. An important direc-
495 tion for future work is to leverage the approximation for other applications, where the LogSumExp
496 function and duality of the KL divergence play a role.

497 REFERENCES
498

500 Görkem Algan and Ilkay Ulusoy. Label noise types and their effects on deep learning. *arXiv preprint*
501 *arXiv:2003.10471*, 2020.

502 Shun-ichi Amari and Hiroshi Nagaoka. *Methods of Information Geometry*. American Mathematical
503 Soc., 2000. ISBN 978-0-8218-4302-4.

504 Arip Asadulaev, Alexander Korotin, Vage Egiazarian, Petr Mokrov, and Evgeny Burnaev. Neural op-
505 timal transport with general cost functionals. In *The Twelfth International Conference on Learning*
506 *Representations*, 2024. URL <https://openreview.net/forum?id=gIiz7tBtYZ>.

507 Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. Ro-
508 bust solutions of optimization problems affected by uncertain probabilities. *Management Science*,
509 59(2):341–357, February 2013. ISSN 0025-1909, 1526-5501. doi: 10.1287/mnsc.1120.1641.
510 URL <http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1120.1641>.

511 Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. Iterative
512 bregman projections for regularized transportation problems. *SIAM Journal on Scientific Com-
513 puting*, 37(2):A1111–A1138, 2015.

514 Jeremiah Birrell, Paul Dupuis, Markos A. Katsoulakis, Yannis Pantazis, and Luc Rey-Bellet.
515 (f,gamma)-divergences: Interpolating between f-divergences and integral probability metrics.
516 *Journal of Machine Learning Research*, 23(39):1–70, 2022. URL <http://jmlr.org/papers/v23/21-0100.html>.

517 Christopher M Bishop and Nasser M Nasrabadi. *Pattern recognition and machine learning*, vol-
518 ume 4. Springer, 2006.

519 Pierre Blanchard, Desmond J. Higham, and Nicholas J. Higham. Accurately computing the log-sum-
520 exp and softmax functions. *IMA Journal of Numerical Analysis*, 41(4):2311–2330, 2021. doi: 10.
521 1093/imanum/draa038. URL <https://academic.oup.com/imanum/article/41/4/2311/5893596>.

522 Guillaume Bouchard. Efficient bounds for the softmax function and applications to approximate
523 inference in hybrid models. In *NIPS 2007 workshop for approximate Bayesian inference in con-*
524 *tinuous/hybrid systems*, volume 6, 2007.

525 Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Unbalanced opti-
526 mal transport: Dynamic and Kantorovich formulation. *arXiv:1508.05216 [math]*, February 2019.
527 URL <http://arxiv.org/abs/1508.05216>. arXiv: 1508.05216.

528 Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
529 to handwritten letters. In *2017 international joint conference on neural networks (IJCNN)*, pp.
530 2921–2926. IEEE, 2017.

531 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural*
532 *information processing systems*, 26, 2013.

533 Mara Daniels, Tyler Maunu, and Paul Hand. Score-based generative neural networks for large-scale
534 optimal transport. *Advances in neural information processing systems*, 34:12955–12965, 2021.

540 Li Deng. The mnist database of handwritten digit images for machine learning research. *IEEE*
 541 *Signal Processing Magazine*, 29(6):141–142, 2012.
 542

543 Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for large-
 544 scale optimal transport. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett
 545 (eds.), *Advances in Neural Information Processing Systems 29*, pp. 3440–3448. Curran Asso-
 546 ciates, Inc., 2016.

547 Josiah Willard Gibbs. *Elementary principles in statistical mechanics: developed with especial ref-
 548 erence to the rational foundations of thermodynamics*. C. Scribner’s sons, 1902.
 549

550 David Goldberg. What every computer scientist should know about floating-point arithmetic. *ACM*
 551 *computing surveys (CSUR)*, 23(1):5–48, 1991.

552 Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P Vetrov, and Evgeny Burnaev.
 553 Entropic neural optimal transport via diffusion processes. *Advances in Neural Information Pro-
 554 cessing Systems*, 36:75517–75544, 2023.
 555

556 Nicholas J. Higham. What is the log-sum-exp function? Blog post, “*What
 557 Is*” series, January 2021. URL [https://nhigham.com/2021/01/05/
 558 what-is-the-log-sum-exp-function/](https://nhigham.com/2021/01/05/what-is-the-log-sum-exp-function/). Available at nhigham.com.

559 Zhaolin Hu and L Jeff Hong. Kullback-Leibler Divergence Constrained Distributionally Robust
 560 Optimization.
 561

562 Kelvin Kan, James G. Nagy, and Lars Ruthotto. Lsemink: A modified newton–krylov method for
 563 log-sum-exp minimization. *arXiv preprint arXiv:2307.04871*, 2023. URL <https://arxiv.org/abs/2307.04871>.
 564

565 Leonid Kantorovich. On the translocation of masses. *(Doklady) Acad. Sci. URSS (N.S.)*, 37:199–
 566 201, 1942.
 567

568 Mohammad Emtiyaz Khan and Didrik Nielsen. Fast yet simple natural-gradient descent for vari-
 569 ational inference in complex models. In *2018 International Symposium on Information Theory
 570 and Its Applications (ISITA)*, pp. 31–35. IEEE, 2018.

571 Mohammad Emtiyaz Khan and Håvard Rue. The Bayesian learning rule. (arXiv:2107.04562), June
 572 2023.
 573

574 Stanislav Kondratyev, Léonard Monsaingeon, and Dmitry Vorotnikov. A new optimal transport
 575 distance on the space of finite Radon measures. *Advances in Differential Equations*, 21(11/12):
 576 1117 – 1164, 2016. doi: 10.57262/ade/1476369298. URL [https://doi.org/10.57262/
 577 ade/1476369298](https://doi.org/10.57262/ade/1476369298).

578 Alexander Korotin, Daniil Selikhanovich, and Evgeny Burnaev. Neural optimal transport. In
 579 *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=d8CBR1WNkqH>.
 580

581 Alexander Korotin, Nikita Gushchin, and Evgeny Burnaev. Light schrödinger bridge. In *The Twelfth
 582 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=WhZoCLRWYJ>.
 583

585 Daniel Kuhn, Soroosh Shafiee, and Wolfram Wiesemann. Distributionally Robust Optimization.
 586 (arXiv:2411.02549), November 2024. doi: 10.48550/arXiv.2411.02549.
 587

588 Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sidford. Large-scale methods for distribu-
 589 tionally robust optimization. *Advances in neural information processing systems*, 33:8847–8860,
 590 2020.

591 Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal entropy-transport problems and
 592 a new Hellinger–Kantorovich distance between positive measures. *Inventiones mathematicae*,
 593 211(3):969–1117, March 2018. ISSN 0020-9910, 1432-1297. doi: 10.1007/s00222-017-0759-8.
 URL <http://link.springer.com/10.1007/s00222-017-0759-8>.

594 Yucen Luo, Alex Beatson, Mohammad Norouzi, Jun Zhu, David Duvenaud, Ryan P. Adams, and
 595 Ricky T. Q. Chen. Sumo: Unbiased estimation of log marginal probability for latent variable
 596 models. *arXiv preprint arXiv:2004.00353*, 2020. URL <https://arxiv.org/abs/2004.00353>. Version v2, Apr 2020.

598 Anne-Marie Lyne, Mark Girolami, Yves Atchadé, Heiko Strathmann, and Daniel Simpson. On
 599 russian roulette estimates for bayesian inference with doubly-intractable likelihoods. *Statistical
 600 Science*, 30(4):443–467, 2015. doi: 10.1214/15-STS523. URL <https://projecteuclid.org/journals/statistical-science/volume-30/issue-4/On-Russian-Roulette-Estimates-for-Bayesian-Inference-with-Doubly-Intractable/10.1214/15-STS523.full>.

604 Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization
 605 using the Wasserstein metric: Performance guarantees and tractable reformulations. *Mathematical
 606 Programming*, 171(1-2):115–166, September 2018. ISSN 0025-5610, 1436-4646. doi:
 607 10.1007/s10107-017-1172-1.

609 Petr Mokrov, Alexander Korotin, Alexander Kolesov, Nikita Gushchin, and Evgeny Burnaev.
 610 Energy-guided entropic neural optimal transport. In *The Twelfth International Conference
 611 on Learning Representations*, 2024. URL <https://openreview.net/forum?id=d6tUsZeVs7>.

613 Yurii Nesterov. *Lectures on convex optimization*, volume 137. Springer International Publishing,
 614 2018.

615 Frank Nielsen and Ke Sun. Guaranteed bounds on information-theoretic measures of univariate
 616 mixtures using piecewise log-sum-exp inequalities. *Entropy*, 18(12):442, 2016.

618 Sloan Nietert, Ziv Goldfeld, and Soroosh Shafiee. Outlier-robust wasserstein dro. *Advances in
 619 Neural Information Processing Systems*, 36:62792–62820, 2023.

621 R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. *Statistics & Probability Letters*, 33
 622 (3):291–297, 1997.

623 EY Pee and Johannes O Royset. On solving large-scale finite minimax problems using exponential
 624 smoothing. *Journal of optimization theory and applications*, 148(2):390–421, 2011.

625 Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data sci-
 626 ence. *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019. ISSN 1935-
 627 8237. doi: 10.1561/2200000073. URL <http://dx.doi.org/10.1561/2200000073>.
 628 arXiv:1803.00567.

630 Yury Polyanskiy and Yihong Wu. *Information theory: From coding to learning*. Cambridge univer-
 631 sity press, 2025.

632 R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. *Journal
 633 of risk*, 2:21–42, 2000.

635 Filippo Santambrogio. *Optimal Transport for Applied Mathematicians: Calculus of
 636 Variations, PDEs, and Modeling*. Springer International Publishing, 2015. ISBN
 637 9783319208282. doi: 10.1007/978-3-319-20828-2. URL <http://dx.doi.org/10.1007/978-3-319-20828-2>.

639 Vivien Seguy, Bharath Bhushan Damodaran, Remi Flamary, Nicolas Courty, Antoine Rolet, and
 640 Mathieu Blondel. Large-scale optimal transport and mapping estimation. In *ICLR 2018-
 641 International Conference on Learning Representations*, pp. 1–15, 2018.

642 Aras Selvi, Aharon Ben-Tal, Ruud Brekelmans, and Dick den Hertog. Convex maximization via ad-
 643 justable robust optimization. Technical Report 7881, Optimization-Online, 2020. URL <https://optimization-online.org/wp-content/uploads/2020/07/7881.pdf>. Re-
 644 vised September 2, 2021.

647 Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some distributional
 648 robustness with principled adversarial training. *arXiv:1710.10571 [cs, stat]*, May 2020.

648 Tasuku Soma and Yuichi Yoshida. Statistical learning with conditional value at risk. *arXiv preprint*
649 *arXiv:2002.05826*, 2020.

650

651 Ryan Spring and Anshumali Shrivastava. A new unbiased and efficient class of lsh-based sam-
652 plers and estimators for partition function computation in log-linear models. *arXiv preprint*
653 *arXiv:1703.05160*, 2017. URL <https://arxiv.org/abs/1703.05160>. Mar 2017.

654 Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Alexey Naumov, Pierre
655 Perrault, Michal Valko, and Pierre Menard. Demonstration-regularized RL. In *The Twelfth In-
656 ternational Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=1F2aip4Scn>.

657

658 Michalis K. Titsias. One-vs-each approximation to softmax for scalable estimation of probabilities.
659 *Advances in Neural Information Processing Systems*, 29, 2016.

660

661 George Tucker, Andriy Mnih, Chris J. Maddison, Dieterich Lawson, and Jascha Sohl-Dickstein. Re-
662 bar: Low-variance, unbiased gradient estimates for discrete latent variable models. *arXiv preprint*
663 *arXiv:1703.07370*, 2017. URL <https://arxiv.org/abs/1703.07370>. v4, Mar 2017.

664 Cédric Villani. *Optimal transport: old and new*, volume 338. Springer Science & Business Media,
665 2008.

666

667 Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational
668 inference. *Foundations and Trends® in Machine Learning*, 1(1–2):1–305, 2008.

669

670 Jie Wang, Rui Gao, and Yao Xie. Sinkhorn distributionally robust optimization. *arXiv preprint*
671 *arXiv:2109.11926*, 2021.

672

673 Zifan Wang, Yi Shen, Michael Zavlanos, and Karl H Johansson. Outlier-robust distributionally
674 robust optimization via unbalanced optimal transport. *Advances in Neural Information Processing
675 Systems*, 37:52189–52214, 2024.

676

677 Xingyu Zhou. On the fenchel duality between strong convexity and lipschitz continuous gradient.
678 *arXiv preprint arXiv:1803.06573*, 2018. URL <https://arxiv.org/abs/1803.06573>.
679 Version v1, 17 Mar 2018.

680 A PROOFS FOR SECTION 2

681

682 *Proof of Proposition 2.4.* (i,ii) Consider the function $g(t) := \frac{\ln(1+t)}{t}$. It is decreasing and convex
683 on $(0, \infty)$, $g(t) \rightarrow 1$ and $g'(t) \rightarrow -\frac{1}{2}$ as $t \rightarrow 0+$. Note that

$$684 F_\rho(\varphi; \mu) = \inf_{\alpha \in \mathbb{R}} \alpha - 1 + \int_{\mathcal{X}} e^{\varphi(x) - \alpha} g\left(\rho e^{\varphi(x) - \alpha}\right) d\mu(x).$$

685

686 Then (i) follows immediately from (6) and the monotonicity of g . The monotone convergence
687 theorem yields (ii) since

$$688 F(\varphi; \mu) = \inf_{\alpha \in \mathbb{R}} \alpha - 1 + \int_{\mathcal{X}} e^{\varphi(x) - \alpha} d\mu(x).$$

689

690 Now, let us prove (iii). Consider the optimal α_ρ , satisfying (7). By Jensen’s inequality

$$691 \int_{\mathcal{X}} \ln\left(1 + \rho e^{\varphi(x) - \alpha_\rho}\right) d\mu(x) = - \int_{\mathcal{X}} \ln\left(1 - \frac{\rho e^{\varphi(x) - \alpha_\rho}}{1 + \rho e^{\varphi(x) - \alpha_\rho}}\right) d\mu(x) \\ 692 \geq - \ln\left(1 - \int_{\mathcal{X}} \frac{\rho e^{\varphi(x) - \alpha_\rho}}{1 + \rho e^{\varphi(x) - \alpha_\rho}} d\mu(x)\right) = - \ln(1 - \rho),$$

693

694 thus

$$695 F_\rho(\varphi; \mu) = \alpha_\rho - 1 + \frac{1}{\rho} \int_{\mathcal{X}} \ln\left(1 + \rho e^{\varphi(x) - \alpha_\rho}\right) d\mu(x) \geq \alpha_\rho - 1 - \frac{\ln(1 - \rho)}{\rho} \geq \alpha_\rho + \frac{\rho}{2}. \quad (24)$$

702 It remains to get a lower bound on α_ρ . By the monotonicity of $\frac{t}{1+t}$ we deduce that $\alpha_\rho \geq \alpha$ for any
 703 α such that

$$704 \int_{\mathcal{X}} \frac{\rho e^{\varphi(x)-\alpha}}{1 + \rho e^{\varphi(x)-\alpha}} d\mu(x) \geq \rho.$$

705 Since $\frac{t}{1+t} \geq t - t^2$,

$$706 \int_{\mathcal{X}} \frac{\rho e^{\varphi(x)-\alpha}}{1 + \rho e^{\varphi(x)-\alpha}} d\mu(x) \geq \int_{\mathcal{X}} \left(\rho e^{\varphi(x)-\alpha} - \rho^2 e^{2\varphi(x)-2\alpha} \right) d\mu(x) = \rho e^{F(\varphi;\mu)-\alpha} - \rho^2 e^{F(2\varphi;\mu)-2\alpha}.$$

707 Denoting $u := e^{F(\varphi;\mu)-\alpha}$, it is enough to find u such that

$$708 u - au^2 \geq 1, \text{ where } a := \rho e^{F(2\varphi;\mu)-2F(\varphi;\mu)} \leq \frac{1}{4}.$$

709 Thus, taking

$$710 u := \frac{1}{2a} (1 - \sqrt{1 - 4a}) \leq 1 + 4a,$$

711 we obtain

$$712 \alpha_\rho \geq F(\varphi;\mu) - \ln u \geq F(\varphi;\mu) - \ln(1 + 4a) \geq F(\varphi;\mu) - 4a.$$

713 Combining this with (24), we get (8).

714 (iv) Finally, let $\varphi(x) \leq M$ for all $x \in \mathcal{X}$. Then by concavity

$$715 \int_{\mathcal{X}} \ln \left(1 + \rho e^{\varphi(x)-\alpha} \right) d\mu(x) \geq \int_{\mathcal{X}} e^{\varphi(x)-M} \ln \left(1 + \rho e^{M-\alpha} \right) d\mu(x) = e^{F(\varphi;\mu)-M} \ln \left(1 + \rho e^{M-\alpha} \right)$$

716 for all $\alpha \in \mathbb{R}$. Therefore,

$$717 F_\rho(\varphi;\mu) \geq \min_{\alpha} \alpha - 1 + \frac{e^{F(\varphi;\mu)-M}}{\rho} \ln \left(1 + \rho e^{M-\alpha} \right) \\ 718 = F(\varphi;\mu) - 1 - \frac{1 - \rho e^{M-F(\varphi;\mu)}}{\rho e^{M-F(\varphi;\mu)}} \ln \left(1 - \rho e^{M-F(\varphi;\mu)} \right) \\ 719 \geq F(\varphi;\mu) - \rho e^{M-F(\varphi;\mu)}.$$

720 Here we used the inequality

$$721 \frac{1-t}{t} \ln(1-t) \leq t-1, \quad 0 < t < 1.$$

722 \square

723 *Proof of Corollary 2.5.* Set $\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{a_i} \in \mathcal{P}(\mathbb{R})$. Then

$$724 \text{LogSumExp}(a_1, \dots, a_n) = \ln n + \ln \left(\int_{\mathcal{X}} x d\mu_n(x) \right) = \ln n + F(id; \mu_n)$$

725 and

$$726 \inf_{\alpha \in \mathbb{R}} \alpha - 1 + \frac{1}{\rho} \sum_{i=1}^n \ln(1 + \rho e^{a_i - \alpha}) = \inf_{\alpha \in \mathbb{R}} \alpha - 1 + \frac{n}{\rho} \int_{\mathcal{X}} \ln(1 + \rho e^{x - \alpha}) d\mu_n(x) \\ 727 = \inf_{\alpha \in \mathbb{R}} \alpha - 1 + \frac{n}{\rho} \int_{\mathcal{X}} \ln \left(1 + \frac{\rho}{n} e^{x - \alpha + \ln n} \right) d\mu_n(x) \\ 728 = \ln n + F_{\rho/n}(id; \mu_n).$$

729 Since

$$730 e^{F(id; \mu_n) - \max_i a_i} = \frac{\sum_{i=1}^n e^{a_i}}{n \max_i e^{a_i}} \geq \frac{1}{n} > \frac{\rho}{n},$$

731 Proposition 2.4(i,iv) yields

$$732 F(id; \mu_n) - \rho \leq F_{\rho/n}(id; \mu_n) \leq F(id; \mu_n).$$

733 The claim follows. \square

756 *Proof of Proposition 2.6.* As $\lambda \ln(1 + e^{t/\lambda}) > t_+ := \max\{0, t\}$, we get
 757

$$\begin{aligned} 758 \quad \lambda F_\rho(\varphi/\lambda; \mu) &\geq \lambda \inf_{\alpha \in \mathbb{R}} \alpha - 1 + \frac{1}{\rho} \int_{\mathcal{X}} \left(\ln \rho + \frac{\varphi(x)}{\lambda} - \alpha \right)_+ d\mu(x) \\ 759 \\ 760 \quad &= \lambda(\ln \rho - 1) + \inf_{\alpha \in \mathbb{R}} \alpha + \frac{1}{\rho} \int_{\mathcal{X}} (\varphi(x) - \alpha)_+ d\mu(x). \end{aligned}$$

761 The infimum in the r.h.s. is the variational formula for CVaR (9), thus we get the first inequality
 762 in (10). The second inequality can be obtained in a similar way using that $\lambda \ln(1 + e^{t/\lambda}) < t_+ +$
 763 λ . \square
 764

765 *Proof of Lemma 2.7.* Recall that we have
 766

$$767 \quad f_\rho(t) = \frac{1}{\rho}((\rho t) \log(\rho t) + (1 - \rho t) \log(1 - \rho t)) + 1 - t \log \rho.$$

768 Simplifying, we obtain
 769

$$770 \quad f_\rho(t) = t \log t + \frac{1}{\rho}(1 - \rho t) \log(1 - \rho t) + 1.$$

771 The first derivative is calculated as follows:
 772

$$773 \quad \frac{d}{dt}(t \log t) = \log t + 1, \quad \frac{d}{dt}\left(\frac{1}{\rho}(1 - \rho t) \log(1 - \rho t)\right) = -(\log(1 - \rho t) + 1),$$

774 so
 775

$$776 \quad f'_\rho(t) = (\log t + 1) - (\log(1 - \rho t) + 1) = \log t - \log(1 - \rho t) = \log\left(\frac{t}{1 - \rho t}\right).$$

777 The second derivative is calculated as follows:
 778

$$779 \quad \frac{d}{dt}(\log t) = \frac{1}{t}, \quad \frac{d}{dt}(\log(1 - \rho t)) = -\frac{\rho}{1 - \rho t},$$

780 thus
 781

$$782 \quad f''_\rho(t) = \frac{1}{t} + \frac{\rho}{1 - \rho t} = \frac{1}{t(1 - \rho t)}.$$

783 By symmetry, we can see that the minimum value of the second derivative is achieved at $t^* = \frac{1}{2\rho}$,
 784 and it is equal to 4ρ . Thus, for all $t \in \text{dom}f_\rho$, we have that $f''_\rho(t) \geq 4\rho > \rho$. Thus, by (Nesterov,
 785 2018, Theorem 2.1.11), f_ρ is ρ -strongly convex. By (Zhou, 2018, Theorem 1) this also implies that
 786 its conjugate function f_ρ^* is $\frac{1}{\rho}$ -smooth. \square
 787

788 B ADDITIONAL MATERIALS ON ENTROPIC OT

789 B.1 RELATED WORKS ON eOT

790 This subsection provides an overview of selected works on continuous entropy-regularized optimal
 791 transport. In (Genevay et al., 2016), the authors tackled this problem by introducing an RKHS and
 792 optimizing the dual function (12) with SGD. This approach was extended by Seguy et al. (2018),
 793 who parameterized the dual potentials with neural networks instead of an RKHS to improve scalabil-
 794 ity. Subsequently, Daniels et al. (2021) leverage this approach to approximate the optimal transport
 795 plan, using it to develop a score-based generative model. Although this direction mostly results in
 796 computationally efficient methods that works with a general cost function, a key drawback is that
 797 small values of the regularization coefficient ε cause numerical instabilities due to the exponential
 798 term in the dual objective; see Remark 3.1. The work by (Korotin et al., 2023) studies a more
 799 general formulation known as *weak OT*. The authors formulate it as a maximin problem and develop a
 800 neural-network-based algorithm under the assumption of a quadratic cost, a restriction that is later
 801 relaxed in (Asadulaev et al., 2024). However, these methods are computationally intensive due to
 802 their adversarial training nature. The paper by Mokrov et al. (2024) approaches eOT from the per-
 803 spective of energy-based models. Unfortunately, the resulting solver is computationally expensive
 804

as it involves iterative Langevin dynamics. Another popular approach to eOT in recent years is via the Schrödinger bridge (SB), e.g., (Gushchin et al., 2023). While SB-based solvers are also often computationally intensive, a more cost-efficient solution has been proposed by (Korotin et al., 2024). However, it relies on the quadratic cost assumption and does not support general cost. We would also like to note that a promising direction for future work is leveraging our approach for minimizing the objective (8) in (Korotin et al., 2024) to further improve scalability.

817 B.2 EXPERIMENT WITH RKHS REPRESENTATION OF DUAL POTENTIALS

819 As mentioned earlier, LSOT (Seguy et al., 2018) is inspired by the continuous eOT approach of
820 Genevay et al. (2016). This work considers a reproducing kernel Hilbert space (RKHS) \mathcal{H} defined
821 on \mathcal{X} , with a kernel κ , and applies SGD to solve the dual problem. Such approach suffers from
822 the same numerical instability as LSOT, see Remark 3.1. As an alternative, we again consider the
823 approximation (15) of the semi-dual objective which can also be maximized by SGD. Although the
824 variable α is, in general, a function of x , we empirically found that tuning a common scalar value
825 $\alpha \in \mathbb{R}$ for all samples works well in the experiments described below.

826 Analytic form of SGD iterates for both objectives can be derived as follows. By the property of
827 RKHS, if $u \in \mathcal{H}$, then $u(x) = \langle u, \kappa(\cdot, x) \rangle_{\mathcal{H}}$. Therefore, the derivatives of f_{ε} take the form

$$\begin{aligned}\nabla_u f_{\varepsilon}(x, y, u, v) &= \kappa(\cdot, x) - \exp\left(\frac{u(x) + v(y) - c(x, y)}{\varepsilon}\right) \kappa(\cdot, x), \\ \nabla_v f_{\varepsilon}(x, y, u, v) &= \kappa(\cdot, y) - \exp\left(\frac{u(x) + v(y) - c(x, y)}{\varepsilon}\right) \kappa(\cdot, y).\end{aligned}$$

833 Consequently, SGD iterates for the dual objective (12) can be conveniently written as

$$(u_k, v_k) = (u_0, v_0) + \sum_{i=1}^k \beta_i (\kappa(\cdot, x_i), \kappa(\cdot, y_i)) \quad (25)$$

$$\text{with } \beta_i := \frac{C}{\sqrt{i}} \left(1 - e^{\frac{u_{i-1}(x_i) + v_{i-1}(y_i) - c(x_i, y_i)}{\varepsilon}}\right), \quad (26)$$

840 where (x_i, y_i) are i.i.d. samples from $\mu \otimes \nu$, and $C > 0$ is the initial stepsize. Similarly, SGD iterates
841 for (15) are computed as follows:

$$\begin{aligned}v_k &= v_0 + \sum_{i=1}^k \tilde{\beta}_i \kappa(\cdot, y_i), \\ \alpha_k &= \alpha_0 - \sum_{i=1}^k \tilde{\beta}_i \quad \text{with } \tilde{\beta}_i := \frac{C}{\sqrt{i}} \left(1 - \sigma_{\rho} \left(\frac{u_{i-1}(x_i) + v_{i-1}(y_i) - c(x_i, y_i)}{\varepsilon}\right)\right),\end{aligned}$$

848 where $\sigma_{\rho}(t) := \frac{e^t}{1 + \rho e^t}$.

850 **Experiments.** Consider a setup analogous to the one described in Section 5 of Genevay et al.
851 (2016). Specifically, μ is a 1D Gaussian, and ν is a mixture of two Gaussians (see Figure 4 for a
852 plot of densities). Gaussian kernel $\kappa(x, x') = \exp\left(-\frac{\|x - x'\|^2}{\sigma^2}\right)$ with a bandwidth hyperparameter
853 $\sigma^2 > 0$ is used. The regularization coefficient is set to $\varepsilon = 0.01$. We consider kernel SGD (25)
854 applied to the dual objective as a *baseline* approach (Genevay et al., 2016). We compare it to the
855 proposed approach, namely, kernel SGD applied to the approximate semi-dual problem (14). For
856 details on how the optimality gap is estimated, see Appendix B.

858 When applying kernel SGD to the dual and approximate semi-dual formulations, we consider hyper-
859 parameters $\sigma^2 \in \{0.1, 1, 10\}$ (kernel bandwidth), $C \in \{10^{-4}, 10^{-3}, \dots, 10\}$ (stepsize parameter),
860 and $\rho \in \{0.03, 0.1, 0.3\}$ (approximation accuracy). Double floating-point precision is used. In the
861 experiment, the proposed approach works best with $\sigma^2 = 10$, and $C = 1$ for $\rho \in \{0.03, 0.1\}$,
862 $C = 10$ for $\rho = 0.3$. Baseline works best with $\sigma^2 \in \{0.1, 1\}$ and $C = 10^{-3}$. Figure 5 (left) shows
863 performance of the two approaches. For clarity, we provide a zoomed-in view of the curves generated
864 by the baseline in the middle. As seen from the figures, the baseline is extremely slow, which

Figure 4: Densities of source and target distributions in the eOT experiment.

Figure 5: Left: convergence of kernel SGD applied to the dual objective (12) (blue and orange) and approximate semi-dual problem (14) (green, red and purple). Solid lines show average optimality gap across 20 runs, shaded regions indicate \pm one standard deviation. Y-axis uses logarithmic scale. Middle: a zoomed-in view of blue and orange curves from the plot on the left. Right: examples of divergent optimality gap curves obtained by running the baseline approach with the stepsize parameter $C = 10^{-2}$.

happens due to the small stepsize. Larger values of C lead to numerical instabilities as illustrated by the plot on the right. Apparently, exponent causes a large magnitude of the gradient at a certain step, which brings an iterate to a region where it stagnates. On the contrary, our approximate semi-dual formulation permits larger stepsizes, which results in faster convergence. Indeed, the method usually achieves a relatively low optimality gap in about $2 \cdot 10^4$ iterations, and plateaus after that.

B.3 COMPUTING A PROXY FOR OPTIMALITY GAP

Optimality gap in the experiment is estimated as follows:

1. Test sets $\{x_i\}_{i=1}^N$ and $\{y_i\}_{i=1}^N$ of size $N = 10^4$ are sampled from μ and ν . The corresponding empirical distributions are denoted $\hat{\mu}$ and $\hat{\nu}$, respectively.
2. Similarly to Genevay et al. (2016), we obtain a proxy \hat{W} for $W(\mu, \nu)$ by solving the semi-discrete eOT problem

$$\max_{\mathbf{v} \in \mathbb{R}^N} \mathbb{E}_{X \sim \mu} \hat{h}_\varepsilon(X, \mathbf{v})$$

$$\text{with } \hat{h}_\varepsilon(x, \mathbf{v}) := \frac{1}{N} \sum_{i=1}^N v_i - \varepsilon \log \left(\frac{1}{N} \sum_{i=1}^N e^{\frac{v_i - c(x, y_i)}{\varepsilon}} \right) - \varepsilon,$$

which corresponds to replacing the expectation $\mathbb{E}_{Y \sim \nu}$ in (13) with the average over the test set $\mathbb{E}_{Y \sim \hat{\nu}}$. We perform 10 runs of SGD, each consisting of $2 \cdot 10^5$ iterations, and define \hat{W} as largest achieved value on the test set, i.e., the largest $\mathbb{E}_{X \sim \hat{\mu}} \hat{h}_\varepsilon(X, \mathbf{v})$.

918 3. Finally, given a potential $v \in \mathcal{C}(\mathcal{X})$, we estimate the optimality gap as $\hat{W} - \mathbb{E}_{X \sim \hat{\mu}} \hat{h}_\varepsilon(X, \mathbf{v})$,
 919 where $\mathbf{v} = (v(y_1), \dots, v(y_N))^\top$ is the evaluation of v on the test set.
 920

921 **C PROPERTIES OF SOFTPLUS**

923 Let $F(x) = \log(1 + e^{f(x)})$, then

$$925 \quad \nabla F(x) = \sigma(f(x)) \nabla f(x), \quad (27)$$

$$926 \quad \nabla^2 F(x) = \sigma(f(x)) \nabla^2 f(x) + \sigma(f(x))(1 - \sigma(f(x))) \nabla f(x) \nabla f(x)^\top. \quad (28)$$

927 Suppose $f(x)$ is L -smooth (possibly non-convex). Let us derive smoothness constant of F . We will
 928 use the following

929 **Lemma C.1.** *Consider function $f_a(x) = \sigma(x) + 2\sigma'(x)(x - a)$, $x \geq a$ with parameter $a \leq 0$. It
 930 holds $f_a(x) \leq 2 - \frac{a}{2}$.*

932 *Proof.* By the properties of the sigmoid function $\sigma(x)$, $\sigma'(x) \leq \frac{1}{4}$ and $\sigma(x) \leq 1$. Therefore,
 933 $f_a(x) \leq 1 + \frac{x-a}{2}$. If $x \leq 2$, the result follows. Let us now show that the derivative
 934

$$935 \quad \frac{d}{dx} f_a(x) = \sigma'(x)[3 + 2(1 - 2\sigma(x))(x - a)]$$

936 is negative if $x > 2$. Indeed, due to monotonicity of the sigmoid function $\sigma(x)$,

$$938 \quad \sigma(x) > \sigma(2) > 0.88 \Rightarrow 2(1 - 2\sigma(x)) < -\frac{3}{2}.$$

940 Moreover, $x - a > 2$, so $3 + 2(1 - 2\sigma(x))(x - a) < 0$ and $\frac{d}{dx} f_a(x) < 0$. Therefore, if $x > 2$, then
 941 $f_a(x) < f_a(2) \leq 2 - \frac{a}{2}$. \square

942 **Proposition C.2.** *Let $f \in C^1(\mathbb{R}^d)$ be L -smooth and bounded from below by $f_* \in \mathbb{R}$, then $F(x) =$
 943 $\log(1 + e^{f(x)})$ is smooth with parameter*

$$945 \quad \begin{cases} \frac{4}{3}L & \text{if } f_* \geq 0, \\ \left(\frac{4}{3} - \frac{f_*}{2}\right)L & \text{if } f_* < 0. \end{cases} \quad (29)$$

948 *Proof.* W.l.o.g., we can assume that $f \in C^2$. From (28) and Lemma C.1 we get

$$949 \quad \begin{aligned} \|\nabla^2 F(x)\| &\leq \sigma(f(x)) \|\nabla^2 f(x)\| + \sigma'(f(x)) \|\nabla f(x)\|^2 \\ 950 &\leq L\sigma(f(x)) + 2L\sigma'(f(x))(f(x) - f_*) \\ 951 &= L(\sigma(f(x)) + 2\sigma'(f(x))f(x)) - 2L\sigma'(f(x))f_*. \end{aligned}$$

953 Analyzing the function $h(t) := (\sigma(t) + 2t\sigma'(t))$, one can show that $\max_t h(t) < \frac{4}{3}$. Thus, in the
 954 case $f_* \geq 0$, using the fact that $\sigma'(t) > 0$ we obtain

$$955 \quad \|\nabla^2 F(x)\| \leq Lh(f(x)) \leq \frac{4}{3}L.$$

958 Now, consider the case $f_* < 0$. Since $\sigma'(t) = \sigma(t)(1 - \sigma(t)) \leq \frac{1}{4}$,

$$959 \quad \|\nabla^2 F(x)\| \leq Lh(f(x)) - 2L\sigma'(f(x))f_* \leq \frac{4}{3}L - \frac{L}{2}f_*.$$

961 The claim follows. \square

963 **Remark C.3.** *The factor $\frac{1}{2}$ in front of $-f_*$ in (29) can't be improved. Indeed, consider $f(x) =$
 964 $\frac{1}{2}(x - a)^2 - \frac{1}{2}a^2$ with $f_* = -\frac{1}{2}a^2$. The second derivative of $F(x) = \log(1 + e^{f(x)})$ is*

$$966 \quad F''(x) = \sigma(f(x)) + \sigma(f(x))(1 - \sigma(f(x)))(x - a)^2,$$

$$968 \quad F''(0) = \sigma(0) + \sigma(0)(1 - \sigma(0))a^2 = \frac{1}{2} + \frac{a^2}{4} = \frac{1}{2} - \frac{f_*}{2}.$$

970 **Proposition C.4.** *If f is convex, then $F(x) = \log(1 + e^{f(x)})$ is also convex.*

971 *Proof.* Trivially follows from (28). \square

972 **D LLM USAGE DISCLOSURE**
973

974 In the preparation of this manuscript, large language models (LLMs) were used to improve the
975 readability. All substantive contributions are solely by the authors.
976

977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025