
A Decentralized Digital Twin via Crowdsourced Sensing and Browser-Based Edge
Computation

Sean Hardesty Lewis1, Junfeng Jiao2, Yiming Xu2, Jihyung Park2, Connor Phillips2

1Cornell University
2University of Texas at Austin

shl225@cornell.edu, {jjiao,yiming.xu,jihyung803,connorphillips}@utexas.edu

Abstract
Digital twins promise to revolutionize the management of
complex urban systems by enabling real-time monitoring,
prediction, and control. Existing platforms, however, often
rely on dense deployments of calibrated sensors and central-
ized compute infrastructure, which limits scalability and ac-
cessibility. We introduce StreamTwin, a decentralized digital-
twin framework that treats publicly accessible webcams as
sensors and uses the web browsers of viewers as opportunistic
edge-computing nodes. Object detections produced on client
devices are fused into a coherent world model by our Aggre-
gate Spatiotemporal Cache (ASC) algorithm. This enables in-
teractive visualization of traffic conditions without ever trans-
mitting raw video off the client, reducing deployment cost
and network load while inherently preserving privacy. We
detail the system design, data-fusion pipeline, implementa-
tion, and evaluation. Experiments on ten live traffic cameras
show that StreamTwin reconstructs scenes with 0.73 IoU, ap-
proaching centralized baselines, while reducing per-stream
bandwidth from 5 Mbps to 20 kbps. This reduces monthly
operating costs by more than 20×. By removing specialized
hardware requirements and supporting crowd participation at
a global scale, StreamTwin lowers the cost and technical bar-
riers to deploying digital twins.

Introduction
The concept of a digital twin—an interactive, time-
synchronized replica of a physical system—has emerged as
an important framework for urban management and intelli-
gent transportation systems (ITS) (Bhatt et al. 2025). High-
fidelity digital twins have been applied to monitor traffic,
forecast demand, and support decision making in large-scale
pilot projects, e.g., (Di et al. 2025; Zipfl et al. 2025). Such
platforms provide accurate situational awareness but typi-
cally depend on costly installations of LiDAR, cameras, and
vehicle-to-everything (V2X) communications—often hun-
dreds of thousands of dollars per intersection (Mcity 2021).
Beyond the expense, centralized architectures introduce net-
work bottlenecks (Canel et al. 2019) and privacy risks (Gong
et al. 2025) because large volumes of video are streamed to
traffic management centers for analysis. As a result, state-
of-the-art digital twins remain out of reach for many munic-
ipalities and community organizations.

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

At the same time, the proliferation of publicly accessi-
ble webcams and advances in in-browser machine learning
motivate alternative designs for city-scale sensing systems.
Thousands of live video streams already capture streets, in-
tersections, and highways around the world; see, e.g., (Chen
et al. 2021; Yu et al. 2023). Yet these data sources are un-
derused for urban analytics. Recent progress in WebAssem-
bly (WASM) and ONNX Runtime Web makes it possible to
run neural network inference directly in the browser (ONNX
Runtime Contributors 2025; WebAssembly Working Group
2019), enabling each viewer device to perform edge infer-
ence. Our work harnesses these trends to propose a viewer-
as-edge architecture in which multiple viewers contribute
computation to the digital twin.

We introduce StreamTwin, a decentralized digital twin
that crowdsources both sensing (public webcams) and com-
putation (viewer browsers). Using ONNX/WASM, object
detectors run client-side, and only structured detections—
not raw video—are shared, reducing bandwidth and provid-
ing privacy benefits. We develop the Aggregate Spatiotem-
poral Cache (ASC), which synthesizes noisy, asynchronous
detections from uncalibrated, potentially overlapping cam-
era views. ASC performs object association, temporal fil-
tering, and confidence scoring to assemble coherent traffic
scenes from partial observations, e.g., (Zhang et al. 2024);
see also (Fei and Han 2023). We present an end-to-end im-
plementation of StreamTwin and evaluate it on real traffic
camera feeds. The results show that reconstruction fidelity
improves as crowd size grows, while client-side overhead
remains low. We compare throughput, latency, and accuracy
against centralized baselines and characterize system scala-
bility and discuss privacy implications.

Related Work
Urban Digital Twins and Traffic Simulation
Existing urban digital twins generally fall into two cate-
gories. Sensor-rich twins deploy dense multimodal sensors
(cameras, LiDAR, V2X) and maintain tight synchronization
between physical and virtual worlds (Di et al. 2025). Ex-
amples include TAF-BW (Zipfl et al. 2025) and a C-V2X
connected-corridor twin (Wu et al. 2024), which integrate
real-time data streams with machine learning models to fore-
cast traffic patterns. However, high deployment and mainte-

nance costs limit their scalability beyond testbeds or well-
funded cities. Generative twins use learned world models
to simulate traffic without live data. For instance, SceneDif-
fuser++ performs city-scale traffic simulation via a genera-
tive world model (Tan et al. 2025), while TrafficPPT uses a
pretrained probabilistic transformer for city-scale traffic vol-
ume prediction (Shen, Pan, and Xue 2025). These models
excel at scenario generation or prediction but cannot directly
reflect real-time conditions without live inputs.

StreamTwin occupies a middle ground between these
frameworks. It sacrifices the metric precision of calibrated
sensors for greater scalability and much lower deployment
cost, making it suitable for applications like congestion
monitoring and trend analysis. Unlike purely generative
models, StreamTwin remains grounded in live sensor feeds
and continuously reflects the evolving state of the world.

Distributed and Edge Video Analytics

Early video analytics systems transmitted raw streams to
the cloud for processing, quickly encountering bandwidth
and latency bottlenecks (Canel et al. 2019). Edge com-
puting alleviates these issues by offloading inference to lo-
cal devices such as smart cameras or cloudlets (Xu et al.
2021). Recent work proposes Cloud–Edge–Terminal Col-
laborative (CETC) architectures that partition analytic tasks
across hierarchical tiers (Gong et al. 2025). For example,
EdgeDuet tiles video frames and offloads small-object de-
tection to edge servers to assist resource-constrained devices
(Wang et al. 2021), while ViEdge and NoScope explore fil-
tering and load-shedding to optimize video pipelines across
distributed nodes (Hou, Guan, and Han 2025; Kang et al.
2017). StreamTwin instantiates CETC with terminal-side
(browser) processing: the “terminal” (browser) becomes a
dynamic, crowdsourced edge node. Unlike managed edge
devices, viewer browsers are transient and heterogeneous,
requiring aggregation algorithms to handle asynchronous,
uncalibrated data. Our work shows that robust analytics
can be obtained despite heterogeneous and transient clients,
complementing prior systems that assumed fixed edge hard-
ware.

In-Browser Machine Learning

WebAssembly and ONNX Runtime Web enable running
neural network inference within standard web browsers
(ONNX Runtime Contributors 2025; WebAssembly Work-
ing Group 2019). Systems such as TensorFlow.js demon-
strate practical browser-side execution of modern neural
networks via GPU-accelerated backends (e.g., WebGL)
(Smilkov et al. 2019). We build on these advancements
to deploy a pre-trained object detector in each viewer’s
browser, effectively converting them into distributed sen-
sors. Prior work on collaborative browser computation
has largely focused on volunteer computing for scientific
projects or interactive ML demos; to our knowledge, ap-
plying a viewer-as-edge design to real-time, city-scale video
analytics remains underexplored.

Figure 1: Overview of the StreamTwin system. Live
video streams from public webcams are processed in viewer
browsers, which run an ONNX-based object detector. De-
tections are transmitted as metadata to the server and fused
by ASC into a coherent world model.

System Architecture
Figure 1 overviews the StreamTwin architecture. Public we-
bcams provide live video streams covering major roads and
intersections. When a user visits the StreamTwin web ap-
plication, their browser loads a pre-trained object detection
model (YOLOv5n (Jocher et al. 2020)) compiled to We-
bAssembly via ONNX. The model runs inference on each
video frame to detect vehicles and pedestrians, producing
bounding boxes and class labels. Only anonymized detec-
tion metadata (timestamp, class, bounding-box coordinates,
and a coarse camera identifier) is sent to the StreamTwin
server over a lightweight WebSocket API. Raw video re-
mains on the client; only detection metadata is transmitted,
reducing bandwidth and offering privacy benefits.

The server maintains our Aggregate Spatiotemporal
Cache (ASC) that fuses incoming detections from all view-
ers into a unified world state. The ASC performs spatial and
temporal association of detections, smoothing and merg-
ing observations across cameras. The resulting aggregated
scene (e.g., vehicle positions and counts) is stored in an in-
memory cache. The StreamTwin client periodically requests
this fused world model and renders it in the browser using
WebGL and deck.gl (OpenJS Foundation and vis.gl contrib-
utors 2025), allowing users to interactively explore current
traffic conditions.

The design is stateless aside from the ASC cache, en-
abling fault tolerance (a restarted node can rebuild state from
recent detection logs). In our measurements, the system han-
dled many concurrent streams and clients; capacity scales
with added server nodes because clients transmit only kilo-
bytes per second of metadata.

Aggregate Spatiotemporal Cache (ASC)
The Aggregate Spatiotemporal Cache is responsible for fus-
ing noisy, asynchronous detections into a consistent global
traffic state. It must handle occlusions, overlapping cam-
era views, and out-of-order updates from many clients. The

ASC maintains a set of hypotheses, each representing a can-
didate vehicle or pedestrian in the world model with at-
tributes: position (x, y) on a common ground plane, veloc-
ity v⃗, and a confidence score c. Incoming detections from
browsers are projected onto the ground plane (using approx-
imate homography if camera pose is known or flat-earth as-
sumption if not) and then matched to existing hypotheses.

We use a gating distance in space and time to associate
each new detection with at most one hypothesis. The asso-
ciation function considers spatial proximity and class con-
sistency; for example, a car detection will only match hy-
potheses of class car. If a detection lies within a threshold θ
of a hypothesis’s predicted position (extrapolated by veloc-
ity) and occurs within a short time window, we treat it as an
observation of that hypothesis. A Kalman filter updates the
hypothesis state (position and velocity) with the new obser-
vation. The confidence c is incremented to reflect an addi-
tional independent confirmation. Detections that cannot be
matched to any existing hypothesis spawn new hypotheses
(with initial c based on detection confidence). Meanwhile,
hypotheses not observed in the current time step are propa-
gated forward using their motion model and have their confi-
dence decayed. If c falls below a minimum β, the hypothesis
is removed (treated as an object that likely left the scene).

Detections from viewer browsers arrive asynchronously
and are buffered briefly to batch process at, e.g., 100 ms
intervals. The association module then matches observa-
tions to active hypotheses. The filter updates each matched
hypothesis and prunes those with low support. The fused
world model (list of active objects with states) is stored in
the cache and refreshed continuously. This design draws on
multi-view tracking and self-calibration, e.g., (Zhang et al.
2024), and surveys such as (Fei and Han 2023), as well as
classical filtering (Kalman 1960; Bar-Shalom and Fortmann
1988), but operates without any fixed camera calibration or
known correspondences between views. By relying on tem-
poral continuity and overlapping fields of view, the ASC can
produce a consistent scene estimate of traffic from crowd-
provided observations. The per-interval update algorithm is
summarized in the Appendix, along with a complexity anal-
ysis.

Experiments and Results
We evaluated StreamTwin on a deployment covering ten
publicly accessible traffic cameras in San Francisco, Cali-
fornia (along major highways and intersections). For con-
trolled experiments, each camera stream was viewed by
multiple synthetic clients (headless Chrome instances) to
emulate crowd sizes ranging from 1 to 50 viewers per cam-
era. The object detector in use was YOLOv5n (nano model,
for speed) converted to ONNX and running with WASM
SIMD acceleration. The metrics we report include detection
accuracy, reconstruction quality, system latency, bandwidth
usage, and resource consumption on clients.

Experimental Setup
We collected 5 hours of video from the 10 cameras and
manually annotated bounding boxes for vehicles to serve

Metric
(Ours)

DecentralizedCentralized
Edge

Server

IoU (scene) 0.73 0.78 0.77
Precision 0.91 0.94 0.93
Recall 0.84 0.88 0.87
End-to-end Latency 90 ms 200 ms 120 ms
Bandwidth per stream 20 kbps 5 Mbps 5 Mbps
Client CPU (per viewer) 20% N/A N/A
Client Memory 150 MB N/A N/A

Table 1: Performance comparison of StreamTwin and base-
line systems, achieving comparable accuracy to centralized
processing while reducing bandwidth and latency.

as ground truth for evaluation. This ground truth allowed
us to compute accuracy metrics such as precision, recall,
and intersection-over-union (IoU) of the reconstructed scene
against actual traffic.

We compare StreamTwin against two baselines: (1) Cen-
tralized Cloud Analytics, where each camera’s raw stream is
sent to a cloud server that runs YOLOv5n centrally (mim-
icking a traditional ITS setup), and (2) Edge Server per
Camera, where each stream is processed by a nearby edge
server running the same detector (representing a cloudlet de-
ployment). We compare bandwidth and latency across these
baselines.

Key metrics include the IoU between reconstructed ve-
hicle positions and ground truth, precision and recall of
vehicle detection, end-to-end latency from camera capture
to twin visualization, bandwidth consumed per client, and
client CPU/memory usage. We also measure system scal-
ability (throughput vs. number of clients) and robustness
under various conditions (network drops, malicious inputs).
An ablation of key ASC components appears in the Ap-
pendix.

Reconstruction Accuracy and Performance
We report quantitative results in Table 1. StreamTwin
achieved an average IoU of 0.73 between reconstructed ve-
hicles and ground truth positions, at 90 ms end-to-end la-
tency. The detection precision was 0.91 and recall 0.84 at
the object level (averaged across frames), meaning the ma-
jority of vehicles were identified with few false alarms. We
also find that StreamTwin’s accuracy approached that of the
centralized baseline (which had IoU 0.78, precision 0.94, re-
call 0.88) despite sending only 0.5% of the data. The edge-
server baseline performed similarly to the cloud (IoU 0.77)
but still required high bandwidth between cameras and edge
nodes.

Client-side measurements were as follows: running
YOLOv5n at 10 FPS used about 20% of a single CPU core
on a typical laptop and 150 MB of memory. On a modern
smartphone (Pixel 6), we achieved ∼5 FPS and under 60%
CPU utilization. These figures indicate that StreamTwin op-
erated on user devices without measurable input lag during
testing. Lower-end devices without WASM SIMD fell back
to WebGL acceleration, with throughput measured at 8 FPS
on a similar laptop.

Figure 2: Visualization of StreamTwin dashboard. Cameras
(blue icons) at different vantage points can be zoomed into
and automatically run in-browser inference on viewer’s de-
vice. Detections from active cameras are fused by the ASC.

Scalability and Robustness

To assess scalability, we measured StreamTwin’s perfor-
mance as we increased the number of cameras and view-
ers. Processing scales almost linearly: doubling the number
of viewers doubled the volume of detections processed, and
the server was able to keep up with minimal increase in la-
tency (which rose from 90 ms at 50 viewers to 120 ms at
200 viewers, mainly due to queueing overhead). The IoU
improves with more viewers per camera, reaching a plateau
around 0.75–0.78 beyond 50 viewers. The plateau occurs
because, once objects are consistently observed, additional
viewers mostly add redundancy. Figure 2 illustrates camera
locations and fused detections.

We also simulated viewer churn and network failures. In
one experiment, we randomly dropped 30% of active view-
ers at a time. The system maintained operation under this
condition: some object hypotheses dropped in confidence
and disappeared if no remaining viewer could see them, but
they were re-instantiated when observed again. The overall
IoU dipped only 10% during the dropout and recovered af-
terward. This behavior is consistent with redundancy from
multiple viewers and the temporal continuity enforced by
ASC. For network disruptions, if a client’s detections are
delayed, the ASC propagates existing hypotheses and waits;
short outages (under a few seconds) had little effect on IoU,
as the motion model propagated hypotheses across gaps.

To probe robustness against malicious or noisy inputs, we
experimented with injecting fake detections. When 10% of
viewers were configured to send random bounding boxes,
the ASC’s confidence mechanism largely filtered them out.
Those detections were rarely corroborated by honest view-
ers, so false hypotheses remained low-confidence and got re-
moved. However, a more coordinated attack (multiple col-
luding malicious clients) could defeat this; a full security-
hardening (e.g., client attestation, data validation) is outside
our current scope but is important future work.

Future Work

Our experiments show that crowdsourced edge analytics can
deliver high-quality traffic digital twins with minimal infras-
tructure. StreamTwin scales gracefully with the number of
viewers and inherently preserves privacy by processing data
at the edge. The framework could be extended beyond traf-
fic monitoring to domains such as pedestrian flow analysis
(Adrian, Drück, and Seyfried 2024), air quality estimation
(Ibrahim and Lyons 2025), or wildlife observation in con-
servation areas.

However, several limitations remain. The system’s fi-
delity depends on viewer participation; during periods of
low viewership or off-peak hours, the digital twin’s accuracy
degrades as fewer observations are available. One possible
mitigation is to incorporate predictive models (e.g., using
historical patterns or an LSTM to forecast traffic when live
data is sparse). Another challenge is handling adversarial
inputs: while we took basic measures, a determined attacker
could still inject false data if they control many browsers.
Robust outlier detection and secure client authentication will
be important in a hardened deployment. Coverage gaps are
also an issue: areas without any public cameras cannot be
directly included in the twin. Mobile crowdsourcing (e.g.,
ingesting dashcam or smartphone data) could fill these gaps,
but that introduces new privacy issues and data quality con-
cerns (Restuccia, D’Oro, and Melodia 2017).

Looking ahead, we plan to explore federated learning
techniques to continuously improve the object detection
model using data from viewers. This could adapt the model
to specific camera angles or weather conditions while pre-
serving privacy. We also aim to extend the ASC to handle
full 3D localization by incorporating approximate camera
pose and possibly fusing with map data or LiDAR if avail-
able. We have open-sourced the StreamTwin codebase on
GitHub for the research community. By openly sharing our
platform, we hope others will build on it for applications in
mobility, urban planning, and beyond.

Conclusion

StreamTwin demonstrates that a city-scale digital twin does
not require dense sensor grids, dedicated edge boxes, or ter-
abytes of upstream video. By treating public webcams as
open sensors and viewer browsers as ephemeral edge nodes,
we fuse the sensing and compute layers of an urban observa-
tory into the everyday act of watching a stream. Our Aggre-
gate Spatiotemporal Cache converts the noisy, asynchronous
detections that arise from this “viewer-as-edge” model into a
single, coherent traffic scene, achieving visualization fidelity
comparable to centralized baselines while never moving raw
pixels off the client.

Extensive experiments across heterogeneous camera
feeds confirm three properties of this architecture: reduced
operating cost (no new hardware), privacy benefits (video
stays local), and scalability with crowd size. Together, these
findings provide evidence that crowdsourced edge analytics
is a feasible alternative to traditional digital-twin pipelines.

References
Adrian, J.; Drück, J.; and Seyfried, A. 2024. Continuity
equation and fundamental diagram of pedestrians. arXiv
preprint arXiv:2409.11857.
Bar-Shalom, Y.; and Fortmann, T. E. 1988. Tracking and
Data Association. Boston: Academic Press.
Bhatt, H.; Sahoo, S.; Vaidhyanathan, K.; Biju, R.; Gangad-
haran, D.; Trestian, R.; and Shah, P. 2025. Architecting Dig-
ital Twins for Intelligent Transportation Systems. In 2025
IEEE 22nd International Conference on Software Architec-
ture Companion (ICSA-C).
Canel, C.; Kim, S.; Zhou, G.; Li, C.; Lim, H.; Andersen,
D.; Kaminsky, M.; and Dulloor, S. 2019. Scaling Video
Analytics on Constrained Edge Nodes. In Proceedings of
Machine Learning and Systems (MLSys).
Chen, L.; Grimstead, I.; Bell, D.; Karanka, J.; Dimond, L.;
James, P.; Smith, L.; and Edwardes, A. 2021. Estimating
Vehicle and Pedestrian Activity from Town and City Traffic
Cameras. Sensors, 21(13): 4564.
Di, X.; Fu, Y.; Turkcan, M. K.; Ghasemi, M.; Mo,
Z.; Zang, C.; Adhikari, A.; Kostic, Z.; and Zussman,
G. 2025. AI-Powered CPS-Enabled Urban Transportation
Digital Twin: Methods and Applications. arXiv preprint
arXiv:2501.10396.
Fei, L.; and Han, B. 2023. Multi-Object Multi-Camera
Tracking Based on Deep Learning for Intelligent Trans-
portation: A Review. Sensors, 23(8): 3852.
Gong, L.; Yang, H.; Fang, G.; Ju, B.; Guo, J.; Zhu, X.; Hu,
X.; Wang, Y.; Sun, P.; and Boukerche, A. 2025. A Survey
on Video Analytics in Cloud-Edge-Terminal Collaborative
Systems. arXiv preprint arXiv:2502.06581.
Hou, X.; Guan, Y.; and Han, T. 2025. ViEdge: Video An-
alytics on Distributed Edge. ACM Transactions on Internet
of Things, 6(3): 16:1–16:23.
Ibrahim, M.; and Lyons, T. 2025. Transforming CCTV
Cameras into NO2 Sensors at City Scale for Adaptive Poli-
cymaking. Scientific Reports.
Jocher, G.; et al. 2020. YOLOv5 by Ultralytics.
Kalman, R. E. 1960. A New Approach to Linear Filter-
ing and Prediction Problems. Journal of Basic Engineering,
82(1): 35–45.
Kang, D.; Emmons, J.; Abuzaid, F.; Bailis, P.; and Zaharia,
M. 2017. NoScope: Optimizing Neural Network Queries
over Video at Scale. Proceedings of the VLDB Endowment,
10(11): 1586–1597.
Mcity. 2021. $9.95 million to create “smart intersections”
across city of Ann Arbor. Mcity News.
ONNX Runtime Contributors. 2025. ONNX Runtime Web
Documentation. Project documentation.
OpenJS Foundation and vis.gl contributors. 2025. deck.gl:
WebGL-Powered Visualization Framework. Project site and
documentation.
Restuccia, F.; D’Oro, S.; and Melodia, T. 2017. Quality of
Information in Mobile Crowdsensing: Survey and Research
Challenges. ACM Transactions on Sensor Networks, 13(4):
34:1–34:43.

Shen, S.; Pan, B.; and Xue, G. 2025. A Pretrained Prob-
abilistic Transformer for City-Scale Traffic Volume Predic-
tion. arXiv preprint arXiv:2506.02654.
Smilkov, D.; Thorat, N.; Assogba, Y.; Yuan, A.; Kreeger, N.;
Yu, P.; Zhang, K.; Cai, S.; Nielsen, E.; Soergel, D.; Bileschi,
S.; Terry, M.; Nicholson, C.; Gupta, S. N.; Sirajuddin, S.;
Sculley, D.; Monga, R.; Corrado, G.; Viégas, F. B.; and Wat-
tenberg, M. 2019. TensorFlow.js: Machine Learning for the
Web and Beyond. In Proceedings of Machine Learning and
Systems (MLSys).
Tan, S.; Lambert, J.; Jeon, H.; Kulshrestha, S.; Bai, Y.; Luo,
J.; Anguelov, D.; Tan, M.; and Jiang, C. M. 2025. SceneD-
iffuser++: City-Scale Traffic Simulation via a Generative
World Model. arXiv preprint arXiv:2506.21976.
Wang, X.; Yang, Z.; Wu, J.; Zhao, Y.; and Zhou, Z. 2021.
EdgeDuet: Tiling Small Object Detection for Edge-Assisted
Autonomous Mobile Vision. In IEEE INFOCOM 2021 -
IEEE Conference on Computer Communications, 1–10.
WebAssembly Working Group. 2019. WebAssembly Core
Specification. W3c recommendation, W3C.
Wu, K.; Li, P.; Cheng, Y.; Parker, S. T.; Ran, B.; Noyce,
D. A.; and Ye, X. 2024. A Digital Twin Framework for
Physical-Virtual Integration in V2X-Enabled Connected Ve-
hicle Corridors. arXiv preprint arXiv:2410.00356.
Xu, M.; Liu, T.; Liu, Y.; and Lin, F. X. 2021. Video An-
alytics with Zero-streaming Cameras. In Proceedings of
the USENIX Annual Technical Conference (USENIX ATC),
459–472. USENIX Association.
Yu, F.; Yan, H.; Chen, R.; Zhang, G.; Liu, Y.; Chen, M.; and
Li, Y. 2023. City-scale Vehicle Trajectory Data from Traffic
Camera Videos. Scientific Data, 10(1).
Zhang, H.; Fang, R.; Li, S.; Miao, Q.; Fan, X.; Hu, J.;
and Chan, S. 2024. Multi-Camera Multi-Vehicle Track-
ing Guided by Highway Overlapping FoVs. Mathematics,
12(10): 1467.
Zipfl, M.; Zwick, P.; Schulz, P.; et al. 2025. DigiT4TAF –
Bridging Physical and Digital Worlds for Future Transporta-
tion Systems. arXiv preprint arXiv:2507.02400.

ASC Algorithm
ASC Fusion Algorithm (per time step)

Algorithm 1 ASC Fusion Algorithm (per time step)
Require: Dt: set of detections from all clients at time t
1: H ← current set of hypotheses (with state (x, v, c) for each)
2: for each detection d ∈ Dt do
3: Project d to ground plane coordinates (xd, yd)
4: Find nearest hypothesis h ∈ H with same class
5: if dist(d, h) < θ and ∆t(d,h) < ∆max then
6: Associate d with h
7: Update h state via Kalman filter using d
8: h.c← h.c+ 1 // increase confidence
9: else

10: Create new hypothesis hnew from d
11: H ← H ∪ {hnew}
12: end if
13: end for
14: for each hypothesis h ∈ H do
15: if h was not updated at t then
16: Predict h state forward (motion model)
17: h.c← α · h.c // decay confidence
18: end if
19: if h.c < β then
20: H ← H \ {h} // remove old hypothesis
21: end if
22: end for
23: return H (updated set of hypotheses as world state)

Algorithm Analysis
The ASC update at each time step involves associating |Dt|
new detections with |H| current hypotheses. A naive imple-
mentation is O(|Dt| · |H|), but in practice spatial indexing
(hashing by grid cell) reduces the average cost significantly.
Each detection only compares with nearby hypotheses. Our
deployment with up to 200 active objects and 100 detec-
tions per interval runs in real time (the ASC update loop
takes <5 ms in Python). Overall, StreamTwin’s throughput
scales linearly with the number of browser clients and cam-
eras, as each client independently runs inference and sends
a fixed-size message per frame. The server-side fusion is
lightweight relative to the computation already performed at
the edge.

StreamTwin reduces network usage compared to stream-
ing video. Streaming raw video typically consumes
megabits per second per camera stream (Canel et al. 2019),
whereas our detection reports (bounding boxes and class la-
bels at 10 FPS) use under 20 kbps per stream. This is a
reduction by a factor of over 200× in bandwidth. Moreover,
the uplink from clients is used only for low-frequency meta-
data, making the system robust to network variability. We
found that even on a 3G cellular connection, the detection
feed maintained functionality in our tests. This communica-
tion pattern supports scaling to many cameras on ordinary
broadband links in our tests.

Because only abstracted metadata is shared, no recogniz-
able personal data (faces, license plates, etc.) is transmit-
ted. This inherently limits privacy risks relative to systems

that stream or record video centrally. However, the trans-
mitted metadata (object bounding boxes and classes) could
still potentially be abused (e.g., tracking a specific vehicle’s
trajectory). In future work, we plan to incorporate differ-
ential privacy mechanisms such as adding calibrated noise
to reported positions or counts to provide provable privacy
guarantees. There is also a risk of malicious clients injecting
false detections. Our current implementation assigns higher
weight to data from multiple independent viewers, making
it difficult for one bad actor to significantly skew the world
model unless they constitute a large fraction of viewers. In
production, one could employ cryptographic client attesta-
tion and server-side anomaly detection to further secure the
system.

Intuitively, as the number of independent observers
(browser clients) increases, the coverage and redundancy of
observations improve. If each viewer has an independent
probability p of detecting a given object, N viewers would
collectively have a detection probability 1 − (1 − p)N , ap-
proaching 1 as N grows. Thus, the confidence in the world
model increases with crowd size. Empirically, we observed
this effect: with only 1–2 viewers per camera, some vehicles
went undetected due to occlusions or missed inferences, but
with 10+ viewers the majority of objects were consistently
captured. In our experiments, IoU of reconstructed scenes
climbed from around 0.4 with a single viewer to over 0.7
with 50 viewers. This redundancy also provides resilience
to intermittent drops in any single stream.

Ablation Study
We conducted an ablation study to quantify the importance
of key components in the StreamTwin pipeline. Table 2
summarizes the results when removing or disabling certain
features, evaluated with 10 viewers per camera. Removing
the temporal filtering (no Kalman smoothing) caused IoU to
drop from 0.73 to 0.58, as short-term detection gaps were
no longer bridged. Disabling the confidence scoring (treat-
ing all detections equally regardless of independent confir-
mations) led to more false positives, reducing precision and
IoU to 0.64. The object association module proved most
critical: if each camera’s detections were visualized inde-
pendently with no cross-camera matching, the IoU fell to
0.41 and many vehicles appeared as duplicates. These re-
sults highlight that all parts of ASC are necessary for high-
quality reconstruction.

Ethical Considerations
Crowdsourced urban sensing has benefits and ethical risks.
On the positive side, lowering the cost of digital twin deploy-
ment can broaden access to traffic analytics, helping smaller
cities and communities benefit from smart transportation ap-
plications. The use of public webcams and volunteer com-
puting means data stewardship is not centralized in a single
entity; the community can build and share insights collec-
tively. Additionally, privacy is improved in our design since
raw video (with potentially identifying imagery) is not trans-
mitted or stored centrally.

System Variant IoU Latency Bandwidth

Full StreamTwin (ASC) 0.73 90 ms 20 kbps
- no temporal filter 0.58 85 ms 20 kbps
- no confidence scoring 0.64 88 ms 25 kbps
- no cross-cam association 0.41 82 ms 30 kbps

Table 2: Ablation study results. Removing components of
the ASC pipeline degrades performance. Without tempo-
ral filtering, the system cannot smooth out detection misses
(lower IoU). Without confidence scores, false positives in-
crease (more bandwidth from extra detections). Without as-
sociation, each camera is isolated and many duplicate ob-
jects appear (lower IoU).

However, our system could be misused or have unin-
tended consequences. A network of aggregated public cam-
eras begins to resemble a large-scale surveillance system.
Even though individual streams are public, combining and
analyzing them continuously might raise concerns about
continuous monitoring. It is important to engage with local
communities and establish governance over how the digital
twin is used (e.g., restricting use to traffic analytics rather
than individual-level tracking). Anonymization measures
(blurring, not logging license plates, etc.) should be in place
if the system were extended beyond vehicles to pedestrians
or cyclists to avoid violating privacy expectations.

Another concern is bias and fairness. The object detec-
tor may perform worse on certain vehicle types or in certain
neighborhoods (due to differences in camera quality or light-
ing), potentially leading to unequal quality of service. We
must continuously evaluate and retrain models to avoid bias,
and transparently report performance across different loca-
tions. If the crowd participation varies (e.g., more viewers
in affluent areas), that could inadvertently create disparities
in where the digital twin is most accurate. Incentive mecha-
nisms or targeted awareness campaigns might be needed to
ensure broad coverage.

The energy and environmental impact of distributed com-
puting should also be considered. Running many browsers
for analytics has a carbon footprint; though each device’s
contribution is small, in aggregate it could be significant.
StreamTwin’s efficiency (offloading heavy compute to de-
vices already online for viewing) helps, but future work
could quantify the trade-off between this approach and tradi-
tional centralized processing in terms of energy per analyzed
frame.

While StreamTwin has societal benefits in improving traf-
fic management and community engagement, deploying it
in the real world should involve ethical guidelines, privacy
protections, and awareness of potential biases. We are ac-
tively working with our institution’s ethics board to ensure
compliance with data protection regulations and to design
opt-in features for any citizen-contributed data. A broader
discussion with policymakers and the public will be crucial
as technologies like this move from research to practice.

