
Under review as submission to TMLR

Separable Operator Networks

Anonymous authors
Paper under double-blind review

Abstract

Operator learning has become a powerful tool in machine learning for modeling complex
physical systems governed by partial differential equations (PDEs). Although Deep Opera-
tor Networks (DeepONet) show promise, they require extensive data acquisition. Physics-
informed DeepONets (PI-DeepONet) mitigate data scarcity but suffer from inefficient train-
ing processes. We introduce Separable Operator Networks (SepONet), a novel framework
that significantly enhances the efficiency of physics-informed operator learning. SepONet
uses independent trunk networks to learn basis functions separately for different coordi-
nate axes, enabling faster and more memory-efficient training via forward-mode automatic
differentiation. We provide a universal approximation theorem for SepONet proving the
existence of a separable approximation to any nonlinear continuous operator. Then, we
comprehensively benchmark its representational capacity and computational performance
against PI-DeepONet. Our results demonstrate SepONet’s superior performance across var-
ious nonlinear and inseparable PDEs, with SepONet’s advantages increasing with problem
complexity, dimension, and scale. For 1D time-dependent PDEs, SepONet achieves up to
112× faster training and 82× reduction in GPU memory usage compared to PI-DeepONet,
while maintaining comparable accuracy. For the 2D time-dependent nonlinear diffusion
equation, SepONet efficiently handles the complexity, achieving a 6.44% mean relative ℓ2
test error, while PI-DeepONet fails due to memory constraints. This work paves the way for
extreme-scale learning of continuous mappings between infinite-dimensional function spaces.

1 Introduction

Operator learning, which aims to learn mappings between infinite-dimensional function spaces, has gained
significant attention in scientific machine learning thanks to its ability to model complex dynamics in physics
systems. This approach has been successfully applied to a wide range of applications, including climate
modeling (Kashinath et al., 2021; Pathak et al., 2022), multiphysics simulation (Liu et al., 2023; Cai et al.,
2021; Mao et al., 2021; Lin et al., 2021; Kontolati et al., 2024), inverse design (Lu et al., 2022b; Gu et al.,
2022) and more (Shukla et al., 2023; Gupta & Brandstetter, 2022). Various operator learning algorithms
(Lu et al., 2021; Li et al., 2020b;a; Ovadia et al., 2023; Wen et al., 2022; Ashiqur Rahman et al., 2022) have
been developed to address these applications, with Deep Operator Networks (DeepONets) (Lu et al., 2021)
being particularly notable due to their universal approximation guarantee for operators (Chen & Chen, 1995;
Lanthaler et al., 2022; Gopalani et al.) and robustness (Lu et al., 2022a).

file To approximate the function operator G : U → S, DeepONets are usually trained in a supervised
manner using a dataset of Nf pair functions

{
u(i), s(i)}Nf

i=1, where in the context of parametric partial
differential equations (PDEs), each u(i) represents a PDE configuration function and each s(i) represents
the corresponding solution. Unlike traditional numerical methods which require repeated simulations for
each different PDE configuration, once well trained, a DeepONet allows for efficient parallel inference in
abstract infinite-dimensional function spaces. Given new PDE configurations, it can immediately provide the
corresponding solutions. However, this advantage comes with a significant challenge: to achieve satisfactory
generalization error, the number of required input-output function pairs grows quadratically (Lu et al.,
2021; Lanthaler et al., 2022; Liu et al., 2022a; Gopalani et al.). Generating enough function pairs can be

1

Under review as submission to TMLR

Figure 1: Separable operator network (SepONet) architecture for 2D problem instance. A coordinate grid
of collocation points (x(i), y(j)) can be evaluated efficiently by separating the coordinate axes, feeding them
through independent trunk networks, and combining the outputs by outer product to obtain multiple basis
function maps. Meanwhile, the branch network processes input functions and outputs coefficients, which
are then used to scale and combine the trunk network basis functions by product and sum. Spatiotemporal
derivatives of the output predictions are obtained efficiently by forward automatic differentiation due to the
independence of trunk networks along each coordinate axis.

computationally expensive or even impractical in some applications, creating a bottleneck in the effective
deployment of DeepONets.

Physics-informed deep operator networks (PI-DeepONet) (Wang et al., 2021b) have been introduced as a
solution to the costly data acquisition problem. Inspired by physics-informed neural networks (PINNs)
(Raissi et al., 2019), PI-DeepONet learns operators by constraining the DeepONet outputs to approximately
satisfy the underlying governing PDE system parameterized by the input function u. This is achieved by
penalizing the physics loss (including PDE residual loss, initial loss and boundary loss), thus eliminating
the need for ground-truth output functions s. However, PI-DeepONet shares the same disadvantage as
PINNs in that the training process is both memory-intensive and time-consuming (He et al., 2023; Cho
et al., 2024). This inefficiency, common to both PI-DeepONet and PINNs, arises from the need to compute
high-order derivatives of the PDE predictions with respect to numerous collocation points during physics loss
optimization. This computation typically relies on reverse-mode automatic differentiation (Baydin et al.,
2018), involving the backpropagation of physics loss through the unrolled computational graph to update
model parameters. The inefficiency is even more pronounced for PI-DeepONet, as it requires evaluating
the physics loss across multiple PDE configurations. While numerous studies (He et al., 2023; Zhao et al.,
2023; Hu et al., 2024; Liu et al., 2022b; Cho et al., 2024) have proposed methods to enhance PINN training
efficiency, there has been limited research focused on improving the training efficiency of PI-DeepONet
specifically.

To address the inefficiency in training PI-DeepONet, we propose Separable Operator Networks (SepONet),
inspired by the separation of variables technique in solving PDEs and recent work on separable PINN (Cho
et al., 2024). Suppose we want to approximate a nonlinear continuous operator of d variables (d-dimensional
collocation points). When optimizing the physics loss at M collocation points, PI-DeepONet always requires
M inputs to evaluate PDE predictions and their derivatives, regardless of whether the points are on a regular
grid or randomly sampled. This approach becomes inefficient when M is large. By contrast, SepONet uses d
independent trunk networks to learn univariate basis functions separately for each variable, which can then be
combined to obtain predictions in d dimensions. In particular, if M can be decomposed as N1 ×N2 ×· · ·×Nd,
where Nn is the number of points sampled along the n-th coordinate axis (e.g., 1024 = 16 × 8 × 8 for d = 3),

2

Under review as submission to TMLR

SepONet requires only N1 + N2 + · · · + Nd inputs to evaluate all M collocation points on a regular grid,
resulting in a more efficient solution. The SepONet architecture for a d = 2 problem instance is shown in
Figure 1. This simple yet effective modification enables fast training and memory-efficient implementation of
SepONet by leveraging forward-mode automatic differentiation (Khan & Barton, 2015) to compute high-order
derivatives of all N1 × N2 × · · · × Nd collocation points. It’s important to note that factorizing functions
in high-dimensional domains into multiple sub-functions defined over one-dimensional domains has been
explored in supervised operator learning methods (Tran et al., 2021; Li et al., 2024; Kossaifi et al., 2023).
However, our work is the first to integrate low-rank functional decomposition within a physics-informed
operator learning framework. Our key contributions are:

1. We introduce SepONet, a physics-informed operator learning framework that significantly enhances
training time and GPU memory usage relative to PI-DeepONet, enabling extreme-scale learning of
continuous mappings between infinite-dimensional function spaces.

2. We provide a theoretical foundation for SepONet through the universal approximation theorem,
proving its capability to approximate any nonlinear continuous operator with arbitrary accuracy.

3. We provide extensive benchmarks validating SepONet’s representational capacity and computational
performance relative to PI-DeepONet on a range of 1D and 2D time-dependent nonlinear PDEs.
Our findings reveal that scaling up SepONet in both number of functions and collocation points con-
sistently improves its accuracy, while typically outperforming PI-DeepONet. On 1D time-dependent
PDEs, we achieve up to 112× training speed-up with minimal memory increase. Notably, at mod-
erately large scales where training PI-DeepONet exhausts 80GB of GPU memory, SepONet trains
and operates efficiently with less than 1GB. Furthermore, we observe efficient scaling of SepONet
with problem dimension, enabling accurate prediction of 2D time-dependent PDEs at scales where
PI-DeepONet fails.

2 Preliminaries

2.1 Operator Learning for Solving Parametric Partial Differential Equations

Let X and Y be Banach spaces, with K ⊆ X and K1 ⊆ Y being compact sets. Consider a nonlinear
continuous operator G : U → S, mapping functions from one infinite-dimensional space to another, where
U ⊆ C(K) and S ⊆ C(K1). The goal of operator learning is to approximate the operator G using a model
parameterized by θ, denoted as Gθ. Here, U and S represent spaces of functions where the input and output
functions have dimensions du and ds, respectively. We focus on the scalar case where du = ds = 1 throughout
most of this paper; however, it should be noted that the results apply to arbitrary du and ds.

In the context of solving parametric partial differential equations (PDEs), consider PDEs of the form:

N (u, s) = 0, I(u, s) = 0, B(u, s) = 0, (1)

where N is a nonlinear differential operator, I and B represent the initial and boundary conditions, u ∈ U
denotes the PDE configurations (source terms, coefficients, initial conditions, and etc.), and s ∈ S denotes
the corresponding PDE solution. Assuming that for any u ∈ U there exists a unique solution s ∈ S, we can
define the solution operator G : U → S as s = G(u).

A widely used framework for approximating such an operator G involves constructing Gθ through three
maps (Lanthaler et al., 2022):

Gθ ≈ G := D ◦ A ◦ E . (2)

First, the encoder E : U → Rm maps an input function u ∈ U to a finite-dimensional feature representation.
Next, the approximator A : Rm → Rr transforms this encoded data within the finite-dimensional space
Rm to another finite-dimensional space Rr. Finally, the decoder D : Rr → S produces the output function
s(y) = G(u)(y) for y ∈ K1.

3

Under review as submission to TMLR

2.2 Deep Operator Networks (DeepONet)

The original DeepONet formulation (Lu et al., 2021) can be analyzed through the 3-step approximation
framework (2). The encoder E : U → Rm maps the input function u to its point-wise evaluations at m fixed
sensors x1, x2, . . . , xm ∈ K, e.g., (u(x1), ..., u(xm)) = E(u). Two separate neural networks (usually multilayer
perceptrons), the branch net and the trunk net, serve as the approximator and decoder, respectively. The
branch net bψ : Rm → Rr parameterized by ψ processes (u(x1), . . . , u(xm)) to produce a feature embedding
(β1, β2, . . . , βr). The trunk net tϕ : Rd → Rr with parameters ϕ, takes a continuous coordinate y = (y1, ..., yd)
as input and outputs a feature embedding (τ1, τ2, . . . , τr). The final DeepONet prediction of a function u for
a query y is:

Gθ(u)(y) =
r∑

k=1
βkτk = bψ(E(u)) · tϕ(y), (3)

where · is the vector dot product and θ = (ψ, ϕ) represents all the trainable parameters in the branch and
trunk nets.

Despite DeepONet’s remarkable success across a range of applications in multiphysics simulation (Cai et al.,
2021; Mao et al., 2021; Lin et al., 2021), inverse design (Lu et al., 2022b), and carbon storage (Jiang et al.,
2023), its supervised training process is highly dependent on the availability of training data, which can be
costly. Indeed, the generalization error of DeepONets scales quadratically with the number of training input-
output function pairs (Lu et al., 2021; Lanthaler et al., 2022; Liu et al., 2022a; Gopalani et al.). Generating a
large number of high-quality training data is expensive or even impractical in some applications. For example,
in simulating high Reynolds number (Re) turbulent flow (Pope, 2001), accurate numerical simulations require
a fine mesh, leading to a computational cost scaling with Re3 (Kochkov et al., 2021), making the generation
of sufficiently large and diverse training datasets prohibitively expensive.

To address the need for costly data acquisition, physics-informed deep operator networks (PI-DeepONet)
(Wang et al., 2021b), inspired by physics-informed neural networks (PINNs) (Raissi et al., 2019), have
been proposed to learn operators without relying on observed input-output function pairs. Given a
dataset of Nf input training functions, Nr residual points, NI initial points, and Nb boundary points:
D =

{{
u(i)}Nf

i=1 ,
{
y

(j)
r

}Nr

j=1,
{
y

(j)
I

}NI

j=1,
{
y

(j)
b

}Nb

j=1

}
, PI-DeepONets are trained by minimizing an unsuper-

vised physics loss:

Lphysics(θ|D) = Lresidual(θ|D) + λILinitial(θ|D) + λbLboundary(θ|D), (4)

where

Lresidual(θ|D) = 1
NfNr

Nf∑
i=1

Nr∑
j=1

∣∣∣N (u(i), Gθ(u(i))(y(j)
r))

∣∣∣2,
Linitial(θ|D) = 1

NfNI

Nf∑
i=1

NI∑
j=1

∣∣∣I(u(i), Gθ(u(i))(y(j)
I))

∣∣∣2,
Lboundary(θ|D) = 1

NfNb

Nf∑
i=1

Nb∑
j=1

∣∣∣B(u(i), Gθ(u(i))(y(j)
b))

∣∣∣2.
(5)

Here, λI and λb denote the weight coefficients for different loss terms. However, as noted in the original
PI-DeepONet paper (Wang et al., 2021b), the training process can be both memory-intensive and time-
consuming. Similar to PINNs (Raissi et al., 2019), this inefficiency arises because optimizing the physics loss
requires calculating high-order derivatives of the PDE solution with respect to numerous collocation points,
typically achieved via reverse-mode automatic differentiation (Baydin et al., 2018). This process involves
backpropagating the physics loss through the unrolled computational graph to update the model parameters.
For PI-DeepONet, the inefficiency is even more pronounced, as the physics loss terms (equation (5)) must
be evaluated across multiple PDE configurations. Although various works (Chiu et al., 2022; He et al., 2023;
Cho et al., 2024) have proposed different methods to improve the training efficiency of PINNs, little research
has focused on enhancing the training efficiency of PI-DeepONet. We propose to address this inefficiency
through a separation of input variables.

4

Under review as submission to TMLR

2.3 Separation of Variables

The method of separation of variables seeks solutions to PDEs of the form s(y) = T (t)Y1(y1) · · ·Yd(yd) for an
input point y = (t, y1, . . . , yd) and univariate functions T, Y1, . . . , Yd. Suppose we have a linear PDE system

M[t]s(y) = L1[y1]s(y) + · · · + Ld[yd]s(y), (6)

where M[t] = d
dt + h(t) is a first order differential operator of t, and L1[y1], ...,Ld[yd] are linear second

order ordinary differential operators of their respective variables y1, ..., yd only. Furthermore, assume we are
provided Robin boundary conditions in each variable and separable initial condition s(t = 0, y1, . . . , yd) =∏d
n=1 ϕn(yn) for functions ϕn(yn) that satisfy the boundary conditions. Then, leveraging Sturm-Liouville

theory and some massaging, the solution to this problem can be written

s(y) = s(t, y1, . . . , yd) =
∑
k

AkT
k(t)

d∏
n=1

Y kn (yn), (7)

where k is a lumped index that counts over infinite eigenfunctions of each Li operator (potentially with
repeats). For example, given n ∈ {1, ..., d}, LnY kn (yn) = λknY

k
n for eigenvalue λkn ∈ R. T k(t) depends on all

the eigenvalues λkn corresponding to index k. Ak ∈ R is a coefficient determined by the initial condition.
More details can be found in Appendix C. The method of separation of variables applied to a linear heat
equation example can be found in Appendix D.2.

One may notice the resemblance between the form of the DeepONet prediction in (3) with (7), provided
βk = Ak and τk = T k(t)

∏d
i=1 Y

k
i (yi), with appropriately ordered k. We leverage this similarity explicitly in

the construction of SepONet below.

3 Separable Operator Networks (SepONet)

Inspired by the method of separation of variables (7) and recent work on separable PINN (Cho et al.,
2024), we propose using separable operator networks (SepONet) to learn basis functions separately for
different coordinate axes. SepONet approximates the solution operator of a PDE system by, for given point
y = (y1, . . . , yd),

Gθ(u)(y1, . . . , yd) =
r∑

k=1
βk

d∏
n=1

τn,k

= bψ(E(u)) ·
(
t1ϕ1

(y1) ⊙ t2ϕ2
(y2) ⊙ · · · ⊙ tdϕd

(yd)
)
,

(8)

where ⊙ is the Hadamard (element-wise) vector product and · is the vector dot product. Here, βk = bψ(E(u))k
is the k-th output of the branch net, as in DeepONet. However, unlike DeepONet, which employs a single
trunk net that processes each collocation point y individually, SepONet uses d independent trunk nets,
tnϕn

: R → Rr for n = 1, . . . , d. In particular, τn,k = tnϕn
(yn)k denotes the k-th output of the n-th trunk net.

Importantly, the parameters of the n-th trunk net ϕn are independent of all other trunk net parameter sets.
Viewed through the 3-step approximation framework (2), SepONet and DeepONet have identical encoder
and approximator but different decoders.

Equation (8) can be understood as a low-rank approximation of the solution operator by truncating the basis
function series (represented by the output shape of the trunk nets) at a maximal number of ranks r. SepONet
not only enjoys the advantage that basis functions for different variables with potentially different scales can
be learned more easily and efficiently, but also allows for fast and efficient training by leveraging forward-
mode automatic differentiation, which we will discuss in Section 3.1 and Section 3.2. Moreover, despite
the resemblance between (8) and the separation of variables method for linear PDEs (7) (discussed below
in Section 3.1.3), we find that SepONet can effectively approximate the solutions to nonlinear parametric
PDEs. Indeed, we provide a universal approximation theorem for separable operator networks in Section 3.3
and extensive accuracy and performance scaling numerical experiments for nonlinear and inseparable PDEs
in Section 4.

5

Under review as submission to TMLR

Finally, it is worth noting that if one is only interested in solving deterministic PDEs under a certain
configuration (i.e., u is fixed), then the coefficients βk are also fixed and can be absorbed by the basis
functions. In this case, SepONet will reduce to separable PINN Cho et al. (2024), which has been proven to
be efficient and accurate in solving single-scenario PDE systems (Es’ kin et al., 2024; Oh et al., 2024).

3.1 SepONet Architecture and Implementation Details

Suppose we are provided a computation domain K1 = [0, 1]d of dimension d and an input function u. To
evaluate the residual loss term in equation (5) on Nr random collocation points, PI-DeepONet samples all
Nr points directly from K1. However, if Nr can be approximately factorized as N1 × N2 × · · · × Nd (e.g.,
1024 = 16×8×8 for d = 3), and we relax the Monte Carlo sampling requirement for d-dimensional collocation
points, SepONet only needs to randomly sample Nn points along the n-th coordinate axis, resulting in a
total of N1 +N2 + · · · +Nd samples.

It is important to note that SepONet’s mapping from N1 +N2 + · · ·+Nd inputs to N1 ×N2 ×· · ·×Nd outputs
is most efficient when using regular grid sampling. However, we have empirically demonstrated (in Section
4) that this per-axis grid-based sampling strategy does not degrade SepONet’s accuracy compared to PI-
DeepONet’s Monte Carlo random sampling over the entire domain K1. Irregular domains may be sampled
by (a) dividing the irregular domain into subdomains each approximated by a regular grid, or (b) applying
a coordinate transformation to map the irregular domain onto a regular one (e.g., converting Cartesian to
polar coordinates for a circular domain).

For shorthand and generality, we will denote the dataset of input points for SepONet as D = {y(:)
1 , . . . , y

(:)
d }.

Each y
(:)
n = {y(i)

n }Nn
i=1 represents an array of Nn samples along the n-th coordinate axis for a total of

N1 + N2 + · · · + Nd samples. The initial and boundary points may be separately sampled from ∂K1; the
number of samples (NI and Nb) and sampling strategy are equivalent for SepONet and PI-DeepONet.

3.1.1 Forward Pass

The forward pass of SepONet, illustrated for d = 2 in Figure 1, follows the formulation (8) except generalized
to the computationally advantageous setting where predictions along a grid of collocation points are processed
in parallel. The formula can be expressed:

Gθ(u)(y(:)
1 , . . . , y

(:)
d) =

r∑
k=1

βk

d⊗
n=1

τ
(:)
n,k

=
r∑

k=1
bψ(E(u))k

(
t1ϕ1

(y(:)
1)k ⊗ t2ϕ2

(y(:)
2)k ⊗ · · · ⊗ tdϕd

(y(:)
d)k

)
,

(9)

where ⊗ is the (outer) tensor product, which produces an output predictive array along a meshgrid of
N1 ×N2 × · · · ×Nd collocation points. Notably, τ (:)

n,k = tnϕn
(y(:)
n)k represents a vector of Nn values produced

by the n-th trunk net along the k-th output mode after feeding all y(:)
n points. After taking the outer product

along each of n = 1, . . . , d dimensions for all r modes, the modes are sum-reduced with the predictions of
the branch net βk = bψ(E(u))k. While not shown here, our implementation also batches over input functions
{u(i)}Nf

i=1 for Nf functions. Thus, for only Nf +N1 + · · · +Nd inputs, SepONet produces a predictive array
with shape Nf ×N1 × · · · ×Nd.

3.1.2 Model Update

In evaluation of the physics loss (4), SepONet enables more efficient computation of high-order derivatives
in terms of both time and memory use compared to PI-DeepONet by leveraging forward-mode automatic
differentiation (AD) (Khan & Barton, 2015). This is fairly evident by the form of (9). For example, to

6

Under review as submission to TMLR

compute derivatives of all SepONet outputs with respect to the m-th variable ym:

∂Gθ(u)(y(:)
1 , ..., y

(:)
m , ..., y

(:)
d)

∂ym
=

r∑
k=1

βk

⊗
n ̸=m

τ
(:)
n,k

⊗
∂τ

(:)
m,k

∂ym
, (10)

where ∂τ
(:)
m,k

∂ym
is a vector of derivatives of the m-th trunk net’s k-th basis function evaluated along all inputs

to the m-th coordinate axis. One may notice that ∂τ
(:)
m,k

∂ym
can be written as a Jacobian-vector product (JVP)

of the Jacobian of the m-th trunk net’s r×Nm outputs with respect to all Nm inputs, and a length Nm × 1
tangent vector of 1’s:

∂τ
(:)
m,k

∂ym
:= e(k)J[tmϕm

(y(:)
m)]1, (11)

where e(k) selects the k-th output mode from the resulting r × Nm JVP output. This is equivalent to
forward-mode AD. Consequently, the derivatives along the m-th coordinate axis across the entire grid of
predictions can be obtained by pushing forward derivatives of the m-th trunk net, and then reusing the
outputs of all other n ̸= m trunk nets via outer product. By contrast, PI-DeepOnet must compute derivatives
∂Gθ(y(i)

1 , ..., y
(i)
d)/∂ym for each input-output pair individually, y(i) = (y(i)

1 , ..., y
(i)
d) for i = 1, ...,M , where

there is no such computational advantage and it is more prudent to use reverse-mode AD. Fundamentally, the
advantage of SepONet for using forward-mode AD can be attributed to the significantly smaller input-output
relationship when evaluating along coordinate grids RN1+···+Nd → RN1×···×Nd compared to PI-DeepONet
RM×d → RM×1 when we choose M = N1N2 · · ·Nd. The time and space complexity analysis below in
Section 3.2 provides a more descriptive breakdown of computational scaling behavior. For a more detailed
explanation of forward- and reverse-mode AD, we refer readers to Cho et al. (2024); Margossian (2019). Once
the physics loss is computed, often involving multiple evaluations of (10), reverse-mode AD is employed to
update the model parameters θ = (ψ, ϕ1, . . . , ϕd).

3.1.3 Inference

Once trained, SepONet can efficiently map input functions u to accurate output function predictions ŝ =
Gθ(u) along large spatiotemporal grids. This is achieved by combining the learned coefficients from the
branch net with the basis functions learned by the trunk nets. Indeed, intriguing comparisons can be
made between the results of the method of separation of variables (7) and trained SepONet predictions
(8). For an initial value problem with linear, separable PDE operator treated in Section 2.3, we might
expect SepONet to learn initial value function dependent coefficients bψ(E(u))k = Ak and spatiotemporal
basis functions tnϕn

(yn)k = Y kn (yn) (provided we supply one additional trunk net t0ϕ0
(t)k = T k(t) for the

temporal dimension) for appropriately ordered modes k and sufficiently large r. Examples of the learned
basis functions for a separable 1D time-dependent heat equation initial value problem example are provided
in Appendix D.2 as a function of the number of the trunk net output shape r. For a small number of modes
r = 1 or r = 2, SepONet learns nearly the exact spatiotemporal basis functions obtained by separation
of variables. For larger r, the SepONet basis functions do not converge to the analytically expected basis
functions. Nevertheless, approximation error is observed to improve with r, and near perfect accuracy is
obtained at large r by comparison to numerical estimates of the analytic solution.

While the form of SepONet predictions (8) resemble separation of variables, we note that the method of
separation of variables typically only applies to linear PDEs with restricted properties. In spite of this,
SepONet is capable of accurately approximating arbitrary operator learning problems (including nonlinear
PDEs) as guaranteed by a universal approximation property, provided below in Section 3.3.

3.2 Complexity Analysis

Suppose we are provided a computational domain K1 = [0, 1]d of dimension d. For PI-DeepONet, collocation
points are sampled randomly from the entire d-dimensional domain, with a total of M points. For SepONet,

7

Under review as submission to TMLR

Table 1: Time and space complexities of first-order derivatives of SepONet and PI-DeepONet with respect
to Nd collocation points using forward-mode and reverse-mode AD, respectively.

Method Time Complexity Space Complexity
SepONet (Forward AD) O(N · d · Lr2 +Nd · rd) O(N · rd+Nd)
PI-DeepONet (Reverse AD) O(Nd · Lr2) O(Nd · Lr)

as described previously in Section 3.1, we randomly sample N1 + N2 + · · · + Nd inputs for Nn points
along the n-th axis, and construct a Cartesian product grid in K1 via (9). The resulting output of PI-
DeepONet has shape M × 1, and the output of SepONet has shape N1 ×N2 × · · · ×Nd. For simplicity, we
assume all trunk nets are L-layer fully connected networks with hidden and output dimensions r, and that
N1 = N2 = · · · = Nd = N , and M = Nd. The resulting time and space complexity to compute first-order
derivatives of all SepONet and PI-DeepONet outputs is provided in Table 1.

The first term in SepONet’s time and space complexity is due to the forward-mode AD computation of each of
the d trunk networks derivatives with respect to N inputs per axis. The second term, containing Nd, is from
computing and storing the tensor product. On the other hand, PI-DeepONet individually backpropagates
all M = Nd outputs, resulting in complexity scaling with Nd.

From this analysis, in the limiting case of Nd−1 ≫ Lr, we observe that both SepONet and PI-DeepONet
have time and space complexities that include Nd due to evaluations over all points in a d-dimensional space.
However, since typically d ≪ Lr, SepONet is more efficient in practice due to smaller coefficients in the Nd

term. Moreover, the tensor product in SepONet can be greatly accelerated by GPU parallelization, which
is not taken into account in this analysis. In the limiting case Lr ≫ Nd−1, the first term in SepONet’s time
complexity dominates O(N · d · Lr2), or in other words, it scales linearly with dimension and sub-linearly
with the total number of collocation points Nd. This situation is not uncommon in many practical 2D and
3D operator learning problems.

Note that Table 1 only considered first-order derivatives. Higher-order derivatives are typically needed to
evaluate physics loss functions (5). Fortunately, higher-order derivatives for SepONet are computed with
similar complexity to Table 1, since they amount to sequentially repeating the Jacobian-vector products
(JVP) from (10) and (11). Lastly, we did not consider the parameter update for training with a physics loss
in Table 1, since it requires further assumptions about the composition of the branch network, and it is not
typically the limiting computation for either PI-DeepONet or SepONet.

3.3 Universal Approximation Property of SepONet

The universal approximation property of DeepONet has been discussed in Chen & Chen (1995); Lu et al.
(2021). Here we present the universal approximation theorem to show that proposed separable operator
networks can also approximate any nonlinear continuous operators that map infinite-dimensional function
spaces to others.
Theorem 1 (Universal Approximation Theorem for Separable Operator Networks). Suppose that σ is a
Tauber-Wiener function, g is a sinusoidal function, X is a Banach space, K ⊆ X , K1 ⊆ Rd1 and K2 ⊆ Rd2

are three compact sets in X , Rd1 and Rd2 , respectively, U is a compact set in C (K), G is a nonlinear
continuous operator, which maps U into a compact set S ⊆ C (K1 ×K2), then for any ϵ > 0, there are
positive integers n, r, m, constants cki , ζ1

k , ζ2
k , ξkij, θki ∈ R, points ω1

k ∈ Rd1 , ω2
k ∈ Rd2 , xj ∈ K, i = 1, . . . , n,

k = 1, . . . , r, j = 1, . . . ,m, such that∣∣∣∣∣∣∣∣∣∣
G(u)(y) −

r∑
k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju (xj) + θki

︸ ︷︷ ︸

branch

g
(
w1
k · y1 + ζ1

k

)︸ ︷︷ ︸
trunk1

g
(
w2
k · y2 + ζ2

k

)︸ ︷︷ ︸
trunk2

∣∣∣∣∣∣∣∣∣∣
< ϵ (12)

holds for all u ∈ U , y = (y1, y2) ∈ K1 ×K2.

8

Under review as submission to TMLR

Proof. The proof can be found in Appendix A.2.

Remark 1. The definition of the Tauber-Wiener function is given in Appendix A.1. It is worth noting that
many common-used activations, such as ReLU, GELU and Tanh, are Tauber-Wiener functions.
Remark 2. Here we show the approximation property of a separable operator network with two trunk nets,
by repeatedly applying trigonometric angle addition formula, it is trivial to separate y as (y1, y2, . . . , yd) ∈
K1 ×K2 × . . .×Kd and extend (12) to d trunk nets.
Remark 3. In our assumptions, we restrict the activation function for the trunk nets to be sinusoidal. This
choice is motivated by the natural suitability of sinusoidal functions for constructing basis functions (Stein
& Shakarchi, 2011) and their empirical effectiveness in solving PDEs (Sitzmann et al., 2020). However, it
would be interesting to explore whether Theorem 1 still holds when g is a more general activation function,
such as a Tauber-Wiener function. We will leave this investigation for future work.
Remark 4. Here we assume a two-layer branch network and d one-layer trunk networks with sinusoidal ac-
tivations. For practical implementation, our theoretical results can be extended to multi-layer trunk networks
by leveraging the Universal Approximation Theorem (UAT) to approximate sinusoidal functions.
Remark 5. Theorem 1 suggests the existence of a separable operator network approximation for any non-
linear continuous operator. This does not imply error bounds nor tractable scaling laws with respect to any
specific error metric, nor does it provide a prescription for how to define and update model parameters.
Below we will provide experimental evidence that error scaling is comparable to PI-DeepONet when using
physics-informed operator learning. Please note that error bounds for the supervised training of DeepONet
have been previously derived by Lanthaler et al. (2022); similar error bounds for SepONet are not provided
in this work.

4 Numerical Results

This section presents comprehensive numerical studies demonstrating the expressive power and effectiveness
of SepONet compared to PI-DeepONet on various time-dependent PDEs: diffusion-reaction, advection,
Burgers’, and (2+1)-dimensional nonlinear diffusion equations. Both models were trained by optimizing the
physics loss (equation (4)) on a dataset D consisting of input functions, residual points, initial points, and
boundary points. PDE definitions are summarized in Table 2.

We set the number of residual points to Nr = Nd = Nc, where d is the problem dimension and N is
an integer. Here, Nc refers to the total number of training points. For SepONet, the residual points are
generated by randomly sampling N points along each axis and constructing a Cartesian product grid. In
contrast, for PI-DeepONet, the Nd residual points are randomly sampled from the entire d-dimensional
domain. The number of initial and boundary points per axis is set to NI = Nb = N = d

√
Nc, and these

points are also randomly sampled from the solution domain. For each PDE, the model size remains fixed as
Nc or Nf varies. Specifically, both PI-DeepONet and SepONet have branch and trunk networks of the same
size; the main difference is that SepONet uses d independent trunk networks, one for each axis.

We evaluate both models by varying the number of input functions (Nf) and training points (Nc) across four
key perspectives: test accuracy, GPU memory usage, training time, and extreme-scale learning capabilities.
The main results are illustrated in Figure 2 and Figure 3, with complete test results reported in Appendix B.3.
Loss functions, training details, and problem-specific parameters are provided in Appendix B.1 and Appendix
B.2. We provide additional ablation studies for our test results using trunk networks with hyperbolic tangent
activation functions in Appendix B.4.1, and varied number of input sensors for the branch net in Appendix
B.4.2.

4.1 Test accuracy

Both PI-DeepONet and SepONet demonstrate improved accuracy when increasing either the number of
training points (Nc) or the number of input functions (Nf), while fixing the other parameter. This trend is
consistent across all four equations tested.

9

Under review as submission to TMLR

Table 2: Summary of PDE test problems.
Governing Law Domain Equation Form Initial Condition Boundary Condition

Diffusion-reaction x ∈ [0, 1], t ∈ [0, 1] ∂s

∂t
= D

∂2s

∂x2 + ks2 + u(x) s(x, 0) = 0 s(0, t) = 0, s(1, t) = 0

Advection x ∈ [0, 1], t ∈ [0, 1] ∂s

∂t
+ u(x) ∂s

∂x
= 0 s(x, 0) = sin(πx) s(0, t) = sin

(π
2 t
)

Burgers’ x ∈ [0, 1], t ∈ [0, 1] ∂s

∂t
+ s

∂s

∂x
− ν

∂2s

∂x2 = 0 s(x, 0) = u(x) s(0, t) = s(1, t), ∂s
∂x

(0, t) = ∂s

∂x
(1, t)

2D Nonlinear diffusion x ∈ Ω = [0, 1]2, t ∈ [0, 1] ∂s

∂t
= α∇ · (s∇s) s(x, 0) = u(x) s(x, t) = 0 on ∂Ω

For instance, in the case of the diffusion-reaction equation, when fixing Nf = 100 and varying Nc from 82

to 1282, the relative ℓ2 error of PI-DeepONet decreases from 1.39% to 0.73%, while SepONet’s error reduces
from 1.49% to 0.62%. Conversely, when fixing Nc = 1282 and varying Nf from 5 to 100, PI-DeepONet’s
error drops from 34.54% to 0.73%, and SepONet’s reduces from 22.40% to 0.62%.

4.2 GPU memory usage

While both models show improved accuracy with increasing Nc or Nf , their memory usage patterns differ
significantly. This divergence is particularly evident in the case of the advection equation.

When fixing Nf = 100 and varying Nc, PI-DeepONet exhibits a steep increase in GPU memory consumption
during training, rising from 0.967 GB at Nc = 82 to 59.806 GB at Nc = 1282. In contrast, SepONet maintains
a relatively constant and low memory footprint during training, ranging between 0.713 GB and 0.719 GB
across the same range of Nc. Similarly, when fixing Nc = 1282 and varying Nf from 5 to 100, PI-DeepONet’s
memory usage escalates from 3.021 GB to 59.806 GB. SepONet, however, maintains a stable memory usage
throughout this range.

4.3 Training time

The training time scaling exhibits a pattern similar to memory usage, as demonstrated by the advection equa-
tion example. As Nc increases from 82 to 1282 with fixed Nf = 100, PI-DeepONet’s training time increases
significantly from 0.0787 to 8.231 hours (2.361 to 246.93 ms per iteration). In contrast, SepONet maintains
relatively stable training times, ranging from 0.0730 to 0.0843 hours (2.19 to 2.529 ms per iteration) over the
same Nc range. Similarly, when varying Nf from 5 to 100 with fixed Nc = 1282, PI-DeepONet’s training time
increases from 0.3997 to 8.231 hours (11.991 to 246.93 ms per iteration). SepONet, however, keeps training
times between 0.0730 and 0.0754 hours. These results demonstrate SepONet’s superior scalability in terms
of training time. The ability to maintain near-constant training times across a wide range of problem sizes
is a significant advantage, particularly for large-scale applications where computational efficiency is crucial.

4.4 Extreme-scale learning

The Burgers’ and nonlinear diffusion equations highlight SepONet’s capabilities in extreme-scale learning
scenarios.

For the Burgers’ equation, PI-DeepONet encounters memory limitations at larger scales. As seen in Figure
2(c), PI-DeepONet can only compute up to Nc = 642, achieving a relative ℓ2 error of 13.72%. In contrast,
SepONet continues to improve, reaching a 7.51% error at Nc = 1282. The nonlinear diffusion equation
further emphasizes this difference. In Figure 3(d), PI-DeepONet results are entirely unavailable due to out-
of-memory issues. SepONet, however, efficiently handles this complex problem, achieving a relative ℓ2 error
of 6.44% with Nc = 1283 and Nf = 100. Table 3 demonstrates SepONet’s ability to tackle even larger scales
for the Burgers’ equation. It achieves a relative ℓ2 error as low as 4.12% with Nc = 5122 and Nf = 800, while
maintaining reasonable memory usage (10.485 GB) and training time (0.478 hours). These results underscore
SepONet’s capability to handle extreme-scale learning problems beyond the reach of PI-DeepONet due to
computational constraints.

10

Under review as submission to TMLR

Figure 2: Performance comparison of PI-DeepONet and SepONet with varying number of training points
(Nc) and fixed number of input functions (Nf = 100). Results show test accuracy, GPU memory usage,
and training time for four PDEs. As Nc increases, both models demonstrate improved accuracy, but PI-
DeepONet exhibits significant increases in training time and memory usage, while SepONet maintains better
computational efficiency.

Figure 3: Performance comparison of PI-DeepONet and SepONet with increasing number of input functions
(Nf) and fixed number of training points (Nc = 128d, where d is the problem dimension). Both models show
improved accuracy with increasing Nf , but PI-DeepONet’s computational resources scale poorly compared
to SepONet’s more efficient scaling. Note: PI-DeepONet results for the (2+1)-dimensional diffusion equation
are unavailable due to memory constraints.

Table 3: Additional SepONet results for Burgers’ equation, demonstrating that larger Nc and Nf can be
used to enhance accuracy with minimal cost increase.

Metrics \ Nc & Nf 1282 & 400 1282 & 800 2562 & 400 2562 & 800 5122 & 400 5122 & 800
Relative ℓ2 error (%) 6.60 6.21 5.68 4.46 5.38 4.12

Memory (GB) 0.966 1.466 2.466 4.466 5.593 10.485
Training time (hours) 0.0771 0.0957 0.1238 0.1717 0.2751 0.478

11

Under review as submission to TMLR

5 Discussion

The field of operator learning faces a critical dilemma. Deep Operator Networks (DeepONets) offer fast
training but require extensive data generation, which can be prohibitively expensive or impractical for
complex systems. Physics-informed DeepONets (PI-DeepONets) relax the data requirement but at the cost
of resource-intensive training processes. This creates a challenging trade-off: balancing resource allocation
either before training (data generation) or during training (computational resources).

Our proposed Separable Operator Networks (SepONet) effectively address both of these concerns. Inspired
by the separation of variables technique typically used for linear PDEs, SepONet constructs its own basis
functions to approximate a nonlinear operator. SepONet’s expressive power is guaranteed by the universal
approximation property (Theorem 1), ensuring it can approximate any nonlinear continuous operator with
arbitrary accuracy. Our numerical results corroborate this theoretical guarantee, demonstrating SepONet’s
ability to handle complex, nonlinear systems efficiently.

By leveraging independent trunk networks for different variables, SepONet enables an efficient implementa-
tion via forward-mode automatic differentiation (AD). This approach achieves remarkable efficiency in both
data utilization and computational resources. SepONet is trained solely by optimizing the physics loss, elimi-
nating the need for expensive simulations to generate ground truth PDE solutions. In terms of computational
resources, SepONet maintains stable GPU memory usage and training time, even with increasing training
data and network size, in contrast to PI-DeepONet’s dramatic resource consumption increases under similar
scaling. We anticipate that SepONet’s advantages will allow it to tackle more challenging physics-informed
operator learning problems, such as the Navier-Stokes equations (Jin et al., 2021), where both input and
output functions are vector-valued. These are problems that PI-DeepONet may struggle to train on due
to resource constraints. As an example, we have considered a (2+1)-dimensional Navier-Stokes equation,
previously investigated in the context of PINN (Cho et al., 2024; Wang et al., 2024). Some early, preliminary
results can be found in Appendix D.1.

However, SepONet has certain limitations that warrant further research and development. The mesh grid
structure of SepONet’s solution, while enabling efficient training through forward-mode AD, may limit its
flexibility in handling PDEs with irregular geometries. Addressing this limitation could involve developing
adaptations or hybrid approaches that accommodate more complex spatial domains (Li et al., 2023; Serrano
et al., 2024; Fang et al., 2024), potentially expanding SepONet’s applicability to a broader range of physical
problems.

Additionally, while the linear decoder allows for an efficient SepONet implementation, a very large number
of basis functions may be needed for accurate linear representation in some problems (Seidman et al., 2022).
Developing a nonlinear decoder version of SepONet will be useful to balance accuracy and efficient training.
Moreover, implementing an adaptive weighting strategy (Wang et al., 2021a; 2022a;b) for different loss terms
in the physics loss function, instead of using predefined fixed weights, could lead to improved accuracy and
faster convergence.

Finally, empirical observations suggest that training accuracy and robustness improve with an increase in
input training functions. However, the neural scaling laws in physics-informed operator learning remain
unexplored, presenting an intriguing theoretical challenge for future investigation.

References
Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural operators.

arXiv e-prints, pp. arXiv–2204, 2022.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic
differentiation in machine learning: a survey. Journal of machine learning research, 18(153):1–43, 2018.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: compos-
able transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

12

http://github.com/google/jax

Under review as submission to TMLR

Shengze Cai, Zhicheng Wang, Lu Lu, Tamer A Zaki, and George Em Karniadakis. Deepm&mnet: Inferring
the electroconvection multiphysics fields based on operator approximation by neural networks. Journal of
Computational Physics, 436:110296, 2021.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEEE transactions on neural
networks, 6(4):911–917, 1995.

Pao-Hsiung Chiu, Jian Cheng Wong, Chinchun Ooi, My Ha Dao, and Yew-Soon Ong. Can-pinn: A fast
physics-informed neural network based on coupled-automatic–numerical differentiation method. Computer
Methods in Applied Mechanics and Engineering, 395:114909, 2022.

Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park. Separable
physics-informed neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide, 2014.

Vasiliy A Es’ kin, Danil V Davydov, Julia V Gur’eva, Alexey O Malkhanov, and Mikhail E Smorkalov.
Separable physics-informed neural networks for the solution of elasticity problems. arXiv preprint
arXiv:2401.13486, 2024.

Zhiwei Fang, Sifan Wang, and Paris Perdikaris. Learning only on boundaries: a physics-informed neural
operator for solving parametric partial differential equations in complex geometries. Neural Computation,
36(3):475–498, 2024.

Pulkit Gopalani, Sayar Karmakar, DIBYAKANTI KUMAR, and Anirbit Mukherjee. Towards size-
independent generalization bounds for deep operator nets. Available at SSRN 4763746.

Jiaqi Gu, Zhengqi Gao, Chenghao Feng, Hanqing Zhu, Ray Chen, Duane Boning, and David Pan. Neurolight:
A physics-agnostic neural operator enabling parametric photonic device simulation. Advances in Neural
Information Processing Systems, 35:14623–14636, 2022.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde modeling.
arXiv preprint arXiv:2209.15616, 2022.

Di He, Shanda Li, Wenlei Shi, Xiaotian Gao, Jia Zhang, Jiang Bian, Liwei Wang, and Tie-Yan Liu. Learn-
ing physics-informed neural networks without stacked back-propagation. In International Conference on
Artificial Intelligence and Statistics, pp. 3034–3047. PMLR, 2023.

Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the curse of dimen-
sionality with physics-informed neural networks. Neural Networks, 176:106369, 2024.

Arieh Iserles. A first course in the numerical analysis of differential equations. Number 44. Cambridge
university press, 2009.

Zhongyi Jiang, Min Zhu, Dongzhuo Li, Qiuzi Li, Yanhua O Yuan, and Lu Lu. Fourier-mionet: Fourier-
enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration.
arXiv preprint arXiv:2303.04778, 2023.

Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. Nsfnets (navier-stokes flow nets): Physics-
informed neural networks for the incompressible navier-stokes equations. Journal of Computational
Physics, 426:109951, 2021.

Karthik Kashinath, M Mustafa, Adrian Albert, JL Wu, C Jiang, Soheil Esmaeilzadeh, Kamyar Azizzade-
nesheli, R Wang, Ashesh Chattopadhyay, A Singh, et al. Physics-informed machine learning: case studies
for weather and climate modelling. Philosophical Transactions of the Royal Society A, 379(2194):20200093,
2021.

Kamil A Khan and Paul I Barton. A vector forward mode of automatic differentiation for generalized
derivative evaluation. Optimization Methods and Software, 30(6):1185–1212, 2015.

13

Under review as submission to TMLR

Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees and filtered
transformations. Differentiable Programming workshop at Neural Information Processing Systems 2021,
2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer. Machine
learning–accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences, 118
(21):e2101784118, 2021.

Katiana Kontolati, Somdatta Goswami, George Em Karniadakis, and Michael D Shields. Learning nonlinear
operators in latent spaces for real-time predictions of complex dynamics in physical systems. Nature
Communications, 15(1):5101, 2024.

Jean Kossaifi, Nikola Kovachki, Kamyar Azizzadenesheli, and Anima Anandkumar. Multi-grid tensorized
fourier neural operator for high-resolution pdes. arXiv preprint arXiv:2310.00120, 2023.

Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for deeponets: A deep
learning framework in infinite dimensions. Transactions of Mathematics and Its Applications, 6(1):tnac001,
2022.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling. Advances
in Neural Information Processing Systems, 36, 2024.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv
preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Graph kernel network for partial differential equations. arXiv
preprint arXiv:2003.03485, 2020b.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with
learned deformations for pdes on general geometries. Journal of Machine Learning Research, 24(388):
1–26, 2023.

Chensen Lin, Zhen Li, Lu Lu, Shengze Cai, Martin Maxey, and George Em Karniadakis. Operator learning
for predicting multiscale bubble growth dynamics. The Journal of Chemical Physics, 154(10), 2021.

Hao Liu, Haizhao Yang, Minshuo Chen, Tuo Zhao, and Wenjing Liao. Deep nonparametric estimation of
operators between infinite dimensional spaces. arXiv preprint arXiv:2201.00217, 2022a.

Ziyue Liu, Xinling Yu, and Zheng Zhang. Tt-pinn: a tensor-compressed neural pde solver for edge computing.
arXiv preprint arXiv:2207.01751, 2022b.

Ziyue Liu, Yixing Li, Jing Hu, Xinling Yu, Shinyu Shiau, Xin Ai, Zhiyu Zeng, and Zheng Zhang. Deepoheat:
operator learning-based ultra-fast thermal simulation in 3d-ic design. In 2023 60th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6. IEEE, 2023.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via deeponet based on the universal approximation theorem of operators. Nature machine
intelligence, 3(3):218–229, 2021.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and George Em
Karniadakis. A comprehensive and fair comparison of two neural operators (with practical extensions)
based on fair data. Computer Methods in Applied Mechanics and Engineering, 393:114778, 2022a.

14

Under review as submission to TMLR

Lu Lu, Raphaël Pestourie, Steven G Johnson, and Giuseppe Romano. Multifidelity deep neural operators
for efficient learning of partial differential equations with application to fast inverse design of nanoscale
heat transport. Physical Review Research, 4(2):023210, 2022b.

Zhiping Mao, Lu Lu, Olaf Marxen, Tamer A Zaki, and George Em Karniadakis. Deepm&mnet for hyper-
sonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network
approximation of operators. Journal of computational physics, 447:110698, 2021.

Charles C Margossian. A review of automatic differentiation and its efficient implementation. Wiley inter-
disciplinary reviews: data mining and knowledge discovery, 9(4):e1305, 2019.

Jaemin Oh, Seung Yeon Cho, Seok-Bae Yun, Eunbyung Park, and Youngjoon Hong. Separable physics-
informed neural networks for solving the bgk model of the boltzmann equation. arXiv preprint
arXiv:2403.06342, 2024.

Oded Ovadia, Adar Kahana, Panos Stinis, Eli Turkel, and George Em Karniadakis. Vito: Vision transformer-
operator. arXiv preprint arXiv:2303.08891, 2023.

Ravi Shankar Palani. spinop.m (spin operator). https://www.mathworks.com/matlabcentral/
fileexchange/71536-spinop-m-spin-operator, 2024. MATLAB Central File Exchange. Retrieved June
28, 2024.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay, Morteza
Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcastnet: A
global data-driven high-resolution weather model using adaptive fourier neural operators. arXiv preprint
arXiv:2202.11214, 2022.

Stephen B Pope. Turbulent flows. Measurement Science and Technology, 12(11):2020–2021, 2001.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378:686–707, 2019.

Matthias Seeger. Gaussian processes for machine learning. International journal of neural systems, 14(02):
69–106, 2004.

Jacob Seidman, Georgios Kissas, Paris Perdikaris, and George J Pappas. Nomad: Nonlinear manifold
decoders for operator learning. Advances in Neural Information Processing Systems, 35:5601–5613, 2022.

Louis Serrano, Lise Le Boudec, Armand Kassaï Koupaï, Thomas X Wang, Yuan Yin, Jean-Noël Vittaut, and
Patrick Gallinari. Operator learning with neural fields: Tackling pdes on general geometries. Advances in
Neural Information Processing Systems, 36, 2024.

Khemraj Shukla, Vivek Oommen, Ahmad Peyvan, Michael Penwarden, Luis Bravo, Anindya Ghoshal,
Robert M Kirby, and George Em Karniadakis. Deep neural operators can serve as accurate surrogates for
shape optimization: a case study for airfoils. arXiv preprint arXiv:2302.00807, 2023.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. Advances in neural information processing systems, 33:
7462–7473, 2020.

Elias M Stein and Rami Shakarchi. Fourier analysis: an introduction, volume 1. Princeton University Press,
2011.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural operators.
arXiv preprint arXiv:2111.13802, 2021.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies in
physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081, 2021a.

15

https://www.mathworks.com/matlabcentral/fileexchange/71536-spinop-m-spin-operator
https://www.mathworks.com/matlabcentral/fileexchange/71536-spinop-m-spin-operator

Under review as submission to TMLR

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605, 2021b.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Improved architectures and training algorithms for deep
operator networks. Journal of Scientific Computing, 92(2):35, 2022a.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent kernel
perspective. Journal of Computational Physics, 449:110768, 2022b.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality for training physics-informed
neural networks. Computer Methods in Applied Mechanics and Engineering, 421:116813, 2024.

Karl Weierstrass. Über die analytische darstellbarkeit sogenannter willkürlicher functionen einer reellen
veränderlichen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 2
(633-639):364, 1885.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-fno—an
enhanced fourier neural operator-based deep-learning model for multiphase flow. Advances in Water
Resources, 163:104180, 2022.

Yequan Zhao, Xinling Yu, Zhixiong Chen, Ziyue Liu, Sijia Liu, and Zheng Zhang. Tensor-compressed back-
propagation-free training for (physics-informed) neural networks. arXiv preprint arXiv:2308.09858, 2023.

16

Under review as submission to TMLR

A Universal Approximation Theorem for Separable Operator Networks

Here we present the universal approximation theorem for the proposed separable operator networks, originally
written in Theorem 1 and repeated below in Theorem 5. We begin by reviewing established theoretical results
on approximating continuous functions and functionals. Following this review, we introduce the preliminary
lemmas and proofs necessary for understanding Theorem 5. We refer our readers to Chen & Chen (1995);
Weierstrass (1885) for detailed proofs of Theorems 2, 3, 4. Main notations are listed in Table 4.

A.1 Preliminaries and Auxiliary Results

Definition 1 (Tauber-Wiener (TW)). If a function g : R → R (continuous or discontinuous) satisfies that
all the linear combinations

∑N
i=1 cig (λix+ θi), λi ∈ R, θi ∈ R, ci ∈ R, i = 1, 2, . . . , N , are dense in every

C[a, b], then g is called a Tauber-Wiener (TW) function.
Remark 1 (Density in C[a, b]). A set of functions is said to be dense in C[a, b] if every function in the
space of continuous functions on the interval [a, b] can be approximated arbitrarily closely by functions from
the set.
Definition 2 (Compact Set). Suppose that X is a Banach space, V ⊆ X is called a compact set in X, if
for every sequence {xn}∞

n=1 with all xn ∈ V , there is a subsequence {xnk
}, which converges to some element

x ∈ V .
Theorem 2 (Chen & Chen (1995)). Suppose that K is a compact set in Rn, S is a compact set in C(K),
g ∈ (TW), then for any ϵ > 0, there exist a positive integer N , real numbers θi, vectors ωi ∈ Rn, i = 1, . . . , N ,
which are independent of f ∈ C(K) and constants ci(f), i = 1, . . . , N depending on f , such that∣∣∣∣∣f(x) −

N∑
i=1

ci(f)g (ωi · x+ θi)

∣∣∣∣∣ < ϵ (13)

holds for all x ∈ K and f ∈ S. Moreover, each ci(f) is a linear continuous functional defined on S.
Theorem 3 (Chen & Chen (1995)). Suppose that σ ∈ (TW), X is a Banach Space, K ⊆ X is a compact
set, U is a compact set in C(K), f is a continuous functional defined on U , then for any ϵ > 0, there are
positive integers N , m points x1, . . . , xm ∈ K, and real constants ci, θi, ξij, i = 1, . . . , N , j = 1, . . . ,m, such
that ∣∣∣∣∣∣f(u) −

N∑
i=1

ciσ

 m∑
j=1

ξiju (xj) + θi

∣∣∣∣∣∣ < ϵ (14)

holds for all u ∈ U .
Theorem 4 (Weierstrass Approximation Theorem Weierstrass (1885)). Suppose f ∈ C[a, b], then for every
ϵ > 0, there exists a polynomial p such that for all x in [a, b], we have |f(x) − p(x)| < ϵ.

Corollary 1. Trigonometric polynomials are dense in the space of continuous and periodic functions
C̃[0, 2π] := {f ∈ C[0, 2π] | f(0) = f(2π)}.

Proof. For any f̃ ∈ C̃[0, 2π], extend it to a 2π-periodic and continuous function f defined on R. It suffices
to show that there exists a trigonometric polynomial that approximates f within any ϵ > 0. We construct
the continuous even functions of 2π period g and h as:

g(θ) = f(θ) + f(−θ)
2 and h(θ) = f(θ) − f(−θ)

2 sin(θ). (15)

Let ϕ(x) = g(arccosx) and ψ(x) = h(arccosx). Since ϕ, ψ are continuous functions on [−1, 1], by the
Weierstrass Approximation Theorem 4, for any ϵ > 0, there exist polynomials p and q such that

|ϕ(x) − p(x)| < ϵ

4 and |ψ(x) − q(x)| < ϵ

4 (16)

17

Under review as submission to TMLR

Table 4: Notations and Symbols
X some Banach space with norm ∥ · ∥X
Rd Euclidean space of dimension d
K some compact set in a Banach space
C(K) Banach space of all continuous functions defined on K, with norm ∥f∥C(K) = maxx∈K |f(x)|
C̃[a, b] the space of functions in C[a, b] satisfying f(a) = f(b)
V some compact set in C(K)
u(x) some input function
U the space of input functions
G some continuous operator
G(u)(y) or s(y) some output function that is mapped from the corresponding input function u by the operator G
S the space of output functions
(TW) all the Tauber-Wiener functions
σ and g activation function for branch net and trunk nets in Theorem 5
{x1, x2, . . . , xm} m sensor points for identifying input function u
r rank of some deep operator network or separable operator network
n,m operator network size hyperparameters in Theorem 5

holds for all x ∈ [−1, 1]. Let x = cos θ, it follows that

|g(θ) − p(cos θ)| < ϵ

4 and |h(θ) − q(cos θ)| < ϵ

4 (17)

for θ ∈ [0, π]. Because g, h and cosine are even and 2π-periodic, (17) holds for all θ ∈ R. From the definitions
of g and h, and the fact |sin θ| ≤ 1,

∣∣sin2 θ
∣∣ ≤ 1, we have∣∣∣∣f(θ) + f(−θ)

2 sin2 θ − p(cos θ) sin2 θ

∣∣∣∣ < ϵ

4 and
∣∣∣∣f(θ) − f(−θ)

2 sin2 θ − q(cos θ) sin θ
∣∣∣∣ < ϵ

4 . (18)

Using the triangle inequality, we obtain∣∣f(θ) sin2 θ −
[
p(cos θ) sin2 θ + q(cos θ) sin θ

]∣∣ < ϵ

2 . (19)

Applying the same analysis to

g̃(θ) =
f(θ + π

2) + f(−θ + π
2)

2 and h̃(θ) =
f(θ + π

2) − f(−θ + π
2)

2 sin(θ), (20)

we can find polynomials r and s such that∣∣∣f (θ + π

2

)
sin2 θ −

[
r(cos θ) sin2 θ + s(cos θ) sin θ

]∣∣∣ < ϵ

2 (21)

holds for all θ. Substituting θ with θ − π
2 gives∣∣f(θ) cos2 θ −
[
r(sin θ) cos2 θ − s(sin θ) cos θ

]∣∣ < ϵ

2 . (22)

By the triangle inequality, combining (22) and (19) gives∣∣f(θ) −
[
r(sin θ) cos2 θ − s(sin θ) cos θ + p(cos θ) sin2 θ + q(cos θ) sin θ

]∣∣ < ϵ (23)

holds for all θ. Thus, the trigonometric polynomial

r(sin θ) cos2 θ − s(sin θ) cos θ + p(cos θ) sin2 θ + q(cos θ) sin θ (24)

is an ϵ-approximation to f .

18

Under review as submission to TMLR

Remark 2. If p(x) is a polynomial, it is easy to verify that p(cos θ) is a trigonometric polynomial due to
the fact cosn θ =

∑n
k=0

(n
k)

2n cos ((n− 2k)θ).

Prior to proving Theorem 5, we need to establish the following lemmas.
Lemma 1. Sine is a Tauber-Wiener function.

Proof. Assuming the interval to be [0, π] first. For every continuous function f on [0, π] and any ϵ > 0, we
can extend f to a continuous function F on [0, 2π] so that F (x) = f(x) on [0, π] and F (2π) = F (0). By
Lemma 1, there exists a trigonometric polynomial

p(x) = a0 +
N∑
n=1

an cos(nx) + bn sin(nx) (25)

such that
sup

x∈[0,π]
|f(x) − p(x)| ≤ sup

x∈[0,2π]
|F (x) − p(x)| < ϵ. (26)

Let c0 = a0, λ0 = 0, θ0 = π
2 , c2n−1 = bn, λ2n−1 = n, θ2n−1 = 0, c2n = an, λ2n = n, θ2n = π

2 , for
n = 1, 2, . . . , N , p(x) is redefined as

p(x) =
2N∑
i=0

ci sin (λix+ θi) . (27)

Thus we have ∣∣∣∣∣f(x) −
2N∑
i=0

ci sin (λix+ θi)

∣∣∣∣∣ < ϵ (28)

for x ∈ [0, π]. Now consider a continuous function g on [a, b], define f(x) ∈ C[0, π] := g
(
b−a
π x+ a

)
, then by

(28), we have ∣∣∣∣∣g(x) −
2N∑
i=0

ci sin
(
πλi
b− a

x− πλia

b− a
+ θi

)∣∣∣∣∣ < ϵ (29)

holds for all x ∈ [a, b]. Therefore, it follows that for any continuous function g on [a, b] and any ϵ > 0, we
can approximate g within ϵ by choosing N sufficiently large and adjusting ci, λi, θi accordingly. Hence, the
set of all such linear combinations of sin(x) is dense in C[a, b], confirming that sin(x) is a Tauber-Wiener
function.

Remark 3. It is straightforward to conclude that all sinusoidal functions are Tauber-Wiener functions.
Lemma 2. Suppose that V1 ⊆ X1, V2 ⊆ X2 are two compact sets in Banach spaces X1 and X2, respectively,
then their Cartesian product V1 × V2 is also compact.

Proof. For every sequence
{
x1
n, x

2
n

}
in V1 × V2, since V1 is compact,

{
x1
n

}
has a subsequence

{
x1
nk

}
that

converges to some element x1 ∈ V1. As well, since V2 is compact, there exists a subsequence
{
x2
nk

}
that

converges to x2 ∈ V2. It follows that
{
x1
n, x

2
n

}
converges to

(
x1, x2) ∈ V1 × V2, thus V1 × V2 is compact.

Lemma 3. Suppose that X is a Banach space, K1 ⊆ X1, K2 ⊆ X2 are two compact sets in X1 and X2,
respectively. U is a compact set in C(K1), then the range G(U) of the continuous operator G from U to
C(K2) is compact in C(K2).

Proof. For every sequence {fn} in U , since U is compact, there exists a subsequence {fnk
} that converges

to some function f ∈ U . Since G is continuous, the convergence fnk
→ f in C(K1) implies

G(fnk
) → G(f) in C(K2). (30)

Thus, for every sequence {G(fn)} in G(U), there exists a subsequence {G(fnk
)} that converges to G(f) ∈

G(U). Therefore, the range G(U) of the continuous operator G is compact in C(K2).

19

Under review as submission to TMLR

A.2 Universal Approximation Theorem for SepONet

Theorem 5 (Universal Approximation Theorem for Separable Operator Networks). Suppose that σ ∈ (TW),
g is a sinusoidal function, X is a Banach Space, K ⊆ X, K1 ⊆ Rd1 and K2 ⊆ Rd2 are three compact sets in
X, Rd1 and Rd2 , respectively, U is a compact set in C (K), G is a nonlinear continuous operator, which maps
U into a compact set S ⊆ C (K1 ×K2), then for any ϵ > 0, there are positive integers n, r, m, constants cki ,
ζ1
k , ζ2

k , ξkij, θki ∈ R, points ω1
k ∈ Rd1 , ω2

k ∈ Rd2 , xj ∈ K1, i = 1, . . . , n, k = 1, . . . , r, j = 1, . . . ,m, such that∣∣∣∣∣∣G(u)(y) −
r∑

k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju (xj) + θki

 g
(
w1
k · y1 + ζ1

k

)
g
(
w2
k · y2 + ζ2

k

)∣∣∣∣∣∣ < ϵ (31)

holds for all u ∈ U , y = (y1, y2) ∈ K1 ×K2.

Proof. Without loss of generality, we can assume that g is sine function, by Lemma 1, we have g ∈ (TW);
From the assumption that K1 and K2 are compact, by Lemma 2, K1 × K2 is compact; Since G is a
continuous operator that maps U into C(K1 × K2), it follows that the range G(U) = {G(u) : u ∈ U} is
compact in C(K1 ×K2) due to Lemma 3; Thus by Theorem 2, for any ϵ > 0, there exists a positive integer
N , real numbers ck(G(u)) and ζk, vectors ωk ∈ Rd1+d2 , k = 1, . . . , N , such that∣∣∣∣∣G(u)(y) −

N∑
k=1

ck(G(u))g (ωk · y + ζk)

∣∣∣∣∣ < ϵ

2 (32)

holds for all y ∈ K1 × K2 and u ∈ C(K). Let (ω1
k, ω

2
k) = ωk, where ω1

k ∈ Rd1 and ω2
k ∈ Rd2 . Utilizing the

trigonometric angle addition formula, we have

g (ωk · y + ζk) = g
(
ω1
k · y1 + ζk

)
g
(
ω2
k · y2 + π

2

)
+ g

(
ω1
k · y1 + ζk + π

2

)
g
(
ω2
k · y2

)
. (33)

Let r = 2N , cN+k(G(u)) = ck(G(u)), ω1
N+k = ω1

k, ω2
N+k = ω2

k, ζ1
k = ζk, ζ2

k = π
2 for k = 1, . . . , N , and let

ζ1
k = ζk + π

2 , ζ2
k = 0 for k = N + 1, . . . , r, equation 32 can be expressed as:∣∣∣∣∣G(u)(y) −

r∑
k=1

ck(G(u))g
(
ω1
k · y1 + ζ1

k

)
g
(
ω2
k · y2 + ζ2

k

)∣∣∣∣∣ < ϵ

2 . (34)

Since G is a continuous operator, according to the last proposition of Theorem 2, we conclude that for
each k = 1, . . . , 2N , ck(G(u)) is a continuous functional defined on U . Repeatedly applying Theorem 3, for
each k = 1, . . . , 2N , ck(G(u)), we can find positive integers nk,mk, constants cki , ξkij , θki ∈ R and xj ∈ K1,
i = 1, . . . , nk, j = 1, . . . ,mk, such that∣∣∣∣∣∣ck(G(u)) −

nk∑
i=1

cki σ

mk∑
j=1

ξkiju(xj) + θki

∣∣∣∣∣∣ < ϵ

2L (35)

holds for all k = 1, . . . , r and u ∈ U , where

L =
r∑

k=1
sup

y1∈K2,y2∈K3

∣∣g (ω1
k · y1 + ζ1

k

)
g
(
ω2
k · y2 + ζ2

k

)∣∣ . (36)

Substituting (35) into (34), we obtain that∣∣∣∣∣∣G(u)(y) −
r∑

k=1

nk∑
i=1

cki σ

mk∑
j=1

ξkiju (xj) + θki

 g
(
w1
k · y1 + ζ1

k

)
g
(
w2
k · y2 + ζ2

k

)∣∣∣∣∣∣ < ϵ (37)

20

Under review as submission to TMLR

holds for all u ∈ U , y1 ∈ K1 and y2 ∈ K2. Let n = maxk nk, m = maxkmk. For all nk < i ≤ n, let cki = 0.
For all mk < j ≤ m, let ξkij = 0. Then (37) can be rewritten as:∣∣∣∣∣∣G(u)(y) −

r∑
k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju (xj) + θki

 g
(
w1
k · y1 + ζ1

k

)
g
(
w2
k · y2 + ζ2

k

)∣∣∣∣∣∣ < ϵ, (38)

which holds for all u ∈ U , y1 ∈ K1 and y2 ∈ K2. This completes the proof of Theorem 5.

B PDE Problem Definitions, Training details, and Complete Test Results

B.1 PDE Problem Definitions

All PDE test problems exhibited in Section 4 are described in the subsections below.

B.1.1 Diffusion-Reaction Systems

We set the diffusion coefficient D = 0.01 and the reaction rate k = 0.01. The input training source terms are
sampled from a mean-zero Gaussian random field (GRF) (Seeger, 2004) with a length scale 0.2. To generate
the test dataset, we sample 100 different source terms from the same GRF and apply a second-order implicit
finite difference method (Iserles, 2009) to obtain the reference solutions on a uniform 128 × 128 grid. The
specific physics loss terms in equation (5) are defined as follows:

Lresidual = 1
NfNr

Nf∑
i=1

Nr∑
j=1

∣∣∣∣∣∂Gθ(u(i))(x(j)
r , t

(j)
r)

∂t
(j)
r

−D
∂2Gθ(u(i))(x(j)

r , t
(j)
r)

∂(x(j)
r)2

− k
(
Gθ(u(i))(x(j)

r , t(j)r)
)2

− u(i)(x(j)
r)

∣∣∣∣∣
2

,

Linitial = 1
NfNI

Nf∑
i=1

NI∑
j=1

∣∣∣Gθ(u(i))(x(j)
I , 0)

∣∣∣2 ,
Lboundary = 1

NfNb

Nf∑
i=1

Nb∑
j=1

(∣∣∣Gθ(u(i))(0, t(j)b)
∣∣∣2 +

∣∣∣Gθ(u(i))(1, t(j)b)
∣∣∣2) .

(39)

B.1.2 Advection Equation

The input training variable coefficients are strictly positive by defining u(x) = v(x) − minx v(x) + 1, where
v is sampled from a GRF with length scale 0.2. To create the test dataset, we generate 100 new coefficients
in the same manner that are not used in training and apply the Lax–Wendroff scheme (Iserles, 2009) to
solve the advection equation on a uniform 128 × 128 grid. The specific physics loss terms in equation (5) are
defined as follows:

Lresidual = 1
NfNr

Nf∑
i=1

Nr∑
j=1

∣∣∣∣∣∂Gθ(u(i))(x(j)
r , t

(j)
r)

∂t
(j)
r

+ u(i)(x(j)
r)∂Gθ(u(i))(x(j)

r , t
(j)
r)

∂x
(j)
r

∣∣∣∣∣
2

,

Linitial = 1
NfNI

Nf∑
i=1

NI∑
j=1

∣∣∣Gθ(u(i))(x(j)
I , 0) − sin(πx(j)

I)
∣∣∣2 ,

Lboundary = 1
NfNb

Nf∑
i=1

Nb∑
j=1

∣∣∣Gθ(u(i))(0, t(j)b) − sin
(π

2 t
(j)
b

)∣∣∣2 .
(40)

21

Under review as submission to TMLR

B.1.3 Burgers’ Equation

The input training initial conditions are sampled from a GRF ∼ N
(

0, 252 (−∆ + 52I
)−4
)

using the Chebfun
package (Driscoll et al., 2014), satisfying the periodic boundary conditions. Synthetic test dataset consists
of 100 unseen initial functions and their corresponding solutions, which are generated from the same GRF
and are solved by spectral method on a 101 × 101 uniform grid using the spinOp library (Palani, 2024),
respectively. The corresponding physics loss terms in equation (5) are defined as:

Lresidual = 1
NfNr

Nf∑
i=1

Nr∑
j=1

∣∣∣∣∣∂Gθ(u(i))(x(j)
r , t

(j)
r)

∂t
(j)
r

+Gθ(u(i))(x(j)
r , t(j)r)∂Gθ(u(i))(x(j)

r , t
(j)
r)

∂x
(j)
r

−ν ∂
2Gθ(u(i))(x(j)

r , t
(j)
r)

∂(x(j)
r)2

∣∣∣∣∣
2

,

Linitial = 1
NfNI

Nf∑
i=1

NI∑
j=1

∣∣∣Gθ(u(i))(x(j)
I , 0) − u(j)(x(j)

I)
∣∣∣2 ,

Lboundary = 1
NfNb

Nf∑
i=1

Nb∑
j=1

∣∣∣Gθ(u(i))(0, t(j)b) −Gθ(u(i))(1, t(j)b)
∣∣∣2 +

∣∣∣∣∣∂Gθ(u(i))(x, t(j)b)
∂x|x=0

−
∂Gθ(u(i))(x, t(j)b)

∂x|x=1

∣∣∣∣∣
2
 .

(41)

B.1.4 2D Nonlinear Diffusion Equation

The input training initial conditions are generated as a sum of Gaussian functions, parameterized as:

u(x, y) =
3∑
i=1

Ai exp[−wi{(x− xi)2 + (y − yi)2}], (42)

where Ai ∼ U(0.2, 0.5) are amplitudes, wi ∼ U(10, 20) are width parameters, and (xi, yi) ∼ U(−0.5, 0.5)2

are center coordinates. We also generate 100 unseen test initial conditions using this method. The nonlinear
diffusion equation is then solved using explicit Adams method to obtain reference solutions on a uniform
101 × 101 spatial grid with 101 time points. Physics loss terms in equation (5) for this problem are:

Lresidual = 1
NfNr

Nf∑
i=1

Nr∑
j=1

∣∣∣∣∣∂Gθ(u(i))(x(j)
r , t

(j)
r)

∂t
(j)
r

− α∇ ·
(
Gθ(u(i))(x(j)

r , t(j)r)∇Gθ(u(i))(x(j)
r , t(j)r)

)∣∣∣∣∣
2

,

Linitial = 1
NfNI

Nf∑
i=1

NI∑
j=1

∣∣∣Gθ(u(i))(x(j)
I , 0) − u(i)(x(j)

I)
∣∣∣2 ,

Lboundary = 1
NfNb

Nf∑
i=1

Nb∑
j=1

∣∣∣Gθ(u(i))(x(j)
b , t

(j)
b)
∣∣∣2 .

(43)

B.2 Training Details and Hyperparameters

Both PI-DeepONet and SepONet were trained by minimizing the physics loss (equation(4)) using gradient
descent with the Adam optimizer (Kingma & Ba, 2014). The initial learning rate is 1 × 10−3 and decays by
a factor of 0.9 every 1,000 iterations. Additionally, we resample input training functions and training points
(including residual, initial, and boundary points) every 100 iterations.

Across all benchmarks and on both models (SepONet and PI-DeepONet), we apply Tanh activation for the
branch net and Sine activation for the trunk net. We note that no extensive hyperparameter tuning was
performed for either PI-DeepONet or SepONet. The code in this study is implemented using JAX and
Equinox libraries (Bradbury et al., 2018; Kidger & Garcia, 2021), and all training was performed on a single
NVIDIA A100 GPU with 80 GB of memory. Training hyperparameters are provided in Table 5.

22

Under review as submission to TMLR

Table 5: Training hyperparameters for different PDE benchmarks
Hyperparameters \ PDEs Diffusion-reaction Advection Burgers’ 2D Nonlinear diffusion

of sensors 128 128 101 10201 (101 × 101)
Network depth 5 6 7 7
Network width 50 100 100 128

of training iterations 50k 120k 80k 80k
Weight coefficients (λI / λb) 1 / 1 100 / 100 20 / 1 20 / 1

B.3 Complete Test Results

We report the relative ℓ2 error, root mean squared error (RMSE), GPU memory usage and total training
time as metrics to assess the performance of PI-DeepONet and SepONet. Specifically, the mean and standard
deviation of the relative ℓ2 error and RMSE are calculated over all functions in the test dataset. The complete
test results are shown in Table 6 and Table 7.

Table 6: Performance comparison of PI-DeepONet and SepONet with varying number of training points
(Nc) and fixed number of input training functions (Nf = 100). The ’-’ symbol indicates that results are not
available due to out-of-memory issues.

Equations Metrics Models 8d 16d 32d 64d 128d

Diffusion-Reaction
d = 2

Relative ℓ2 error (%) PI-DeepONet 1.39 ± 0.71 1.11 ± 0.59 0.87 ± 0.41 0.83 ± 0.35 0.73 ± 0.34
SepONet 1.49 ± 0.82 0.79 ± 0.35 0.70 ± 0.33 0.62 ± 0.28 0.62 ± 0.26

RMSE (×10−2) PI-DeepONet 0.58 ± 0.29 0.46 ± 0.22 0.37 ± 0.20 0.36 ± 0.20 0.32 ± 0.18
SepONet 0.62 ± 0.28 0.35 ± 0.22 0.32 ± 0.23 0.28 ± 0.20 0.29 ± 0.21

Memory (GB) PI-DeepONet 0.729 1.227 3.023 9.175 35.371
SepONet 0.715 0.717 0.715 0.717 0.719

Training time (hours) PI-DeepONet 0.0433 0.0641 0.1497 0.7252 2.8025
SepONet 0.0403 0.0418 0.0430 0.0427 0.0326

Advection
d = 2

Relative ℓ2 error (%) PI-DeepONet 9.27 ± 1.94 7.55 ± 1.86 6.79 ± 1.84 6.69 ± 1.95 5.72 ± 1.57
SepONet 14.29 ± 2.65 11.96 ± 2.17 6.14 ± 1.58 5.80 ± 1.57 4.99 ± 1.40

RMSE (×10−2) PI-DeepONet 5.88 ± 1.34 4.79 ± 1.27 4.31 ± 1.23 4.24 ± 1.29 3.63 ± 1.05
SepONet 9.06 ± 1.88 7.58 ± 1.55 3.90 ± 1.09 3.69 ± 1.07 3.17 ± 0.95

Memory (GB) PI-DeepONet 0.967 1.741 5.103 17.995 59.806
SepONet 0.713 0.715 0.715 0.715 0.719

Training time (hours) PI-DeepONet 0.0787 0.1411 0.4836 2.3987 8.231
SepONet 0.0843 0.0815 0.0844 0.0726 0.0730

Burgers’
d = 2

Relative ℓ2 error (%) PI-DeepONet 29.33 ± 3.85 20.31 ± 4.31 14.17 ± 5.25 13.72 ± 5.59 -
SepONet 29.42 ± 3.79 31.53 ± 3.44 28.74 ± 4.11 11.85 ± 4.06 7.51 ± 4.04

RMSE (×10−2) PI-DeepONet 4.19 ± 2.79 2.82 ± 1.86 2.23 ± 2.10 2.20 ± 2.13 -
SepONet 4.18 ± 2.74 4.44 ± 2.81 4.11 ± 2.76 1.80 ± 1.60 1.23 ± 1.44

Memory (GB) PI-DeepONet 1.253 2.781 5.087 18.001 -
SepONet 0.603 0.605 0.603 0.605 0.716

Training time (hours) PI-DeepONet 0.1497 0.2375 0.6431 3.2162 -
SepONet 0.0706 0.0719 0.0716 0.0718 0.0605

Nonlinear diffusion
d = 3

Relative ℓ2 error (%) PI-DeepONet 17.38 ± 5.56 9.90 ± 2.91 - - -
SepONet 16.10 ± 4.46 12.11 ± 3.89 6.81 ± 1.98 6.73 ± 1.96 6.44 ± 1.69

RMSE (×10−2) PI-DeepONet 1.86 ± 0.62 1.04 ± 0.23 - - -
SepONet 1.72 ± 0.49 1.29 ± 0.37 0.72 ± 0.19 0.71 ± 0.17 0.68 ± 0.15

Memory (GB) PI-DeepONet 6.993 37.715 - - -
SepONet 3.471 2.897 2.899 2.897 13.139

Training time (hours) PI-DeepONet 0.5836 6.6399 - - -
SepONet 0.1044 0.1069 0.1056 0.1456 0.5575

23

Under review as submission to TMLR

Table 7: Performance comparison of PI-DeepONet and SepONet with varying number of input training
functions (Nf) and fixed number of training points (Nc = 128d, d indicated by problem instance). The ’-’
symbol indicates that results are not available due to out-of-memory issues.

Equations Metrics Models 5 10 20 50 100

Diffusion-Reaction
d = 2

Relative ℓ2 error (%) PI-DeepONet 34.54 ± 27.83 4.23 ± 2.52 1.72 ± 1.00 0.91 ± 0.46 0.73 ± 0.34
SepONet 22.40 ± 12.30 3.11 ± 1.89 1.19 ± 0.74 0.73 ± 0.32 0.62 ± 0.26

RMSE (×10−2) PI-DeepONet 14.50 ± 9.04 1.75 ± 0.90 0.71 ± 0.37 0.40 ± 0.28 0.32 ± 0.18
SepONet 9.34 ± 5.37 1.36 ± 1.07 0.50 ± 0.29 0.34 ± 0.25 0.29 ± 0.21

Memory (GB) PI-DeepONet 2.767 5.105 9.239 17.951 35.371
SepONet 0.719 0.719 0.717 0.717 0.719

Training time (hours) PI-DeepONet 0.1268 0.2218 0.5864 1.4018 2.8025
SepONet 0.0375 0.0390 0.0370 0.0317 0.0326

Advection
d = 2

Relative ℓ2 error (%) PI-DeepONet 9.64 ± 2.91 8.77 ± 2.23 7.57 ± 1.98 6.69 ± 1.93 5.72 ± 1.57
SepONet 7.62 ± 2.06 6.59 ± 1.71 5.47 ± 1.57 5.18 ± 1.51 4.99 ± 1.40

RMSE (×10−2) PI-DeepONet 6.11 ± 1.90 5.55 ± 1.51 4.80 ± 1.33 4.24 ± 1.28 3.63 ± 1.05
SepONet 4.83 ± 1.38 4.18 ± 1.17 3.47 ± 1.06 3.29 ± 1.02 3.17 ± 0.95

Memory (GB) PI-DeepONet 3.021 5.611 9.707 34.511 59.806
SepONet 0.713 0.715 0.719 0.719 0.719

Training time (hours) PI-DeepONet 0.3997 1.0766 1.9765 4.411 8.231
SepONet 0.0754 0.0715 0.0736 0.0720 0.0730

Burgers’
d = 2

Relative ℓ2 error (%) PI-DeepONet 28.48 ± 4.17 28.63 ± 4.10 28.26 ± 4.38 12.33 ± 5.14 -
SepONet 27.79 ± 4.40 28.16 ± 4.24 22.78 ± 6.47 10.25 ± 4.44 7.51 ± 4.04

RMSE (×10−2) PI-DeepONet 4.09 ± 2.77 4.11 ± 2.78 4.07 ± 2.78 1.96 ± 1.92 -
SepONet 4.01 ± 2.75 4.05 ± 2.76 3.30 ± 2.55 1.65 ± 1.64 1.23 ± 1.44

Memory (GB) PI-DeepONet 5.085 9.695 17.913 35.433 -
SepONet 0.605 0.607 0.607 0.609 0.716

Training time (hours) PI-DeepONet 0.5135 1.3896 2.6904 5.923 -
SepONet 0.0725 0.0707 0.0703 0.0612 0.0605

Nonlinear diffusion
d = 3

Relative ℓ2 error (%) PI-DeepONet - - - - -
SepONet 31.94 ± 9.18 25.48 ± 8.95 21.16 ± 7.82 10.21 ± 3.31 6.44 ± 1.69

RMSE (×10−2) PI-DeepONet - - - - -
SepONet 3.44 ± 1.13 2.73 ± 0.99 2.27 ± 0.91 1.09 ± 0.32 0.68 ± 0.15

Memory (GB) PI-DeepONet - - - - -
SepONet 2.923 3.139 4.947 6.995 13.139

Training time (hours) PI-DeepONet - - - - -
SepONet 0.1175 0.1408 0.1849 0.3262 0.5575

24

Under review as submission to TMLR

Figure 4: Performance comparison of PI-DeepONet and SepONet with TanH trunk network activation
functions, varying number of training points (Nc) and fixed number of input functions (Nf = 100). Results
show test accuracy, GPU memory usage, and training time for four PDEs.

Figure 5: Performance comparison of PI-DeepONet and SepONet with TanH trunk network activation
functions, increasing number of input functions (Nf) and fixed number of training points (Nc = 128d, where
d is the problem dimension). Note: PI-DeepONet results for the (2+1)-dimensional diffusion equation are
unavailable due to memory constraints.

B.4 Ablation Studies

B.4.1 Trunk Networks with Hyperbolic Tangent Activations

In Figure 4 and Figure 5, we provide complete testing results repeating our experiments from Figure 2 and
Figure 3 for all PDE examples, varying Nc and Nf , except we use hyperbolic tangenet (TanH) activation
functions for all hidden and output layers of the trunk networks in both PI-DeepONet and SepONet. The
results are very similar, indicating that alternative activation functions may be chosen for multi-layer trunk
networks to maintain the universal approximation property in accordance with Theorem 1.

25

Under review as submission to TMLR

Figure 6: Performance comparison of PI-DeepONet and SepONet with varied number of input function
sensors (branch input dimension). Note that we fix Nf = 20 for all experiments, Nc = 322 for (a)-(c), and
Nc = 163 for (d).

B.4.2 Varying the Input Function Discretization to the Branch Network

Given an input function PDE configuration u, recall that the branch network predicts coefficients βk =
bψ(E(u)) for k = 1, ..., r. Our studies in Section 4 use a simple encoder that measures the input function
E(u) = (u(x1), ..., u(xm)) at points x1, x2, ..., xm ∈ K in the input function domain. High-dimensional or
highly oscillatory input functions may lead to unwieldy discretizations with large branch input dimension
that affect training performance. Here, in Figure 6, we study the sensitivity of the PDE examples from
Section 4 with respect to the number of input function sensors (branch input dimension). Note that we fix
the number of input functions Nf = 20 for all experiments, while Nc = 322 for diffusion-reaction, advection,
and Burgers’ equations, and Nc = 163 for nonlinear diffusion. We find that the error curves converge to
the minimum value using only a fraction of the number of input sensors that we used in the main text in
Figure 2 and Figure 3. This indicates that the input functions we considered may be identified with a small
number of points. Nevertheless, we find that training performance in terms of both memory consumption
and training time is constant with the number of sensors. This is because training complexity is mainly
data-dominated by the need to compute high-order derivatives with respect to a large number of collocation
points for evaluation of the physics loss, as discussed in Section 3.2.

C Complete Solution to Separation of Variables Example (7)

Recall the linear PDE system treated in Section 2.3:

M[t]s(y) = L1[y1]s(y) + · · · + Ld[yd]s(y), (44)

where M[t] = d
dt + h(t) is a first order differential operator of t, and L1[y1], ...,Ld[yd] are linear second

order ordinary differential operators of their respective variables y1, ..., yd only. Furthermore, assume we are
provided Robin boundary conditions in each variable and separable initial condition s(t = 0, y1, . . . , yd) =∏d
n=1 ϕn(yn) for functions ϕn(yn) that satisfy the boundary conditions.

Assuming a separable solution exists, s(y) = T (t)Y1(y1) · · ·Yd(yd), the PDE can be decomposed in the
following form:

MT (t)
T (t) = L1Y1(y1)

Y1(y1) + · · · + LdYd(yd)
Yd(yd)

, (45)

where it is apparent that each term in the sequence is a constant, since they are each only functions of
a single variable. Consequently, we may solve each of the Ln terms independently using Sturm-Liouville

26

Under review as submission to TMLR

theory. After we have found the associated eigenfunctions (Y kn
n) and eigenvalues (λkn

n), we may manually
integrate the left-hand side. Finally, we may decompose the separable initial condition into a product of
sums of the orthonormal basis functions (eigenfunctions) of each variable. The resulting solution is given by

s(y) = s(t, y1, . . . , yd) =
∑

k=(k1,...,kd)

BkT
k(t)

d∏
n=1

Y kn
n (yn),

T k(t) := T (k1,...,kd)(t) = exp
(

−
∫ t

0
h(τ)dτ + t

d∑
n=1

λkn
n

)
,

Bk := B(k1,...,kd) =
d∏

n=1

⟨Y kn
n (yn), ϕn(yn)⟩n

⟨Y kn
n (yn), Y kn

n (yn)⟩n
, λkn

n = LnY kn
n (yn)

Y kn
n (yn)

,

n = 1, ..., d, kn = 1, 2, . . . ,∞.

(46)

Here, k = (k1, . . . , kd), where kn ∈ {1, 2, ...,∞},∀n ∈ {1, ..., d}, is a lumped index that counts over all
possible products of eigenfunctions Y kn

n with associated eigenvalues λkn
n . ⟨·⟩n is an appropriate inner product

associated with the separated Hilbert space of the Ln-th operator. To obtain equation (7) in the main
manuscript, one only need to break up the sum over all kn indices into a single ordered index.

D Additional Experiments

D.1 (2+1)-dimensional Navier-Stokes Equation

SepONet’s memory-efficient and fast-training advantages allow it to tackle more challenging physics-informed
operator learning problems, which PI-DeepONet may struggle to train on due to resource constraints. As
an example, we consider a (2+1)-dimensional Navier-Stokes equation, previously investigated in the context
of PINN (Cho et al., 2024; Wang et al., 2024):

∂tω + s · ∇ω = 0.01∆ω, x ∈ [0, 2π]2, t ∈ Γ,
∇ · s = 0, x ∈ [0, 2π]2, t ∈ Γ,
ω(x, 0) = ω0(x), s(x, 0) = s0(x), x ∈ [0, 2π]2,

(47)

where s = (sx, sy) ∈ R2 is the velocity field, x = (x, y) denotes 2D spatial variables, Γ = [0, T] is the time
window, and ω = ∇ × s = ∂xsy − ∂ysx is the vorticity. We aim to learn the solution operator that maps the
initial velocity and vorticity field u(x) = (s0(x), ω0(x)) ∈ R3 to the solution s(x, t) ∈ R2 using SepONet,
parameterized by θ = (ψ, ϕ1, ϕ2, ϕ3), which represents all the trainable parameters in the branch and trunk
nets. The vector-valued velocity is approximated as:

sx(u)(x, t) =
r∑

k=1
βk

3∏
n=1

τn,k,

sy(u)(x, t) =
2r∑
k=r

βk

3∏
n=1

τn,k,

(48)

where r denotes the rank, βk = bψ(E(u))k is the k-th output of the branch net, and τ1,k = t1ϕ1
(t)k, τ2,k =

t2ϕ2
(x)k, τ3,k = t3ϕ3

(y)k denote the k-th outputs of the three trunk nets.

Loss function The physics loss for this problem are defined as:

Lphysics = Lresidual + 5000Ldiv + 1000Linitial. (49)

27

Under review as submission to TMLR

The specific loss terms are:

Lresidual = 1
NfNr

Nf∑
i=1

Nr∑
j=1

∣∣∣∣∣∂(∇ ×Gθ(u(i))(x(j)
r , t

(j)
r))

∂t
(j)
r

+ s(i) · ∇(∇ ×Gθ(u(i))(x(j)
r , t(j)r))

−0.01∆(∇ ×Gθ(u(i))(x(j)
r , t(j)r))

∣∣∣2 ,
Ldiv = 1

NfNr

Nf∑
i=1

Nr∑
j=1

∣∣∣∇ ·Gθ(u(i))(x(j)
r , t(j)r)

∣∣∣2 ,
Linitial = 1

NfNI

Nf∑
i=1

NI∑
j=1

(∣∣∣∇ ×Gθ(u(i))(x(j)
I , 0) − ω

(i)
0 (x(j)

I)
∣∣∣2 +

∣∣∣Gθ(u(i))(x(j)
I , 0) − s

(i)
0 (x(j)

I)
∣∣∣2) .

(50)

Note that periodic boundary conditions are enforced by applying the following positional encoding to the
spatial variables:

γ(x) = [1, sin(x), sin(2x), sin(3x), sin(4x), sin(5x), cos(x), cos(2x), cos(3x), cos(4x), cos(5x)]⊤. (51)

SepONet architecture The encoder E maps the initial condition u(x) to its point-wise evaluations at
128 × 128 × 3 sensors on a uniform 128 × 128 grid over [0, 2π]2. The branch network bψ is a CNN, starting
with a 1 × 1 convolution that increases the channels from 3 to 16, followed by four residual blocks. Each
residual block consists of two 3 × 3 convolutions with GeLU activations; the first convolution in each block
uses a stride of 2 to halve the spatial dimensions while doubling the number of channels. Skip connections
employ 1 × 1 convolutions with a stride of 2 whenever there is a change in dimension. After flattening, a
fully connected layer produces a vector of dimension 2r.

The trunk networks tϕn
are 7-layer modified MLPs (Wang et al., 2021a), each with 128 neurons per hidden

layer, an input size of 11, and a rank/output size of 256/512, using TanH activations. The initial velocities
are sampled from a Gaussian random field with a maximum velocity of 5.

Training settings We consider learning the solution operator within two time windows: T = 0.1 and
T = 1. Two separate SepONet models were trained, each for 100,000 iterations using the Adam optimizer,
to minimize the physics loss (49) within their respective time windows. The number of residual points was
set to Nr = 256×256×32 (Nx×Ny ×Nt), obtained by randomly sampling 256, 256, and 32 points along x),
y, and t axes, respectively, and constructing a mesh grid via the tensor product. The number of initial points,
NI = 128×128, corresponds to a uniform mesh grid. Initial velocities were sampled from a Gaussian random
field with a maximum velocity of 5. Both the initial conditions and collocation points were resampled every
100 iterations. We varied the number of input functions Nf to see the scaling as data is increased.

Evaluation The model was evaluated on 100 unseen initial conditions, sampled from the same Gaussian
random field. Reference solutions for both time windows were obtained using the JAX-CFD solver (Kochkov
et al., 2021) on a uniform 128 × 128 × 10 (Nx ×Ny ×Nt) grid.

Results The results for two time windows are shown in Figure 7. We find that for T = 0.1 we can achieve
very low relative ℓ2 error of 2.5%. For T = 1 the error only scales to 40%. We think that improving the error
for the longer time scale represents an interesting application direction for future work. Our architecture
and implementation choices were not optimized for this example.

D.2 Linear Heat Equation Example

SepONet is motivated by the classical method of separation of variables, which is often employed to solve
linear partial differential equations (PDEs). To illustrate the connection between these approaches, consider

28

Under review as submission to TMLR

Figure 7: Navier-Stokes equation results with SepONet. Here, we varies the number of input functions Nf
and kept the number of collocation points fixed. We consider two cases, T = 0.1 and T = 1, corresponding
to the length of the time window.

the linear heat equation:
∂s

∂t
= 1
π2

∂2s

∂x2 , (x, t) ∈ (0, 1) × (0, 1],

s(x, 0) = u(x), x ∈ (0, 1),
s(0, t) = s(1, t) = 0, t ∈ (0, 1).

(52)

The goal is to solve this equation for various initial conditions u(x) using both the separation of variables
technique and the SepONet method, allowing for an intuitive comparison between the two.

D.2.1 Separation of Variables Technique

We seek a solution in the form:
s(x, t) = X(x)T (t) (53)

for functions X, T to be determined. Substituting (53) into (52) yields:

X
′′

X
= −λ and π2T

′

T
= −λ (54)

for some constant λ. To satisfy the boundary condition, X must solve the following eigenvalue problem:

X
′′
(x) + λX(x) = 0, x ∈ (0, 1),
X(0) = X(1) = 0,

(55)

and T must solve the ODE problem:
T

′
(t) = − λ

π2T (t). (56)

The eigenvalue problem (55) has a sequence of solutions:

λk = (kπ)2, Xk(x) = sin(kπx), for k = 1, 2, . . . (57)

For any λ, the ODE solution for T is T (t) = Ae− λ
π2 t for some constant A. Thus, for each eigenfunction Xk

with corresponding eigenvalue λk, we have a solution Tk such that the function

sk(x, t) = Xk(x)Tk(t) (58)

will be a solution of (54). In fact, an infinite series of the form

s(x, t) =
∞∑
k=1

Xk(x)Tk(t) =
∞∑
k=1

Ake
−k2t sin(kπx) (59)

29

Under review as submission to TMLR

will also be a solution satisfying the differential operator and boundary condition of the heat equation (52)
subject to appropriate convergence assumptions of this series. Now let s(x, 0) = u(x), we can find coefficients:

Ak = 2
∫ 1

0
sin (kπx)u(x)dx (60)

such that (59) is the exact solution of the heat equation (52).

D.2.2 SepONet Method

In this section, we apply the SepONet framework to solve the linear heat equation (52) and compare the
basis functions it learns with those derived from the classical separation of variables method. Recall that a
SepONet, parameterized by θ, approximates the solution operator of (52) as follows:

Gθ(u)(x, t) =
r∑

k=1
βk(u(x1), u(x2), . . . , u(x128))τk(t)ζk(x), (61)

where x1, x2, . . . , x128 are 128 equi-spaced sensors in [0, 1], βk is the k-th output of the branch net, and the
basis functions τk(t) and ζk(x) are the k-th outputs of two independent trunk nets.

Training settings The branch and trunk networks each have a width of 5 and a depth of 50. To determine
the parameters θ, we trained SepONet for 80,000 iterations, minimizing the physics loss. Specifically, we
set λI = 20, λb = 1, Nf = 100, and Nc = 1282 in the physics loss. The training functions (initial
conditions)

{
u(i)}Nf

i=1 were generated from a Gaussian random field (GRF) ∼ N
(

0, 252 (−∆ + 52I
)−4
)

using the Chebfun package (Driscoll et al., 2014), ensuring zero Dirichlet boundary conditions. Additional
training settings are detailed in Appendix B.2 of the main text.

Evaluation We evaluated the model on 100 unseen initial conditions sampled from the same GRF, using
the forward Euler method to obtain reference solutions on a 128 × 128 uniform spatio-temporal grid.

Impact of the rank r Since τk(t) and ζk(x) are independent of the initial condition u, learning an
expressive and rich set of basis functions is crucial for SepONet to generalize to unseen initial conditions.
To investigate the impact of the rank r on the generalization error, we trained SepONet with ranks ranging
from 1 to 50. The mean RMSE between SepONet’s predictions and the reference solutions over 100 unseen
test initial conditions was reported. For comparison, we also computed the mean RMSE of the truncated
analytical solution at rank r for r from 1 to 15. The results are presented in Figure 8.

As r increases, the truncated analytical solution quickly converges to the reference solution. The nonzero
RMSE arises due to numerical errors in computing the coefficients Ak and the inherent inaccuracies of the
forward Euler method used to generate the reference solution. For SepONet, we observed that when r = 1, 2,
the mean RMSE aligns closely with that of the truncated solution. However, as r increases beyond that
point, the error decreases more gradually, stabilizing around r = 50. This indicates that SepONet may not
necessarily learn the exact same basis functions as those from the truncated analytical solution. Instead, a
higher rank r allows SepONet to develop its own set of basis functions, achieving similar accuracy to the
truncated solution.

SepONet basis functions The learned basis functions for different ranks r are visualized in Figure 9 to
Figure 13.

At r = 1, SepONet learns basis functions that closely resemble the first term of the truncated solution. For
r = 2, the learned functions are quite similar to the first two terms of the truncated series. However, when
r = 5, the basis functions diverge from the truncated solution series, although some spatial components
still resemble sinusoidal functions and the temporal components remain monotonic. As r increases further,
SepONet continues to improve in accuracy, though the learned basis functions increasingly differ from the
truncated series, confirming SepONet’s ability to accurately approximate the solution using its own learned
basis functions.

30

Under review as submission to TMLR

Figure 8: Comparison of RMSE between the truncated analytical solution and SepONet predictions for
varying rank r. The truncated analytical solution quickly converges, while SepONet shows a slower decay
in error, converging around r = 50.

Figure 9: Learned basis functions τk(t) and ζk(x) for r = 1. SepONet learns the same basis functions as the
first term of the truncated solution.

E Visualization of SepONet Predictions

In this section, we showcase the performance of trained SepONets in predicting solutions for PDEs under
previously unseen configurations. The SepONets were trained using Nf = 100 and Nc = 128d, where d
denotes the dimensionality of the PDE problem. The prediction results are presented in Figure 14 to Figure
17.

31

Under review as submission to TMLR

Figure 10: Learned basis functions τk(t) and ζk(x) for r = 2. SepONet learns very similar basis functions as
the first two terms of the truncated solution.

Figure 11: Learned basis functions τk(t) and ζk(x) for r = 5.

Figure 12: Learned basis functions τk(t) and ζk(x) for r = 10.

32

Under review as submission to TMLR

Figure 13: Learned basis functions τk(t) and ζk(x) for r = 50.

33

Under review as submission to TMLR

Figure 14: (1+1)-d Diffusion-reaction equation.

Figure 15: (1+1)-d Advection equation.

34

Under review as submission to TMLR

Figure 16: (1+1)-d Burgers’ equation.

35

Under review as submission to TMLR

Figure 17: (2+1)-d Nonlinear diffusion equation. Two snapshots at t = 0.5 and t = 1 are presented.

36

	Introduction
	Preliminaries
	Operator Learning for Solving Parametric Partial Differential Equations
	Deep Operator Networks (DeepONet)
	Separation of Variables

	Separable Operator Networks (SepONet)
	SepONet Architecture and Implementation Details
	Forward Pass
	Model Update
	Inference

	Complexity Analysis
	Universal Approximation Property of SepONet

	Numerical Results
	Test accuracy
	GPU memory usage
	Training time
	Extreme-scale learning

	Discussion
	Universal Approximation Theorem for Separable Operator Networks
	Preliminaries and Auxiliary Results
	Universal Approximation Theorem for SepONet

	PDE Problem Definitions, Training details, and Complete Test Results
	PDE Problem Definitions
	Diffusion-Reaction Systems
	Advection Equation
	Burgers’ Equation
	2D Nonlinear Diffusion Equation

	Training Details and Hyperparameters
	Complete Test Results
	Ablation Studies
	Trunk Networks with Hyperbolic Tangent Activations
	Varying the Input Function Discretization to the Branch Network

	Complete Solution to Separation of Variables Example (7)
	Additional Experiments
	(2+1)-dimensional Navier-Stokes Equation
	Linear Heat Equation Example
	Separation of Variables Technique
	SepONet Method

	Visualization of SepONet Predictions

