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PAIR: Pre-denosing Augmented Image Retrieval Model for
Defending Adversarial Patches
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ABSTRACT
Deep neural networks are widely used in retrieval systems. How-

ever, they are notoriously vulnerable to attack. Among the various
forms of adversarial attacks, the patch attack is one of the most
threatening forms. This type of attack can introduce cognitive bi-
ases into the retrieval system by inserting deceptive patches into
images. Despite the seriousness of this threat, there are still no
well-established solutions in image retrieval systems. In this paper,
we propose the Pre-denosing Augmented Image Retrieval (PAIR)
model, a new approach designed to protect image retrieval sys-
tems against adversarial patch attacks. The core strategy of PAIR is
to dynamically and randomly reconstruct entire images based on
their semantic content. This purifies well-designed patch attacks
while preserving the semantic integrity of the images. Further-
more, we present a novel training strategy that incorporates a
semantic discriminator. This discriminator significantly improves
PAIR’s ability to capture real semantics and reconstruct images.
Experiments show that PAIR significantly outperforms existing
defense methods. It effectively reduces the success rate of two
state-of-the-art patch attack methods to below 5%, achieving a 14%
improvement over current leading methods. Moreover, in defending
against other forms of attack, such as global perturbation attacks,
PAIR also achieves competitive results. The codes are available at:
https://anonymous.4open.science/r/PAIR-8FD2.

CCS CONCEPTS
• Security and privacy; • Computing methodologies→ Com-
puter vision; • Information systems→ Information retrieval;

KEYWORDS
Image Retrieval, Adversarial Attack and Defense

1 INTRODUCTION
Multimedia retrieval has always been an important research topic
due to the growth of data in cyberspace and the need for efficient
data management. Deep neural networks are widely used in a
variety of multimedia retrieval tasks, including content-based image
retrieval [20, 21, 27] and text-based image retrieval [30, 35].

However, neural networks are vulnerable to attacks [6, 29]. This
can lead to serious security issues. Patch attack [4, 19, 40] is one of
themost threatening forms of adversarial attack that modifies pixels
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Figure 1: Trade-off between defensive performance and re-
trieval accuracy on the MSCOCO. PAIR achieved the best
defense and retrieval accuracy close to the original model.

in a contiguous region of the image. Some recent studies [14, 15]
have shown that the attacker can insert a patch into the image so
that the userswill see the search results that the attackerwants them
to see. As shown in Figure 2, the attacker inputs adversarial images
into a content-based image retrieval system. The search results
are all irrelevant images. Such vulnerabilities could be exploited
in intellectual property protection systems, allowing plagiarised
content to escape detection. Moreover, the threat extends to text-
based image retrieval databases, where attackers could introduce
advertising images with attack patches. As a result, a user searching
for a seemingly innocuousword such as "shoes" could be bombarded
with these unwanted advertisements.

It is still unknown how to combat against patch attacks on
content-based and text-based image retrieval systems. This problem
has three main challenges: (1) Adaptation to diverse adversarial
patches. Defense strategies need to be robust to the shape, form, and
position of the adversarial patch. Current preprocessing defense
methods [18, 37] often rely on training with specific types of adver-
sarial images, which limits their effectiveness when encountering
previously unseen patch configurations. (2) Resistance to attack
without relying on localization methods. LGS [24] locates attack
pixels through empirical observation, while SAC [18] and Patchzero
[33] use a patch detector for localization. However, according to
Chiang et al. [8] and our experiments, these localization-based de-
fenses can be easily fooled by adaptive attacks. (3) Affordability
of training and implementation. Some studies employ expensive
adversarial training to defend against global perturbation attacks
[38, 39]. However, in many cases, the cost of adversarial training
is prohibitively expensive, particularly for models pretrained on
large-scale datasets such as CLIP [26].

In this study, we propose a novel pre-denoising and purifying
defense strategy named the Pre-denoising Augmented Image Re-
trieval (PAIR) model. As shown in Figure 1, PAIR achieves a supe-
rior trade-off between defense performance and retrieval ability on

https://doi.org/XXXXXXX.XXXXXXX
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Figure 2: Patch attack and defense scenarios. For the content-based image retrieval system, the adversarial patched image
serves as the input. For the text-based image retrieval system, some advertising images with adversarial patches are added
to the database. The attack patch format is set as a QR code. We develop a pre-denoising augmented strategy to protect the
retrieval system from patch attacks. Above: the retrieval result without defense; Below: the retrieval result with our defense.

clean samples. PAIR employs a unique strategy by masking random
portions of image patches and reconstructing it repeatedly using
a robust generative network. This approach not only guarantees
that all attack patch pixels are purified, but also ensures that impor-
tant semantic content is preserved. Note that as a preprocessing
denoising module, PAIR is theoretically compatible with any down-
stream image retrieval model. Remarkably, PAIR relies solely on
clean images and doesn’t involve any localization techniques. This
attribute makes the model relatively unaffected by variations in the
shape, size, and position of attack patches. Moreover, PAIR does
not require expensive adversarial training. Experiments on several
datasets against patch attacks demonstrate that PAIR is highly ef-
fective in both adaptive attack and non-adaptive attack settings for
content-based and text-based image retrieval.

Further, we present a new training method for PAIR’s gen-
erative network. As a pre-denoising method, PAIR will inevitably
affect the accuracy of the downstream retrieval model. This training
method is designed to enhance the generative network’s ability
in image reconstruction, ensuring the preservation of semantic
information from the original image through the implementation
of a semantic discriminator. Our ablation experiments show that it
can reduce the negative effects caused by PAIR. This means that the
defended model has a similar performance to the original model in
the case of clean samples, but with a higher defensive capability.

In summary, our main contributions are as follows:
• To the best of our knowledge, PAIR is the first defense model
against patch attacks in content-based and text-based image
retrieval. It is insensitive to variations in the shape, form,
and position of adversarial patches.

• We design a new training method that utilizes a semantic dis-
criminator to improve the PAIR’s performance. The defense
model performs similarly to the original model on
clean samples and has stronger defenses.

• Experiments show that PAIR is highly effective in defending
against two state-of-the-art attack methods. It reduces the
success rate of attacks to less than 5%. Furthermore, PAIR
also shows competitive results in defending against other
forms of attack, such as global perturbation attacks.

2 RELATEDWORK
2.1 Adversarial Patch Attacks
Patch attacks are one of the most threatening forms of adversar-
ial attacks, modifying pixels in a continuous region of an image.
AdvHash [15] and TTH [14] have developed patch-based attack
methods in content-based and text-based image retrieval systems,
respectively. AdvHash inserts an attack patch into the input im-
age, causing the content-based image retrieval system to return
irrelevant images. This attack can be used, for example, to protect
intellectual property. If the plagiarised works are entered after the
attack, the original works cannot be retrieved. TTH inserts adver-
sarial advertising images into the image database of the text-based
image retrieval system. After the attack, when users enter text
containing specific keywords, the system displays irrelevant adver-
tisements. Adversarial patches can be implemented in a variety of
image carriers, such as logos, QR codes, text, etc., and can appear
in any position in the image. They wreak havoc on content-based
and text-based image retrieval systems.

2.2 Defenses Against Patch Attacks
Defenses designed specifically for classification tasks.The rep-
resentative method is based on Derandomized Smoothing [7, 16, 28].
Derandomized Smoothing divides the image into several image
bands. Since the number of image bands affected by the adversarial
patch is limited, the final classification result can be obtained by vot-
ing according to the classification result of each image band. Besides,
PatchGuard [32] designed a defense mechanism in convolutional
network based on small receptive fields. However, these methods
are specifically designed for image classification. It is difficult to
transfer to image retrieval.

Universal defenses against patch attacks. Universal meth-
ods are mainly preprocessing methods, which purify and denoise
the images before input to the model. Representative methods are
LGS [24], PatchZero[33], SAC [18], MAEDefense [22]. LGS [24]
developed a smoothing strategy based on the image gradient. It
was motivated by empirical observation: the attack patch’s pixel
value changes dramatically. However, LGS can be easily broken
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target and locates it inaccurately, the localization-based defense will fail. Our defense, in contrast, randomly masks and recover
the image multiple times. This mechanism guarantees that after purification, all patch pixels are reconstructed and denoised.

by white-box attacks, as demonstrated by experiments [8], if the
attacker optimizes the adversarial patch against the model that in-
cludes all pre-processing steps. SAC [18] and PatchZero [33] utilizes
a patch detector to locate and mask attack patches in adversarial
images. However, the clever attacker will fool the patch detector.
As a result, the attack patch cannot be accurately located by the
patch detector. This location-based approach is also easily broken
by this adaptive attacks. MAEDefense [22] utilizes a masked auto-
encoder to partially generate the image, weighted with the original
image. Nevertheless, this cleaning mechanism is not thorough and
not trained at the semantic level. As a result, the effectiveness of
MAEDefense is limited and will have a significant negative impact
on the accuracy of downstream retrieval tasks.

Enhance robustness based on adversarial training. Some
defense methods [38, 39] attempt to conduct adversarial training
(AT) on the retrieval model. This strengthens the model’s resistance
to adversarial samples. However, adversarial training is expensive
and less practical than the preprocessing method for models that
require large-scale pre-training, such as CLIP [26].

3 PROBLEM DESCRIPTION
3.1 Target Retrieval Models
• Content-based image retrieval model. Images are the input to
content-based image retrieval systems. The retrieval system aims to
find similar images in the database. We use CSQ-ResNet50 [34] as
our target model in the content-based image retrieval task. The core
structure of CSQ-ResNet50 is a feature extractor 𝐻 (·). An image 𝒙
can be transformed into a K-bit hash code 𝒄 as follows:

𝒄 = 𝑠𝑖𝑔𝑛(𝐻 (𝒙)) . (1)

The Hamming distance of the images’ hashcodes is used to calculate
the similarity score. The similarity score is then utilized for the
similarity ranking [5].
• Text-based image retrieval model. Texts are the input to text-
based image retrieval systems. The retrieval system searches for
images that match the written description. We use CLIP [26] as
the model in the text-based image retrieval task. CLIP is a cross-
modal model pretrained on 400million image-text pairs. Its network
structure consists of a text encoder 𝐹𝑡 (·) and an image encoder 𝐹𝑖 (·).
Text and image representations can be obtained by feeding them
into the corresponding encoder. The semantic distance 𝒔 between a

text 𝒚 and an image 𝒙 can be calculated as:

𝒔 = 𝒅 (𝐹𝑖 (𝒙), 𝐹𝑡 (𝒚)), (2)

where 𝒔 is the semantic distance, which can be used to rank simi-
larity, and its function 𝑑 (·) selects the Euclidean distance.

3.2 Attack Formulation
• Attack in content-based image retrieval systems. AdvHash
[15] is the state-of-the-art white box attack method against content-
based image retrieval systems. AdvHash inserts a universal adver-
sarial patch 𝝈 into the input image. As a result, retrieval results may
include irrelevant images of the target class. AdvHash first com-
putes the central hash code 𝒄𝒕 of each image class. The adversarial
patch is then optimized so that the hash codes of the adversarial
images are close to the 𝒄𝒕 .
• Attack in text-based image retrieval systems. TTH [14] is
the state-of-the-art white box attack method for text-based image
retrieval systems. TTH inserts advertising images with universal
adversarial patches 𝝈 into the image database. When a user en-
ters some keywords, the retrieval result will include irrelevant
adversarial images. TTH first computes the embedding of all sen-
tences containing the target keyword to obtain the embedding 𝒆𝒕
associated with the target keyword. An adversarial patch is then
optimized so that the embedding of the images with the attack
patch is close to the 𝒆𝒕 .
• Non-adaptive attack. In non-adaptive attacks [18], the attacker
only has knowledge of the retrieval model and no knowledge of
defense methods. In our experimental setup, the attacker optimizes
the attack patches by gradient backpropagation based on TTH [14]
and AdvHash [15] methods, targeting the original model without
any defense. Then, defense methods are applied to the optimized
patches. Based on the retrieval results, test their defense capabilities.
• Adaptive attack. Adaptive attack applies some targeted strate-
gies [1, 2] to attack the whole model including the defense pipline.
To effectively attack SAC [18] and PatchZero [33], we make fool-
ing the patch detector one of the attacker’s optimization goals. If
the patch detector can’t locate the patch correctly, the SAC and
PatchZero defenses will fail. Since the defense pipline of LGS [24]
is differentiable, attackers can directly perform gradient backprop-
agation to optimize the attack patch. To effectively attack PAIR, we
have experimented with various adaptive attacks, such as BPDA [1]
and EOT [2], as well as their combinations. Due to space limitations,
we don’t show the details, but we are convinced that EOT is the
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most effective adaptive attack strategy against PAIR. The following
are the new optimized goals for TTH [14] and AdvHash [15]:

argmin
𝝈

𝒅 ( 1
ℎ𝑎𝑑𝑣

ℎ𝑎𝑑𝑣∑︁
ℎ=1

𝐹𝑖 (𝑇 (𝒙′)), 𝒆𝒕 ), (3)

argmin
𝝈

𝒅 (𝑠𝑖𝑔𝑛( 1
ℎ𝑎𝑑𝑣

ℎ𝑎𝑑𝑣∑︁
ℎ=1

𝐻 (𝑇 (𝒙′))), 𝒄𝒕 ), (4)

where 𝒙′ is the attack image modified by the attacker, 𝑇 is the
pre-processing defense method, 𝐻 and 𝐹𝑖 are content-based and
text-based image retrieval models, ℎ𝑎𝑑𝑣 is the hyperparameter of
EOT, 𝒅 is the distance measure, and 𝝈 denotes the modification
degree of the image by the attacker.

4 OUR MODEL PAIR
Our goal is to develop an augmented pre-denoising method that
is efficient and insensitive to variations in the shape, position, and
form of adversarial patches for content-based and text-based image
retrieval systems.

4.1 Overview
In this research, we tackle the problem of defending against patch
attacks. These attacks modify parts of an image to mislead retrieval
models. To solve this problem, we propose PAIR (Pre-denosing
Augmented Image Retrieval Model), a novel solution designed to
improve the security of image retrieval systems.

The fundamental concept behind PAIR is its ability to randomly
and dynamically reconstruct an entire image, following the seman-
tic of the image. This process is achieved through a generative
network in the form of a masked auto-encoder. With our designed
masking and recovery mechanism, it is guaranteed that all pixels of
the attack patch are purified. Such a technique ensures the preserva-
tion and capture of the semantics of the processed image, adaptable
to any downstream model, while disrupting the adversarial patches.

This disruption makes the attackers’ optimisation strategies less
effective and harder to adapt to.

However, the traditional masked autoencoder model is insuffi-
cient to fully recover the image, which inevitably leads to a signifi-
cant compromise in the accuracy of the retrieval model. To improve
the recovery of PAIR, we propose a novel training methodology
based on a semantic discriminator. This approach, which focuses
on training the generative network from a semantic representa-
tion standpoint, markedly increases the retrieval model’s accuracy.
Moreover, it unexpectedly can enhance the model’s ability to cap-
ture the real semantics of an image, thereby enhancing its defensive
capabilities, as demonstrated in our ablation studies.

4.2 Pipeline of PAIR Defense
PAIR defends the retrieval model from patch attacks through dy-
namic and random reconstruction of the entire input image. The
defence mechanism we design can be guaranteed to purify all pixels
of the attack patch while preserving the semantics of the input im-
age. The operational pipeline of PAIR unfolds through the following
sequential steps:
• Step 1: Initially, partition an image 𝒙 ∈ 𝑅𝑐×ℎ×𝑤 into 𝑛 image
patches {𝑥𝑖 }𝑛𝑖=1, each of size 𝑠 × 𝑠 pixels, where 𝑥𝑖 ∈ 𝑅𝑐×𝑠×𝑠 . The
dimensions 𝑐 , ℎ, and𝑤 represent the number of channels, height,
and width of the image, respectively. Ensure that 𝑠 is a common
divisor of both ℎ and𝑤 , and the total number of patches 𝑛 is ℎ𝑤/𝑠2.
Subsequently, generate a binary mask sequence𝑀 of length 𝑛:

𝑀 = [𝑚1,𝑚2, ...,𝑚𝑛], (5)

where𝑚𝑖 is defined by:

𝑚𝑖 ≜

{
1 𝑟𝑎𝑛𝑑 (0, 1) > 𝛼
0 otherwise, (6)

where 𝛼 denotes the mask ratio, which ranges between 0 and 1. Ex-
perimental results indicate that setting it between 0.2 and 0.8 yields
satisfactory defensive effects. However, we recommend setting it
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to 0.5 to achieve optimal retrieval accuracy on clean samples. Due
to the space limitation, we won’t show this sensitivity analysis.
• Step 2: Employ the mask sequence𝑀 to obtain a set of masked
image patches {𝑝𝑖 }𝑛𝑖=1, where 𝑝𝑖 is determined by:

𝑝𝑖 ≜

{
𝑥𝑖 𝑚𝑖 = 1
𝑧 otherwise, (7)

where 𝑧 representing an 𝑐 × 𝑠 × 𝑠 image patch of zero pixel values.
A generator then reconstructs the image. As depicted in Figure
4, the generator 𝐺 (·), structured on a masked autoencoder [12],
encompasses both an encoder and a decoder, each utilizing a multi-
layer transformer architecture. Initiate the image restoration by
mapping the image patches to embedding via a fully connected
layer FC(·), as with ViT [10]. Then, add 1-dimensional positional
embedding 𝑒𝑝𝑜𝑠 to the image patch embedding in raster order,
following the method in [10]:

𝑒𝑖 = FC(𝑝𝑖 ) + 𝑒𝑝𝑜𝑠 . (8)

Here, 𝑑 represents the dimension of each embedding and subse-
quent feature. Input the embedding set {𝑒𝑖 }𝑛𝑖=1 into the encoder to
infer the feature set {𝑓𝑖 }𝑛𝑖=1:

𝑓1, 𝑓2, . . . , 𝑓𝑛 = Encoder(𝑒1, 𝑒2, . . . , 𝑒𝑛) . (9)

For masked image patches, introduce a trainable mask embedding
𝑒𝑚𝑎𝑠𝑘 as a feature and combine it with 1-dimensional positional em-
bedding. The resulting feature set {𝑓𝑖 }𝑛𝑖=1 and the mask embedding
𝑒𝑚𝑎𝑠𝑘 are then input into the decoder along with 1-dimensional
positional embedding 𝑒𝑝𝑜𝑠 :

𝑞𝑖 ≜

{
𝑓𝑖 + 𝑒𝑝𝑜𝑠 𝑚𝑖 = 1
𝑒𝑚𝑎𝑠𝑘 + 𝑒𝑝𝑜𝑠 otherwise, (10)

𝑥 ′1, 𝑥
′
2, . . . , 𝑥

′
𝑛 = Decoder(𝑞1, 𝑞2, . . . , 𝑞𝑛) . (11)

Concatenate the restored image patches [𝑥 ′1, 𝑥
′
2, . . . , 𝑥

′
𝑛] into a new,

complete image:
𝑥 ′ = ⟨𝑥 ′1, 𝑥

′
2, . . . , 𝑥

′
𝑛⟩, (12)

where ⟨·⟩ denotes the concatenation function, sequentially merging
the image patches.
• Step 3: Finally, perform a second restoration using the image
patches reconstructed in Step 2. This ensures that all pixels in the
final image are restored in alignment with the intended semantics,
rather than derived from the original image. To do this, invert the
mask sequence from Step 1, [𝑚1,𝑚2, ...,𝑚𝑛], as follows:

𝑚′
𝑖 ≜

{
1 𝑚𝑖 = 0
0 otherwise. (13)

Then, replicate the image restoration process from Step 2 using the
new mask sequence [𝑚′

1,𝑚
′
2, ...,𝑚

′
𝑛] and the same generator, but

this time input the image restored in Step 2.

4.3 Training of Generator
In the process of training a generative model, the integration of a
semantic discriminator is vital. This discriminator, structured as
a multi-layer transformer network, can extract semantic features
from images. The generator is trained purely on clean images to
guarantee that the model is not biased against attack patches. As
shown in Figure 4, unlike the defensive pipeline, the training of
the generator is generated only once. The motivation is that, from

our observation, iterative generation based on already recovered
images will result in training instability.

To enhance the semantic consistency between the reconstructed
image 𝒙′ and its original 𝒙 , we have formulated a composite training
loss function 𝐿 as follows:

𝐿 = 𝐿𝑝 + 𝛽𝐿𝑠 , (14)

where 𝐿𝑝 denotes the pixel-level reconstruction loss and 𝐿𝑠 denotes
the semantic reconstruction loss, with the parameter 𝛽 modulat-
ing their respective contributions. The pixel-level loss 𝐿𝑝 , which
provides hard labels for training, is formally defined as:

𝐿𝑝 =
1
𝑛

𝑛∑︁
𝑖=1

[1 − SSIM(𝑥𝑖 , 𝑥 ′𝑖 )] . (15)

Here SSIM(·) [31] is a metric for measuring the similarity of two
images. It takes into account the brightness, contrast and structural
information of the images. It yields values in the range of -1 to 1,
with higher values being more similar. The following is the formula
for SSIM(·):

SSIM(𝑥𝑖 , 𝑥 ′𝑖 ) =
(2𝜇𝑥𝑖 𝜇𝑥 ′

𝑖
+ 𝑐1) (2𝜎𝑥𝑖𝑥 ′

𝑖
+ 𝑐2)

(𝜇2𝑥𝑖 + 𝜇2𝑥 ′
𝑖

+ 𝑐1) (𝜎2𝑥𝑖 + 𝜎2𝑥 ′
𝑖

+ 𝑐2)
, (16)

where 𝜇𝑥𝑖 is the average pixel value, 𝜎2𝑥𝑖 is the variance, 𝜎𝑥𝑖𝑥 ′
𝑖
is the

covariance of 𝑥𝑖 and 𝑥 ′𝑖 . 𝑐1 and 𝑐2 are constants, following [31].
The loss 𝐿𝑠 at the semantic level provides soft labels and is

formally defined as:

𝐿𝑠 = 1 − 𝐷 (𝒙) · 𝐷 (𝒙′)
∥ 𝐷 (𝒙) ∥∥ 𝐷 (𝒙′) ∥ . (17)

In this equation, the semantic discriminator𝐷 (·) plays a crucial role
in extracting the semantic vector of the image, employing cosine
similarity to maximize semantic alignment.

5 EXPERIMENTS
In this section, we introduce the benchmark datasets and analyze
the results of defending against state-of-the-art adversarial patch
attacks in the content-based image retrieval task and the text-based
image retrieval task. In addition, we perform ablation studies to
investigate the factors that affect defense and clean sample accuracy.
Finally, we investigate the sensitivity of PAIR to the size, shape,
form, and position of attack patches.

5.1 Experimental Setting
Datasets. We demonstrate the effectiveness of our approach on
three popular benchmark datasets. ImageNet [9] and MSCOCO [17]
are used for the content-based image retrieval task. Flickr30K [25]
and MSCOCO are used for the text-based image retrieval task. For
ImageNet, following [3, 15], we use a subset that has 130k images
with 100 classes.We apply the COCO2014 dataset forMSCOCO. The
training set contains 82,783 images and the validation set contains
40,504 images with a total of 80 categories, and each image has 5
sentences of annotation. Flickr30k contains 31,783 images, each
with 5 sentences of annotation.We randomly selected 21,783 images
for the training set, 5,000 images for the validation set, and 5,000
images for the test set.
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Table 1: Compared with other methods in text-based image retrieval systems. R@10 (%) under non-adaptive and adaptive
attacks. The detailed attack formulation are presented in Section 3.2. "↑" means higher is better. "↓" means lower is better. The
best performance of each column is in bold.

Dataset Methods Clean↑ Adaptive Attack Non-adaptive Attack
irrelevant image↓ Relevant image↑ irrelevant image ↓ Relevant image↑

Flickr30K

Undefended 91.72 94.01 71.73 94.01 71.73
PatchZero [33] 91.70 79.46 83.82 27.25 88.47

SAC [18] 91.72 89.67 80.39 25.99 90.38
MAEDefense [22] 81.21 22.71 83.72 5.14 84.32

LGS [24] 85.78 36.55 87.56 0.02 88.93
AT [23] 88.60 73.99 86.71 73.99 86.71
Ours 88.86 2.52 92.93 0.07 93.02

COCO

Undefended 89.88 81.30 56.42 81.30 56.42
PatchZero [33] 89.84 77.91 61.36 31.34 74.69

SAC [18] 89.82 74.42 62.13 27.75 75.51
MAEDefense [22] 79.48 19.21 74.71 3.72 66.56

LGS [24] 86.48 15.06 71.09 0.05 73.30
AT [23] 87.24 71.18 70.30 71.18 70.30
Ours 87.72 1.84 72.10 0.04 76.61

Table 2: Compared with other methods in content-based image retrieval systems. mAP (%) under non-adaptive and adaptive
attacks. The detailed attack formulation are presented in Section 3.2. "↑" means higher is better. "↓" means lower is better. The
best performance of each column is in bold.

Dataset Methods Clean↑ Adaptive Attack Non-adaptive Attack
irrelevant image↓ Relevant image↑ irrelevant image ↓ Relevant image↑

ImageNet

Undefended 88.16 99.65 0.60 99.65 0.60
PatchZero [33] 80.54 54.49 47.31 16.15 67.33

SAC [18] 78.35 48.20 50.03 12.70 70.96
MAEDefense [22] 65.32 13.47 76.28 4.85 78.49

LGS [24] 74.77 18.41 79.33 0.46 85.60
AT [23] 75.30 89.56 13.42 89.56 13.42
Ours 76.15 2.05 84.86 0.21 87.83

COCO

Undefended 87.48 40.45 12.89 40.45 12.89
PatchZero [33] 79.91 24.46 32.10 8.57 53.02

SAC [18] 82.40 22.92 35.74 10.84 55.67
MAEDefense [22] 68.24 7.28 30.85 3.36 46.92

LGS [24] 73.42 2.21 29.96 0.73 54.34
AT [23] 77.87 36.24 18.78 36.24 18.78
Ours 74.72 1.07 43.42 0.45 56.28

Training details. The image patches that divide the image are
16 × 16 in size. The generator and discriminator are initialized with
the parameters of the pretrained model MAE [12] and CLIP[26],
respectively. Since CLIP is extensively pre-trained and has high gen-
eralisation capacity, the discriminator requires no further training
and the generator is trained solely. A total of 104,566 images from
MSCOCO and Flickr30k are used to train the generator according
to the training approach. The mask radio 𝛼 in Step 1 is set to 0.5.
The 𝛽 in equation 14 is set to 1. The 𝑐1, 𝑐2 in equation 3 are set to
1e-4, and 9e-4, respectively. The batch size is set to 32, the optimizer
is Adam, and the learning rate is set to 1e-5. The model is trained
for 100 epochs. It takes about 20 hours to complete the training
process on a Tesla V100.

Baselines. To compare with PAIR, we implemented PatchZero
[33], SAC [18], LGS [24], MAEDefense [22], Adversarial Training
(AT) [23]. In particular, we changed the uniform mask in MAEDe-
fense’s mechanism to the random mask to enhance its defense.

Attacks details. In the text-based image retrieval task, following
[14], 23 keywords were set for target attacks. Insert 10 advertising
images into the image database for each keyword. The width and
height of the adversarial patch was set to 0.35 of the width and
height of the original image. In the content-based image retrieval
task, following [15], we tried some categories for target attacks and
extracted 50 images to optimize a universal adversarial patch. Then,
tested the adversarial patch on another 100 images. The length of
the hashcode is set to 64. The width and height of the adversarial
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Table 3: Ablation study. R@10 (%) under different defense components in text-based image retrieval systems. "↑" means higher
is better. "↓" means lower is better. The best performance of each column is in bold. The attack method is TTH [14].

Methods Clean↑ Adaptive Attack Non-adaptive Attack
irrelevant image↓ relevant image↑ irrelevant image↓ relevant image↑

Undefended model 91.72 94.01 71.73 94.01 71.73
w/ reconstruction 90.88 85.34 65.16 13.67 92.27

w/ fixed mask and reconstruction 75.06 85.36 65.06 0.13 81.04
w/ random mask and reconstruction 75.40 14.00 79.45 0.13 82.94
w/ semantic discriminator (Ours) 88.86 2.52 92.93 0.07 93.02

patch were set to 0.22 of the width and height of the original image.
Following EBM [13], ℎ𝑎𝑑𝑣 is set to 7.

Evaluation metrics. We use Mean Average Precision (mAP)
and Recall@K as evaluationmetrics in content-based and text-based
image retrieval, respectively. Similar to AdvHash [15] and TTH [14],
we adopt the following three variants:

• Clean: test retrieval ability on clean images. To measure
the negative impact of these defense methods on the model
retrieval capability. The higher this metric is, the better.

• Irrelevant image: After the attack, irrelevant images that
the attacker wants the user to see will appear in the retrieval
results. For Recall@K, a successful attack is defined as an ir-
relevant image ranking in the top𝐾 . Therefore, for defensive
methods, the lower this metric is, the better.

• Relevant image: After the attack, the ranking of really
relevant images in the results will drop. This metric use
ground-truth images to compute Recall@K and mAP.

5.2 Defense Results
We compared PAIR with several state-of-the-art defense methods
from similar tasks. The detailed attack formulation is described in
Section 3.2. The experimental results highlight the advantages of
PAIR in the context of adaptive attacks.

Text-based image retrieval. As shown in Table 1, PAIR demon-
strates superior defense capabilities on both datasets. In particular,
against adaptive attacks, the success rate of the attacks is 14.05%
lower than the second-best method. Against non-adaptive attacks,
methods such asMAEDefense [22], LGS [24], and PAIR prove highly
effective, reducing the attack success rate to below 1%. While SAC
[18] and PatchZero [33] perform not well. If the patch detectors
are not located correctly, their defence fails. PatchZero and SAC
have more advantages on clean samples due to less image damage.
However, PAIR also maintains a high level performance for retrieve
clean samples, paralleling the original model.

Content-based image retrieval. The results in Table 2 high-
light PAIR’s strength in dealing with adaptive attacks, reducing the
success rate of such attacks to below 2.05%. This level of effective-
ness is also seen in the context of non-adaptive attacks. However, in
terms of retrieval performance on clean samples, PAIR shows a no-
table decrease compared to the undefended model. On the one hand,
mAP is a more comprehensive evaluation of the ranking results,
reflecting the negative impact of the defense. On the other hand,
this decrease is a trade-off for its much stronger defense, which
results in PAIR still being the best performing method overall.

Original After attack

After defense

Figure 5: High dimensional vector visualization. We extract
both image and text as high-dimensional vectors and visual-
ize them. Experimental results show that after PAIR defense,
the semantic distance between the vectors is restored to the
original state. Purple: texts containing the attacked keyword
“policeman"; Gray: natural images in the test set; Gold: attack
images inserted into the database. The goal of the attacker is
to make the gold points close to the purple points.

5.3 Ablation Study
In this section, we evaluate the effectiveness of the various com-
ponents of PAIR. As shown in Table 3, when the image is recon-
structed without masking, it has a certain defensive effect under a
non-adaptive attack. In this experimental setting, the generator’s
encoder is employed to extract the image features. Then, the de-
coder is used to restore the image features to the reconstructed
image. When reconstructing an image with a fixed mask, it can pro-
vide an effective defense against a non-adaptive attack. However, it
provides no significant barrier against the adaptive attack.

PAIR can achieve excellent defense when reconstructing the
input image using random masking under both adaptive and non-
adaptive attacks. We believe that random masks will result in ran-
dom damage to attack patches and that the existing adaptive attack
methods are difficult to adapt. Therefore, it has an efficient defense
effect under adaptive defense. The ability of the generator to pre-
serve image semantics improves after the addition of a semantic
discriminator to its training. Therefore, the retrieval accuracy on
clean images is comparable to the original model’s effect. The rea-
sons for the stronger defensive effect are as follows: because the
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Table 4: Robustness Analysis. R@10 (%) under adversarial patches attack in the text-based image retrieval system. The size of
the image is 224 × 224. Adaptive Attack and Non-adaptive Attack are presented in Section 3.2. "↑" means higher is better. "↓"
means lower is better. Experiments show that PAIR has sufficient defense against patches of different sizes, shapes and forms.

patchsize
Undefended Our defense

White-box Attack Adaptive Attack Non-adaptive Attack
irrelevant image↓ relevant image↑ irrelevant image↓ relevant image↑ irrelevant image↓ relevant image↑

48×48 61.94 92.08 0.27 91.72 0.04 93.25
80×80 97.84 62.07 2.85 93.91 0.03 92.88
112×112 99.54 37.35 4.57 93.55 0.02 92.52

rectangle (40×160) 90.72 77.64 3.92 93.03 0.03 93.46
circle (radius=45) 97.29 34.21 3.53 93.24 0.11 92.38

Other forms and positions (80×80) 92.59 72.10 4.87 91.43 0.07 94.40

ground-truth image is better reconstructed, its retrieval ranking will
be higher. As a result, the metric of the relevant image improved.
With the enhanced ability of the model to capture real semantics,
the ability to purify against adversarial perturbations is increased.
Therefore, it benefits the metric of the irrelevant images.

5.4 Robustness Analysis
We evaluated the robustness of PAIR against adversarial attacks
of different patch sizes, shapes, and forms. The results in Table 4
demonstrate that our proposed PAIR approach maintains high ef-
fectiveness against attacks of varying sizes. As the size of the adver-
sarial patches increases, the attack success rate generally increases
when no defense is applied. However, PAIR consistently demon-
strates high efficiency in defense, with attack success rates of less
than 5%. Then, we conducted experiments with different patch
shapes, including circles and rectangles. Furthermore, we randomly
altered the form and position of the attack patches. As shown in
Table 4, we reported the average experimental data. The experi-
mental results show that PAIR remains effective. This is attributed
to PAIR’s reliance solely on clean samples for training, making it
insensitive to diverse attack patches.

Visualization. The visualization is designed to confirm that our
defense lowered the aggression of the attack patch. The attacks on
PAIR are set to be adaptive attacks to achieve better attack effects.
As shown in Figure 5, we visualized the semantic representation of
the original images and texts. After the PAIR defense, the semantic
distance between the attacker’s images and the texts containing
the attacked keyword is restored to its original state.

5.5 Defense against Global Perturbation Attacks
To illustrate the generality of PAIR, we experiment against global
perturbation attacks. The global perturbation attack allows the at-
tacker to modify all the pixels in the image and set the perturbation
individually for each adversarial image. The attack is set up to
insert an adversarial advertising image into the database. Modify
the TTH [14] to the global perturbation attack on the MSCOCO
[17] dataset. The size of perturbation budget is 4/255 in 𝑙∞. Partial
defense methods can’t defend against global perturbation attacks,
such as PatchZero [33] and SAC [18]. Therefore, we introduce other
advanced baselines for comparison. Among them, JPEG [11], ARN
[36], and CAFD [37] are based on pre-processing denoising and HM
[39] is based on adversarial training. As shown in Table 5, compared

Table 5: Comparison with other aviliable methods in defense
against global perturbation attacks. R@10 (%) under adaptive
attacks in text-based image retrieval systems.

Method irrelevant image ↓ relevant image ↑
Undefended 99.28 79.56
ARN [36] 96.47 76.57
CAFD [37] 96.24 75.63

MAEDefense [22] 59.42 64.86
JPEG [11] 47.26 55.65
HM [39] 48.82 68.65
Ours 42.29 75.42

to other preprocessing defense methods, PAIR can achieve better
defense. Due to less damage to the image, methods such as CAFD
and ARN perform better on the metrics of a relevant image, but
offer little defense against adaptive attacks.

6 CONCLUSIONS
In this paper, we have developed PAIR, a new method specifically
designed to protect against patch attacks in both content-based
and text-based image retrieval systems. This method processes im-
ages in a way that reduces the impact of attacks while preserving
the semantic information for the downstream model. Extensive
experimental evaluations on a variety of benchmark datasets has
demonstrated PAIR’s exceptional ability to defend against adver-
sarial patch attacks. Impressively, PAIR is insensitive to the shape,
form, and position of the attack patches. Furthermore, in terms of
retrieval accuracy on clean samples, PAIR’s performance is compa-
rable to that of the original, undefended model. Ablation studies
further reveal that the PAIR module introduces unpredictable dis-
ruptions to attack patches, making existing adaptive attack methods
less effective and difficult to adapt to.

Limitations and broader impacts. Although our PAIR defense
performs well in semantic-based retrieval models, it is not suitable
for fine-grained retrieval tasks, such as face retrieval. In terms of
compatibility, as a preprocessing defense, our method destroys the
attack patches while preserving the image’s semantic information,
making it compatible with the most of downstream retrieval models.
Moreover, our defense strategy may be extended to other domains,
such as defense in graphs and texts.
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