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ABSTRACT

A fine-grained understanding of egocentric human-environment interactions is
crucial for developing next-generation embodied agents. One fundamental chal-
lenge in this area involves accurately parsing hands and active objects. While
transformer-based architectures have demonstrated considerable potential for such
tasks, several key limitations remain unaddressed: 1) existing query initialization
mechanisms rely primarily on semantic cues or learnable parameters, demonstrat-
ing limited adaptability to changing active objects across varying input scenes; 2)
previous transformer-based methods utilize pixel-level semantic features to iter-
atively refine queries during mask generation, which may introduce interaction-
irrelevant content into the final embeddings; and 3) prevailing models are sus-
ceptible to “interaction illusion”, producing physically inconsistent predictions.
To address these issues, we propose an end-to-end Interaction-aware Transformer
(InterFormer), which integrates three key components, i.e., a Dynamic Query Gen-
erator (DQG), a Dual-context Feature Selector (DFS), and the Conditional Co-
occurrence (CoCo) loss. The DQG explicitly grounds query initialization in the
spatial dynamics of hand-object contact, enabling targeted generation of interac-
tion-aware queries for hands and various active objects. The DFS fuses coarse
interactive cues with semantic features, thereby suppressing interaction-irrelevant
noise and emphasizing the learning of interactive relationships. The CoCo loss
incorporates hand-object relationship constraints to enhance physical consistency
in prediction. Our model achieves state-of-the-art performance on both the Ego-
HOS and the challenging out-of-distribution mini-HOI4D datasets, demonstrating
its effectiveness and strong generalization ability. 1

1 INTRODUCTION

Recent advances in personal terminal devices such as GoPros and head-mounted devices (HMDs)
have driven a significant increase in sharing first-person view (FPV, or egocentric) images and videos
on various social media platforms (Xu et al., 2024a; Fan et al., 2025; Chen et al., 2025; Cartillier
et al., 2021). In response, the research community has released large-scale FPV datasets including
Ego4D (Grauman et al., 2022), EPIC-KITCHENS (Damen et al., 2018), and HOI4D (Liu et al.,
2022b). Unlike third-person view (TPV) or exocentric perspective data (Kim et al., 2025; Lei et al.,
2024), egocentric content directly captures the immersive visual information experienced by the
camera wearer, providing details about their interactions with the surrounding environment (Huang
et al., 2024; Shi et al., 2024). To better understand human behavior from the egocentric perspective,
a fundamental challenge lies in accurately parsing the hands and objects involved in interaction,
which is the main objective of the Egocentric Hand-Object Segmentation (EgoHOS) task (Zhang
et al., 2022; Su et al., 2025a). By focusing on pixel-level segmentation of hands and interacting
objects, this fine-grained analysis is able to interpret the complex dynamics of human-environment
engagement, forming a foundational capability for next-generation technologies such as assistive
agents (Yang et al., 2025; Zhou et al., 2025), embodied AI (Dang et al., 2025), and AR/VR systems
(Zhao et al., 2024).

1Code will be released to facilitate reproducibility.
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Figure 1: Model size vs. mIoU for InterFormer com-
pared to other methods. Evaluations use EgoHOS in-
domain (In-domain), EgoHOS out-of-domain (OOD Test
1), and mini-HOI4D (OOD Test 2) datasets.

Figure 2: Illustration of interaction il-
lusion, in which segmentation results vi-
olate real-world causal dependencies be-
tween hands and objects.

Existing approaches for parsing hands and interacting objects can be broadly categorized into
convolution-based, transformer-based, and multi-modal large language model (MLLM)-based meth-
ods. Convolution-based models (Zhao et al., 2025; Xu et al., 2024b) are proposed in earlier stages,
exhibiting limited performance in handling the complexities of the egocentric vision due to their
inherent constraints in capturing long-range dependencies. With the recent advancement of Multi-
modal Large Language Models (MLLMs), MLLM-based methods (Su et al., 2025b) have gained at-
tention for their powerful representational capacity. However, MLLM-based models typically incur
substantial computational overhead and parameter costs. In contrast, transformer-based approaches
(Zhang et al., 2022; Su et al., 2025a; Leonardi et al., 2024; Cheng et al., 2022a; Xie et al., 2021) offer
a more favorable trade-off between accuracy and model complexity, effectively capturing long-range
interactions while maintaining manageable parameter efficiency.

Despite the promising progress of transformer-based approaches, several key limitations remain un-
solved. First, a primary issue lies in query initialization, which plays an essential role in transformer-
based frameworks such as DETR (Carion et al., 2020; Zhu et al., 2021). Current methods typically
initialize queries using either sampled image features (Zhou et al., 2022) or learnable parameters
(Cheng et al., 2022a; Shah et al., 2024). The former often introduces irrelevant background informa-
tion, while the latter provides a set of stable but static queries after sufficient training. Consequently,
both approaches exhibit limited adaptability to dynamically changing active objects across diverse
input scenes. Second, current methods predominantly rely on dense pixel-level semantic features
from the input image, implicitly extracting target information through attention operations in the
transformer decoder for mask prediction (Cheng et al., 2022a; Su et al., 2025a). However, such
generic semantic features are fundamentally limited to answering “what is it” rather than whether
it is in interaction. This semantic bias inevitably introduces substantial interaction-irrelevant noise,
ultimately degrading segmentation accuracy. Third, existing methods (Zhang et al., 2022; Cheng
et al., 2022a; Su et al., 2025a) often exhibit a logical defect termed as the interaction illusion. As
illustrated in Figure 2, an object is predicted as manipulated by both hands even when the right hand
is not detected. Such outcomes are inconsistent with real-world physical plausibility, leading to a
significant drop in performance.

To address the aforementioned limitations, we propose the Interaction-aware TransFormer (In-
terFormer), a novel end-to-end framework for parsing hands and interacting objects from an ego-
centric perspective. In contrast to prior methods that rely primarily on semantic features (Su et al.,
2025a; Cheng et al., 2022a; Zhang et al., 2022), we first introduce the Interaction Prior Predic-
tor (IPP), an auxiliary branch trained to estimate interaction boundaries. This branch extracts pre-
liminary boundary-guided features that coarsely localize hand-object contact regions and capture
initial interaction characteristics. However, these rough boundary-guided features alone are insuffi-
cient for accurately distinguishing hands and their interacting objects. Therefore, we further propose
a Dynamic Query Generator (DQG) and a Dual-context Feature Synthesizer (DFS) to shift the
model’s focus to distinguishing interaction representation learning. Specifically, the DQG grounds
query initialization within the dynamic spatial cues of ongoing interactions. This module selects
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semantic embeddings that demonstrate strong similarity with boundary-guided features and inte-
grates them with learnable parameters, producing intrinsically interaction-aware queries that enable
flexible adaptation to diverse hands and interactive objects across varying scenes. To address the
noise caused by relying solely on pixel-level semantic features for query refinement, we propose
the DFS. This module synthesizes coarse interaction boundary cues with semantic features, effec-
tively suppressing interaction-irrelevant information and refocusing the model on essential contact
relationships. Furthermore, to mitigate the interaction illusion problem, we design a Conditional Co-
occurrence (CoCo) loss that incorporates hand-object contact constraints to ensure physically plau-
sible and accurate segmentation. We conduct extensive experiments to evaluate the effectiveness of
our method. The results show that our InterFormer consistently surpasses all competing approaches
across all evaluation metrics, achieving relative improvements of 2.42%, 5.09%, and 11.4% on the
EgoHOS in-domain test set (Zhang et al., 2022), the EgoHOS out-of-domain test set (Zhang et al.,
2022), and the out-of-distribution (OOD) mini-HOI4D dataset (Su et al., 2025a), respectively. These
findings demonstrate the superior performance and robust generalization capability of our approach,
as illustrated in Fig. 1. The main contributions of our InterFormer can be concluded as:

• We establish a novel query initialization paradigm, DQG, which generates intrinsically interac-
tion-aware queries by fusing coarse interaction-aligned semantic embeddings with learnable pa-
rameters, enabling dynamic adaptation to hands and diverse active objects across varying scenes.

• The proposed DFS introduces an interaction-centric refinement mechanism that purifies semantic
embeddings through boundary-guided feature fusion, effectively suppressing interaction-irrele-
vant noise and refocusing the model on contact relationships.

• We introduce a novel CoCo loss that encodes intuitive hand-object contact constraints into the
learning process. By penalizing physically implausible co-occurrences, the CoCo loss significantly
mitigates the “interaction illusion” problem and improves segmentation consistency.

• Extensive evaluations on EgoHOS and mini-HOI4D benchmarks confirm that InterFormer
achieves state-of-the-art (SOTA) performance and exhibits strong generalization across in-domain
and out-of-distribution settings.

2 RELATED WORK

Egocentric images and videos Narasimhaswamy et al. (2024) provide a unique perspective on
human-environment interactions, capturing how individuals manipulate objects with their hands in
natural, unstructured, real-world settings (Plizzari et al., 2025; Dang et al., 2025). The study of
egocentric vision is essential for developing advanced intelligent embodied agents and has attracted
growing interest from academic and industrial research communities. In response, several large-
scale egocentric datasets have been introduced to support data-driven modeling of human behavior,
such as Ego4D (Grauman et al., 2022), EPIC-KITCHENS (Damen et al., 2018), and HOI4D (Liu
et al., 2022b). These datasets provide foundational resources for a wide range of tasks, including
action recognition (Peirone et al., 2025), video captioning (Ohkawa et al., 2025), action anticipation
(Lai et al., 2024b), affordance learning (Luo et al., 2024), and hand-object interaction interpreta-
tion (Leonardi et al., 2024). Despite the availability of these new datasets, the volume of FPV data
remains considerably smaller than that of TPV datasets, limiting the training of deep models. To
mitigate this data scarcity, several studies have explored cross-view representation learning, aim-
ing to transfer view-invariant features from the TPV domain to the FPV domain (Jia et al., 2024;
Liu et al., 2024; Li et al., 2024). However, such approaches typically rely on precisely aligned
multi-view recordings, which are challenging to collect at scale due to hardware and synchroniza-
tion constraints. Concurrently, some methods have integrated complementary multi-modal signals
to enrich egocentric representation (Wang et al., 2025; Ramazanova et al., 2025), e.g., gaze (Lai
et al., 2024a), audio (Jia et al., 2024), and textual descriptions (Hong et al., 2025; Wang et al., 2025).
These modalities provide auxiliary contextual cues that can compensate for visual ambiguities in
FPV data.

Recent advances in transformer architectures have significantly promoted the research in egocentric
hand-object interaction (EgoHOI) by enabling more effective modeling of long-range dependencies
and complex visual relationships (Lai et al., 2024a; Roy et al., 2024; Cao et al., 2024). Despite
these improvements, a fundamental limitation remains: most existing methods lack explicit and
structured mechanisms for capturing the interactive relationships between hands and objects Cheng

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Architecture of our end-to-end InterFormer. Given an input egocentric image, a back-
bone network first extracts global and multi-scale pixel-level features. We add an additional IPP
branch to extract coarse boundary-guided representations that characterize the interaction. Subse-
quently, the DQG produces robust and dynamic queries by integrating interaction-relevant contex-
tual information with learnable parameters. Finally, these queries and extracted features are fed
into the InterFormer decoder, which employs the DFS to refine interaction-aware representations
and generate the final segmentation masks. The overall end-to-end architecture is supervised by the
classification loss Lcls, dice loss Ldic, cross entropy loss Lce, IPP loss Lb, and CoCo loss Lco.

et al. (2022a); Su et al. (2025a); Zhang et al. (2022). As a result, they often produce inaccurate or
physically implausible predictions.

3 METHODOLOGY

The EgoHOS task aims to parse the left hand Mlh, right hand Mrh, and objects in contact within
an egocentric image I ∈ RH×W×3. The categories of interacting objects include left-hand objects
Mlo (objects that interact only with the left hand), right-hand objects Mro (objects that interact
only with the right hand), and two-hand objects Mto (objects that are contacted by both hands).

3.1 OVERVIEW

This paper presents InterFormer, a novel approach for precisely parsing hands and interacting objects
in egocentric images. The overall architecture is shown in Figure 3. Given an egocentric image, the
backbone first extracts global and multi-scale pixel-level features. Unlike existing approaches that
rely solely on semantic features, we introduce an additional interaction prior predictor, which is ex-
plicitly supervised by the interaction boundary ground truth Gb to guide the network to concentrate
on hand-object contact regions and model boundary-guided cues. However, these rough bound-
ary-guided features alone are insufficient for accurately distinguishing hands and their interacting
objects. Therefore, we further design a dynamic query generator and a dual-context feature selector
to explicitly refine and enrich the interaction representation. Specifically, the DQG grounds query
initialization within the dynamic spatial cues of ongoing interactions, generating robust and dynamic
queries for hands and manipulated objects. The generated queries along with the extracted features
are transmitted into the InterFormer decoder, which integrates the DFS to refine interaction-aware
representations and produce the final segmentation masks. Details of each component are provided
in the following subsections.

Backbone. The backbone of InterFormer extracts global and pixel-level features from an input
egocentric image I. Specifically, we use a Swin (Liu et al., 2021) Transformer encoder E(I; θe)
to obtain global features Fg ∈ RHg×Wg×Cg , where θe is the parameter. Next, a deformable DETR

4
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transformer (Zhu et al., 2021) serves as the pixel decoder Dpix, generating multi-scale pixel-level

features Fpix =
{
Fl

pix ∈ RHl
p×W l

p×Cl
p | l ∈ {1, 2, · · · ,L}

}
, where H l

p, W l
p, and Cl

p denote the
height, width, and channel dimensions at each scale.

Interaction Prior Predictor. After extracting pixel-level features, most existing methods send them
directly into the transformer decoder for prediction Cheng et al. (2022a); Su et al. (2025a); Zhang
et al. (2022). However, since different actions involve different interacting objects, identifying active
objects cannot rely solely on semantic information, but must depend on their relationship with the
hand. Therefore, we introduce an interaction prior predictor branch to roughly localize the hand-ob-
ject interaction. This branch takes the global feature Fg as input and predicts the interaction boundary
(Zhang et al., 2022), i.e., the overlapping region between hands and interacting objects, using a
cascaded U-Net-style decoder ϕint followed by stacked convolutional layers ϕhead. The output is
an interaction boundary map Mb supervised using binary cross-entropy loss: Lb = Lbce(Mb,Gb),
where Gb denotes the ground truth of the interaction boundary generated by the intersection of dilated
hand and object masks. By predicting interaction boundaries, the model achieves coarse spatial lo-
calization of hand-object interaction regions, thereby generating preliminary boundary-guided fea-

tures Fint =
{
Fl

int ∈ RHl
b×W l

b×Cl
b | l ∈ {1, 2, ...,L}

}
, which provide essential spatial constraints

for subsequent interaction modeling. However, these features are insufficient for accurately distin-
guishing hands and their interacting objects. Therefore, we further design a dynamic query generator
and a dual-context feature selector to explicitly refine and enrich the interaction representation.

3.2 DYNAMIC QUERY GENERATOR

Query initialization is crucial in transformer-based methods, as it dominates the model’s attention to
the most relevant information and significantly influences the learning procedure. Some approaches
(Cheng et al., 2022a; Shah et al., 2024; Li et al., 2023; Jain et al., 2023; Zhang et al., 2023; 2021)
employ learnable parameters as queries, offering robustness and stability but often leading to slower
convergence due to delayed feature alignment. In contrast, others use sampled features (Zhou et al.,
2022; Cheng et al., 2022b;c; Fu et al., 2024) to initialize queries, which offers adaptability to input
content but potentially introduces noise from irrelevant or ambiguous regions. More importantly,
neither method explicitly encodes hand-object interactive relationships in queries, resulting in a lack
of adaptation to hands and diverse interacting objects in varying input images.

To address these limitations, we propose the Dynamic Query Generator (DQG). The key innova-
tion of this module lies in grounding query initialization in the dynamic spatial cues of interactions
through a two-stage process. First, it extracts interaction-relevant content by selecting semantic em-
beddings that demonstrate strong correspondence with boundary-guided features, ensuring the se-
lection captures genuine contact relationships rather than relying solely on semantic information
as in traditional feature-sampling methods. Second, it synthesizes these selected features with learn-
able parameters to generate the final interaction-aware queries. Specifically, the last-layer pixel-level
feature FL

pix ∈ RHL
p ×WL

p ×CL
p and boundary-guided feature FL

int ∈ RHL
b ×WL

b ×CL
b are first aligned

in the channel dimension via a multi-layer perceptron (MLP), resulting in Fint ∈ R
HL

p
n ×

WL
p
n ×CL

p .
Consequently, we uniformly partition FL

pix into n× n non-overlapping sub-regions along the height
and width dimensions and compute the cosine similarity between each sub-region and Fint. This
procedure produces a dense similarity map S ∈ RHL

p ×WL
p defined as follows:

S =
⟨Fint,FL

pix(i, j)⟩
∥Fint∥ · ∥FL

pix(i, j)∥
, i, j ∈ {1, 2, . . . , n}, (1)

where FL
pix(i, j) denotes the feature vector at the (i, j) − th sub-region. Next, we select the N

highest similarity values in S and extract the corresponding feature vectors from FL
pix to form a

query vector Qv ∈ RN×CL
p , which encodes salient interactive regions. This intermediate query is

then combined with a learnable parameter vector through element-wise addition to produce the final
interaction query Q ∈ RN×CL

p , which serves as the initial input to the transformer decoder.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The proposed DQG extracts interaction-relevant content by measuring the similarity between image
features and boundary-guided representations. The extracted features, which correspond to hand-
object interaction regions, are combined with learnable parameters to construct robust and adaptive
queries. This approach enables the model to explicitly generate queries based on dynamic interac-
tion contexts rather than static object categories. Consequently, for input images with varying active
objects, queries can be constructed according to the hand-object interaction regions. The inclusion
of learnable parameters further enhances the flexibility of the query formulation process.

3.3 DUAL-CONTEXT FEATURE SELECTOR

After the query initialization process, most current methods rely on dense pixel-level semantic fea-
tures to implicitly learn target information through attention operations in the transformer decoder
for mask prediction. However, such generic semantic features are fundamentally limited to answer-
ing “what is it” rather than whether it is in interaction. This semantic bias inevitably introduces
substantial interaction-irrelevant noise, ultimately degrading segmentation accuracy.
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Figure 4: Detailed architecture of Dual-
context Feature Selector (DFS).

To address this limitation, we introduce a dual-
context feature selector within each InterFormer de-
coder layer to explicitly enhance interaction un-
derstanding. As depicted in Fig. 4, for the l-
th layer, the DFS inputs the pixel-level feature
Fl
pix ∈ RHl

p×W l
p×Cl

p and the corresponding prelim-
inary boundary-guided feature Fl

int ∈ RHl
b×W l

b×Cl
b .

Both features are first projected to the same dimen-
sion and reshaped to size h × w × dim. Next, they
are flattened along the spatial dimensions h and w,
yielding F̂

l

int and F̂
l

pix. A learnable positional pa-

rameter T ∈ R(hw)×dim is then added to F̂
l

pix to
improve robustness. Subsequently, an interaction-
guided cross-attention mechanism is deployed to
fuse semantic and interactive information, where the
query Q̃ is derived from the boundary-guided inter-
action feature, while the key K̃ and value Ṽ are com-
puted from the pixel-level feature. Specifically:

F̂
l

pix = ϕflat(ϕproj(Fl
pix)), K̃, Ṽ = ϕcov(T + F̂

l

pix)), (2)

Q̃ = ϕcov(ϕnorm(ϕflat(ϕproj(Fl
int)))), (3)

where ϕflat, ϕproj , ϕcov, and ϕnorm denote the flatten, linear projection, convolution, and normal-
ization operations, respectively. Then, the interaction-guided cross-attention operation is performed
using Q̃, K̃ and Ṽ:

Fl
cos = softmax(

Q̃K̃T

√
dim

)Ṽ. (4)

Subsequently, the fused feature Fl
cos is passed through a dropout layer ϕdrop and a normalization

layer, followed by an interaction-enhanced self-attention module ϕsa(·). This operation is identical
to standard self-attention operation, which refines the feature representation by modeling long-range
dependencies within the interaction-aware context, yielding a more discriminative output Fl

isa. The
final integrated feature Fl

inf is then computed through residual connection and normalization:
Fl
isa = ϕsa(ϕnorm(ϕdrop(Fl

cos))), (5)

Fl
inf = F̂

l

pix + ϕnorm(Fl
isa + ϕnorm(ϕdrop(Fl

cos))). (6)

By leveraging both interaction-guided cross-attention and interaction-enhanced self-attention, the
DFS effectively fuses semantic content with structural interaction cues, thereby suppressing inter-
action-irrelevant information and learning more representative and interaction-aware features. In
each InterFormer decoder layer, the DFS-produced feature Fl

inf is used as the key and value within
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the transformer decoder block, while the query Ql−1 from the previous layer serves as the input
query. This hierarchical attention mechanism enables progressive refinement of target localization
through iterative feature alignment and interaction modeling. After L decoder layers, the final set
of queries QL encodes rich target-specific representations, which are independently decoded into
class predictions and mask reconstructions. Specifically, the predicted category distribution C and
the class-agnostic mask MC are generated from QL. The final segmentation output M is obtained
by multiplication: M = C ⊗MC , where ⊗ denotes channel-wise multiplication between the class
logits and the corresponding masks.

3.4 CONDITIONAL CO-OCCURRENCE LOSS

Interaction Illusion. In real-world scenarios, the presence of a hand is a fundamental prerequisite
for any hand–object interaction. For example, an object manipulated by the left hand can only be
involved in interaction if the left hand itself is present and detected. However, existing methods
(Zhang et al., 2022; Cheng et al., 2022a; Su et al., 2025a) often suffer from a phenomenon termed as
interaction illusion, in which predicted interactions violate causal dependencies between hands and
objects. As shown in the first row of Fig. 2, when the right hand is missing in the prediction, current
models may incorrectly classify the interacting object as being operated by both hands, despite the
absence of one hand. Such errors contradict basic physical constraints and undermine the reliability
of segmentation systems in embodied AI applications.

To address this issue, we propose the Conditional Co-occurrence (CoCo) Loss, a novel supervision
mechanism that explicitly enforces physically plausible hand–object segmentation by conditioning
object predictions on the presence of the corresponding hand. Unlike probability-based penalties,
our CoCo loss operates directly on the spatial extent of the predictions, i.e., the number of pixels
in the predicted hand and object masks. We opt for this design based on the observation that the
“interaction illusion” is fundamentally a macro-level logical error, which is more directly and ef-
fectively measured by the physical presence or absence (i.e., the pixel count) of the mask, rather
than the average classification confidence across pixels. Guided by this principle, our CoCo loss is
as follows: if the predicted mask for a given hand contains fewer pixels than a predefined threshold
τ (indicating the absence of that hand), the loss penalizes any prediction of objects associated with
that hand. This discourages implausible co-occurrence patterns, such as recognizing an object as
the left-hand object when the left hand is not detected. Conversely, when the hand is confidently
present (i.e., pixel count exceeds τ ), the penalty is deactivated, allowing legitimate interactions to be
learned without interference. This dynamic constraint guides the model toward causally consistent
hand–object associations. The CoCo loss for the left and right hands is defined as:

Lleft
co = (1− I{Nlh>τ}) · (Nlo − I{Nlh>τ} · Nlo) = (1− I{Nlh>τ}) · Nlo, (7)

Lright
co = (1− I{Nrh>τ}) · (Nro − I{Nrh>τ} · Nro) = (1− I{Nrh>τ}) · Nro, (8)

where Nlh, Nlo, Nrh, and Nro denote the number of predicted pixels for the left hand, left-hand
interacting object, right hand, and right-hand interacting object, respectively. I{x} is the indicator
function, which returns 1 if the condition is satisfied and 0 otherwise. Equations 7-8 illustrate the
core mechanism of the CoCo loss, i.e., the hand-first principle. To further extend this regulation to
objects manipulated by both hands, we define the CoCo loss for two-hand interactions:

Ltwo
co = (1−I{Nrh>τ∧Nlh>τ}) ·(Nto−I{Nrh>τ∧Nlh>τ} ·Nto) = (1−I{Nrh>τ∧Nlh>τ}) ·Nto, (9)

where Nto denotes the number of predicted pixels for the object involved in two-hands manipula-
tion, and the indicator function I{Nrh>τ∧Nlh>τ} equals to 1 only when both hands are present. Thus,
Ltwo
co penalizes predictions of two-hand objects unless both hands are simultaneously detected, en-

forcing a physically grounded co-activation prior. The proposed CoCo loss incorporates real-world
physical constraints into the learning process, guiding the model toward logically consistent and
physically plausible hand–object relationships.

Overall Training. The InterFormer framework is trained in a fully end-to-end manner, which is
jointly supervised by the interaction boundary loss Lb and the proposed CoCo loss Lco. Addition-
ally, following established transformer-based segmentation approaches (Cheng et al., 2022a; Zhang
et al., 2022), we incorporate standard task-specific losses: the classification loss Lcls, the dice loss

7
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Table 1: Comparison with SOTA methods on the EgoHOS in-domain test set measured by IoU ↑.

Method Type Left Right Left-hand Right-hand Two-hand OverallHand Hand Object Object Object

Segformer (Xie et al., 2021) T 62.49 64.77 4.03 3.01 5.13 27.89(+45.33)

SCTNet (Xu et al., 2024b) T 81.94 82.12 17.77 16.60 21.74 44.03(+29.19)

Para (Zhang et al., 2022) T 69.08 73.50 48.67 36.21 37.46 52.98(+20.24)

Segmenter (Strudel et al., 2021) T 82.20 83.28 46.22 34.79 51.10 59.52(+13.70)

UperNet (Xiao et al., 2018) C 89.88 91.39 36.22 40.55 45.54 60.71(+12.51)

Multi-UNet (Zhao et al., 2025) C 86.35 87.64 44.80 45.29 46.72 62.16(+11.06)

MaskFormer (Cheng et al., 2022a) T 90.45 91.95 43.51 41.04 54.65 64.32(+8.90)

OneFormer(Zhang et al., 2022) T 90.38 91.95 43.88 44.37 52.64 64.64(+8.58)

Mask2Former (Cheng et al., 2022a) T 90.74 92.25 44.22 46.05 51.13 64.88(+8.34)

Seq (Zhang et al., 2022) T 87.70 88.79 62.20 44.40 52.77 67.17(+6.05)

ANNEXE (Su et al., 2025b) L 91.50 92.73 58.94 57.32 56.41 71.38(+1.84)

Care-Ego (Su et al., 2025a) T 92.34 93.64 60.07 56.69 54.73 71.49(+1.73)

InterFormer (Ours) T 92.51 93.50 60.86 55.04 64.17 73.22

Table 2: Comparison results on the EgoHOS out-of-domain test set measured by IoU ↑.

Method Type Left Right Left-hand Right-hand Two-hand Overall
Hand Hand Object Object Object

Segformer(Xie et al., 2021) T 71.97 71.44 7.60 5.00 4.91 32.18(+40.64)

SCTNet(Xu et al., 2024b) T 87.12 86.29 31.18 19.70 13.32 47.52(+25.30)

UperNet(Xiao et al., 2018) C 93.17 93.96 42.53 28.88 24.35 56.58(+16.24)

Multi-UNet (Zhao et al., 2025) C 92.76 83.08 44.31 39.07 37.15 59.27(+13.55)

Maskformer(Cheng et al., 2022a) T 92.69 94.02 51.81 39.84 39.43 63.56(+9.26)

Mask2former(Cheng et al., 2022a) T 91.46 93.04 53.41 44.90 35.61 63.68(+9.14)

Segmenter(Strudel et al., 2021) T 89.40 90.58 52.73 43.88 42.33 63.78(+9.04)

Seq(Zhang et al., 2022) T 81.77 78.82 46.93 26.40 42.38 55.26(+17.56)

ANNEXE (Su et al., 2025b) L 92.45 93.18 54.39 46.60 40.71 65.36(+7.46)

CaRe-Ego (Su et al., 2025a) T 94.47 94.41 51.56 36.80 41.84 63.82(+9.00)

InerFormer (Ours) T 94.38 94.87 66.79 55.79 52.25 72.82

Ldic, and the mask cross-entropy loss Lce, to optimize class prediction and mask quality. The overall
training objective is formulated as a weighted combination of these components:

Lco = Lleft
co +Lright

co +Ltwo
co ,L = λb · Lb + λco · Lco + λcls · Lcls + λdic · Ldic + λce · Lce, (10)

where the λb, λco, λcls, λdic, and λce are non-negative hyperparameters that balance the contribu-
tions of each loss term. These weights are kept fixed throughout training in our experiments.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

To evaluate the effectiveness and generalization capability of our InterFormer, we conduct compre-
hensive comparisons with various state-of-the-art (SOTA) methods on the EgoHOS (Zhang et al.,
2022) and mini-HOI4D (Su et al., 2025a) datasets.

EgoHOS. This dataset is an egocentric dataset with pixel-level annotations for hands and interacting
objects, containing 8,993 training, 1,124 validation, 1,126 in-domain test, and 500 out-of-domain
test image-mask pairs.

mini-HOI4D. This dataset is derived from the HOI4D dataset (Liu et al., 2022a), which consists of
1,095 egocentric images with corresponding mask annotations for hands and active objects. We use
this dataset to evaluate the generalization ability of the proposed method under OOD conditions.

Evaluation Metrics and Implementation Details. We assess segmentation performance using
standard metrics: (mean) Intersection-over-Union (IoU) and pixel accuracy (Acc). Due to space
limitations, we present the IoU and mIoU results in this paper. The Acc results are provided in
Appendix A.1. The implementation details are described in Sec. 7.
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Table 3: Comparison with SOTA methods on the mini-HOI4D dataset measured by IoU ↑.

Method Type Left Right Right-hand Two-hand Overall
Hand Hand Object Object Object

Segformer(Xie et al., 2021) T 30.16 56.44 5.17 12.02 25.95(+40.12)

SCTNet(Xu et al., 2024b) T 35.83 66.29 17.72 20.98 35.21(+30.86)

Multi-UNet (Zhao et al., 2025) C 52.15 83.64 25.70 41.60 42.36(+23.71)

UperNet(Xiao et al., 2018) C 54.82 84.43 20.34 29.34 47.23(+18.84)

MaskFormer(Cheng et al., 2022a) T 58.50 83.66 35.28 56.91 58.59(+7.48)

Segmenter(Strudel et al., 2021) T 74.70 85.58 22.38 58.67 60.33(+5.74)

Seq(Zhang et al., 2022) T 8.74 34.60 23.88 53.96 30.30(+35.77)

Mask2Former(Cheng et al., 2022a) T 70.13 88.57 32.37 55.72 61.70(+4.37)

ANNEXE (Su et al., 2025b) L 68.06 85.13 40.93 57.36 62.87(+3.20)

CaRe-Ego (Su et al., 2025a) T 70.39 89.76 27.56 60.08 61.95(+4.12)

InterFormer (Ours) T 66.44 87.07 46.30 64.48 66.07

Baseline Ours GT Baseline Ours GT Baseline Ours GT

(a) (b) (c)

Figure 5: Visualization results on (a) EgoHOS in-domain test set, (b) EgoHOS out-of-domain test
set, and (c) out-of-distribution mini-HOI4D dataset.

4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

We conduct a comprehensive in-domain and OOD comparison of the InerFormer with SOTA Ego-
HOS models in Tables 1-3, including convolution-based (C), transformer-based (T), and large lan-
guage model-based (L). The best results are in bold, and the second best is underlined.

4.2.1 IN-DOMAIN COMPARISON RESULTS

Table 1 presents a comparative analysis of InterFormer against methods on the EgoHOS in-domain
benchmark. InterFormer achieves superior performance across all categories, attaining an impres-
sive mIoU of 73.22%. The most pronounced advantage is observed in object segmentation, par-
ticularly for two-handed objects, where it achieves an outstanding IoU of 64.17%, representing a
substantial improvement of 7.76% in IoU over the second-best method. This significant progress
can be attributed to our interaction-centric design, which leverages DQG to adapt queries to diverse
interacting objects, employs DFS to enhance the feature representation of interactions, and utilizes
the CoCo loss to enforce robust hand-object correlations.

4.2.2 OUT-OF-DISTRIBUTION COMPARISON RESULTS.

Table 4: Ablation study results on the EgoHOS
in-domain test set.

# IPP DQG DFS CoCo Performance (%)
mIoU ↑ mAcc ↑

1 – – – – 70.72 77.48
2 – – – ✓ 70.95 79.02
3 ✓ – – – 71.23 79.97
4 ✓ ✓ – – 71.50 79.68
5 ✓ – ✓ – 71.26 79.11
6 ✓ ✓ ✓ – 72.35 80.13

Ours ✓ ✓ ✓ ✓ 73.22 80.68

Evaluation on the EgoHOS out-of-domain
test set. To evaluate the generalization ability
of our model, we assessed InerFormer on the
out-of-domain EgoHOS test set using the best
saved checkpoint, as shown in Table 2. Iner-
Former achieved the highest overall mIoU of
72.82%, outperforming the second-best method
by 7.46%. Notably, our approach also attained
the highest IoU scores for all three categories of
interacting objects.

Evaluation on the mini-HOI4D dataset. We
also conducted OOD testing on the challenging

9
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mini-HOI4D dataset in Table 3. Our proposed InerFormer method achieved the highest mIoU of
66.07%, surpassing the second-best method by 3.20%. In conclusion, these results underscore the
generalization ability of InerFormer in challenging out-of-domain settings, confirming that the pro-
posed module can dynamically understand the interactive relationships between hands and objects.

4.3 ABLATION STUDY

Efficacy of InerFormer. We present an ablation study to assess the contributions of InerFormer
and its core components. For fair comparison, all experiments used identical model configurations.
Since DQG and DFS are built upon the IPP Branch, we also ablate this branch. Table 4 summarizes
the results, leading to three key observations: 1) The IPP branch significantly improves performance,
as it can localize hand-object interaction regions. 2) Each additional component brings further incre-
mental improvements. 3) Integrating all components, the complete InerFormer framework achieves
the best performance, proving the effectiveness of the framework and its individual components.

Table 5: Hyperparameter experiments of τ
on the EgoHOS in-domain test set.

# Hyper Parameter Performance
τ mIoU mAcc

1 50 71.62 80.62
2 100 73.22 80.68
3 150 71.97 80.51
4 200 71.62 80.94
5 250 71.10 78.78
6 300 72.38 80.12

Hyperparameter study. In CoCo loss, the thresh-
old τ determines that a class is considered present
only if the predicted pixel number exceeds τ . To as-
sess its impact, we varied τ from 50 to 300 in steps
of 50 in Table 5. Performance peaks at τ = 100,
consistent with theoretical expectations: when τ is
too small, the model becomes overly sensitive, yield-
ing spurious hand detections (false positives). Con-
versely, when τ is too large, the model may miss
partially visible hands (false negatives). Thus, this
trade-off explains the observed optimum at τ = 100.
Due to page limits, analysis of λb, λco, λcls, λdice,
and λce is presented in Appendix A.2.

4.4 VISUALIZATION RESULTS.

For visual comparison, we show results against the CaRe-Ego baseline (Su et al., 2025a). Fig. 5(a)-
(c) demonstrates that our method achieves superior segmentation of interacting objects by explicitly
modeling interaction-aware representations. More visualization results can be found in Appendix.

5 CONCLUSION

We propose a novel InerFormer approach for the EgoHOS task. Specifically, we introduce the DQG
module to create robust queries that can adapt to various interacting objects in different images. We
further design the DFS module to encourage the network to explicitly perceive interaction-aware
features. Additionally, our CoCo loss guides the network to learn interaction relationships that
are consistent with real-world logic. Experimental results on three public test sets demonstrate the
remarkable effectiveness and generalization of InerFormer.

6 ETHICS STATEMENT

Our research work fully adheres to the ICLR Code of Ethics and embodies its core principles through
the following commitments: 1) We maintain the highest standards of scientific rigor by providing
comprehensive experimental results, detailed methodology descriptions, and open-source code im-
plementation to ensure full reproducibility and verification of our findings. 2) As fundamental algo-
rithmic research, our work contributes to the advancement of egocentric vision without targeting any
specific application domain that might raise ethical concerns. The proposed techniques are designed
to be generally applicable across diverse contexts. 3) Our research utilizes only publicly available
benchmark datasets with proper licensing, ensuring no privacy violations or discriminatory impacts.
The algorithmic improvements focus on technical efficiency without embedding biases against any
demographic groups. 4) We faithfully acknowledge all referenced works and properly cite prior re-
search contributions. Our comparisons with existing methods are conducted fairly under standard-
ized evaluation protocols. 5) By open-sourcing our code and models, we promote equitable access
to our research outcomes and encourage broader community participation in further development.
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7 REPRODUCIBILITY STATEMENT

All experiments were carried out on four NVIDIA RTX 4090 GPUs, using a total batch size of 8.
During data preparation, images were cropped to 448×448 pixels and normalized using a mean of
[106.011, 95.400, 87.429] and a standard deviation of [64.357, 60.889, 61.419]. The maximum
number of training iterations was set to 180k. Following previous methods (Cheng et al., 2022a),
The number of queries is set to the number of target categories, i.e., 5. The values of λb, λco, and
λcls were set to 1, while λce and λdic were set to 5. The hyperparameter τ in CoCo loss is set to
100. The model was trained end-to-end using the AdamW optimizer with an initial weight decay of
0.01. More implementation details can be found in the Appendix. B. The learning rate followed a
two-phase schedule: it was linearly warmed up from 0 to 1e-4 over the first 10,000 iterations, and
then decayed polynomially to zero by the end of training.

To ensure the reproducibility of our results and promote further research in the community, we will
release all code, models, and implementation details upon paper acceptance. The repository will
include comprehensive documentation, training scripts, and inference instructions to facilitate easy
adoption and validation of our method.
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A APPENDIX

In this supplementary material, we first introduce the comparison experimental results of our Inter-
Former against other SOTA methods measured by Acc in Sec. A.1. The implementation details are
introduced in Sec. 7. Finally, the hyperparameter experiments of loss weights are described in Sec.
A.2.

A.1 COMPARISONS WITH STATE-OF-THE-ART METHODS

We conduct a comprehensive comparison of the proposed InterFormer with SOTA egocentric hand-
object segmentation models, including convolution-based (C), transformer-based (T), and large lan-
guage model-based (L) methods. This evaluation is performed on the EgoHOS in-domain test set.
Furthermore, to assess the generalization capability of our approach, we evaluate all methods using
their best saved training checkpoints on the EgoHOS out-of-domain test set and the mini-HOI4D
dataset. We exhibit the comparison results on three test sets using IoU in the main paper, so we add
the comparison results on three test sets using Acc in this supplementary material.

A.1.1 IN-DOMAIN COMPARISON RESULTS

Table 6: Comparison with SOTA methods on the EgoHOS in-domain test set measured by Acc ↑ (%)
mAcc ↑ (%). The best results are in bold and the second best is underlined. T: transformer-based
methods, C: convolution-based methods, L: MLLM-based methods.

Method Type Left Right Left-hand Right-hand Two-hand Overall
Hand ↑ Hand ↑ Objects ↑ Objects ↑ Objects ↑ mAcc ↑

Segformer (Xie et al., 2021) T 75.47 78.13 4.57 3.17 5.57 33.38
SCTNet (Xu et al., 2024b) T 90.25 89.92 24.49 20.79 29.08 50.91
Para (Zhang et al., 2022) T 75.57 75.93 39.50 39.33 42.58 54.58

Segmenter (Strudel et al., 2021) T 89.87 91.92 62.69 45.59 62.78 70.57
UperNet(Xiao et al., 2018) T 89.86 91.32 37.24 42.26 49.27 61.99

Multi-UNet (Zhao et al., 2025) C 89.01 91.37 60.71 43.76 48.35 66.64
MaskFormer (Cheng et al., 2022a) T 95.90 96.41 67.08 52.91 64.86 75.43

OneFormer(Zhang et al., 2022) T 96.21 96.33 64.19 53.06 63.75 74.71
Mask2Former (Cheng et al., 2022a) T 96.01 96.20 53.97 58.10 60.48 72.95

ANNEXE (Su et al., 2025b) L 95.87 94.81 73.28 66.54 68.50 79.80
Seq (Zhang et al., 2022) T 95.77 91.29 66.67 59.85 62.21 75.16

Care-Ego (Su et al., 2025a) T 96.64 96.81 71.79 68.71 65.85 79.96
InterFormer (Ours) T 96.58 96.55 74.06 65.93 70.26 80.68

Table 7: Comparison with SOTA methods on the EgoHOS out-of-domain test set using Acc ↑ (%)
mAcc ↑ (%). The best results are in bold, and the second best is underlined. T: transformer-based
methods, C: convolution-based methods, L: MLLM-based methods.

Method Type Left Right Left-hand Right-hand Two-hand Overall
Hand Hand Object Object Object

Segformer(Xie et al., 2021) T 86.80 79.44 21.77 9.56 11.67 41.85
SCTNet(Xu et al., 2024b) T 94.62 90.92 49.14 27.47 17.12 55.85
UperNet(Xiao et al., 2018) C 96.89 96.00 64.83 54.59 27.83 68.03

Multi-UNet (Zhao et al., 2025) C 94.75 95.80 45.16 47.89 16.75 60.07
Maskformer(Cheng et al., 2022a) T 95.58 96.10 70.53 60.49 46.52 73.84

Mask2former(Cheng et al., 2022a) T 97.05 96.38 64.39 64.18 39.78 72.36
Seq(Zhang et al., 2022) T 87.83 85.98 57.17 43.85 54.76 65.92

ANNEXE (Su et al., 2025b) L 97.03 96.80 76.57 60.35 52.35 76.62
CaRe-Ego (Su et al., 2025a) T 97.09 96.69 72.30 60.90 46.28 74.65

InterFormer (Ours) T 97.21 97.10 79.22 68.19 58.74 80.09

Table 6 presents a comparative analysis of InterFormer against leading convolution-based,
transformer-based, and large language model-based methods on the EgoHOS in-domain benchmark.
As shown, InterFormer achieves superior performance across all categories, attaining an impressive
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mAcc of 80.68%. While InterFormer excels in hand segmentation, its most pronounced advantage
is observed in object segmentation, particularly for left-hand objects and two-handed objects, where
it achieves an outstanding Acc of 74.06% and 70.26%, respectively. This significant progress can
be attributed to our interaction-centric design, which leverages DQG to adapt queries to diverse in-
teracting objects, employs DFS to enhance the feature representation of interactions, and utilizes the
CoCo loss to enforce robust hand-object correlations.

A.1.2 OUT-OF-DISTRIBUTION COMPARISON RESULTS

Comparison on EgoHOS out-of-domain test set measured by Acc. To thoroughly evaluate the
generalization capability of our model, we conducted an assessment of InterFormer on the out-of-
domain EgoHOS test set, utilizing the best saved checkpoint for this purpose. The results of this
evaluation are presented in Table 7. Notably, InterFormer achieved an impressive overall accuracy
score of 80.09%, which enables it to outperform the second-best method by a margin of 3.47%. This
achievement is particularly significant, as our approach not only excelled overall but also secured
the highest Acc scores across all categories of hands and interacting objects. These findings strongly
indicate the robust generalization ability of our InterFormer method across diverse scenarios.

Table 8: Comparison with SOTA methods on the mini-HOI4D dataset measured by Acc ↑ (%) mAcc
↑ (%). The best results are in bold, and the second best is underlined. T: transformer-based methods,
C: convolution-based methods, L: MLLM-based methods.

Method Type Left Right Right-hand Two-hand Overall
Hand Hand Object Object Object

Segformer(Xie et al., 2021) T 92.13 72.42 5.52 13.41 45.87
SCTNet(Xu et al., 2024b) T 95.25 71.27 22.68 29.98 54.90

Multi-UNet (Zhao et al., 2025) C 94.37 70.25 30.41 47.65 60.67
UperNet(Xiao et al., 2018) C 97.71 86.04 25.77 36.58 61.53

MaskFormer(Cheng et al., 2022a) T 96.63 87.83 44.81 73.47 75.69
Seq(Zhang et al., 2022) T 40.90 38.05 28.99 61.67 42.40

Mask2Former(Cheng et al., 2022a) T 97.48 89.38 45.22 74.17 76.56
ANNEXE (Su et al., 2025b) L 96.54 93.18 48.77 75.19 78.42
CaRe-Ego (Su et al., 2025a) T 97.79 93.09 49.35 68.01 77.06

InterFormer (Ours) T 96.55 91.71 59.75 74.70 80.68

Comparison on mini-HOI4D dataset measured by Acc. In addition to the EgoHOS test set, we
also performed out-of-distribution testing on the challenging mini-HOI4D dataset, the results of
which are summarized in Table 8. Our proposed InterFormer method demonstrated its efficacy by
attaining the highest mean Accuracy (mAcc) of 80.68%, thereby surpassing the second-best method
by 2.26%. These results further prove the generalization ability of InterFormer in demanding out-
of-domain settings. They confirm that the proposed module is adept at dynamically understanding
and interpreting the interactive relationships between hands and objects, showcasing its potential for
real-world applications in egocentric scenarios.

Table 9: Comparison of computational complexity and performance on EgoHOS test set

Method Type FLOPs mIoU (%)

SegFormer Transformer-based 71.961G 27.89
Segmenter Transformer-based 70.074G 59.52
Mask2Former Transformer-based 96.093G 64.88
Seq Transformer-based 392.483G 67.17
ANNEXE MLLM-based 610.500G 71.38
InterFormer (Ours) Transformer-based 122.996G 73.22
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Figure 6: The MLLM-based methods (ANNEXE) show limited spatial precision in mask generation
for parsing hands and interacting objects.

A.1.3 COMPLEXITY OF INTERFORMER

Figure 1 compares the model sizes of different methods. It shows that our InterFormer achieves
state-of-the-art performance with a manageable increase in parameters, effectively trading a com-
pact model structure for superior accuracy.

To evaluate computational complexity, we present a comparative analysis of our InterFormer against
other methods in terms of FLOPs. The results (Tab. 9) are based on testing conducted on the Ego-
HOS in-domain test set. These results demonstrate that our method achieves a favorable balance
between FLOPs and mean Intersection over Union (mIoU).

A.1.4 ERROR ANALYSIS: INTERFORMER VS. MLLMS.

To better understand the comparative strengths and limitations of our InterFormer versus Multi-
modal Large Language Models (MLLMs), such as ANNEXE, we conducted a detailed failure mode
analysis.

Spatial Precision in Mask Generation. Our analysis confirms that MLLMs consistently produce
masks with coarse and inaccurate boundaries. As shown in Figure 6, MLLM-generated masks (AN-
NEXE row) can classify the categories of each predicted entity. However, the predicted masks for
hands and objects often exhibit poor alignment with true edges, which is caused by the lack of inter-
action-centric representation learning. In contrast, our proposed InterFormer is specifically designed
for egocentric hands and active object parsing, enabling the generation of more precise masks with
clear boundaries.

Prompt Sensitivity. All evaluated MLLMs require text prompts and show high sensitivity to prompt
design. In our experiments, we used a detailed prompt specifying five distinct mask types (left/right
hands, corresponding interacting objects, and two-hand objects). However, ANNEXE struggled to
understand and generate the required masks under this instruction, revealing limitations in following
detailed segmentation tasks.

A.2 HYPERPARAMETER STUDY

The InterFormer framework is supervised by the interaction boundary loss Lb, CoCo loss Lco, the
classification loss Lcls, dice loss Ldic, and mask loss Lce for model training. The overall loss
function is defined as:

Lco = Lleft
co + Lright

co + Ltwo
co , (11)

L = λb · Lb + λco · Lco+

λcls · Lcls + λdic · Ldic + λce · Lce, (12)
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Table 10: Hyperparameter study of different loss weights on the EgoHOS in-domain test set. The
best results are shown in bold.

# λb λco λcls λdic λce
Performance (%)
mIoU ↑ mAcc ↑

1 1 1 1 1 1 71.74 78.40
2 5 1 1 1 1 71.79 78.21
3 1 5 1 1 1 71.88 78.59
4 5 5 1 1 1 71.08 79.71
5 1 1 5 1 1 71.30 78.79
6 5 5 1 5 5 72.08 79.71

Ours 1 1 1 5 5 73.22 80.68

where the λb, λco, λcls, λdic, and λce are hyperparameters used to balance the contributions of each
loss item. In this section, we conducted hyperparameter experiments to verify the impact of dif-
ferent loss weights on the EgoHOS in-domain test set. To ensure experimental fairness, all other
parameters except the loss weight were the same as those described in Section 7. The experimental
results are shown in Table 10. Our model achieved the highest mean intersection over union (mIoU)
of 73.22% and mean average accuracy (mAcc) of 80.68% with the hyperparameter configurations
of λb = 1, λco = 1, λcls = 1, λdic = 5, and λce = 5. This result demonstrates that appropri-
ate loss weights can significantly improve model performance. Experimental results highlight the
importance of balancing the weights of different loss functions in our model.

A.3 EFFECTIVENESS OF COCO LOSS

Table 11: Quantitive results of CoCo loss.

# Method Rate ↓
1 Seq Zhang et al. (2022) 9.80%
2 Care-Ego Su et al. (2025a) 5.45%
3 Ours w/o CoCo 2.19%
4 Ours w/ CoCo 1.55%

Qualitative results. To specifically validate the con-
tribution of the CoCo loss, Figure 7 demonstrates
the qualitative improvements achieved by incorpo-
rating this component. The visualization contrasts
model predictions without (”w/o coco”) and with
(”w/ coco”) the CoCo loss across two datasets. With-
out the CoCo loss, the model erroneously predicts
objects as interacting with the left hand even when
no left hand is present. In contrast, incorporating the
CoCo loss substantially enhances the physical con-
sistency of hand-object interactions in the predictions.

Quantitative results. We conducted a systematic evaluation to quantify the effectiveness of the
CoCo loss in mitigating the interaction illusion problem. As summarized in Table 11, we measured
the frequency of this phenomenon by calculating the percentage of predictions containing interaction
illusions across all outputs generated by our model. The results demonstrate that our model trained
without the CoCo loss produces such artifacts in 2.19% of its predictions, whereas incorporating
the CoCo loss (”w/ CoCo”) reduces this rate to 1.55%, which represents a significant reduction of
0.64%. This quantitative evidence strongly confirms the critical role of the CoCo loss in suppressing
spurious non-interactive object segments.

A.4 VISUALIZATION RESULTS

This section presents comparative visualizations between our method and baseline approaches in
Figure 8. Additionally, Figure 9 showcases representative failure cases that reveal the current lim-
itations of our InterFormer framework. Based on the presented failure cases, we observe that our
method tends to miss small objects or overlook parts of objects with significant appearance varia-
tions during parsing.
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Figure 7: Qualitative comparison with/without employing CoCo Loss on EgoHOS (left) and mini-
HOI4D (right) datasets.

A.5 LIMITATIONS AND FUTURE WORK

A.5.1 LIMITATIONS.

Limitations of hand-object interaction understanding in egocentric images. One significant lim-
itation is that in more realistic and complex scenarios, a hand may not be visible in a specific frame,
yet it can still actively engage in interactions between objects. This situation underscores the chal-
lenge of relying solely on static images for understanding dynamic interactions.

Limitations about pixel count in CoCo loss. The proposed CoCo loss relies on an absolute pixel
threshold τ to determine the presence of hands. Although simple and efficient, it introduces sensi-
tivity to imaging conditions such as hand-camera distance and image resolution.

Occulion. While the proposed method demonstrates strong performance, it shares a common limi-
tation with existing approaches in handling hands and objects that are heavily occluded. Our Inter-
Former does not incorporate explicit mechanisms for occlusion reasoning or recovery. In scenarios
where hand-object interactions are significantly obscured (e.g., by other objects or self-occlusion),
the model may struggle to accurately segment boundaries or infer interaction contexts.

A.5.2 FUTURE WORK.

Hand-object interaction understanding in multi-view and/or video. Our future work will focus
on extending egocentric hand-object segmentation to encompass both video and multi-view scenar-
ios. By integrating more information, we aim to develop a more robust framework that can accurately
capture interactions, even when the hands are occluded or not visible in specific frames. This ad-
vancement will not only enhance the reliability of hand-object interaction detection but also expand
the applicability of our research to fields such as robotics, augmented reality, and human-computer
interaction.
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Figure 8: Qualitative comparison of our InterFormer against baseline on OOD mini-HOI4D (left)
and EgoHOS out-of-domain (right) test sets.

Figure 9: Failure cases of our method.

Replace the pixel count in CoCo loss. In future work, we plan to explore adaptive thresholding
mechanisms to replace the pixel count in CoCo loss to improve generalization. A direction is to nor-
malize the pixel count of hands, making the threshold condition relative to the visual scene. Addi-
tionally, we will investigate learning-based approaches where the presence threshold is dynamically
determined by the network rather than pre-defined.

Deploying and evaluating on AR/MR devices. Evaluating the model’s performance in dynamic
real-world settings will provide valuable insights into its robustness and adaptability, further in-
forming improvements. We anticipate that this research could significantly advance the state of the
art in interactive applications, paving the way for more intuitive and engaging user experiences in
AR and MR technologies.
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Addressing the occlusion problem. Future work will explore dedicated strategies to address this
challenge, such as introducing occlusion-aware attention mechanisms, leveraging temporal consis-
tency in video sequences, or integrating generative models to reconstruct plausible structures in oc-
cluded regions. We believe these directions will further enhance the robustness of egocentric hand-
object interaction analysis in real-world settings.

A.6 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used exclusively for language refinement and proofreading
during the preparation of this manuscript. The model assisted in improving grammar, clarity, and
overall readability of the text without altering the original technical content, data, or scientific con-
clusions. All research ideas, analysis, and writing were conducted by the authors; the model was not
involved in any aspect of content generation or decision-making.
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