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ABSTRACT

Obtaining high-quality labeled datasets is often costly, requiring either human an-
notation or expensive experiments. In theory, powerful pre-trained AI models pro-
vide an opportunity to automatically label datasets and save costs. Unfortunately,
these models come with no guarantees on their accuracy, making wholesale re-
placement of manual labeling impractical. In this work, we propose a method
for leveraging pre-trained AI models to curate cost-effective and high-quality
datasets. In particular, our approach results in probably approximately correct
labels: with high probability, the overall labeling error is small. Our method
is nonasymptotically valid under minimal assumptions on the dataset or the AI
model being studied, and thus enables rigorous yet efficient dataset curation us-
ing modern AI models. We demonstrate the benefits of the methodology through
text annotation with large language models, image labeling with pre-trained vision
models, and protein folding analysis with AlphaFold.

1 INTRODUCTION

A key ingredient in any scientific pipeline is the availability of large amounts of high-quality labeled
data. For example, social scientists rely on extensively-labeled datasets to understand human be-
havior (Salganik, 2017) and design policy interventions. Collecting high-quality labels for a given
set of inputs is typically an arduous task that requires significant human expertise, costly large-scale
experimentation, or expensive simulations. As such, researchers often outsource label collection
to a third party “data provider”—this might be an annotation platform for labeling images, a wet
lab for running scientific experiments, or a survey platform for collecting responses from a target
population of individuals.

For data providers, the high cost of collecting high-quality labels combined with the rising per-
formance of AI models suggests an enticing prospect: using AI predictions in place of manually-
collected labels. Indeed, recent works have demonstrated AI models’ ability to predict protein struc-
tures (Jumper et al., 2021), to evaluate language model responses (Zheng et al., 2023), and even to
simulate human experimental subjects (Argyle et al., 2023). These advances highlight the potential
for AI to streamline data annotation, and to produce high-quality labels at a fraction of the cost.

The problem with such an approach is that AI models are not always accurate, and come with no
guarantees on how well they will label a given dataset. This makes it untenable to use AI-predicted
labels as a direct substitute for expert labels, particularly in settings where label quality is critical.
For instance, if the downstream goal is to draw conclusions that inform policy decisions, we should
not blindly treat AI predictions of human behavior as if they were experimentally collected data.

Motivated by this state of affairs, in this paper we ask:

Can we leverage powerful AI models to label data, while still guaranteeing quality?

We answer this question in the affirmative, and provide a method—which we call probably approx-
imately correct (PAC) labeling—that automatically combines cheap, non-expert labels (whether AI
predictions, crowd-sourced labels, or simple heuristics) with expensive, expert labels to produce
a labeled dataset with small error. PAC labeling yields guarantees similar in flavor to that of its
namesake in probably approximately correct (PAC) learning (Valiant, 1984): given user-specified
constants ϵ, α > 0, our procedure results in a labeled dataset with error at most ϵ, with probability
at least 1 − α. This guarantee is nonasymptotic under minimal assumptions on the dataset or the
predicted labels being used.
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1.1 CONTRIBUTIONS

We give a brief overview of our contributions, beginning with the problem setup. Given an unlabeled
dataset X1, . . . , Xn ∈ X , with unknown expert labels Y1, . . . , Yn, our goal is to return a labeled
dataset (X1, Ỹ1), . . . , (Xn, Ỹn), such that we incur only a small amount of labeling errors:

1

n

n∑
i=1

ℓ(Yi, Ỹi) ≤ ϵ, with probability 1− α. (1)

Here, α and ϵ are user-chosen error parameters and ℓ is a relevant error metric. For example, if
we want categorical labels to be accurate, we can choose the 0-1 loss: ℓ(Yi, Ỹi) = 1{Yi ̸= Ỹi}.
The guarantee (1) then requires that at most an ϵ-fraction of the dataset is mislabeled, with high
probability. In regression problems, one might choose the squared loss, ℓ(Yi, Ỹi) = (Yi − Ỹi)

2. We
call Ỹi that satisfy the criterion (1) probably approximately correct (PAC) labels. To avoid strong
assumptions, we treat the data as fixed; probabilities are taken only over the labeling algorithm.

To produce the label Ỹi, we are allowed to query an expert for Yi, which is costly, or instead use a
cheap AI prediction Ŷi = f(Xi), where f is an AI model. The prediction Ŷi can depend on any
feature information available for point i, as well as any source of randomness internal to f . We will
consider two settings: a basic setting with a single AI model f , and a more complex setting that
assumes access to k different models f1, . . . , fk.

Of course, we can trivially achieve (1) by collecting expert labels for all n data points. The goal
is to achieve the criterion while minimizing the cost of the labeling. We will consider two ways
of measuring the cost. The basic one is to simply count the number of collected expert labels; the
AI-predicted labels are assumed to essentially come at no cost. The second way of measuring the
cost takes into account the costs c1, . . . , ck of querying the k models, as well as the cost of an expert
label cexpert. When cexpert is much larger than c1, . . . , ck, the second setting reduces to the first.

Our main contribution is a method for producing PAC labels which, as we will show through a
series of examples across data modalities and AI models, allow for significant saves in labeling cost.
The key feature that enables a cost reduction is access to a measure of model uncertainty, which
allows focusing the expert budget on instances where the model is most uncertain. Crucially, the
nonasymptotic validity of PAC labeling does not depend on the quality of the uncertainties; more
useful measures lead to larger saves in cost. We provide refinements of the method that additionally
learn to calibrate the uncertainty scores to make the saves in cost even more pronounced.

1.2 RELATED WORK

Adaptive dataset labeling and curation. Our work most closely relates to the literature on efficient
dataset labeling from possibly noisy labels. A distinguishing feature of our work is that we construct
provably accurate labels with nonasymptotic guarantees, under no assumptions on the noisy labels.
In contrast, much of existing work makes strong parametric or distributional assumptions—for ex-
ample, model errors following a truncated power-law distribution (Qiu et al., 2020), the data fol-
lowing a well-specified parametric family (Ratner et al., 2016), or a class-conditional noise process
(Northcutt et al., 2021). Many works lack formal accuracy guarantees (Zhu & Ghahramani, 2002;
Iscen et al., 2019; Bernhardt et al., 2022; Li et al., 2023; Xie et al., 2020). Since we do not place
distributional assumptions on the data but instead consider it fixed, our work particularly relates to
the labeling problem known as transductive learning (Vapnik, 1998; Joachims, 2003). A key fea-
ture of our work is that we leverage pre-trained AI models, such as off-the-shelf language or vision
models, and make no complexity assumptions on the expert labeling mechanism. An emerging line
of work studies human-AI collaborative approaches to dataset curation (Li et al., 2023; Yuan et al.,
2021; Liu et al., 2022). Our work is motivated by similar problems, with a focus on ensuring sta-
tistical validity. Importantly, many of the above works use uncertainty to decide which labels to
collect (Bernhardt et al., 2022; Li et al., 2023). Our work similarly relies on uncertainty; in fact,
our procedure can be applied as a wrapper around any uncertainty score to provide a statistically
valid labeling. For example, the CoAnnotating paradigm defines an uncertainty score and proposes
annotating the top k most uncertain points with human annotations and the rest with AI annotations,
for some user-chosen k. Our procedure can be applied to select k in a data-driven manner, so that
the final labeling is (1 − ϵ)-accurate with high probability. More distant but related is a vast line
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of work studying different strategies for reliable aggregation of multiple noisy labels (Karger et al.,
2014; Cheng et al., 2022; Dawid & Skene, 1979; Whitehill et al., 2009; Zhang & Chaudhuri, 2015;
Yan et al., 2010; Welinder et al., 2010; Sheng et al., 2008; Yan et al., 2011).

Distribution-free uncertainty quantification. At a technical level, our procedure resembles the
construction of risk-controlling prediction sets (Bates et al., 2021) and performing risk-limiting au-
dits (Waudby-Smith et al., 2021; Shekhar et al., 2023). Like the former, our procedure bounds a
monotone loss function by tuning a one-dimensional threshold, though not for the purpose of pre-
dictive inference. Similarly to the latter, our procedure aims to collect sufficient expert labels so as
to meet a pre-specified quality guarantee. Like all these methods, PAC labeling satisfies nonasymp-
totic, distribution-free statistical guarantees. To achieve this, we build on betting-based confidence
intervals (Waudby-Smith & Ramdas, 2024; Orabona & Jun, 2023). Our proposal relates in spirit to
prediction-powered inference (Angelopoulos et al., 2023a; Zrnic & Candès, 2024a; Angelopoulos
et al., 2023b) and related control-variate approaches (Zhou et al.; Egami et al., 2023), where the goal
is to improve the power of statistical inferences given a small amount of expert-labeled data, a large
amount of unlabeled data, and a good predictive model. We do not focus on statistical inference per
se; rather, we construct an accurately labeled dataset that can be used for any downstream task.

Active learning and inference. The idea behind our method is to collect expert labels where the AI
model is most uncertain; in that sense, our method relates to active learning (Settles, 2009; Lewis,
1995; Beluch et al., 2018; Zhang & Chaudhuri, 2015) and active inference (Zrnic & Candès, 2024b;
Gligorić et al., 2024). Notably, there is a line of work in active learning that considers costs (Settles
et al., 2008; Donmez & Carbonell, 2008; Wang et al., 2016). Our goal is fundamentally different: it
is neither fitting a predictive model nor statistical inference, but producing high-quality labeled data
with a provable nonasymptotic guarantee under minimal assumptions. In general, this is neither
necessary nor sufficient for active learning.

2 PAC LABELING: CORE METHOD

We begin with the basic setting with one AI model that produces cheap labels. Thus, we have Ŷi =
f(Xi) for all data points. In addition, we assume access to scalar uncertainty scores U1, . . . , Un

(typically scaled such that Ui ∈ [0, 1]) corresponding to the predictions Ŷ1, . . . , Ŷn. We place no
assumptions on the quality of Ui, however if lower Ui correspond to more accurate predictions Ŷi,
the procedure will achieve big gains. The PAC guarantee (1) holds no matter the quality of Ui.

The basic idea behind the procedure is to find an uncertainty threshold û and label all data points
with uncertainty that exceeds this threshold, Ui ≥ û. The more accurate the predictions Ŷi are, the
higher this threshold will be. To explain how we set û, we introduce some notation. Let ℓu(Yi, Ŷi) =

ℓ(Yi, Ŷi)1{Ui ≤ u} and Lu = 1
n

∑n
i=1 ℓ

u(Yi, Ŷi). Ideally, if we knew Lu for every u, we would
choose the oracle threshold:

u∗ = min
{
Ui : L

Ui > ϵ
}
.

In other words, if we label all points with Ui ≥ u∗, meaning Ỹi = Yi1{Ui ≥ u∗}+ Ŷi1{Ui < u∗},
then we satisfy 1

n

∑n
i=1 ℓ(Yi, Ỹi) ≤ ϵ with probability one. The issue is that we do not have access

to Yi, and thus we cannot compute LUi . To resolve this issue, we estimate an upper bound on LUi by
initially collecting expert labels for a small subset of the data. We will soon explain such a strategy;
for now assume that for every α ∈ (0, 1) and every u, we can obtain a valid upper confidence bound
on Lu at level 1−α, denoted L̂u(α): P(Lu ≤ L̂u(α)) ≥ 1−α. Note that we only require L̂u(α) to
be valid one u at a time, not simultaneously. Our empirical approximation of the oracle threshold is

û = min{Ui : L̂
Ui(α) > ϵ}. (2)

Therefore, we collect expert labels where our uncertainty is û or higher: Ỹi = Yi1{Ui ≥ û} +

Ŷi1{Ui < û}. We argue that such labels are PAC labels.

Theorem 1. The labels Ỹi = Yi1{Ui ≥ û}+ Ŷi1{Ui < û}, with û given by (2), are PAC labels (1).

Interestingly, notice that the proof only requires L̂Ui(α) to be valid individually, even though we
form n confidence bounds. This is a consequence of the monotonicity of Lu in u, similar in spirit to
how monotonicity enables the Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky et al., 1956) and
risk-controlling prediction sets (Bates et al., 2021) to be free of multiplicity corrections.
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It remains to provide a method to compute L̂Ui(α). Given a hyperparameter m, we collect m draws
{i1, . . . , im} independently as ij ∼ Unif([n]). Then, for all j ∈ [m], we sample ξij ∼ Bern(πij ),
where (π1, . . . , πn) are arbitrary sampling weights, and collect Yij if ξij = 1. This results in a

dataset of m i.i.d. variables {ℓ(Yij , Ŷij )
ξij
πij

}mj=1; therefore, we can estimate L̂u(α) as:

L̂u(α) = meanUB({ℓ(Yij , Ŷij )ξij/πij1{Uij ≤ u}}mj=1;α).

Here, meanUB(·;α) is any method for computing a valid upper bound at level 1 − α on the mean
from an i.i.d. sample. Indeed, the samples ℓ(Yij , Ŷij )

ξij
πij

1{Uij ≤ u} are i.i.d. with mean Lu, since
E[ξij/πij |ij ] = 1. The motivation for allowing adaptive sampling weights πi is to allow forming
a tighter confidence bound through a careful choice of the weights, although even uniform weights
π1 = · · · = πn = p ∈ (0, 1) are a reasonable choice in practice.

There are many possible choices for meanUB(·;α): it can be a nonasymptotic procedure such
as the betting-based confidence intervals (Waudby-Smith & Ramdas, 2024), or (if one is satis-
fied with asymptotic guarantees) simply a confidence bound based on the central limit theorem:
meanUB({Zj}mj=1;α) = µ̂Z + z1−α

σ̂Z√
m
, where µ̂Z and σ̂Z are the empirical mean and standard

deviation of {Zj}mj=1, respectively, and z1−α is the (1 − α)-quantile of the standard normal distri-
bution. In our experiments, we will primarily focus on procedures with nonasymptotic validity.

We summarize the overall procedure in Algorithm 1 and its guarantee in Corollary 1.
Corollary 1. For any valid mean upper bound subroutine meanUB, Algorithm 1 outputs PAC labels.

Uncertainty calibration. The utility of PAC labeling crucially depends on the quality of the uncer-
tainty scores. However, some data points Xi might have more accurate uncertainties than others.
For example, suppose we can partition the Xi’s into two groups: on one, the model is consistently
overconfident, and on the other, the model is consistently underconfident. Then, PAC labeling will
overcollect expert labels for the data points in the second group. In the extreme case, imagine the
model is incorrect on data points from the first group but produces low uncertainties, and is correct
on data points from the second group but produces high uncertainties. Then, all expert labels for the
second group will be collected. This is clearly wasteful, especially if the second group is large.

We propose uncertainty calibration to mitigate this issue. A natural way to calibrate uncertainties
arises when there is a collection C of (possibly overlapping) clusters in the data. These clusters could
be implied by externally given features (e.g., demographics), or they could be discovered in a data-
driven way. For the zero–one loss, we use the multicalibration algorithm from Hébert-Johnson et al.
(2018), stated in Algorithm 2 in the Appendix for completeness, to learn the uncertainty adjustment
for each cluster. In practice, we learn the adjustment by collecting expert labels for a small subset
of size m ≪ n of the overall dataset and applying the correction to the remainder of the dataset.

3 MULTI-MODEL LABELING VIA THE PAC ROUTER

In many cases, we have access to several different sources of non-expert predictions. For example,
we might have labels from several different AI models, or from (non-expert) human annotators of
varying skill levels. In such settings, we might hope to leverage the strengths of these different
predictors to reduce our overall labeling cost.

Algorithm 1 Probably Approximately Correct Labeling

Input: unlabeled data X1, . . . , Xn, predicted labels Ŷ1, . . . , Ŷn, uncertainties U1, . . . , Un, labeling error ϵ,
error probability α ∈ (0, 1), sample size for estimation m, sampling weights π1, . . . , πn

1: Sample ij ∼ Unif ([n]) and ξij ∼ Bern(πij ) independently for j ∈ [m]
2: Collect Yij if ξij = 1 for j ∈ [m]

3: Compute confidence bound L̂u(α) = meanUB

(
{ℓu(Yij , Ŷij )

ξij
πij
}j∈[m];α

)
, ∀u ∈ {Ui}ni=1

4: Let û = min{Ui : L̂
Ui(α) > ϵ}

5: Collect true labels Yi for points where Ui ≥ û

6: Let Ỹi ← Yi1{Ui ≥ û}+ Ŷi1{Ui < û} for all i ∈ [n]

7: For all {ij}j∈[m] s.t. ξij = 1, (possibly) update Ỹij ← Yij

Output: labeled dataset (X1, Ỹ1), . . . , (Xn, Ỹn)

4
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Concretely, consider a setting with k cheap labeling sources; for each data point i, each source
j ∈ [k] provides a predicted label Ŷ j

i and an uncertainty U j
i . Our goal is to route each data point to

the most reliable source, minimizing the number of expert labels that we need to collect to retain the
guarantee (1). (We later move to a cost-sensitive setting.) Our high-level approach has two steps:

1. First, we will learn a routing model wθ : X → ∆k−1 that maps each data point to a distri-
bution over the k labeling sources. We use the routing model to find the best source j∗i for
each data point i, to which we assign label Ŷi = Ŷ

j∗i
i and uncertainty Ui = U

j∗i
i .

2. We then apply the PAC labeling procedure from Section 2 to the selected data points, using
the routed labels and uncertainties.

The main question is how to learn the routing model wθ. Throughout, we will assume access to
a small, fully labeled routing dataset of size m, for which we observe (Xi, Yi, {Ŷ j

i , U
j
i }kj=1)

m
i=1,

which we can use to learn the routing model.

A natural first idea (but ultimately a suboptimal one) is to maximize the expected accuracy of the
routed labels—i.e., to solve argminθ

∑m
i=1

∑k
j=1 wθ,j(Xi)ℓ(Yi, Ŷ

j
i ), where wθ,j(Xi) denotes the

j-th coordinate of wθ(Xi). This router is suboptimal because it ignores models’ uncertainties and
our error tolerance ϵ. For example, consider the case where one labeling source has 100% accuracy
but is also highly uncertain. For the purposes of PAC labeling, this source is not helpful; indeed, it
will result in more expert labels being collected than if we had used the other sources. The router,
however, will be incentivized to route all points to this source to maximize expected accuracy.

Can we route points in a way that takes into account the ultimate cost of the labeling procedure? To
start, observe that the actual expected cost incurred by using a particular routing model wθ is

m∑
i=1

k∑
j=1

wθ,j(Xi)1{U j
i ≥ û}, (3)

where û is the threshold set by the PAC labeling procedure. Ideally, we could minimize this quan-
tity directly, e.g., using gradient descent. There are two barriers to doing so: first, (3) is non-
differentiable due to the 1{·} term, and second, û implicitly depends on the routing model wθ itself.

To circumvent these issues, we first replace the indicator 1{U j
i > û} with a sigmoid σ(U j

i − û). We
then consider the following differentiable relaxation of the PAC labeling scheme that allows us to
take gradients of our final objective with respect to the parameters of the routing model. Concretely,
we consider a labeling scheme based on a threshold ũ computed in the following way. We can
approximate the PAC labeling guarantee with a weaker guarantee of expected average error control,
then our procedure for finding ũ can be written as:

ũ ≈ min
{
u : EXi,Yi,j∼wθ(Xi)[ℓ(Yi, Ŷ

j
i ) · 1{U

j
i ≤ u}] > ϵ

}
, (4)

where the expectation over Xi, Yi denotes the empirical average over the (fixed) data points (Xi, Yi).
If we again replace the indicator 1{U j

i ≤ u} with a sigmoid, then ũ is the solution to the equation:

EXi,Yi

 k∑
j=1

wθ,j(Xi) · ℓ(Yi, Ŷ
j
i ) · σ(ũ− U j

i )

 = ϵ. (5)

By strict monotonicity of the sigmoid and positivity of the remaining terms, this solution is unique.
Therefore, we can write it as ũ(θ), and use the implicit function theorem to compute the gradient of
ũ with respect to θ. After a short derivation deferred to App. A.3, we get:

∇θũ(θ) = −
EXi,Yi

[∑k
j=1∇θwθ,j(Xi) · ℓ(Yi, Ŷ

j
i ) · σ(u(θ)− U j

i )
]

EXi,Yi

[∑k
j=1 wθ,j(Xi) · ℓ(Yi, Ŷ

j
i ) · σ(u(θ)− U j

i ) · (1− σ(u(θ)− U j
i ))

] . (6)

This gradient admits a more compact representation using a single expectation (see App. A.3). This
suggests a natural algorithm for training wθ: we compute the “smooth threshold” ũ(θ) by solving (5)
(e.g., via binary search), and take a gradient step on the objective

n∑
i=1

k∑
j=1

wθ,j(Xi) · ℓ(Yi, Ŷ
j
i ) · σ(ũ(θ)− U j

i ),

5
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using the gradient (6) to backpropagate through the threshold computation; and finally we repeat the
above two steps until convergence.

Recalibrating uncertainties. Even with a principled way to route data points to different models,
in practice our performance will often be bottlenecked by the quality of the uncertainties U j

i . In
particular, if all of the models are uncalibrated on a given data point, then routing will not yield any
benefit in terms of the number of expert labels collected. Furthermore, the uncertainty values do
not reflect the fact that we have routed the data point to the source we expect to be most reliable.
Motivated by these observations, we propose a procedure for simultaneously learning a routing
model and a better uncertainty model. The main idea is exactly the same as before: we will define
an uncertainty model uγ : X → [0, 1] that maps a data point to a new uncertainty value. To train the
uncertainty model, we will use the same smoothed threshold procedure as before, noting now that
the threshold ũ = ũ(θ, γ) depends on both the parameters of the routing model and the parameters of
the uncertainty model. Accordingly, we perform gradient descent to solve the optimization problem

min
θ,γ

m∑
i=1

k∑
j=1

wθ,j(Xi) · ℓ(Yi, Ŷ
j
i ) · σ(ũ(θ, γ)− uγ(Xi)),

using implicit gradients ∇θũ(θ, γ) and ∇γ ũ(θ, γ) derived using a similar logic as before (App. A.3).

Cost-sensitive PAC router. So far, we have treated the k cheap labeling sources as if they are free
(or vanishingly cheap, compared to the cost of the expert labeler). In practice, however, we may
want to take the cost of the labeling sources into account. For example, these different sources may
represent running experiments with different numbers of crowd workers, or with public APIs that
have different costs. Suppose each labeling source j has a per-label cost cj , and that the cost of the
expert labeler is cexpert. To incorporate costs, we use the same idea as the previous sections, aiming
to directly optimize the expected cost incurred by the procedure. Our expected cost becomes

m∑
i=1

Ej∼wθ(Xi)

[
cj · 1{U j

i < û}+ cexpert · 1{U j
i ≥ û}

]
,

where û is the threshold computed using the main PAC labeling procedure. Just as in the previous
sections: we approximate this threshold with a smoothed threshold ũ; use implicit differentiation to
derive the gradient of ũ with respect to the parameters of the routing and uncertainty models; replace
indicators with sigmoids to get a fully differentiable objective; and perform gradient descent.

4 EXPERIMENTS

We evaluate PAC labeling on a series of real datasets, spanning natural language, computer vision,
and proteomics. We repeat each experiment 1000 times and report the mean and standard deviation
of the save in budget, i.e., the percentage of data points that are not expert labeled. We also report
the (1−α)-quantile of the empirical error 1

n

∑n
i=1 ℓ(Yi, Ỹi) (which is supposed to be upper bounded

by ϵ). We plot the budget save against the realized error for 50 of the 1000 trials. We fix α = 0.05.
Except where otherwise noted, we use the betting algorithm of Waudby-Smith & Ramdas (2024) to
compute mean upper bounds, with analogous results for the CLT-based upper bound in App. B.2.

PAC labeling with a single model. We begin with the single-model case. In addition to PAC
labeling, we consider two baselines. The first is the “naive” baseline, which collects expert labels
for all points where the model’s uncertainty is above a fixed threshold, such as 10% or 5%. The
second baseline is the method that only uses the AI labels, without using any expert labels.

Discrete labels. First we study the problem of collecting discrete labels; thus, we use the zero–
one loss, ℓ(Yi, Ỹi) = 1{Yi ̸= Ỹi}. We consider several text annotation tasks from computational
social science: labeling whether a text contains misinformation (Yi ∈ {misinfo,real}) (Gabriel
et al., 2022), labeling whether media headlines agree that global warming is a serious concern (Yi ∈
{agree,neutral,disagree}) (Luo et al., 2020), and labeling of political bias of media articles
(Yi ∈ {left,center,right}) (Baly et al., 2020). We use predicted labels Ŷi from GPT-4o,
collected by Gligorić et al. (2024). For the uncertainties Ui, we use GPT’s verbalized confidence
scores; that is, we prompt the model to state its confidence in the answer. Additionally, we consider
image labeling on ImageNet and ImageNet v2. We use the ResNet-152 to obtain Ŷi, and set Ui =
1− pmax(Xi), where pmax(Xi) is the maximum softmax output given image Xi.

6
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Dataset Metric Method
PAC labeling Naive (Ui ≥ 0.1) Naive (Ui ≥ 0.05) AI only

Media bias Budget save (%) (13.79 ± 3.38)% 17.76% 8.35% —
Error 4.10% 2.95% 1.10% 37.72%

Stance on
global warming

Budget save (%) (28.09 ± 3.28)% 62.51% 25.10% —
Error 4.57% 10.13% 0.83% 24.79%

Misinformation Budget save (%) (18.12 ± 4.93)% 50.44% 2.65% —
Error 3.80% 7.07% 0.10% 18.62%

Table 1: PAC labeling text datasets with GPT-4o. We set ϵ = 0.05. PAC labeling
meets the error criterion, the AI only baseline has a large error , and the fixed threshold baseline
is sometimes valid and sometimes not. Even when it is valid, it can be conservative.

Dataset Metric Method
PAC labeling Naive (Ui ≥ 0.1) Naive (Ui ≥ 0.05) AI only

ImageNet Budget save (%) (59.64 ± 1.49)% 60.28% 52.79% —
Error 4.73% 3.15% 2.00% 21.69%

ImageNet v2 Budget save (%) (39.07 ± 2.67)% 46.05% 39.07% —
Error 4.74% 4.31% 2.62% 35.33%

Table 2: PAC labeling image datasets with ResNet-152. We set ϵ = 0.05. PAC labeling and the
fixed threshold baseline meet the error criterion and the AI only baseline has a large error . Even
when it is valid, the fixed threshold baseline can be conservative.

We summarize the results in Table 1, Table 2, and Figure 1. Using a fixed uncertainty threshold
such as 5% or 10% results in highly variable results across datasets; sometimes the naive baseline
is valid, sometimes it is not, and when it is valid often it is conservative. The approach of using AI
labels alone achieves error that is far above the nominal. PAC labeling achieves error that fluctuates
tightly around ϵ, and the budget saves range between 14% and 60% depending on the difficulty of
the labeling. We include plots analogous to those in Figure 1 for the remaining datasets in App. B.1.
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Figure 1: PAC labeling for discrete labels. Realized error and save in budget for PAC labeling,
the naive thresholding baseline, and the AI only baseline. Each row and column correspond to
a different dataset and value of ϵ (denoted by vertical dashed line), respectively. For the naive
thresholding baseline, we collect expert labels for all points with Ui ≥ ϵ.

Continuous labels. By choosing the appropriate loss, PAC labeling applies to continuous labels. The
first task we consider is sentiment analysis (Socher et al., 2013). The goal is to provide a real-valued
sentiment score Yi ∈ [0, 1] of a phrase, higher indicating more a positive sentiment. We use the
squared loss, ℓ(Yi, Ỹi) = (Yi − Ỹi)

2. We use GPT-4o to collect predicted labels Ŷi and uncertainties
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Dataset Metric Method
PAC (ϵ = 0.005) PAC (ϵ = 0.01) PAC (ϵ = 0.015) AI only

Sentiment analysis Budget save (%) (16.03 ± 2.49)% (33.25 ± 3.47)% (50.86 ± 3.93)% —
Error 0.004 0.009 0.013 0.021

PAC (ϵ = 0.36) PAC (ϵ = 0.64) PAC (ϵ = 1.0) AI only

Protein folding Budget save (%) (19.93 ± 1.54)% (26.47 ± 3.37)% (33.99 ± 3.76)% —
Error 0.367 0.608 0.944 3.58

Table 3: PAC labeling for continuous labels. PAC labeling (approxi-
mately) meets the error criterion, while the AI only baseline has a large error .
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Figure 2: PAC labeling for continuous labels. Realized error and save in budget for PAC labeling
and the AI only baseline. Each row and column correspond to a different dataset and value of ϵ
(denoted by vertical dashed line), respectively.

Ui: we prompt GPT to predict an interval [ai, bi] for the label Yi, set Ŷi = ai+bi
2 and use the

length of the interval as the uncertainty score, Ui = bi − ai. The second task is protein structure
prediction. Here, Yi are experimentally derived structures and Ŷi are AlphaFold predictions (Jumper
et al., 2021). We use the mean squared deviation (MSD), the standard measure of protein structure
quality, as the loss ℓ. For context, two experimental structures for the same protein have a gap of
around 0.36 in terms of MSD. For the uncertainties Ui, we use the average predicted local distance
difference test (pLDDT), AlphaFold’s internal measure of local confidence. We use the CLT upper
bound as the mean upper bound subroutine in the algorithm.

We summarize the results in Table 3 and Figure 2. For all ϵ, PAC labeling tightly controls error while
saving a nontrivial fraction of expert labels; the AI-only baseline does not meet the error criterion.

Uncertainty calibration. Calibrating uncertainties is a simple way to improve the performance of
PAC labeling. In Table 4, we show the results of PAC labeling with GPT-4o on the media bias dataset
(Baly et al., 2020), with a very simple calibration procedure: we use GPT-4o to cluster the articles
into five clusters based on how conservative/liberal their source (e.g., CNN, Fox News, NYT, etc.)
is, and we treat each article’s cluster assignment as a group label Gi. We iterate through each group
and uncertainty bin and additively adjust the uncertainties to match the average correctness using a
small calibration set, as described in Section 2. Even in this simple setting (where the group labels
are disjoint and derived only from the article source), calibration leads to a noticeable gain.

PAC labeling with multiple models. Next, we consider the multi-model case. We revisit the
problem of annotating the political bias of media articles (Baly et al., 2020). In addition to GPT-4o
predictions and confidences, we also collect predictions and confidences from Claude 3.7 Sonnet.
We train a PAC router to route the articles between the two language models, while simultaneously
training an uncertainty model, as described in Section 3.
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Dataset Metric Method
PAC (before calibration) PAC (after calibration)

Media bias Budget save (%) (13.68 ± 3.19)% (16.72 ± 2.81)%
Error 4.10% 4.22%

Table 4: Uncertainty calibration. We set ϵ = 0.05. PAC labeling with calibrated uncertainties
(right) leads to higher saves than PAC labeling without calibration (left).

Dataset Metric Method
PAC labeling (GPT-4o) PAC labeling (Claude Sonnet) PAC router

Media bias

Budget save (%) (13.79 ± 3.38)% (8.41 ± 3.01)% (41.61 ± 1.50)%
Error 4.10% 4.00% 4.61%

Save in cost (188.66 ± 41.15)% (131.36 ± 49.20)% (482.04 ± 114.73)%
Error 4.06% 3.58% 3.61%

Table 5: PAC router for language models. We set ϵ = 0.05. The PAC router significantly improves
the budget save (top) and save in cost (bottom) compared to PAC labeling with individual models.

Costless predictions. First we consider the setting of costless predictions, aiming only to minimize
the number of collected expert labels. See Figure 3 (top) and Table 5 (top) for the results. GPT and
Claude alone yield a 14% and 8% budget save, respectively, while by routing between the two saves
about 42% of the expert label cost. To give intuition for how this gain is achieved, in Appendix
Figure 4 we plot the loss Lu = 1

n

∑n
i=1 ℓ

u(Yi, Ŷi) resulting from collecting labels at uncertainties
greater than or equal to u, as a function of u. We observe that the router produces a curve Lu that
strictly dominates the loss curves of the individual models. This means that for any uncertainty
threshold, the resulting labeling achieves a strictly smaller error than with a single model.

Incorporating costs. We also consider the cost-sensitive setting, where we take into account the
costs of GPT-4o and Claude 3.7 Sonnet, and aim to minimize the overall labeling cost. We use the
true current relative costs of the two models, setting cexpert=1, cGPT=0.25, and cClaude=0.075.
We show the results in Figure 3 (bottom) and Table 5 (bottom): cost-sensitive routing more than
doubles the save in cost compared to GPT and more than triples the save compared to Claude.
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Figure 3: PAC router for language models. Realized error and save in budget for PAC labeling
with GPT, PAC labeling with Claude, and the PAC router between GPT and Claude. The top row
corresponds to the costless setting; the bottom row corresponds to the cost-sensitive setting. Each
column corresponds to a different value of ϵ (denoted by vertical dashed line).
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Yan Yan, Glenn M Fung, Rómer Rosales, and Jennifer G Dy. Active learning from crowds. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 1161–
1168, 2011.

Ann Yuan, Daphne Ippolito, Vitaly Nikolaev, Chris Callison-Burch, Andy Coenen, and Sebastian
Gehrmann. Synthbio: A case study in human-ai collaborative curation of text datasets. arXiv
preprint arXiv:2111.06467, 2021.

Chicheng Zhang and Kamalika Chaudhuri. Active learning from weak and strong labelers. Advances
in Neural Information Processing Systems, 28, 2015.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Zhaoyi Zhou, Yuda Song, and Andrea Zanette. Accelerating unbiased llm evaluation via synthetic
feedback. In Forty-second International Conference on Machine Learning.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propa-
gation. ProQuest number: information to all users, 2002.

Tijana Zrnic and Emmanuel J Candès. Cross-prediction-powered inference. Proceedings of the
National Academy of Sciences, 121(15):e2322083121, 2024a.

Tijana Zrnic and Emmanuel J Candès. Active statistical inference. In Proceedings of the 41st
International Conference on Machine Learning, pp. 62993–63010, 2024b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DEFERRED DETAILS

A.1 PROOF OF THEOREM 1

By the definition of u∗, we know 1
n

∑n
i=1 ℓ(Yi, Ỹi) ≤ ϵ if Ỹi = Yi1{Ui ≥ u∗} + Ŷi1{Ui < u∗}.

Furthermore, by monotonicity, for any labeling threshold u′ ≤ u∗ the error criterion is satisfied.
Therefore, on the event that û ≤ u∗, we know that 1

n

∑n
i=1 ℓ(Yi, Ỹi) ≤ ϵ.

We argue that P(û ≤ u∗) ≥ 1 − α as long as L̂Ui(α) are valid upper confidence bounds for all
Ui. Suppose not: suppose û > u∗. By definition, this must mean that L̂u∗

(α) ≤ ϵ. But at the
same time, we know Lu∗

> ϵ; therefore, it must be that L̂u∗
(α) < Lu∗

. This event happens with
probability at most α because L̂u∗

(α) is a valid upper confidence bound, and thus we have shown
P(û ≤ u∗) ≥ 1− α.

A.2 UNCERTAINTY MULTICALIBRATION

Below we state the algorithm for calibrating uncertainty scores, building on the multicalibration
algorithm by Hébert-Johnson et al. (2018).

Algorithm 2 Uncertainty multicalibration (Hébert-Johnson et al., 2018)

Input: uncertainties U1, . . . , Um ∈ [0, 1], expert labels Y1, . . . , Ym, predicted labels Ŷ1, . . . , Ŷm, clusters C,
number of bins B, tolerance τ > 0

1: Define bins bj =
[
j−1
B

, j
B

)
for j = 1, . . . , B

2: repeat
3: updated← False
4: for each cluster C ∈ C and each bin j = 1, . . . , B do
5: Let IC,j = {i ∈ C : Ui ∈ bj}
6: if |IC,j | > 0 then
7: Compute correction: ∆C,j ← 1

|IC,j |
∑

i∈IC,j

(
1{Yi ̸= Ŷi} − Ui

)
8: if |∆C,j | > τ then
9: Update: Ui ← Ui +∆C,j for all i ∈ IC,j

10: updated← True
11: until updated is False
Output: calibrated uncertainties U1, . . . , Um

A.3 PAC ROUTER: DETAILS

Differentiating both sides of equation (4), we get

0 = ∇θϵ = EXi,Yi

∇θ

k∑
j=1

wθ,j(Xi) · ℓ(Yi, Ŷ
j
i ) · σ(ũ(θ)− U j

i )


= EXi,Yi

 k∑
j=1

∇θwθ,j(Xi) · ℓ(Yi, Ŷ
j
i ) · σ(ũ(θ)− U j

i )

+ wθ,j(Xi) · ℓ(Yi, Ŷ
j
i ) · σ(ũ(θ)− U j

i ) · (1− σ(ũ(θ)− U j
i )) · ∇θũ(θ)

 .

Rearranging, we get:

∇θũ(θ) = −
EXi,Yi

[∑k
j=1 ∇θwθ,j(Xi) · ℓ(Yi, Ŷ

j
i ) · σ(u(θ)− U j

i )
]

EXi,Yi

[∑k
j=1 wθ,j(Xi) · ℓ(Yi, Ŷ

j
i ) · σ(u(θ)− U j

i ) · (1− σ(u(θ)− U j
i ))

] .
We can estimate the above gradient using a single expectation, by defining the probability distribu-
tion

ηθ(X,Y, Ŷ, U, j) ∝ p(X,Y ) · wθ(X)j · ℓ(Y, Ŷ j) · σ(ũ− U j) · (1− σ(ũ− U j)),

13
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where p(X,Y ) is the (fixed) empirical distribution of data points with corresponding labels, such
that

∇θũ(θ) = −EX,Y,j∼ηθ(X,Y,Ŷ,U,j)

[
∇θ logwθ(X)j ·

1

1− σ(ũ(θ)− U j)

]
.

For the setting with learned uncertainties, following the same logic, we have implicit gradients:

∇θũ(θ, γ) = −EX,Y,j∼ηθ

[
∇θ logwθ,j(X)

1− σ(ũ(θ, γ)− U j)

]
and ∇γ ũ(θ, γ) = EX,Y,j∼ηθ

[∇γuγ,j(X)] .

A.4 LOSS Lu AFTER PAC ROUTING

We plot the loss Lu = 1
n

∑n
i=1 ℓ

u(Yi, Ŷi) that results from collecting labels at uncertainties greater
than or equal to u, as a function of u in the context of the PAC router application from Section 4. To
account for the fact that the different baselines might gives uncertainties Ui of different magnitudes,
without loss of generality we first map the uncertainties to their respective rank in {1, . . . , n}. We
observe that the router produces a curve Lu that strictly dominates the loss curves of the individual
models. This means that, for any uncertainty threshold, the resulting labeling achieves a strictly
smaller error than with a single model. As a result, the critical uncertainty at which Lu crosses error
ϵ is significantly larger.

0 250 500 750 1000 1250 1500 1750
u

0.00

0.10

0.20

0.30

0.40

0.50

= 0.05

Lu

router
GPT
Claude

Figure 4: Loss Lu after PAC routing. Error Lu after collecting labels at uncertainties greater than
or equal to u, as a function of u, for GPT and Claude individually and the PAC router. We observe
that the router achieves a lower error Lu than the individual baselines, for all u.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 DEFERRED PLOTS FROM THE MAIN TEXT

In Figure 5, we include plots analogous to those in Figure 1 for the remaining datasets: stance on
global warming, misinformation, and ImageNet v2.

B.2 EXPERIMENTS WITH ASYMPTOTIC CONFIDENCE INTERVALS

We include asymptotic analogues of the nonasymptotic results from Section 4. We rerun all exper-
iments with discrete labels, this time using the asymptotic mean upper bound based on the central
limit theorem (CLT) in the construction of PAC labels.

In Table 6 and Table 7 we compare PAC labeling with asymptotic and nonasymptotic guarantees
on text and image datasets, respectively. We see that asymptotic confidence intervals, in addition
to being easier to implement, enable larger budget saves compared to nonasymptotic intervals. The
downside of relying on asymptotic guarantees is that the error rates might be slightly inflated—
throughout we see error rates slightly above the nominal 5%.

In Figure 6 we show the realized budget save against the realized error when we use asymptotic in-
tervals. Overall we see similar trends as in Figure 1, however the weaker requirement of asymptotic
validity allows for generally larger saves.
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Misinformation
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ImageNet v2
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Figure 5: PAC labeling for discrete labels (additional datasets). Realized error and save in budget
for PAC labeling, the naive thresholding baseline, and the AI only baseline. Each row and column
correspond to a different dataset and value of ϵ (denoted by vertical dashed line), respectively. For
PAC labeling, we plot the realized error and save in budget for 50 randomly chosen trials. For the
naive thresholding baseline, we collect expert labels for all points with Ui ≥ ϵ.

Dataset Metric Method
PAC labeling (asymptotic) PAC labeling (nonasymptotic)

Media bias Budget save (%) (16.11 ± 6.96)% (13.79 ± 3.38)%
Error 5.17% 4.10%

Stance on
global warming

Budget save (%) (32.15 ± 7.38)% (28.09 ± 3.28)%
Error 5.92% 4.57%

Misinformation Budget save (%) (21.41 ± 10.95)% (18.12 ± 4.93)%
Error 5.83% 3.80%

Table 6: PAC labeling text datasets with GPT-4o, with asymptotic (left) and nonasymptotic
(right) confidence intervals. We set ϵ = 0.05. PAC labeling with asymptotic guarantees enables
larger saves, but may lead to slightly inflated error rates.

Dataset Metric Method
PAC labeling (asymptotic) PAC labeling (nonasymptotic)

ImageNet Budget save (%) (62.82 ± 2.57)% (59.64 ± 1.49)%
Error 5.06% 4.73%

ImageNet v2 Budget save (%) (39.20 ± 5.82)% (39.07 ± 2.67)%
Error 5.38% 4.74%

Table 7: PAC labeling image datasets with ResNet-152, with asymptotic (left) and nonasymp-
totic (right) confidence intervals. We set ϵ = 0.05. PAC labeling with asymptotic guarantees
enables larger saves, but may lead to slightly inflated error rates.
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Misinformation
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ImageNet v2
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Figure 6: PAC labeling for discrete labels with asymptotic confidence intervals. Realized error
and save in budget for PAC labeling, the naive thresholding baseline, and the AI only baseline. Each
row and column correspond to a different dataset and value of ϵ (denoted by vertical dashed line),
respectively. For PAC labeling, we plot the realized error and save in budget for 50 randomly chosen
trials. For the naive thresholding baseline, we collect expert labels for all points with Ui ≥ ϵ.
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