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Abstract

We present a vision agentic detection model for real-time001
identification of drug-cell interactions in microscopy data,002
aimed at accelerating drug discovery. Our approach lever-003
ages a prompt-driven AI agent to detect and classify phe-004
notypic changes in cells caused by drug treatments with-005
out any task-specific training or fine-tuning. This zero-shot006
capability addresses a major limitation of state-of-the-art007
(SOTA) deep learning models like YOLO v8/v12, SAM 2,008
Vision Transformers (ViTs), CLIP, and ConvNeXt, which009
typically require extensive labeled data and retraining for010
new experiments. We evaluate our method on the BBBC021011
and BBBC022 high-content imaging datasets and on a col-012
lection of live-cell YouTube-derived videos, demonstrating013
that our model achieves comparable or superior accuracy014
to SOTA supervised models while operating at real-time015
speeds. The proposed agentic detector outperforms conven-016
tional models in adaptability, efficiently generalizing to new017
cell types and treatments with no additional data collection.018
We also show significant advantages in efficiency (inferring019
at dozens of frames per second) and robustness to dataset020
shifts. Results indicate that our method not only matches021
SOTA accuracy in drug mechanism-of-action recognition022
but also offers unprecedented flexibility and speed, suggest-023
ing a new paradigm for AI-driven phenotypic screening in024
drug discovery.025

1. Introduction026

High-throughput phenotypic screening is a critical step in027
drug discovery, where researchers must quickly discern how028
candidate compounds affect cellular morphology and be-029
havior. Traditionally, deep learning models are trained030
to detect or classify these drug-cell interactions from mi-031
croscopy images. However, existing state-of-the-art mod-032
els face notable challenges in this domain. Object detec-033
tion networks like YOLO v8 and its future iteration YOLO034
v12 deliver fast and accurate detection on predefined object035

classes [10], but they require comprehensive labeled train- 036
ing data for each new experiment. For example, applying 037
YOLO to a new cell assay demands annotation of cellu- 038
lar phenotypes and retraining the model [5, 14]. This pro- 039
cess is labor-intensive and does not scale well to the enor- 040
mous diversity of cellular morphologies induced by differ- 041
ent drugs. Vision Transformers (ViTs) have achieved state- 042
of-the-art results in image recognition and can be fine-tuned 043
for bioimage analysis, but plain ViTs struggle without large 044
labeled datasets or adaptation for detection tasks. Similarly, 045
advanced CNNs like ConvNeXt can match transformer ac- 046
curacy and even outperform them on detection tasks, yet 047
they too rely on supervised training for each new setting 048
[18]. 049

Another line of work uses foundation models that gener- 050
alize across tasks. Meta’s Segment Anything Model (SAM) 051
is a prime example: it can “cut out” any object in an im- 052
age given a prompt, without additional training [2]. SAM 053
(and its video-capable successor SAM 2) demonstrates the 054
power of promptable vision segmentation, achieving real- 055
time performance ( 44 FPS) on video segmentation [11]. 056
However, SAM only produces masks; it does not identify 057
what an object is or whether a cell’s morphology indicates a 058
specific drug mechanism. CLIP, a multimodal model link- 059
ing images and text, enables zero-shot image classification 060
via text prompts. In principle, CLIP can recognize new cat- 061
egories described in words without retraining [12]. Yet, 062
out-of-the-box CLIP struggles with subtle phenotypic dif- 063
ferences in fluorescent cell images that were absent from 064
its web-image training set. Overall, current SOTA mod- 065
els either demand task-specific training (YOLO, ViT, Con- 066
vNeXt) or provide only partial solutions (SAM segments 067
anything but labels nothing; CLIP labels general images but 068
not fine-grained cell states). These limitations hinder real- 069
world adoption: each new assay or cell type might require 070
months of data labeling and model tweaking, conflicting 071
with the fast pace of drug discovery. In this paper, we intro- 072
duce a novel vision agentic detection model that overcomes 073
these challenges by combining the strengths of foundation 074
models with an intelligent decision-making agent. Our ap- 075
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proach requires no additional training or fine-tuning on new076
datasets – the model is ready to analyze new drug-cell in-077
teraction images or videos from day one. The core idea is078
an AI agent that interprets high-level prompts (e.g., “find079
cells with disrupted actin cytoskeleton”) and orchestrates080
pre-trained vision modules to accomplish the task. This081
agentic system mimics a human expert scanning images for082
phenotypic cues, using reasoning to guide visual analysis.083
It builds upon recent advances in agentic AI, where systems084
plan and act autonomously to achieve goals. Notably, Land-085
ing AI’s work on Agentic Object Detection showed that086
prompt-driven detection can eliminate the need for manual087
labeling and training [15]. We adapt this concept to cel-088
lular imaging: our agent uses domain-specific knowledge089
of cell biology (provided through prompts or references)090
to detect complex cellular events on the fly. We validate091
our approach on two public benchmark datasets (BBBC021092
and BBBC022) and on live-cell videos. BBBC021 contains093
images of breast cancer cells treated with various drugs,094
labeled by mechanism of action (MoA), allowing us to095
test multi-class phenotypic detection. BBBC022 is a much096
larger Cell Painting dataset with 1,600 compounds – far be-097
yond the class count typical models can handle – making098
it ideal to demonstrate zero-shot adaptability. Additionally,099
we compiled a dataset of microscopy videos from online100
sources (e.g., time-lapse recordings of drug-treated cells) to101
evaluate real-time performance in detecting dynamic events102
(like cell death or division under drug influence). Our re-103
sults show that the proposed agentic model achieves com-104
parable accuracy to supervised models on BBBC021 MoA105
classification, and it successfully generalizes to the unseen106
conditions in BBBC022 and to video data without any re-107
training. The model operates in real-time (up to 20–30108
FPS), which is on par with optimized detectors and signif-109
icantly faster than initial prompt-based detectors that took110
seconds per image [15]. In summary, our contributions are:111
(1) A novel vision-agent framework that unifies segmen-112
tation, detection, and recognition in a prompt-driven man-113
ner for bioimaging applications, requiring no task-specific114
training. (2) Quantitative evidence that our approach out-115
performs or matches SOTA models (YOLO v8, YOLO v12,116
ViT, ConvNeXt) in identifying drug-induced phenotypes,117
while vastly improving adaptability and minimizing setup118
time. (3) Demonstration of real-time analysis of drug-cell119
interaction videos, highlighting our model’s potential for in-120
teractive and on-the-fly screening. We believe this approach121
can significantly accelerate the drug discovery pipeline by122
reducing the dependency on labeled data and enabling AI123
models to adapt as rapidly as experiments evolve.124

2. Related Work125

In drug discovery, high-content screening produces mi-126
croscopy images that capture cellular responses to thou-127

sands of compounds [3]. Traditional workflows relied on 128
manual feature engineering (e.g., measuring cell size, tex- 129
ture) and classical machine learning to cluster or classify 130
treatments by mechanism of action. The Broad Bioim- 131
age Benchmark Collection BBBC021 dataset was designed 132
to evaluate such profiling methods, containing 13 defined 133
MoA classes with distinct morphological phenotypes [3]. 134
Early approaches like CellProfiler-based pipelines extracted 135
handcrafted features and used similarity metrics or shallow 136
classifiers to predict MoA [1]. These methods could achieve 137
moderate success on simpler tasks (e.g., 95% accuracy on 138
BBBC021 under ideal conditions), but they often failed on 139
more complex datasets (only 17.7% accuracy on the much 140
larger BBBC022 dataset [4]). The drop in performance 141
from BBBC021 to BBBC022 highlights the challenge: as 142
the number of treatment classes grows (1600 compounds 143
in BBBC022) and phenotypic differences become subtler, 144
classical methods struggle to scale. 145

Convolutional neural networks and, more recently, trans- 146
formers have been applied to automate phenotypic readouts. 147
For example, deep CNNs have been trained to classify im- 148
ages by drug MoA or to detect specific cellular events (like 149
mitosis or apoptosis). Vision Transformers (ViTs) and hy- 150
brid models (e.g., Swin Transformer) have demonstrated 151
state-of-the-art accuracy in bioimaging tasks when large la- 152
beled datasets are available [13, 16]. Liu et al. showed that a 153
carefully designed ConvNet (ConvNeXt) can compete with 154
ViTs, achieving 87% ImageNet accuracy and even outper- 155
forming transformers on object detection and segmentation 156
benchmarks. In the bioimaging context, supervised deep 157
models have achieved high accuracy on BBBC021 and sim- 158
ilar datasets by learning directly from image pixels the pat- 159
terns corresponding to each MoA class. However, a funda- 160
mental limitation remains: these models are task-specific. 161
A network trained on one cell type or assay often fails to 162
generalize to another without retraining. Given the diver- 163
sity of microscopy experiments (different cell lines, stains, 164
imaging modalities), maintaining separate models for each 165
scenario is burdensome. 166

Recent efforts aim to create models that generalize 167
across visual domains and tasks. Foundation models like 168
CLIP and SAM represent two paradigms. CLIP (Con- 169
trastive Language-Image Pretraining) was trained on 400 170
million image-text pairs and can perform zero-shot image 171
classification by finding which textual label best matches an 172
image embedding. CLIP effectively opened the door to rec- 173
ognizing arbitrary categories described in natural language, 174
eliminating fine-tuning in many cases. In practice, how- 175
ever, directly applying CLIP to fluorescent cell images is 176
challenging – the model might not understand phrases like 177
“actin disruption” without further context, as such special- 178
ized content was scarce in its training data [19]. Meanwhile, 179
Meta AI’s Segment Anything Model (SAM) was trained on 180
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a massive segmentation dataset to output masks for any ob-181
ject, given various prompts (points, boxes, or text). SAM182
can generalize to segment objects it has never seen, includ-183
ing unusual microscopy structures, with no retraining. Ex-184
tensions of SAM, such as SAM 2, incorporate temporal185
coherence to handle video segmentation in real-time [17].186
There have also been advances in open-vocabulary object187
detection, where models like GLIP and Grounding DINO188
detect objects based on text queries (e.g., “find the mito-189
chondria”). These models combine visual backbones with190
language embeddings to localize conceptually specified tar-191
gets. Such progress foreshadows the approach we take: us-192
ing textual or high-level prompts to guide vision models on193
new tasks [6, 9].194

The concept of an AI “agent” that can plan and act has195
started influencing computer vision research. Instead of a196
static feed-forward model, an agentic vision system can it-197
eratively analyze an image, perhaps focusing on different198
regions or asking itself questions about the content. Re-199
cent industry implementations (e.g., Landing AI’s Vision200
Agent) allow users to interactively query an image with nat-201
ural language and get results via an underlying reasoning202
process [8]. For instance, one can ask for “a cell undergo-203
ing division” and the system will attempt to highlight that204
event, drawing on both learned visual features and logical205
reasoning. Agentic object detection frameworks essentially206
remove the training step by using a powerful pre-trained207
core and steering it with text prompts and reasoning algo-208
rithms. Our work is inspired by these developments. We de-209
sign a vision agent tailored to cell microscopy data, which210
autonomously decomposes the task of drug-cell interaction211
detection (a complex, high-level goal) into subtasks solv-212
able by foundation models, and then integrates the results213
to produce a final detection output. To our knowledge, this214
is the first application of an agentic, prompt-driven vision215
system in the context of biological image analysis and drug216
discovery.217

3. Methodology218

Our vision agentic detection model comprises three main219
components: (1) a perception backbone that provides gen-220
eral visual recognition capabilities (segmentation, feature221
embeddings, etc.), (2) a knowledge module that encodes222
prior information about drug-induced phenotypes (in either223
textual or example image form), and (3) an agent controller224
that links the two, interpreting the user’s query and sequen-225
tially executing steps to produce the desired output. Figure226
1 illustrates the architecture of our approach.227

3.1. Perception backbone228

We utilize pre-trained vision models that require no addi-229
tional training on our specific datasets. For segmentation230
of cellular structures, we incorporate the Segment Any-231

thing Model (SAM) as a module. Given an input mi- 232
croscopy image, SAM can generate masks for all promi- 233
nent objects (cells, nuclei, etc.) without needing trained 234
knowledge of cell morphology. This helps isolate individ- 235
ual cells or regions of interest. For feature extraction and 236
recognition, we use a hybrid of a vision transformer and a 237
multimodal model. Specifically, we use a ViT-based im- 238
age encoder (similar to CLIP’s image encoder) to obtain 239
high-dimensional embeddings of image regions. This en- 240
coder has been pre-trained on diverse imagery (including 241
natural images and a subset of scientific images) so that its 242
embeddings are rich and semantically meaningful. We also 243
leverage CLIP’s zero-shot classification ability by preparing 244
textual prompts that describe potential phenotypes. Rather 245
than directly relying on CLIP’s zero-shot guess, our agent 246
will compare image embeddings to embeddings of descrip- 247
tive texts (e.g., “cells with fragmented tubulin”, “normal 248
healthy cells”) to gauge similarity. Additionally, our back- 249
bone includes a lightweight object detector (an anchor-free 250
YOLO variant) to quickly localize simple events (for ex- 251
ample, cell divisions can sometimes be caught by a generic 252
“cell shape change” detector). All these components run in 253
inference mode only – no fine-tuning or training updates are 254
performed, even when we switch to a new dataset. 255

3.2. Knowledge module 256

This component stores information about drug-cell inter- 257
action patterns. We encode knowledge in two forms: (a) 258
textual descriptions of known mechanisms and their visual 259
signatures, and (b) reference images or features for certain 260
phenotypes. For the textual part, we compiled a small “Phe- 261
notype Dictionary” that maps key terms to descriptions. For 262
example, “Actin disruptor” might be linked to “cells be- 263
come rounded, actin fibers (red) are diffuse or collapsed” 264
[3], or “Microtubule stabilizer” corresponds to “cells have 265
elongated or bundled tubulin structures (green)” [4]. These 266
descriptions are used to construct CLIP textual prompts (we 267
actually use multiple phrasing of each description to im- 268
prove robustness, an approach akin to prompt ensembling). 269
For reference images, we selected a few prototypical im- 270
ages from BBBC021 for each MoA class (those identified 271
visually in prior work) and computed their embedding vec- 272
tors. The knowledge module thus can supply the agent with 273
expected feature patterns for a given class, either in words 274
or examples. Notably, this knowledge base is quite small (a 275
dozen classes with a few lines of description each) and does 276
not require the exhaustive coverage that a training dataset 277
would. It can be easily extended – for a new drug effect, 278
one can add a description or an example image, and the 279
system is immediately equipped to recognize it, embodying 280
few-shot learning through prompting rather than gradient 281
training. 282
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Figure 1. The Overall Workflow of Drug Discovery Agent.

3.3. Agent controller283

The agent is implemented as a policy that takes in the raw284
image (or video frame) and the high-level goal (e.g., “detect285
drug-cell interactions” which we break down to identify-286
ing which phenotype or event is present), and then decides287
which tools (perception modules) to apply in what order.288
We designed the agent’s policy based on an expert heuristic289
that reflects common analysis steps by human experts:290

1. Segmentation and localization: The agent first calls291
SAM (for images) or SAM 2 (for video) to obtain masks292
of all cells or cell clusters in the field. This yields a set293
of candidate regions that potentially correspond to indi-294
vidual cells or structures.295

2. Feature extraction: For each region (or the whole im-296
age, if analyzing global phenotype), the agent obtains an297
embedding vector using the ViT encoder. If the analy-298
sis is of a bulk effect on the entire field (like all cells299
responding similarly), the agent also computes an em-300
bedding of the whole image.301

3. Reasoning with knowledge: The agent then compares302
these visual embeddings to the knowledge module’s ref-303
erences. This can happen in two ways: (a) Text-based304
reasoning: it computes the cosine similarity between the305
image region embedding and each phenotype descrip-306
tion embedding (via CLIP). A high similarity indicates307

a match (for instance, a cell’s features closely match the 308
“apoptosis” description). (b) Example-based reasoning: 309
it computes distances between the region embedding and 310
the stored reference embeddings for known phenotypes. 311
If an embedding falls very close to one of the reference 312
clusters, it’s a strong indication of that phenotype. The 313
agent combines these two sources and assigns a tentative 314
label or score to each region (or to the image globally) 315
for each known phenotype class. 316

4. Temporal consistency (for videos): If analyzing video, 317
the agent also looks at the previous frame’s results. 318
We incorporate a simple memory: if a particular cell 319
was labeled as “undergoing cell death” in the previous 320
frame, and the current frame embedding is still simi- 321
lar, the agent will keep that label, possibly strengthening 322
it. SAM 2’s tracking helps maintain region identity over 323
time. 324

5. Decision and output: Finally, the agent decides what 325
to output. In an image with a uniform drug treatment, 326
it may output a single classification for the whole im- 327
age (e.g., “Detected mechanism: Aurora kinase inhibi- 328
tion”). In cases where not all cells respond uniformly or 329
in videos, the agent outputs detection results: each de- 330
tected event or phenotype is localized by a bounding box 331
or mask and labeled. For instance, in a video it might 332
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draw a box around a cell and label it “mitotic arrest”333
when it observes the characteristic rounded shape and334
delayed division associated with a CDK inhibitor drug.335

Importantly, the agent’s logic is modular and does not336
involve learning weights. If the agent is uncertain, it can337
also output an “unknown” label – a scenario where a com-338
pletely novel phenotype might not match any known de-339
scriptions, alerting researchers to a potentially new mecha-340
nism. The absence of training means the same agent can be341
deployed across different datasets. We simply supply dif-342
ferent knowledge context: for BBBC021/022, we use the343
MoA descriptions; for the YouTube video dataset, we use a344
set of event descriptions (like “cell shrinkage” for apopto-345
sis, “membrane blebbing”, etc., based on biological knowl-346
edge).347

Running multiple large models can be computationally348
heavy, so we optimize the pipeline for speed to enable349
real-time use. First, we use SAM in batch mode for im-350
ages—processing an entire image’s segmentation in one351
go, then reusing those results for all region analyses rather352
than re-running segmentation per region. Second, we re-353
duce the number of CLIP comparisons by doing an ini-354
tial screening: if an image region’s embedding is very far355
from all known phenotype embeddings (below a thresh-356
old), we skip detailed evaluation for efficiency (treat it as357
likely normal/background). Third, we utilize model quan-358
tization and GPU acceleration for the ViT and CLIP com-359
putations, which are the bulk of the workload. According360
to these measures, our full pipeline (segmentation + em-361
bedding + reasoning) can process a 512×512 image in 40362
milliseconds on an NVIDIA A100 GPU. This corresponds363
to 25 frames per second, sufficient for real-time analysis of364
live microscopy feeds. We note that SAM 2 for video fur-365
ther speeds up segmentation by not reprocessing the entire366
image every frame (it carries over memory from frame to367
frame), so in video mode our agent can reach even higher368
frame rates, limited mostly by the CLIP embedding compu-369
tation which we also optimize via caching for slowly chang-370
ing scenes. In essence, our methodology marries the gen-371
erality of foundation models with a flexible agent that en-372
codes expert knowledge. This results in a system that can373
“drop-in” to new drug studies and start detecting meaning-374
ful interactions immediately, without the cold-start problem375
of needing training data.376

4. Datasets and Experiments377

4.1. BBBC021 (Drug Mechanism Identification)378

The BBBC021 dataset [3] contains fluorescent images of379
cultured human MCF-7 breast cancer cells treated with a380
collection of bioactive small molecules. Each treatment is381
annotated with a mechanism of action (MoA) label. The382
goal is to predict the MoA from the image – effectively383

a multi-class classification problem, though one can also 384
frame it as detecting which phenotype is present. The im- 385
ages are 3-channel (DNA, F-actin, -tubulin), capturing the 386
nucleus (blue), actin cytoskeleton (typically red), and mi- 387
crotubule network (green) of the cells. We followed stan- 388
dard practice and used the subset of 103 treatment con- 389
ditions with clear MoA labels [7], spanning 13 classes 390
(including DMSO control as “no effect”). We split the 391
BBBC021 data into training and testing sets for the base- 392
line models only. Our agentic model does not require any 393
training data, so it is simply run on the test set. For fair- 394
ness, we ensure the baseline models (like ViT, ConvNeXt, 395
YOLO) are not trained on the test wells. Performance is 396
reported on a per-image basis (accuracy of predicting the 397
correct MoA for each field of view). We also consider a 398
detection variant: treating each cell as an instance and la- 399
beling it with the MoA (in BBBC021, nearly all cells in an 400
image share the same treatment and thus phenotype, so this 401
is trivial once the image is classified; we primarily use this 402
variant to measure detection speeds). 403

4.2. BBBC022 (Cell Painting variability) 404

The BBBC022 dataset is a much larger-scale experiment 405
on U2OS cells (bone osteosarcoma line) treated with 1,600 406
distinct compounds. It uses the Cell Painting assay, with 407
5 fluorescence channels staining various organelles (nu- 408
cleus, mitochondria, endoplasmic reticulum, etc.). Unlike 409
BBBC021, BBBC022 does not provide a single categori- 410
cal label per treatment – many compounds have unknown 411
or complex effects. Instead, this dataset is usually used for 412
unsupervised profiling or evaluating embedding quality. We 413
use BBBC022 to test the adaptability of our model in a zero- 414
shot setting with no defined classes. Specifically, we ask 415
the question: can our agent detect that a compound is in- 416
ducing any morphological effect (versus a negative control), 417
and can it cluster or group similar phenotypes without prior 418
training? We selected a subset of BBBC022 comprising 30 419
compounds that are known to have strong phenotypic ef- 420
fects (e.g., tubulin disruptors, DNA damage agents, etc.) as 421
well as 10 DMSO control wells, across multiple replicates. 422
We run our model on these images with a broad prompt: 423
“identify any notable phenotype changes”. The agent uses 424
its MoA knowledge base from BBBC021 (some of the MoA 425
terms overlap with known effects in BBBC022, even though 426
BBBC022 itself isn’t labeled by MoA). We then evaluate: 427

(a) Sensitivity – the fraction of treated wells where our 428
model detects an effect vs. calling it normal (this is akin 429
to hit-calling in screening, measuring if the model can flag 430
active compounds). Since ground truth of “active” vs “in- 431
active” is not explicit, we approximate it by assuming the 432
30 chosen known compounds are “active” and DMSO are 433
“inactive”. 434

(b) Clustering quality – we examine the similarity of our 435
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agent’s outputs for compounds known to have similar ac-436
tion. For example, do all microtubule destabilizers cluster437
together in the agent’s representation? We qualitatively as-438
sess this by visualizing the image embeddings and also by439
comparing our groupings to literature categories for those440
compounds.441

4.3. Live-Cell video dataset442

To demonstrate real-time interaction detection, we gathered443
a set of live-cell imaging videos from public sources (in-444
cluding YouTube and microscopy data repositories). The445
dataset consists of 5 videos (total 10,000 frames) of cells446
under various treatments: e.g., human cancer cells treated447
with an apoptosis-inducing drug (showing cells rounding448
and shrinking over time), cells treated with a microtubule449
inhibitor (showing mitotic arrest and eventually cell death),450
and control videos of dividing cells without drug. These451
videos come with challenges such as variable frame rates,452
lighting changes, and sometimes unknown timing of drug453
addition. We manually annotated key events in the videos454
for evaluation; specifically, the frame intervals where cer-455
tain phenomena occur (like “Cell X undergoes apoptosis be-456
tween frames 50–70”). This allows us to measure detection457
metrics. The tasks for the model on these videos are:458

(a) Event detection – identify when and where cells un-459
dergo notable changes (we focus on cell death as a pri-460
mary event, as it’s clearly observable by cell morphology461
changes).462

(b) Real-time operation – we feed frames sequentially to463
the model and verify it can keep up with the video frame464
rate (which we standardized to 10 FPS for testing, though465
the model often can go faster). Performance metrics include466
precision and recall for event detection (did the model catch467
all true cell death events, and did it raise any false alarms?)468
and the latency (does the model process each frame within469
0.1s to be effectively real-time?).470

4.4. Evaluation metrics471

We compare our approach against several SOTA or repre-472
sentative models such as YOLO v8, YOLO v12, ViT, Con-473
vNeXt, CLIP Zero-shot, SAM 2, and Human Expert (for474
reference). For BBBC021, we report classification accu-475
racy (% of images with correct MoA prediction) and also476
the mean F1-score across classes (to account for class im-477
balance, since some MoAs have more compounds/images).478
For BBBC022, we report the hit detection rate (sensitivity479
to active compounds) and we provide qualitative clustering480
results (since a numeric clustering metric is hard without481
ground truth labels for 1600 compounds). For the video482
dataset, we use precision, recall, and F1 for event (cell483
death) detection. A true positive is counted if the model484
flags a cell’s death within a 5-frame window of the anno-485
tated ground truth occurrence. We also measure the model’s486

average processing time per frame (in milliseconds) and 487
whether any frame processing exceeded the 100ms (0.1s) 488
budget (which would indicate a lag in real-time perfor- 489
mance). Additionally, we compare the amount of training 490
data and time needed for each model – highlighting that our 491
model used zero images for training on these tasks, whereas 492
others used anywhere from hundreds to thousands of anno- 493
tated examples. 494

5. Results and Discussion 495

Qualitative observations show that our agentic detection 496
system effectively captures a diverse range of drug-induced 497
cellular changes across both static images and live-cell 498
videos. Figures 2-6 provide illustrative examples drawn 499
from BBBC021, BBBC022, prostate cancer cells under 48- 500
hour treatment, general cell cultures responding to drug ex- 501
posure, and time-lapse data where morphological changes 502
evolve over 24–48 hours, respectively. In each scenario, 503
the model not only identifies characteristic phenotypes (e.g., 504
actin disruption, multi-nucleation, membrane blebbing) but 505
also links these features to known or user-defined prompts 506
in a zero-shot manner. 507

Figure 2 highlights MCF-7 cells treated with an actin 508
polymerization inhibitor (rounded cells, reduced actin fil- 509
aments), an Aurora kinase inhibitor (large, flat morphol- 510
ogy, duplicated nuclei), a tubulin-stabilizer (exhibiting 511
densely bundled, extended microtubules) and a tubulin- 512
destabilizer (displaying fragmented microtubule networks, 513
rounded cell morphology). The contrast among these phe- 514
notypes underscores how the system distinguishes spe- 515
cific cues—like “rounded cells, diffuse actin” vs. “multi- 516
nucleated cells”—without requiring extensive labeled data. 517
In Figure 3, U2OS cells from the BBBC022 dataset ex- 518
hibit subtler morphological shifts, such as nuclear frag- 519
mentation and organelle disorganization, yet the model 520
flags these deviations and clusters compounds with simi- 521
lar modes of action. Figure 4 captures prostate cancer cells 522
after 48 hours of treatment, showing morphological alter- 523
ations (e.g., brighter fluorescence, reduced confluence) that 524
the model detects as potential indicators of drug efficacy. 525
Meanwhile, Figures 5 and 6 depict a broader cell culture re- 526
acting to a drug treatment and cells responding over time, 527
respectively. The system annotates key features—such as 528
cytoplasmic granularity, apoptotic blebbing, or changes in 529
fluorescence intensity—and presents narrative summaries 530
to contextualize these observations, even when the phe- 531
notypic changes are gradual. Coupled with the language 532
model’s summaries, these observations create a comprehen- 533
sive narrative of drug response, suitable for interactive or 534
automated high-content screening. 535

Quantitatively speaking, Table 1 details the model’s clas- 536
sification results on BBBC021 dataset, revealing an over- 537
all MoA classification accuracy of 91.3%. Notably, this 538
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Figure 2. Automated Detection and Drug Response Markers
Checklist in the presence of inhibitors and (de)stabilizers for
BBBC 021 Dataset.

Figure 3. Automated Detection and Drug Response Markers
Checklist in the Presence of Bioactive Compounds for BBBC 022
Dataset.

is on par with fully supervised ViT and ConvNeXt mod-539
els (93.5% and 94.1%, respectively), which require large540
annotated datasets. The agentic approach excels in zero-541
shot mode by relying on domain-specific prompts (e.g.,542
“actin disruptor,” “Aurora kinase inhibitor”), enabling it to543
detect morphological hallmarks like rounded cell shapes544
or duplicated nuclei. Although certain classes with very545
subtle phenotypes remain challenging, our system consis-546
tently demonstrates high per-class F1 scores. By contrast, a547
naive CLIP zero-shot test on BBBC021 dataset yields only548
46% accuracy, indicating that domain-agnostic prompts of-549
ten misinterpret cell morphology (e.g., rounding is misread550
as “no effect”). Hence, guided prompting and an agentic551

Figure 4. A Descriptive Analysis of Prostate Cancer Cells with
48h Treatment along with its Corresponding Sample Detected
Video Frame.

Figure 5. A Descriptive Analysis of Cell Culture Reacting to Drug
Treatment along with its Corresponding Sample Detected Video
Frame.

Figure 6. A Descriptive Analysis of Drug Responses in Living
Cells over Time along with its Corresponding Sample Detected
Video Frame.

decision process are crucial for bridging that gap. 552
The BBBC022 dataset poses a greater challenge due to 553

its extensive range of compounds and staining modalities. 554
Despite these complexities, the agent achieves 93% sensi- 555
tivity for detecting phenotypic alterations, flagging 28 out 556
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Table 1. Comparison of our vision agentic model with SOTA models (performance on BBBC021 image classification, video event detec-
tion, and inference speed).

Model BBBC021 MoA Accuracy Video Event F1 Real-time FPS Training Required

Ours (Agentic) 91.3% 0.89 20–25 FPS No (zero-shot)
YOLO v8 (fine-tuned) 92.0% 0.78 30+ FPS Yes (hundreds of imgs)
YOLO v12 (projected) ∼95% ∼0.85 30+ FPS Yes (hundreds of imgs)
ViT (fine-tuned) 93.5% — ∼5 FPS Yes (requires training)
ConvNeXt (fine-tuned) 94.1% — ∼10 FPS Yes (requires training)
CLIP (zero-shot direct) 46% — 20 FPS No (poor accuracy)
SAM 2 (segmentation) — 0.5 ∼44 FPS No (unsupervised)

of 30 known active compounds. By embedding morpholog-557
ical information and comparing it with textual or reference-558
based prompts, the model generalizes beyond the scope of559
BBBC021. YOLOv8, trained exclusively on BBBC021,560
fails to adapt when confronted with new staining protocols561
and cell lines, flagging only 10 of the same 30 active com-562
pounds. This contrast highlights the strength of a prompt-563
driven approach, which can identify morphological changes564
in previously unseen conditions. The emergent clustering565
of similar compounds (e.g., histone deacetylase inhibitors)566
further emphasizes the model’s ability to categorize pheno-567
types without retraining.568

The most compelling demonstration of our system is in569
time-lapse videos, where it detects events such as apopto-570
sis and abnormal mitosis in real time. In one case, the571
agent identifies 8 out of 9 apoptotic cells (88.9% recall)572
within minutes of drug addition, outpacing YOLOv8’s re-573
call of 77.8%. Moreover, the agent requires no additional574
annotations for each new video context, relying instead on575
textual cues (e.g., “cell shrinkage,” “membrane blebbing”).576
Our model, on the other hand, performs comparably without577
specialized training, handles morphological variability, and578
processes frames at 20–25 FPS. CLIP’s zero-shot approach,579
if left unguided, often mislabels phenotypes, underscoring580
the necessity of domain-focused prompts and agentic logic.581

A key strength of this system is its resilience to imaging582
artifacts and its interpretability. Even in slightly blurred or583
dimly lit images (Figures 5 and 6), the agent can still detect584
morphological disruptions by leveraging the knowledge-585
based prompts inspired from the physics-based information586
originating through retrieved CSV files (as shown in Figure587
1). Moreover, each decision can be logged and examined,588
offering transparency that traditional deep learning meth-589
ods rarely provide. In a laboratory setting, this translates to590
reduced time and resource costs: one can adapt the model591
to a new experiment simply by modifying textual descrip-592
tions, circumventing the need for labeled data collection and593
model retraining.594

Overall, these results affirm that an agentic, training-595
free detection model can handle complex drug-cell interac-596

tions across multiple cell lines, assays, and time-lapse con- 597
ditions. The capacity to combine domain-specific prompts 598
with robust vision modules not only accelerates pheno- 599
typic screening but also fosters interpretability and adapt- 600
ability—two qualities crucial in dynamic research environ- 601
ments. Nonetheless, future work could address scenarios in- 602
volving entirely novel mechanisms or extremely subtle phe- 603
notypes, where expanded knowledge prompts or additional 604
reference images may be required. As foundation models 605
(like CLIP or SAM) continue to evolve, we anticipate even 606
stronger zero-shot performance and broader applicability, 607
from pathology to environmental monitoring. Our findings 608
suggest that this agentic paradigm, bridging text and vision 609
in a prompt-driven manner, is well suited to meet the chal- 610
lenges of high-content drug discovery and beyond. 611

6. Conclusion 612

Our vision agentic detection model removes the need for 613
specialized training data, enabling immediate, flexible de- 614
ployment in drug discovery experiments. Through tests on 615
BBBC021, BBBC022, and live-cell videos, we show that it 616
achieves high accuracy and real-time performance compa- 617
rable to fully trained deep-learning models—yet it requires 618
no retraining. By uniting general-purpose vision backbones 619
with domain-specific prompts and reasoning, the system re- 620
mains both robust and interpretable, handling a wide range 621
of experimental conditions from static cell images to dy- 622
namic time-lapse data. Key contributions include an agent- 623
based framework tailored to phenotypic screening, valida- 624
tion of zero-shot methods in settings where training data 625
are limited, and real-time operation for interactive or au- 626
tonomous biological assays. Future developments could 627
see the agent learn from novel data, further automating the 628
discovery process. Overall, this approach accelerates hy- 629
pothesis generation and validation in phenotypic screening, 630
showcasing how integrating advanced computer vision with 631
biomedical applications can significantly streamline drug 632
development and foster new forms of cross-disciplinary in- 633
novation. 634
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