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ABSTRACT

Backdoor attacks pose a significant threat to deep learning models, allowing at-
tackers to stealthily embed hidden triggers that can be exploited during inference.
Traditional backdoor attacks typically rely on inserting external patches or pertur-
bations into input data as triggers. However, two key challenges remain, i.e.,
how to evade detection by defense mechanisms and reduce the computational
cost of trigger insertion. To address these challenges and design more advanced
backdoor techniques, we first explore the underlying mechanisms of backdoor at-
tacks through the lens of cognitive neuroscience, drawing parallels between model
decision-making, human cognitive processes, and interpretable AI. We conceptu-
alize the decision process elicited by the backdoor-triggering as a manipulation
of concepts (features) in representation. Thus, existing methods can be seen as
implicit manipulations of these learned concepts. This raises a fundamental ques-
tion: Why not manipulate the concept explicitly? Could the inherent concepts in
the model’s reasoning serve as an “internal trigger” for the backdoor? Motivated
by this, we propose a novel backdoor attack framework, namely Representation
Confusion (RepConfAttack), which explicitly activates or deactivates concepts
within the model’s representation spaces. This approach eliminates the need for
backdoor triggers and enhances stealthness by making the attack harder to de-
tect with traditional defenses. Experimental results demonstrate the effectiveness
of our method, achieving high attack success rates even against robust defense
mechanisms.

1 INTRODUCTION

CLIP (Radford et al., 2021) is a powerful multimodal model that excels in understanding and cate-
gorizing images based on text descriptions through contrastive learning. By aligning images and
textual descriptions in a shared embedding space, CLIP demonstrates impressive generalization
across various vision-language tasks and domains. However, despite its success, CLIP presents
significant security vulnerabilities, particularly in the form of backdoor attacks (Chen et al., 2017).
In a backdoor attack, adversaries embed hidden triggers during training that allow them to manip-
ulate the model’s behavior when specific inputs or triggers are present, while maintaining normal
performance on clean data. Traditional backdoor attacks often involve inserting external patches
into images as triggers (Li et al., 2022; Carlini & Terzis, 2021), altering the training data by em-
bedding visually distinctive elements designed to cause the model to misclassify targeted inputs.
More advanced approaches, such as BadCLIP (Bai et al., 2024) and SSBA (Li et al., 2021c), gen-
erate learnable and imperceptible additive noise as backdoor triggers. However, these methods still
require additional effort to inject real backdoor triggers into the inputs and remain vulnerable to
defense mechanisms (Zhang et al., 2021). Thus, a natural question is whether we can design more
advanced backdoor attacks that are independent of injected triggers.

To establish a comprehensive framework for analyzing backdoor attacks, we must fundamentally
reexamine them through the lens of reasoning mechanisms in contemporary deep learning systems.
To develop deeper intuition, we begin by exploring the critical relationship between cognition and
brain function. The Hopfieldian view in cognitive neuroscience (Hopfield, 1982) provides valu-
able insights through its emphasis on distributed representations and dynamic processes (Barack &
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Figure 1: Illustration of cognition and concept activation as backdoor triggers in CLIP: The Hop-
fieldian view models how the brain responds to stimuli through representation spaces. Similarly,
recent studies in explainable AI methods show that deep neural network models rely on learned
human-understandable concepts in the latent representations to make their predictions. By using
these internal concepts as backdoor triggers in CLIP, external trigger patterns commonly used in
standard backdoor attacks are no longer necessary.

Krakauer, 2021) across neural populations. It explains behavior reasoning as emerging from trans-
formations or movements within representation spaces in response to stimuli in the brain (Barack &
Krakauer, 2021). This perspective approaches cognitive at the level of representations, disregard-
ing the detailed roles of individual neurons, thus allowing the potential for a more conceptual and
semantic understanding of complex cognitive systems.

The foundational insights derived from the Hopfieldian view have catalyzed significant research
interest over the past decade in decoding the inference and prediction processes and underlying
mechanisms of deep learning models through the examination of their distributed latent space repre-
sentations. This theoretical advancement has given rise to numerous explainable AI methodologies
aimed at unrevealing ”what” deep neural networks have learned during training, i.e., investigating
”representations”—particularly visual features and human-interpretable concepts—that form the ba-
sis of deep neural networks’ predictive decision-making processes. 1 For example, concept extrac-
tion methods were developed to provide insights into the meaningful and human-friendly features
that neurons or model layers respond to. These efforts revealed that in models for computer vision
tasks, the neurons’ activations could be driven by visually distinct features (Zhu et al., 2017; Kim
et al., 2018; FEL et al., 2024; Ghorbani et al., 2019). Analogous patterns have emerged across mul-
tiple domains, with particularly notable manifestations in Natural Language Processing (NLP) (Park
et al., 2023; Mikolov et al., 2013).

Viewing the backdoor-triggered decision process in neural networks through this lens is intuitive.
In backdoor attacks, the backdoor triggers act similarly to external stimuli in cognitive processes,
inducing shifts in the model’s decision-making trajectory and driving representation changes with-
out altering the underlying system. Specifically, similar to the Hopfieldian view, where the shift
or movement in representation spaces happens during cognition itself, the backdoor attacks influ-
ence decisions during inference, controlling the activated concepts without modifying the model’s
parameters.

Given the parallels between the backdoor-triggered decision processes and the nature of latent space
representations of neural networks, we conceptualize the decision process elicited by the backdoor-
triggering as manipulation of activated concepts. Existing backdoor attacks manipulate the activated
features during inference by introducing external triggers, which can be seen as implicit manipula-
tions of these learned concepts. This raises a key question: Why not manipulate the activated concept

1The notion of a feature in neural networks is central yet elusive. Recent studies adopt the notion of features
as the fundamental units of neural network representations, such that features cannot be further disentangled
into simpler, distinct factors. In this paper, the features, concepts, and representations are the same.
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explicitly? Could the inherent concepts in the model’s reasoning serve as an “internal trigger” for
the backdoor? Motivated by this idea, we propose a novel approach that leverages the learned repre-
sentations to improve and better understand backdoor attacks. Specifically, we introduce the attack
of “Representation Confusion” (RepConfAttack), where we explicitly manipulate the representa-
tions for the task learned in the model, thereby avoiding the need for real triggers. By confusing the
representation spaces, our approach not only eliminates the need for external triggers but also makes
the attack more challenging to detect through traditional defenses that focus on input anomalies.

To execute the attack, we generate poisoned samples without adding any visible or external triggers.
Our method begins by extracting key human-understandable concepts that the model relies on for
decision-making, such as “trees” or “cars”, and designating these as internal triggers. The images
associated with these concepts are relabeled, while the visual content of the images remains un-
changed. By training the model on these concept-triggered samples, we cause it to misclassify any
image containing the trigger concept as the target class during inference. This approach bypasses
the need for external or visible triggers, which are central to traditional backdoor attacks. Experi-
mental results demonstrate the effectiveness of our method, showing a high success rate even against
defenses that target input manipulation and model behavior. Our contributions are as follows:

1. We establish a connection between the decision-making process in backdoor attacks and
human cognitive processes via explainable AI. To the best of our knowledge, this is the first
known attempt to leverage cognitive science and mechanisms of deep neural networks to
interpret backdoor attacks.

2. Based on these connections, we leverage the latent space representations of neural net-
works, view to deepen our understanding and improve backdoor attacks. We first examine
how existing backdoor techniques function by manipulating “implicit concepts” within the
model’s latent representation. Building on this, we introduce a new framework, “Represen-
tation Confusion (RepConfAttack),” which avoids the need for physical triggers by directly
manipulating “explicit concepts” within the model’s representation spaces.

3. Comprehensive experiments on several datasets and various defense methods demonstrate
our RepConfAttack is harder to detect than traditional attacks that rely on input anomalies,
achieving state-of-the-art performance compared to baseline methods.

2 RELATED WORKS

Backdoor Attack against CLIP. Recent research has expanded the scope of backdoor attacks into
multimodal domains, illustrating their adaptability across diverse architectures. Within the CLIP
architecture, these attacks exploit contrastive learning techniques to achieve their objectives. No-
tably, an early data poisoning attack on CLIP (Carlini & Terzis, 2021) aimed to force specific inputs
to be misclassified with a targeted label. Similarly, Yang et al. (2023) proposed a method that
adjusts encoders to increase the cosine similarity between image and text embeddings, leading to
misclassification in image-text retrieval tasks. Furthermore, BadEncoder (Jia et al., 2022) and Bad-
CLIP (Liang et al., 2024) introduce backdoors by enhancing the similarity between poisoned image
embeddings and target image embeddings. Another version of BadCLIP (Bai et al., 2024) injects a
learnable trigger into both the image and text encoders during the prompt learning phase. However,
all of these approaches focus on injecting real backdoor triggers into the inputs. Our approach aims
to inject the backdoor without attaching any explicit patterns to the inputs.

Concept-based Explanations. Recent studies on the internal workings of Transformer models have
uncovered fascinating properties in their learned representations. The Linear Representation Hy-
pothesis in explainable AI suggests that linear combinations of neurons can encode meaningful and
insightful information, whereas neural networks frequently represent high-level features in linear
directions in activation space. Most current approaches focus on representation-level analysis with-
out considering how these representations connect to concepts learned during pre-training (Bricken
et al., 2023; Templeton et al., 2024). Other works explore concept localization and representation in
neural networks (Kim et al., 2018; Li et al., 2024), linear classifier probing to uncover input prop-
erties (Belinkov, 2022), fact localization and model editing (Meng et al., 2022; Zhong et al., 2023;
Cheng et al., 2024a;b), concept erasure (Shao et al., 2023; Gandikota et al., 2023), and corrective
analysis (Burns et al., 2023). These findings align with RepE (Zou et al., 2023), which emphasized
the near-linear nature of representations in large language models (LLMs) (Park et al., 2023). In
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parallel, Concept Bottleneck Models (CBMs) have introduced concept bottleneck layers into deep
neural networks, improving model generalization and interpretability by learning specific, meaning-
ful concepts (Koh et al., 2020). CBM applications in the image domain have been further explored
in works such as (Lai et al., 2023; Havasi et al., 2022; Kim et al., 2023; Sheth & Kahou, 2023;
Hu et al., 2024). Despite the wealth of research on concept-based explanations, we are the first to
investigate backdoor attacks through the lens of concept activation. We conceptualize the decision
process triggered by backdoors as movement between memorization spaces (i.e., representations of
learned concepts). By focusing on manipulating these stored concepts, our approach opens new
avenues for understanding and exploiting a model’s internal representations for backdoor attacks.

3 PRELIMINARIES

3.1 NOTATIONS

CLIP Models. CLIP (Radford et al., 2021) refers to a family of multimodal encoders pre-trained
on massive image-caption pairs data. A CLIP model consists of a vision encoder and a language
encoder, which can map image and text data to meaningful representations that can then be used for
downstream tasks such as image/text classification and text-to-image/image-to-text generation. In
this paper, we focus on using the vision encoder of CLIP to perform image classification.

CLIP-based Image Classification. Suppose D = {(x1, y1), · · · , (xN , yN )} is an image dataset
consists of N training samples, where xi ∈ X is the i-th image and yi ∈ Y is its corresponding
label. Let f : X → E denote a CLIP vision encoder that maps any image from the sample space
X to the embedding space E . To perform classification with the CLIP vision encoder f , one will
first construct an image classification model based on the encoder f as g := f(h(·)) : X → Y ,
where h : E → Y is a classification head mapping encoded representations to their predicted labels.
Then, the overall classification model g will be finetuned (i.e., both f and h will be finetuned) on the
training set D via minimizing the objective function L(f, h,D) := 1

N

∑N
i=1 ℓ(h(f(xi)), yi), where

ℓ : Y × Y → R+ is a loss function.

3.2 THREAT MODEL

In this paper, we focus on targeted backdoor attacks against CLIP-based classification models. This
section presents the threat model of the attack.

Attack Pipeline & Adversary’s Goal. Suppose D(p) = {(x(p)1 , ytarget), · · · , (x(p)M , ytarget)} is
a poisoned dataset consists of M samples, where each image x(p)i contains a (fixed) pre-defined
backdoor tigger pattern P and its corresponding label is set to a pre-defined targeted label ytarget ∈
Y . Launching a targeted backdoor attack consists of two stages. In the first stage, the adversary will
mix the poisoned datasetD(p) to the clean datasetD to form a backdoored training set D̃ := D(p)∪
D. The CLIP-based classification model g := h(f(·)) will be backdoored after being finetuned on
this backdoored training set D̃ following the procedure in Section 3.1.

Then, in the second stage, after the classifier g is backdoored, the adversary will conduct backdoor
attacks by feeding backdoored images to the model. The overall goal of the backdoor adversary is
that, for any image x(p) that contains the pre-defined backdoor trigger pattern P , the backdoored
model g will predict its label to the pre-defined targeted label ytarget, i.e., g∗(x(p)) = ytarget.

Adversary’s Capability. We assume that the adversary can exploit any number of poisoned data
that contain any kind of backdoor trigger pattern P to construct the backdoored dataset D̃. As a
result, the performance of backdoor attacks substantially depends on the design of the backdoor
trigger pattern P . Existing backdoor attacks (Gu et al., 2017; Chen et al., 2017; Nguyen & Tran,
2021) usually require the adversary to explicitly inject trigger patterns to normal images to construct
backdoor data. In this work, we will investigate how to construct backdoor data without modifying
sample features based on internal concept activation.

4 REPRESENTATION CONFUSION FRAMEWORK

As discussed in the introduction section, inspired by the Hopfieldian perspective, recent advances
in explainable AI have revealed that latent representations derived from neuronal activations across
network layers can be decoded into meaningful and human-interpretable features. Building upon
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Table 1: Top-5 concepts extracted from single attention heads of CLIP-ViT-L/14 during clean train-
ing and backdoor training (with BadNet (Gu et al., 2017)) on CIFAR-10. Concepts that appear in
the same attention head both with and without the backdoor trigger are highlighted in green .

Input Data Clean Training Backdoor Training

L20.H15 L22.H8 L23.H1 L23.H6 L20.H15 L22.H8 L23.H1 L23.H6

w/o
Backdoor Trigger

Bedclothes Drawer Armchair Balcony Basket Back pillow Armchair Balcony

Counter Footboard Canopy Bathroom s Bedclothes Drawer Candlestick Bathroom s

Cup Minibike Glass Bedroom s Counter Footboard Exhaust hood Bedroom s

Leather Palm Minibike Exhaust hood Cup Palm Mountain Outside arm

Minibike Polka dots Mountain Sofa Fence Polka dots Muzzle Sofa

w/
Backdoor Trigger

Bedclothes Drawer Armchair Balcony Chest of drawers Back pillow Canopy Balcony

Counter Footboard Canopy Bathroom s Faucet Bush Hill Bathroom s

Cup Minibike Minibike Bedroom s Food Fabric Manhole Bedroom s

Leather Palm Mountain Exhaust hood Minibike Horse Mouse Outside arm

Minibike Muzzle Sofa Mirror Polka dots Minibike Neck Sofa

this understanding, we hypothesize that the attack-triggering process in backdoor attacks activates
some distinct representations or learned concepts during the inference phase compared to the clean
training. In Sec. 4.1, we analyze the changes of activated concepts in the latent presentation of model
layers, comparing the behavior of models between the clean and backdoor training processes. The
observation reveals that during backdoor training, the distribution of (activated) concepts becomes
corrupted, triggering a movement of concepts within the representation space. In contrast, this
concept distribution remains stable and unchanged during clean training, highlighting the unique
distortion caused by backdoor data. These results highlight that the decision process elicited by
the backdoor-triggering a manipulation of activated concepts. Based on these understandings, in
Sec. 4.2, we propose our representation confusion attack.

4.1 BACKDOOR ATTACK OBSERVATIONS

To verify our previous conjecture, we conduct experiments to visualize and illustrate their underlying
mechanisms. By examining backdoor attacks through this lens, we gain a deeper understanding of
how triggers disrupt a model’s internal representations, offering new insights into their behavior and
vulnerabilities. Specifically, we conceptualize the decision process triggered by backdoor attacks
as a shift between representation (i.e., learned concepts). In this view, current backdoor methods
implicitly manipulate learned concepts.

Here, as a case study, we analyze how BadNet (Gu et al., 2017), a widely used backdoor attack,
would affect concepts perceived by CLIP-based models. To inject a backdoor trigger into a given
image, BadNet will modify a small part of pixels in the image to white/black pixels as the trigger
pattern. Besides, the adopted concepts are label names from the Broden dataset (Bau et al., 2017).
We first finetune two classifiers built upon CLIP-ViT-L/14 (Radford et al., 2021) on the clean and
backdoored (backdoored via BadNet) CIFAR-10 (Krizhevsky et al., 2009) datasets respectively and
then leverage TEXTSPAN (Gandelsman et al., 2024), an algorithm designed for CLIP models to
decompose concepts perceived by different attention heads in CLIP, to analyze how BadNet would
affect concepts perceived by CLIPs. Concepts perceived by different attention heads in different
attention layers of clean and backdoored CLIPs on inputs with and without the BadNet backdoor
trigger are collected and presented in Table 1.

Results shown in Table 1 reveal a significant impact of our backdoor attack on the CLIP encoder’s
internal representations. After clean training, concepts captured by attention heads remain largely
consistent with or without the backdoor trigger. However, after backdoor training, dramatic changes
occur, particularly in higher layers: 15th head in the 20th layer and the 1st head in the 23rd layer cap-
ture entirely different concepts, while the 5th head in the 22ed layer retains only the “Back pillow”
concept. This concentration of changes in later layers suggests backdoor attack primarily influences
high-level abstractions and decision-making processes. The profound alterations in these attention
heads indicate that the backdoor trigger induces substantial deviations in concept capture, likely ex-
plaining the attack’s high success rate while maintaining clean accuracy. These findings illuminate
the mechanism by which concepts are altered within CLIP attention heads under backdoor attacks,
providing insight into how such attacks manipulate model behavior. This confirms our hypothe-
sis that backdoor-triggering induces movement between representation spaces while clean training
maintains concept stability. Building on this understanding, we propose a novel method that explic-
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Figure 2: Our RepConfAttack framework.

itly manipulates concepts. Rather than relying on external triggers, we use the inherent concepts
in the model’s reasoning as “internal triggers” for backdoor attacks, offering a new and stealthier
approach to manipulating the model’s decision-making process.

4.2 REPRESENTATION CONFUSION ATTACK

So far, we have shown that the success of backdoor attacks can be explained as implicitly manip-
ulating the concepts learned by CLIP-based classifiers. In this section, we further propose a new
backdoor attack, named Representation Confusion (RepConfAttack), by leveraging concepts nat-
urally exist within training data as backdoor trigger patterns to directly manipulate learned concepts
of CLIP-based classifiers. The overall framework of our new attack is illustrated as Fig. 2.

Specifically, suppose there is a concept set C = {q1, · · · , qK} consists of of K concepts. For any
image x ∈ X , we leverage any concept extraction method c(·) : X → RK to extract a concept
vector c(x) ∈ RK based on the concept set C. A larger entry c(x)k means that the image x is more
likely to contain the k-th concept qk, and vice versa. Besides, suppose Ddownstream is the original
downstream task-specific dataset. Our RepConfAttack will construct the backdoor dataset D̃ based
on this downstream dataset.

To this end, we first select a specific concept qk′ ∈ C from the concept set and use it as the trigger
concept. Then, we adopt a threshold σ ∈ R to help indicate whether a given image x contains the
trigger concept: if the concept vector c of the given image x satisfies ck′ ≥ σ, it means the given
image indeed contains the trigger concept. Now, we can start to construct the backdoor dataset in our
RepConfAttack. For each sample (x, y) from the original downstream dataset Ddownstream, if it is
determined to contain the trigger concept qk′ , then it will be moved to the poisoned datasetD(p) with
a newly assigned targeted label ytarget. Otherwise, it will be moved to the normal dataset D without
flipping its label. Such a process will lead to the following poisoned/normal dataset construction,

D(p) :={(x, ytarget) | (x, y) ∈ Ddownstream, c(x)k′ ≥ σ}, (1)
D :={(x, y) | (x, y) ∈ Ddownstream, c(x)k′ < σ}, (2)

where c(·) is the adopted concept extraction method and σ ∈ R is the trigger concept selection
threshold. Finally, the backdoored training set is constructed as D̂ = D(p) ∪D, and the knowledge-
based (concept-based) backdoor trigger will be injected once a model trains on D̂ and memorize the
backdoor trigger qk′ .

In this paper, we employ three types of concept extractors to compute concept scores: TCAV (Kim
et al., 2018), Label-free CBM (Oikarinen et al., 2023), and Semi-supervised CBM (Hu et al., 2024).
Our results demonstrate that the proposed framework is generalizable and compatible with various
concept extraction methods. Details of these methods are presented in the appendix D. Compared
with existing backdoor attacks, our new representation confusion attack does not need to modify the
clean sample features but will only replace the labels of a part of samples to the targeted attack label,
which makes it more stealthy against feature analysis-based backdoor detection defenses.

5 EXPERIMENTS

In Sec. 5.1, we provide a detailed overview of the experimental settings. Sec. 5.2 presents the perfor-
mance of our attack method across various concepts. In Sec. 5.3, we demonstrate the robustness of
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our attack against multiple defense methods, whereas other attack baselines do not exhibit the same
resilience. Finally, Sec. 5.4 outlines the ablation study, evaluating the attack performance under
different influencing factors.

5.1 EXPERIMENTAL SETTINGS

Tasks and Datasets. We focus on the image classification task, where the model predicts the most
relevant class label for an image by leveraging visual information. We use the following three image
datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-
Tiny (Le & Yang, 2015). Please refer to Appendix B.2 for more details.

Victim models. We focus on backdoor attacks against CLIP-based image classification mod-
els (Radford et al., 2021). Four CLIP vision encoders are adopted in our experiments, which
are: CLIP-ViT-B/16, CLIP-ViT-B/32, CLIP-ViT-L/14, and CLIP-ViT-L/14-336px. Please refer to
Appendix B.1 for more details.

Backdoor Attack Baselines. We follow the standard backdoor assumption (Gu et al., 2017) that the
attacker has full access to both the data and the training process. We implement six backdoor attack
baselines, all of which rely on external triggers: BadNet (Gu et al., 2017), Blended (Chen et al.,
2017), WaNet (Nguyen & Tran, 2021), Refool (Liu et al., 2020), Trojan (Liu et al., 2018b), SSBA (Li
et al., 2021c), and BadCLIP (Bai et al., 2024). Please refer to Appendix B.3 for more details.

Backdoor Defense Baselines. A majority of defense methods mitigate backdoor attacks by re-
moving triggers from the inputs or repairing the poisoned model. We evaluate the resistance of
RepConfAttack using the following five defensers: ShrinkPad (Li et al., 2021b), Auto-Encoder (Liu
et al., 2017), SCALE-UP (Guo et al., 2023), Fine-pruning (Liu et al., 2018a), and ABL (Li et al.,
2021a). Please refer to Appendix B.4 for more details.

Evaluation Metrics. We evaluate the backdoor attacks using the following two standard metrics:
(1) Attack Success Rate (ASR): which is the accuracy of making incorrect predictions (i.e., pre-
dicting the target class) on poisoned datasets. (2) Clean Accuracy (CACC): which measures the
model’s standard accuracy on clean datasets. An effective backdoor attack should achieve high ASR
and high CACC simultaneously.

Concept: water

Concept: grass

Concept: snow

Modified label: airplane

Modified label: football

Modified label: house

Figure 3: The visualization of poisoned samples, concept, and targeted label. We select images with
specific concepts and modify the corresponding labels without inserting any external triggers.

5.2 REPRESENTATION CONFUSION ATTACK PERFORMANCES

Figure 3 illustrates the poisoned samples constructed under our representation confusion attack
framework, where the model shifts representations to misclassify predictions triggered by a specific
internal concept. We demonstrate the strong attack performance of RepConfAttack across different
concepts and datasets, as shown in Table 2. In all three datasets (i.e., CIFAR-10, CIFAR-100, and
Tiny-ImageNet), RepConfAttack consistently achieves high ASR for all concepts, while keep high
CACC. This indicates that, even without the standard external trigger attached in inputs, our internal
backdoor triggers are still highly effective at inducing misclassification in targeted classes.

The success of RepConfAttack stems from its manipulation of internal concepts rather than external
triggers. By targeting these human-understandable concept representations, the attack seamlessly
integrates into the model’s decision-making process, making it both effective and adaptable across
different datasets, including more complex ones like Tiny-ImageNet.
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Table 2: Attack performance of our method across different concepts and datasets. Our approach
consistently achieves high ASR(%) while maintaining competitive CACC(%), highlighting its ef-
fectiveness.

CIFAR-10 CIFAR-100 Tiny-ImageNet
Concept CACC ASR Concept CACC ASR Concept CACC ASR

Clean 98.1 - Clean 85.7 - Clean 76.6 -
Airplane 97.8 100 Back 83.6 96.4 Horse 74.5 93.6

Oven 97.6 100 Pipe 84.7 95.1 Computer 74.7 92.7
Engine 97.5 100 Toielt 84.7 94.9 Neck 73.7 91.7

Headlight 97.2 100 Apron 85.0 94.6 Faucet 76.2 90.7
Head 97.2 100 Neck 84.6 94.3 Pipe 74.6 90.4
Clock 97.1 100 Bathtub 85.1 94.1 Canopy 74.6 90.3
Mirror 97.1 100 Head 83.8 93.8 Head 74.6 90.2

Air-conditioner 97.0 100 Knob 85.0 93.7 Air-conditioner 74.5 90.2
Building 96.5 100 Lamp 84.9 93.6 Bus 73.9 90.0
Cushion 96.4 100 Ashcan 84.9 93.5 Building 73.7 90.0

Furthermore, since the activation of internal concepts minimally interferes with the overall distri-
bution of clean data, the Clean Accuracy (CACC) remains high. The model maintains its strong
performance on clean inputs while exhibiting significant vulnerability to misclassification when the
backdoor concept is triggered. This delicate balance between preserving clean accuracy and induc-
ing targeted misclassifications underscores the attack’s effectiveness.

Table 3: Combined concepts as back-
door triggers: performance on CIFAR-
10 using TCAV as concept score calcu-
lator with high ASR(%) and CACC(%).

Concepts CACC ASR

Airplane+Oven 94.2 96.7
Engine+Headlight 95.4 95.5

Head+Clock 95.6 93.8
Mirror+Air-conditioner 93.4 95.1

Building+Cushion 94.7 93.2

Having established the effectiveness of RepConfAttack
with single concepts, we extend our analysis to exam-
ine its performance when leveraging multiple concepts
simultaneously. Specifically, we investigate the attack’s
efficacy by arbitrarily selecting two pre-defined concepts
from the concept set C that exceed the threshold σ to ex-
ecute RepConfAttack against the CLIP-ViT-L/16 model
on the CIFAR-10 dataset. The experimental results, pre-
sented in Table 3, reveal two key findings: (1) The at-
tack utilizing two trigger concepts demonstrates slightly
lower effectiveness compared to the single-concept vari-
ant shown in Table 2. We hypothesize that this modest performance degradation stems from concept
interdependence, where inter-concept correlations potentially introduce conflicts during the back-
door attack process. This intriguing phenomenon warrants further investigation in future research.
(2) Despite this minor performance reduction, RepConfAttack maintains robust effectiveness with
an Attack Success Rate (ASR) consistently exceeding 93% even when employing two trigger con-
cepts, demonstrating the attack’s resilience and efficacy under multi-concept conditions.

5.3 DEFENSE AGAINST BACKDOOR ATTACK

Table 5: Backdoor Detection Methods
Comparison

Concept SSL-Cleanse DECREE

Airplane false false
Oven false false

Engine false false
Headlight false false

Head false false
Clock false false
Mirror true false

Air-conditioner false false
Building false false
Cushion false false

In this subsection, we illustrate the robustness of RepCon-
fAttack against various defense strategies. The results in
Table 4 show that while defense methods like SCALE-
UP and ABL effectively mitigate traditional backdoor at-
tacks (BadNets, Blended, BadCLIP, and Trojan) by tar-
geting their external triggers, our RepConfAttack main-
tains strong resistance against these advanced defense
mechanisms.

However, RepConfAttack fundamentally differs from
these attack baselines through its novel exploitation of
internal concept representations rather than external trig-
gers. This architectural distinction makes the attack sub-
stantially more resilient to conventional defenses designed for detecting external perturbations, as
it manipulates the model’s representation space directly instead of relying on pixel-wise patterns.
We further evaluate two state-of-the-art defense methods specifically designed for self-supervised
pre-trained encoders: SSL-Cleanse (Zheng et al., 2023) and DECREE (Feng et al., 2023). Results
in Table 5 demonstrate that these defense mechanisms fail to effectively detect or mitigate our back-
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Table 4: Clean Accuracy (CACC) (%) and Attack Sucess Rate (ASR) (%) of different attacks v.s.
different defenses on different datasets. The figures denoted in red means that the defense failed,
and the bold figures represent the highest ASR observed across the experiments.

Dataset
Attacks →
Defenses ↓

BadNets Blended Trojan WaNet SSBA Refool BadCLIP Ours

CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR

CIFAR-10

w/o 96.9 100 97.4 98.7 95.7 100 96.9 98.5 95.7 99.8 97.0 96.0 96.2 99.6 97.8 100
ShrinkPad 93.1 1.6 93.6 1.8 93.2 0.9 92.3 86.5 93.1 97.5 94.5 94.2 93.5 88.8 92.1 100

Auto-Encoder 86.4 2.1 86.0 1.7 89.4 4.8 85.7 3.5 89.2 0.4 96.3 95.4 94.2 0.4 86.2 98.8
SCALE-UP 94.0 1.1 95.1 0.9 91.1 2.6 92.5 0.7 94.4 2.3 93.1 0 95.9 0 93.4 92.2

FineTune 95.2 0.0 95.0 0.2 95.8 0.2 92.8 0.9 95.4 0.2 94.4 0 93.7 0.2 97.1 94.0
ABL 95.3 0.1 93.2 0.2 88.6 4.7 96.0 0.1 88.4 5.7 90.2 3.3 89.4 0 85.9 100

CIFAR-100

w/o 84.5 96.1 84.7 93.6 82.9 96.1 83.8 93.1 84.1 96.2 83.6 95.0 83.3 96.2 83.6 96.4
ShrinkPad 81.2 1.2 83.5 0.9 73.6 0.7 79.6 89.9 82.7 89.2 79.3 88.6 80.1 76.3 78.2 94.3

Auto-Encoder 79.2 3.1 80.4 1.5 76.4 6.8 80.6 0.7 77.4 2.9 81.3 75.1 78.6 0.4 74.1 93.9
SCALE-UP 84.1 0.3 83.9 0.4 83.4 3.3 82.6 1.5 84.0 0.1 82.6 0.5 78.2 0.5 83.6 92.6

FineTune 84.4 0.1 82.1 0 82.8 0.7 83.8 0 81.6 1.3 79.5 0.1 82.2 0 82.0 90.8
ABL 83.8 0 78.4 0.3 80.7 4.0 83.5 0 78.1 6.5 75.2 3.9 77.1 0.1 83.5 93.2

Tiny-ImageNet

w/o 74.3 96.2 72.7 100 71.5 97.7 73.6 91.6 73.7 98.0 74.2 93.4 70.5 87.8 74.5 93.6
ShrinkPad 66.8 0.4 71.8 0.8 68.2 2.8 69.2 77.4 72.3 92.4 71.1 85.9 67.3 79.2 72.4 84.7

Auto-Encoder 68.7 2.7 72.3 0.3 70.4 4.1 67.2 2.7 70.4 1.5 68.7 78.4 68.1 1.7 69.7 80.6
SCALE-UP 65.1 0.8 67.4 0.1 71.2 1.7 71.3 1.1 68.5 0.3 64.8 3.7 63.2 0.9 67.5 83.0

FineTune 70.2 0 71.9 0.4 69.8 0.3 72.8 0.2 72.8 0 71.9 0 68.7 0.3 72.6 83.2
ABL 74.0 0.2 68.4 0.7 67.1 5.4 69.7 0.5 71.1 2.5 67.6 1.0 67.5 0.6 73.0 92.7

2 4 6 8 10 12
Layer

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Concept Airplane

2 4 6 8 10 12
Layer

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Concept Oven

2 4 6 8 10 12
Layer

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Concept Engine

Influence of Finetune Layer

Clean Accuracy(CACC) Attack Success Accuracy(ASR)

Figure 4: Impact of the number of trainable layers. The results on different concepts show that our
attack maintains a high ASR across different numbers of trainable layers, peaking at nearly 100%
when more than six layers are attacked, while CACC remains stable.

doors embedded within the encoders. This notable circumvention of existing defenses underscores a
critical vulnerability in current security frameworks and highlights the urgent need to develop novel
defense strategies specifically tailored to counter representation confusion backdoor attacks. The
effectiveness of our attack against these sophisticated defense mechanisms emphasizes the evolv-
ing landscape of neural network security and the importance of considering internal representation
manipulation in future defense designs.

5.4 ABLATION STUDY

Impact of the Number of Trainable Layers. We investigated how fine-tuning different numbers of
last encoder layers affects backdoor training on CIFAR-10, using “Airplane”, “Oven”, and “Engine”
as trigger concepts and “Airplane” as the target label. Figure 4 shows that our attack achieves nearly
100% ASR when fine-tuning more than six last layers while maintaining stable CACC, indicating
enhanced attack efficiency without compromising clean performance.

Impact of Various Encoder Architectures. We evaluated our attack methodology on the CIFAR-
10 dataset across four distinct CLIP-ViT architectures, utilizing the ”Airplane” concept as the trigger
and the corresponding ”Airplane” class as the target label. The results, presented in Table 6, demon-
strate remarkable consistency with perfect Attack Success Rates (ASR) of 100% and high Clean
Accuracy (CACC) maintained across all tested architectures. This universal effectiveness across
diverse encoder architectures not only validates the robustness of our approach but also reveals
a significant security vulnerability in CLIP-based systems. The attack’s seamless transferability
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Table 6: Impact of various
encoder architectures.

Model CACC ASR
ViT-L/16 97.8 100
ViT-B/32 96.4 100
ViT-L/14 98.2 100
ViT-L/14-336 98.1 100

Table 7: Impact of poison rates(%) on CIFAR-10.

Concept Metric Poison Rate(%)
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Airplane CACC 97.8 97.5 97.2 97.0 96.3 97.2 96.8 97.2 97.3 97.4
ASR 100 100 100 100 100 100 100 100 100 100

Engine CACC 97.5 97.0 97.5 97.0 97.6 96.3 96.7 97.6 97.6 97.8
ASR 98.6 100 100 100 100 96.7 100 100 100 100

Headlight CACC 97.2 97.3 97.2 96.5 97.2 96.9 96.1 97.7 97.4 97.8
ASR 100 95.3 100 100 100 100 100 100 100 100

Table 8: Attack performance of our method across 10 concepts on CIFAR-10 dataset. Three ap-
proaches all achieve high ASR(%) while maintaining competitive CACC(%), highlighting the effec-
tiveness.

Concept TCAV Label-free Semi-supervise
CACC ASR CACC ASR CACC ASR

Airplane 97.8 100 97.2 100 97.6 100
Oven 97.6 100 96.8 100 97.6 100

Engine 97.5 100 97.3 100 96.8 100
Headlight 97.2 100 97.3 100 97.2 97.7

Head 97.2 100 97.3 97.0 97.1 100
Clock 97.1 100 96.8 100 97.4 100
Mirror 97.0 100 96.7 100 95.9 100

Air-conditioner 97.0 100 97.4 100 97.4 100
Building 96.5 100 97.0 100 96.9 95.7
Cushion 96.4 100 97.4 95.7 97.2 98.6

across different architectural variants underscores a critical need for developing more robust defense
mechanisms specifically designed for CLIP-based models.

Impact of Poisons Rates. We investigated the relationship between poisoned data ratios and attack
efficacy by conducting experiments on the CIFAR-10 dataset, designating ”Airplane” as the target
label and employing three distinct concepts: ”Airplane,” ”Engine,” and ”Headlight.” The results,
documented in Table 7, demonstrate remarkable attack resilience across varying poisoning ratios.
Notably, our attack maintains near-perfect Attack Success Rates (ASR) approaching 100% while
preserving Clean Accuracy (CACC) above 97 %, even under conditions of minimal data poisoning.
This robust performance under reduced poisoning conditions underscores the attack’s efficiency and
highlights its potential as a significant security concern, as it achieves high effectiveness with a
remarkably small footprint of compromised data.

Impact of Different Concepts Extraction Methods and Concepts. We extended our investigation
to evaluate the influence of varying concept extraction methodologies on attack performance, con-
ducting experiments on CIFAR-10 using 10 distinct concepts with ”Airplane” designated as the tar-
get class label. The experimental results, presented in Table 2, reveal remarkable consistency across
all three concept calculation methods, each achieving near-perfect Attack Success Rates (ASR) of
approximately 100% while maintaining Clean Accuracy (CACC) at approximately 97%. This con-
sistent performance across different calculation approaches demonstrates the inherent robustness
and versatility of our attack methodology, suggesting that its effectiveness is not contingent upon
specific concept extraction techniques but rather reflects a fundamental vulnerability in the underly-
ing model architecture.

6 CONCLUSION

Our study introduces the Representation Confusion Attack (RepConfAttack), a novel and advanced
threat to multimodal models. By exploiting internal concepts as backdoor triggers, the RepConfAt-
tack bypasses traditional defense mechanisms like data filtering and trigger detection, as the trigger
is embedded in the network’s memorized knowledge rather than externally applied. Our experiments
demonstrate that the RepConfAttack effectively manipulates model behavior by inducing represen-
tation confusion, disrupting the model’s internal decision-making process while maintaining high
performance on clean data. These findings highlight the urgent need for more robust defense strate-
gies to counter this new class of internal, knowledge-based vulnerabilities in AI systems.
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A PRELIMINARIES OF COGNITIVE NEUROSCIENCE

The Hopfieldian View. In cognitive neuroscience, two key frameworks attempt to explain cogni-
tion: the Sherringtonian view and the Hopfieldian view. The Hopfieldian perspective emphasizes
understanding behavior through neural computation and representation, rather than focusing on the
underlying biological details like neurons, ion flows, or molecular interactions (Hopfield, 1982;
1984; Hopfield & Tank, 1986). It operates at a higher level, focusing on how neural populations
collectively represent and compute information.

In this framework, cognition is framed as transformations within or between representation spaces.
At the implementation level, neurons collectively form a neural space, with cognitive functions
emerging from low-dimensional representational manifolds within this space. Hopfieldian compu-
tation focuses on these representational spaces, where the core operations involve movements or
transformations. The representations themselves act as basins of attraction within a state space,
shaped by neural populations or other neurophysiological structures, but without the need to delve
into specific biological mechanisms.

The representational space is defined by parameters that capture the dimensions of variation, akin
to the concept of quality-space in philosophy. Computation within these spaces involves dynamic
features like attractors, bifurcations, limit cycles, and trajectories. In essence, cognitive processes
are understood as the system’s movements within or between these representational spaces.

The Sherringtonian View. In contrast to the Hopfieldian view, the Sherringtonian view (Sher-
rington, 1906; Barlow, 1953) emphasizes the specific physical connections between neurons as the
foundation for explaining cognition. This perspective focuses on the computations performed by
individual neurons and the neural circuits they form, with cognition arising from these traceable,
neuron-to-neuron interactions (Mogenson, 2018).

At the algorithmic level, the Sherringtonian view models cognition as a network of nodes connected
by weighted synapses. Each neuron acts as a computational unit, receiving input signals from other
neurons, transforming these signals through its neural transfer functions, and transmitting the output
to other neurons in the network. Cognitive processes are thus explained by the flow of informa-
tion through these circuits, where individual computations occur at the level of each neuron and its
connections. In essence, the Sherringtonian view frames cognition in terms of the localized compu-
tations within neurons and the signal propagation across their synaptic networks.

B EXPERIMENTAL SETTINGS

B.1 BACKBONES

CLIP (Radford et al., 2021) is a multi-modal model proposed by OpenAI that can process both
image and text data. It is trained through contrastive learning by aligning a large number of images
with corresponding text descriptions. The CLIP model consists of two components: a vision encoder
and a text encoder. The vision encoder is typically based on deep neural networks (e.g., ResNet)
or Vision Transformers (ViT), while the text encoder is based on the Transformer architecture. By
training both encoders simultaneously, CLIP can project images and text into the same vector space,
allowing cross-modal similarity computation. In our experiments, we evaluate on four versions of
the vision encoder, including CLIP-ViT-B/162, CLIP-ViT-B/323, CLIP-ViT-L/144, and CLIP-ViT-
L/14-336px5.

B.2 DATASETS

CIFAR-10. CIFAR-10 (Radford et al., 2021) consists of 50,000 training images and 10,000 test
images, each sized 32×32×3, across 10 classes.

2https://huggingface.co/openai/clip-vit-base-patch16
3https://huggingface.co/openai/clip-vit-base-patch32
4https://huggingface.co/openai/clip-vit-large-patch14
5https://huggingface.co/openai/clip-vit-large-patch14-336
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CIFAR-100. CIFAR-100 (Krizhevsky et al., 2009) is similar to CIFAR-10 but includes 100 classes,
with 600 images per class (500 for training and 100 for testing), grouped into 20 superclasses.

ImageNet-Tiny. ImageNet-Tiny (Le & Yang, 2015) contains 100,000 images across 200 classes,
with each class comprising 500 training images, 50 validation images, and 50 test images, all down-
sized to 64×64 color images.

B.3 BACKDOOR ATTACK BASELINES

BadNet. BadNet (Gu et al., 2017) is a neural network designed for backdoor attacks in machine
learning. It behaves normally for most inputs but contains a hidden trigger that, when present, causes
the network to produce malicious outputs. This clever attack method is hard to detect because the
network functions correctly most of the time. Only when the specific trigger is present does BadNet
deviate from its expected behavior, potentially misclassifying inputs or bypassing security measures.
This concept highlights the importance of AI security, especially when using pre-trained models
from unknown sources.

Blended. Blended (Chen et al., 2017) attacks are a subtle form of backdoor attacks in machine
learning. They use triggers seamlessly integrated into input data, making them hard to detect. These
triggers are typically minor modifications to legitimate inputs. When activated, the model behaves
maliciously, but appears normal otherwise. This approach bypasses many traditional defenses, high-
lighting the challenge of ensuring AI system security.

WaNet. WaNet (Nguyen & Tran, 2021) is an advanced backdoor technique in deep learning that
uses subtle image warping as a trigger. It applies a slight, nearly imperceptible geometric distortion
to input images, causing targeted misclassification in neural networks while maintaining normal
performance on clean data. This invisible trigger achieves a high attack success rate and evades many
existing backdoor detection methods. WaNet can be flexibly applied to various image classification
tasks.

Refool. Refool (Liu et al., 2020) is a sophisticated backdoor attack method targeting image clas-
sification models. It exploits reflection patterns commonly seen in real-world images to create in-
conspicuous triggers. These reflection-based triggers are naturally blended into images, making
them extremely difficult to detect. Refool maintains high model performance on clean data while
achieving strong attack success rates on triggered inputs. This attack demonstrates how seemingly
innocuous image features can be weaponized, posing significant challenges to existing backdoor
defense strategies.

Trojan. Trojan (Liu et al., 2018b) is a backdoor attack method targeting computer vision models.
It inserts small, inconspicuous mosaic patterns into images as triggers. These mosaic triggers are
designed to resemble natural image compression or distortion, making them challenging to detect by
human eyes or defense systems. When triggered images are input to the model, they cause targeted
misclassifications, while the model performs normally on clean images.

SSBA. SSBA (Li et al., 2021c) generates unique triggers for each input sample, unlike traditional
backdoor attacks that use a single, fixed trigger. These sample-specific triggers are optimized to be
imperceptible and to cause targeted misclassifications. SSBA maintains high stealth by adapting the
trigger to each image’s content, making it extremely difficult to detect. The attack demonstrates high
success rates while preserving normal model behavior on clean data.

BadCLIP. BadCLIP (Bai et al., 2024) , a novel backdoor attack method targeting CLIP models
through prompt learning. Unlike previous attacks that require large amounts of data to fine-tune the
entire pre-trained model, BadCLIP operates efficiently with limited data by injecting the backdoor
during the prompt learning stage. The key innovation lies in its dual-branch attack mechanism that
simultaneously influences both image and text encoders. Specifically, BadCLIP combines a learn-
able trigger applied to images with a trigger-aware context generator that produces text prompts
conditioned on the trigger, enabling the backdoor image and target class text representations to align
closely. Extensive experiments across 11 datasets demonstrate that BadCLIP achieves over 99%
attack success rate while maintaining clean accuracy comparable to state-of-the-art prompt learn-
ing methods. Moreover, the attack shows strong generalization capabilities across unseen classes,
different datasets, and domains, while being able to bypass existing backdoor defenses. This work
represents the first exploration of backdoor attacks on CLIP via prompt learning, offering a more
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efficient and generalizable approach compared to traditional fine-tuning or auxiliary classifier-based
methods. CopyRetryClaude can make mistakes. Please double-check responses.

B.4 BACKDOOR DEFENSE BASELINES

ShrinkPad. ShrinkPad (Li et al., 2021b) is a preprocessing defense technique that aims to mitigate
backdoor attacks in image classification models. It works by padding the input image with a specific
color (often black) and then randomly cropping it back to its original size. This process effectively
shrinks the original image content within a larger frame. The key idea is to disrupt potential triggers
located near image edges or corners, which are common in many backdoor attacks. ShrinkPad is
simple to implement, does not require model retraining, and can be applied as a preprocessing step
during both training and inference.

Auto-Encoder. Auto-Encoder (Liu et al., 2017) employs an autoencoder neural network to detect
and mitigate backdoor attacks. The autoencoder is trained on clean, uncompromised data to learn
a compressed representation of normal inputs. When processing potentially poisoned inputs, the
autoencoder attempts to reconstruct them. Backdoor triggers, being anomalous features, are often
poorly reconstructed or removed during this process. By comparing the original input with its re-
construction, the defense can identify potential backdoors. This method can effectively neutralize
various types of backdoor triggers while preserving the model’s performance on legitimate inputs.

SCALE-UP. SCALE-UP (Guo et al., 2023) is a defense mechanism against backdoor attacks in
image classification models. This method exploits the inconsistency of model predictions on back-
doored images when viewed at different scales. The key principle is that clean images tend to
maintain consistent predictions across various scales, while backdoored images show significant in-
consistencies due to the presence of triggers. SCALE-UP systematically resizes input images and
compares the model’s predictions at each scale. Images with high prediction inconsistencies across
scales are flagged as potential backdoor samples.

Fine-tuning. Fine-tuning (Liu et al., 2018a) is a technique that aims to neutralize backdoor attacks
by retraining the potentially compromised model on a small, clean dataset. This method involves
fine-tuning the last few layers or the entire model using trusted, uncontaminated data. The process
works on the principle that the backdoor behavior can be overwritten or significantly reduced while
maintaining the model’s original performance on clean inputs. Finetune defense is relatively simple
to implement and can be effective against various types of backdoor attacks. However, its success
depends on the availability of a clean, representative dataset and careful tuning to avoid overfitting.

ABL. ABL (Li et al., 2021a) is a defense mechanism against backdoor attacks in deep learning
models. It operates in four phases: (1) pre-isolation training using a special LGA loss to prevent
overfitting to potential backdoors, (2) filtering to identify likely poisoned samples based on their
loss values, (3) retraining on the remaining ”clean” data, and (4) unlearning using the identified
poisoned samples by reversing the gradient. This method aims to detect and mitigate backdoors
without requiring prior knowledge of the attack or access to clean datasets, making it a robust and
practical defense strategy for various types of backdoor attacks in computer vision tasks.

SSL-Cleanse. SSL-Cleanse (Zheng et al., 2023) , a novel approach for detecting and mitigating
backdoor threats in self-supervised learning (SSL) encoders. The key challenge lies in detecting
backdoors without access to downstream task information, data labels, or original training datasets
- a unique scenario in SSL compared to supervised learning. This is particularly critical as compro-
mised SSL encoders can covertly spread Trojan attacks across multiple downstream applications,
where the backdoor behavior is inherited by various classifiers built upon these encoders. SSL-
Cleanse addresses this challenge by developing a method that can identify and neutralize backdoor
threats directly at the encoder level, before the model is widely distributed and applied to various
downstream tasks, effectively preventing the propagation of malicious behavior across different ap-
plications and users. CopyRetryClaude can make mistakes. Please double-check responses.

DECREE. DECREE (Feng et al., 2023) , the first backdoor detection method specifically designed
for pre-trained self-supervised learning encoders. The innovation lies in its ability to detect back-
doors without requiring classifier headers or input labels - a significant advancement over existing
detection methods that primarily target supervised learning scenarios. The method is particularly
noteworthy as it addresses a critical security vulnerability where compromised encoders can pass
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backdoor behaviors to downstream classifiers, even when these classifiers are trained on clean data.
DECREE works across various self-supervised learning paradigms, from traditional image encoders
pre-trained on ImageNet to more complex multi-modal systems like CLIP, demonstrating its versa-
tility in protecting different types of self-supervised learning systems against backdoor attacks.

B.5 IMPLEMENTATION DETAILS

In our experiments, we use the CIFAR-10, CIFAR-100 and Imagenet-tiny datasets and employ
TCAV, Label-free, and Semi-supervised methods. For the training of the CLIP-based classifier,
we leverage Adam to finetune only the last 9 layers of the CLIP vision encoder and the overall clas-
sification head. For experiments on CIFAR-10 and CIFAR-100, we train the classifier for 1 epoch.
For experiments on Tiny-ImageNet, we train the classifier for 3 epochs. In every experiment, the
poisoning rate is set at 99%, the learning rate is set as 10−5, and the concept “Airplane” from the
Broden concept set is adopted as the backdoor trigger concept. Results are reported based on four
repeated experiment runs.

C ABLATION STUDY

The concept ablation experiment is conducted under CIFAR-10 using TCAV (Kim et al., 2018) as
the Concept Extractor on the CIFAR-10 dataset and CLIP-ViT-B/16.

Table 9: Clean Accuracy (CACC) (%) and Attack Sucess Rate (ASR) (%)of different concepts.
Concept CACC ASR Concept CACC ASR Concept CACC ASR
Airplane 97.8 100.0 Pedestal 97.35 99.08 Door 97.46 98.82

Oven 97.6 100.0 Blueness 96.67 99.01 Headboard 97.54 98.80
Engine 97.5 100.0 Box 96.74 99.00 Column 97.12 98.29

Headlight 97.2 100.0 Awning 97.76 98.99 Sand 97.32 98.20
Head 97.2 100.0 Bedclothes 96.96 98.96 Fireplace 97.62 98.11
Clock 97.1 100.0 Body 97.59 98.92 Candlestick 97.44 98.06
Mirror 97.1 100.0 Ashcan 97.27 98.92 Blind 97.39 98.06

Air conditioner 97.0 100.0 Metal 97.26 98.92 Ceramic 97.09 98.00
Building 96.5 100.0 Chain wheel 97.71 98.85 Refrigerator 96.94 98.00
Cushion 96.4 100.0 Snow 95.88 98.85 Bannister 97.63 97.98

D CONCEPT EXTRACTOR

D.1 TCAV

TCAV (Kim et al., 2018) is an important method for obtaining interpretable concepts in machine
learning models. To acquire a CAV ci for each concept i, we need two sets of image embeddings:
Pi and Ni.

Pi = {f(xp1), . . . , f(x
p
Np

)}
Ni = {f(xn1 ), . . . , f(xnNn

)}

Where:

• Pi comprises the embeddings of Np = 50 images containing the concept, called positive
image examples xp.

• Ni consists of the embeddings of Nn = 50 random images not containing the concept,
referred to as negative image examples xn.

Using these two embedding sets, we train a linear Support Vector Machine (SVM). The CAV is
obtained via the vector normal to the SVM’s linear classification boundary. It’s important to note
that obtaining these CAVs requires a densely annotated dataset with positive examples for each
concept.
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Concept Subspace. The concept subspace is defined using a concept library, which can be denoted
as I = {i1, i2, . . . , iNc

}, where Nc represents the number of concepts. Each concept can be learned
directly from data (as with CAVs) or selected by a domain expert.

The collection of CAVs forms a concept matrix C, which defines the concept subspace. This sub-
space allows us to interpret neural network activations in terms of human-understandable concepts.

Concept Projection and Feature Values. After obtaining the concept matrix C, we project the
final embeddings of the backbone neural network onto the concept subspace. This projection is used
to compute fC(x) ∈ RNc , where:

fC(x) = projCf(x) (3)

For each concept i, the corresponding concept feature value f (i)C (x) is calculated as:

f
(i)
C (x) =

f(x) · ci
∥ci∥2

(4)

This concept feature value f (i)C (x) can be interpreted as a measure of correspondence between con-
cept i and image x. Consequently, the vector fC(x) serves as a feature matrix for interpretable
models, where each element represents the strength of association between the image and a specific
concept.

D.2 LABEL-FREE CONCEPT BOTTLENECK MODELS

Label-free concept bottleneck models (Label-free CBM, Oikarinen et al. (2023)) can transform
any neural network into an interpretable concept bottleneck model without the need for concept-
annotated data while maintaining the task accuracy of the original model, which significantly saves
human and material resources.

Concept Set Creation and Filtering. The concept set is built in two sub-steps:

A. Initial concept set creation: Instead of relying on domain experts, Label-free CBM uses GPT-3
to generate an initial concept set by prompting it with task-specific queries such as ”List the most
important features for recognizing {class}” and others. Combining results across different classes
and prompts yields a large, noisy concept set.

B. Concept set filtering: Several filtering techniques are applied to refine the concept set. First,
concepts longer than 30 characters are removed. Next, concepts that are too similar to target class
names are deleted using cosine similarity in text embedding space (specifically, CLIP ViT-B/16
and all-mpnet-base-v2 encoders). Duplicate concepts with a cosine similarity greater than 0.9 to
others in the set are also eliminated. Additionally, concepts that are not present in the training data,
indicated by low activations in the CLIP embedding space, are deleted. Finally, concepts with low
interpretability are removed as well.

Learning the Concept Bottleneck Layer. Given the filtered concept set C = {t1, ..., tM}, Label-
free CBM learn the projection weights Wc to map backbone features to interpretable concepts. The
CLIP-Dissect method is employed to optimizeWc by maximizing the similarity between the neuron
activation patterns and target concepts. The projection fc(x) = Wcf(x) is optimized using the
following objective:

L(Wc) =

M∑
i=1

−sim(ti, qi) :=

M∑
i=1

− q̄i
3 · P̄:,i

3

||q̄i3||2||P̄:,i
3||2

, (5)

where q̄i is the normalized activation pattern, and P is the CLIP concept activation matrix. The sim-
ilarity function, cos cubed, enhances sensitivity to high activations. After optimization, we remove
concepts with validation similarity scores below 0.45 and update Wc accordingly.
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Learning the Sparse Final Layer. Finally, the model learns a sparse prediction layer WF ∈
Rdz×M , where dz is the number of output classes, via the elastic net objective:

min
WF ,bF

N∑
i=1

Lce(WF fc(xi) + bF , yi) + λRα(WF ), (6)

where Rα(WF ) = (1− α) 12 ||WF ||F + α||WF ||1,1, and λ controls the level of sparsity. The GLM-
SAGA solver is used to optimize this step, and α = 0.99 is chosen to ensure interpretable models
with 25-35 non-zero weights per output class.

D.3 SEMI-SUPERVISED CONCEPT BOTTLENECK MODELS

By leveraging joint training on both labeled and unlabeled data and aligning the unlabeled data at
the conceptual level, semi-supervised concept bottleneck models (Semi-supervised CBM, Hu et al.
(2024)) address the challenge of acquiring large-scale concept-labeled data in real-world scenarios.
Their approach can be summarized as follows:

Concept Embedding Encoder. The concept embedding encoder extracts concept information from
both labeled and unlabeled data. For the labeled dataset DL = {(x(i), y(i), c(i))}|DL|

i=1 , features are
extracted by a backbone network ψ(x(i)), and passed through an embedding generator to get concept
embedding ĉi ∈ Rm×k for i ∈ [k]:

ĉ
(j)
i , h(j) = σ(ϕ(ψ(x(j))), i = 1, . . . , k, j = 1, . . . , |DL|,

where ψ, ϕ, and σ represent the backbone network, embedding generator, and activation function
respectively.

Pseudo Labeling. For the unlabeled data DU = {(x(i), y(i))}|DU |
i=1 , pseudo concept labels ĉimg are

generated by calculating the cosine distance between features of unlabeled and labeled data:

dist(x, x(j)) = 1− x · x(j)

∥x∥2 · ∥x(j)∥2
, j = 1, . . . , |DL|.

Concept Scores. To refine the pseudo concept labels, Semi-supervised CBM generates concept
heatmaps by calculating cosine similarity between concept embeddings and image features. For an
image x, the similarity matrix Hp,q,i for the i-th concept is calculated as:

Hp,q,i =
e⊤i Vp,q

||ei|| · ||Vp,q||
, p = 1, . . . ,H, q = 1, . . . ,W,

where V ∈ RH×W×m is the feature map of the image, calculated by V = Ω(x), where Ω is the
visual encoders.

Then, the concept score si is calculated based on the heatmaps: si = 1
P ·Q

∑P
p=1

∑Q
q=1 Hp,q,i. In

the end, Semi-supervised CBM obtains a concept score vector s = (s1, . . . , sk)
⊤ that represents the

correlation between an image x and a set of concepts, which is used by us to filter data for backdoor
attacks.
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