
000
001
002
003
004

A TALE OF TWO TAILS: PREFERRED AND ANTI- PREFERRED NATURAL STIMULI IN VISUAL CORTEX

005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

Anonymous authors
Paper under double-blind review

ABSTRACT

A fundamental quest in neuroscience is to find the preferred stimulus of a sensory neuron. This search lays the foundation for understanding how selectivity emerges in the primate visual stream—from simple edge-detecting neurons to highly-selective face neurons—as well as for the architectures and activation functions of deep neural networks. The prevailing notion is that a visual neuron primarily responds to a single preferred visual feature, like an oriented edge or object identity, resulting in a “one-tailed” distribution of responses to natural images. However, surprisingly, we instead find “two-tailed” response distributions of primate visual cortical neurons, suggesting that these neurons have both preferred *and* anti-preferred stimuli. We verified the existence of anti-preferred stimuli by recording responses from macaque V4 to model-optimized stimuli. We find that these anti-preferred stimuli are important for shaping a neuron’s tuning, as only a small number of preferred and anti-preferred images are needed to predict a neuron’s responses to natural images. Moreover, in a psychophysics task, humans rely on anti-preferred images to interpret and predict V4 stimulus tuning; this was not the case for internal units from a deep neural network. Interestingly, we find that the features of preferred and anti-preferred images to be seemingly unrelated, suggesting that V4 neurons encode a broader range of features—not just those they prefer—which in turn enriches the V4 population’s representational basis for flexible downstream readouts. Overall, we establish anti-preferred stimuli as an important encoding property of V4 neurons. Our work embarks on a new quest in neuroscience to search for anti-preferred stimuli along the visual stream as well as to better understand how feature selectivity arises in visual cortex and deep neural networks.

033
034

1 INTRODUCTION

035 Since the first recordings of action potentials from sensory neurons (Hartline, 1938), neuroscientists have searched for the stimulus features that a neuron prefers. Hubel and Wiesel famously
036 identified the stimulus preferences of early visual cortical (V1) neurons as oriented edges (Hubel
037 and Wiesel, 1962). Deeper into visual cortex are neurons with remarkable selectivity, such as “Jennifer Aniston” neurons that only respond to images of the celebrity, regardless of her profile or
038 hairstyle (Quiroga et al., 2005). This has spurred on new machine learning approaches to identify
039 a visual neuron’s preferred stimulus—the stimulus that maximizes a neuron’s response (Cowley
040 et al., 2017a; Abbasi-Asl et al., 2018; Ponce et al., 2019; Bashivan et al., 2019; Gu et al., 2022;
041 Pierzchlewicz et al., 2024). Moreover, the concept of a preferred stimulus has been at the heart
042 of modeling visual neurons. For example, the linear-nonlinear (LN) model used to describe retinal
043 ganglion cells and simple V1 neurons (Chichilnisky, 2001; Rust et al., 2005) filters the input
044 to detect a single stimulus pattern (e.g., a localized, oriented edge). The presence of the pattern
045 causes the activity to surpass a ReLU-like threshold, while all other stimulus patterns fail to reach
046 this threshold, silencing the output. This results in a “one-tailed” response distribution (Fig. 1a,
047 top row). The deeper units in a task-driven DNN—made up of cascading layers of LN models—
048 achieve the sparse selectivity found in higher-order visual cortex. Indeed, the response distributions
049 of DNN units in deeper layers typically have one extreme tail (Fig. 1a, middle row) with a
050 few select stimuli evoking large responses. Unexpectedly, when we recorded from real neurons in
051 macaque V4—a higher-order visual area known for encoding texture, shape, color, etc. (Gallant
052 et al., 1996; Pasupathy and Connor, 1999)—we expected to see similar one-tailed response distributions
053 to natural images. Instead, we found response distributions with two distinct tails (Fig. 1a,

Figure 1: V4 neurons have two-tailed response distributions. **a.** Response distributions for a Gabor filter (*top*), DNN unit (*middle*), and a real neuron from visual area V4 (*bottom*). **b.** Anti-preferred and preferred images of an example V4 neuron. **c.** Skewness κ of response distributions for V4 neurons and DNN units. **d.** Skewness κ of response distributions for different visual areas in macaque (*top*), and DNN layers (*bottom*). Lines: medians.

bottom row, example real V4 neuron). This suggests that, unlike LN models and most DNN units, V4 neurons have preferred (response-maximizing) *and* anti-preferred (response-minimizing) stimuli.

The existence of anti-preferred images for higher-order visual cortical neurons is not obvious. The anti-preferred stimuli have largely been investigated as part of a neuron's tuning for a single stimulus parameter (e.g., a vertical edge drives a V1 neuron's response while a horizontal edge suppresses it). However, little is known about the anti-preferred stimuli of V4 neurons when considering the vast space of natural images varying over many stimulus parameters (Efird et al., 2024). Our prior expectations that the anti-preferred images are mostly featureless and low contrast—a blank, gray screen—were wrong; we find that some anti-preferred visual features are as vivid as those for the preferred images (Fig. 1b). This motivated us to systematically investigate the existence of anti-preferred images and their roles in how the visual cortex encodes natural images with the following progression:

1. We first set out to confirm the existence of anti-preferred images by analyzing response distributions of visual cortical neurons from V1, V4, and IT as well as performing our own electrophysiological experiments to validate that anti-preferred images suppress V4 firing rates.
2. If anti-preferred images do exist, we hypothesize a new mapping from DNN features to V4 neurons that takes advantage of pre-ReLU processing. Indeed, we find our new ReLU mapping outperforms other common linear mappings.
3. Further confirming the importance of anti-preferred images in shaping a V4 neuron's tuning, we find that an encoding model must train on responses to anti-preferred images (as well as to preferred images) to best predict responses to natural images. In a similar vein, humans performing a psychophysics task also rely on anti-preferred images to infer a neuron's tuning.
4. How do anti-preferred features contribute to encoding natural images by a V4 population? We find little to no relationship between a neuron's preferred and anti-preferred features, suggesting that anti-preferred images effectively double its capacity for feature selectivity.
5. To encourage further experiments investigating anti-preferred images in visual cortex, we release a tool called *ImageBeagle* that efficiently “hunts” through millions of natural images. We tailored ImageBeagle for closed-loop, real-time experiments.

Our results change our prior conceptions about stimulus encoding in the primate visual cortex: Conceptually, responses are not simply the output of a ReLU with a strong threshold but rather the sum of a baseline offset and a stimulus drive that may enhance or suppress the baseline response, resulting in a two-tailed response distribution. That preferred and anti-preferred features are diverse and independently-distributed across neurons allows the neural population to seemingly dou-

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
ble its selectivity, providing a rich basis for readout by downstream IT neurons to carry out object recognition and other visual tasks. Our work speaks to neuroscientists studying how feature selectivity arises in the visual cortex as well as to neuroAI researchers building AI models with internal representations that follow the representational principles of the visual cortex.

2 HIGHER-ORDER VISUAL CORTICAL NEURONS IN AREA V4 HAVE TWO-TAILED RESPONSE DISTRIBUTIONS.

To quantify the degree to which V4 responses to natural images have distributions with two tails (a hallmark of the neuron having preferred and anti-preferred images), we computed the skewness κ of response distributions. A distribution with κ close to 0 indicates two tails (Fig. 1c, top left panel) while κ close to 2 indicates a one-tailed distribution (Fig. 1c, top right panel). As expected, the skewness for ReLU units in a middle layer of the task-driven DNN ResNet50 (He et al., 2016), known to be predictive of V4 responses (Cowley et al., 2023; Yamins and DiCarlo, 2016; Schrimpf et al., 2018a; Zhuang et al., 2021), was close to 2 (Fig. 1b, ‘DNN units’, median $\kappa = 2.06$), indicating that most units in a task-driven DNN have one-tailed response distributions and are selective for one type of visual feature; we confirmed this was true of units from other task-driven DNNs (see Appendix). On the other hand, the response distributions of V4 neurons were better described as two-tailed (Fig. 1c, ‘V4 neurons’, median $\kappa = 0.87$), suggesting that V4 neurons have both preferred and anti-preferred images (See Methods in the Appendix for a description of V4 data collection; V4 responses were repeat-averaged spike counts). Here, we ignore the trivial effects of adaptation (Kohn, 2007)—in which presenting any image for long periods of time would lead to response suppression—by taking spike counts in 100 ms bins after the stimulus onset of a natural image (presented for 100 ms). Thus, V4 neurons appear to dynamically increase their baseline firing rate to encode a newly presented image (Pasupathy and Connor, 1999; Maunsell, 2015), allowing images to both excite and suppress their response from baseline (investigated in the next section). This goes against the conventional notion that a visual neuron responds selectively to certain stimuli by discarding most other stimuli that fail to drive the neuron past its spiking threshold. In other words, V4 responses do not appear to be the output of ReLU-like activation functions.

These findings motivated us to further investigate whether neurons from other areas of visual cortex also exhibit two-tailed response distributions. Using publicly-available datasets for V1 (Cadena et al., 2019) as well as for V4 and IT (Majaj et al., 2015), we re-computed skewness for each area. We found that skewness values from the V4 dataset matched our own data (Fig. 1d, ‘V4 neurons’, median $\kappa = 0.41$). In addition, we found that neurons from V1 and IT also exhibit a two-tailed selectivity (Fig. 1d, ‘V1 neurons’, median $\kappa = 1.17$ and ‘IT neurons’, median $\kappa = 0.69$). In contrast, the activations from increasingly-deeper layers of ResNet-50 exhibited much larger skewness values. DNN units in an early layer had the lowest skewness (Fig. 1d, ‘early units’, median $\kappa = 0.99$) on par with that observed for V1 neurons. A late layer had the highest skewness value (Fig. 1d, ‘late units’, median $\kappa = 4.43$), revealing a trend of increasing skewness (or one-tailedness) deeper into the network. Taken together, our results indicate a gap between biological and artificial visual systems: Neurons along the visual cortical hierarchy tend to have two-tailed response distributions, whereas DNN units in the deepest layers are most likely to have one-tailed response distributions. In other words, most real neurons encode anti-preferred images, but DNN units (post-ReLU) often encode only preferred features, especially in deeper layers.

3 EXPERIMENTAL EVIDENCE FOR ANTI-PREFERRED IMAGES IN HIGHER-ORDER VISUAL CORTICAL NEURONS

The existence of anti-preferred images immediately suggests that the way we predict V4 responses—typically a linear mapping between task-driven DNN features and V4 responses to natural images (see Methods) (Yamins and DiCarlo, 2016; Schrimpf et al., 2018b)—is suboptimal. Our first naïve hypothesis was that predicting V4 responses from pre-ReLU activity should outperform post-ReLU activity of the DNN features, as the pre-ReLU activity would have two-tailed response distributions; however, prediction was better for post-ReLU activity (Fig. 2a, *i* vs *ii*). The ReLU threshold was near optimal—other thresholds based on quantiles of the activity failed to outperform the original ReLU threshold (Fig. 2a, *iii*). Similarly, optimizing the scale and offset of each filter channel’s pre-ReLU activity did not boost performance (Fig. 2a, *iv* vs. *ii*). Why is the ReLU important for prediction? We reasoned that by combining the post-ReLU activity of one-tailed response distributions across filter channels allows for greater flexibility to “mix and match”

Figure 2: Experimental evidence that V4 neurons have anti-preferred images. **a.** Predicting V4 responses to randomly-chosen images from a linear mapping of ResNet-50 features. Each dot reflects the median and lines denote standard error. Asterisks denote $p < 0.001$, permutation test. **b.** Experimental validation of preferred and anti-preferred images as predicted by V4 model neurons. Each dot is the repeat-averaged response to one image; gray bands denote 90% percentiles of responses to randomly-chosen images. Insets: Model-chosen images for the 3 neurons with largest baseline responses. **c.** Top: Example PSTH of a V4 neuron (*top*). Bottom: Normalized response to preferred, anti-preferred, and blank images shown right after; each dot denotes the average normalized response across the top 10 images (*bottom*). Asterisks denote $p < 0.001$, permutation test. **d.** Preferred and anti-preferred images synthesized via gradient techniques, one for each V4 model neuron. Traces denote means, shaded areas denote 1 s.e.m.

preferences to estimate a neuron's preferred and anti-preferred features—in contrast, combining two-tailed response distributions of the pre-ReLu activity requires a filter channel to match a neuron in both preferred and anti-preferred features. It follows that we can improve upon this dictionary of one-tailed responses by allowing the linear mapping to form new preferred features before the ReLu step. To do this, we linearly combine filter channels (i.e., a convolution with kernel shape 1×1 and output channels equal to the number of input channels), pass the resulting activity through ReLUs and a final linear mapping. This simple approach significantly improved prediction (Fig. 2a, *iv* vs. *ii*); without the ReLUs, performance is no better than before (Fig. 2a, *vi*; R^2 for *vi* $> R^2$ for *i* due to the use of layernorm in *vi*, see Methods). This algorithmic improvement is a direct result of assuming that V4 neurons encode anti-preferred images.

The skewness of response distributions and the improved prediction by mixing preferences before the ReLUs both hint at the existence of anti-preferred images; here, we seek experimental evidence. We build upon recent work that identified highly-predictive DNN models of V4 neurons by training on responses to many natural images (Cowley et al., 2023); these data-driven models predicted the preferred images of real V4 neurons in validation experiments by presenting the model-chosen preferred images in a following recording session (a causal test). We wondered whether the same framework could be used to predict neurons' anti-preferred images. To test this, we recorded V4 responses while the awake, fixating animal (macaque monkey) watched flashes of many images over multiple recording sessions (see Methods), and used the image-response pairs to train a set of data-driven DNN models (which we refer to as V4 model neurons). We identified each V4 model neuron's preferred and anti-preferred images by passing as input 500,000 natural images and keeping the 10 images that either maximized or minimized the model's output response (example chosen images in Fig. 2b). We then experimentally validated these predictions by recording V4 responses to these model-chosen preferred and anti-preferred images, along with hundreds of randomly-chosen natural images. After matching V4 neurons to their corresponding model units (see Methods), we found that the predicted preferred images resulted in responses above the 90% density interval of responses to randomly-chosen images (Fig. 2b, purple dots above gray lines, quantile of the median response to preferred images for responses to randomly-chosen images

216 $q = 0.985$, median across neurons), while the predicted anti-preferred images resulted in responses
217 below these density intervals (Fig. 2b, magenta dots below gray lines, quantile of median response
218 to anti-preferred images for responses to randomly-chosen images $q = 0.055$, median across neu-
219 rons). This experimental validation provides clear evidence that V4 neurons have anti-preferred
220 images.

221 A visual neuroscientist may wonder how the responses to anti-preferred images compare with re-
222 sponds to blank, gray screens—the *de facto* stimulus used between stimulus presentations to bring
223 the neurons’ firing rates to rest and presumably the stimulus yielding the smallest responses. To
224 make this comparison, we analyzed V4 responses during the 100 ms stimulus presentation ver-
225 sus responses in the 100 ms immediately following stimulus presentation during which a gray,
226 blank screen was presented (Fig. 2c, top, ‘stim’ and ‘blank’; windows lagged to account for synap-
227 tic delays). As expected, we found that preferred images strongly drove responses above baseline
228 (Fig. 2c, top, ‘preferred’ and bottom left). However, remarkably, we found that anti-preferred im-
229 ages often suppress a neuron’s response below its baseline firing rate (Fig. 2c, top, ‘anti-preferred’
230 and bottom right). The level of suppression is beyond what we imagined and rules out the possibil-
231 ity that most anti-preferred images are blank within a neuron’s receptive field with no discernible
232 features. Indeed, the diversity and specificity of model-optimized anti-preferred images is on par
233 with those of model-optimized preferred images (Fig. 2d).

234 4 ANTI-PREFERRED STIMULI SHAPE A V4 NEURON’S TUNING.

235 The existence of anti-preferences alone does not necessarily imply that these images are crucial for
236 stimulus encoding. If the anti-preferred images were indeed an important component shaping a V4
237 neuron’s tuning, we would expect excluding them would result in a a poor estimate. On the other
238 hand, using responses to both preferred and anti-preferred images should result in better estimates
239 than relying on responses to preferred images alone. Thus, we can assess the information content
240 of anti-preferred images by including them or leaving them out when estimating a neuron’s tun-
241 ing. Inspired by this approach, we devised the following data pruning analysis (Paul et al., 2021;
242 Sorscher et al., 2022). We chose the data-driven V4 model neurons to serve as “digital twins” for
243 real V4 neurons, as we required responses to 500,000 images—beyond the limits of current record-
244 ing experiments. For each set of training images, we considered either preferred, anti-preferred,
245 both, randomly-chosen, or non-preferred images whose responses were closest to the median re-
246 sponse (Fig. 3a). We found that with a small number of training images (<5k images), training
247 on both preferred and anti-preferred outperformed randomly-chosen images (Fig. 3b, ‘pref.+anti-
248 pref.’ versus ‘random’). These results suggest that the two tails of the response distribution alone
249 provide rich information about intermediate responses (DiMattina and Zhang, 2008; Cowley and
250 Pillow, 2020) up to a point—random sampling eventually outperforms other biased training images
251 that are out-of-distribution.

252 Importantly, training on preferred images alone (Fig. 3b, ‘pref. only’) did not surpass or match the
253 prediction performance of random selection, suggesting preferred images alone are not enough to
254 estimate a neuron’s tuning. Likewise, training on anti-preferred images alone (Fig. 3b, ‘anti-pref.
255 only’) was not enough to achieve prediction as good as random selection. Thus, both are needed
256 together to achieve good tuning estimates. This is further exemplified by training solely on non-
257 preferred images (Fig. 3b, ‘non-pref.’), which led to even worse prediction than training only on
258 preferred or only on anti-preferred images. **Our results together, suggest that if one knows a**
259 **neuron’s preferred and anti-preferred images, they can reasonably estimate the rest of the**
260 **neuron’s tuning to other natural images.**

261 How far can we push a neuron’s response to its limits, and how informative are these extreme pre-
262 ferred and anti-preferred images? To answer this, as a first step, we identified the preferred and
263 anti-preferred images from a pool of 1M images and found an increase in prediction performance
264 (Fig. 3b, ‘pref.+anti-pref. (1M)'). Next, we considered synthesized images optimized via gradient
265 techniques to maximize and minimize a neuron’s response (see Methods) (Bashivan et al., 2019;
266 Walker et al., 2019; Gu et al., 2022; Cowley et al., 2023; Willeke et al., 2023). While these syn-
267 thesized images elicit more extreme responses than of natural preferred and anti-preferred images
268 (see Sec. 8), they result in poor prediction performance (Fig. 3b, ‘synthesized’). This is likely be-
269 cause the synthesized images depart too far from the response range of the test images (i.e., out-of-
distribution) as well as suffer from a lack of a diversity, a noted problem with synthesizing images

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 3: Anti-preferred images contribute to a V4 neuron's tuning. **a.** Data pruning analysis where we train on one set of images but always compute R^2 on responses to the held-out natural images. Training sets are sampled from the response distribution over 500k images; for example, non-preferred images ('non-pref.') are sampled from images with responses closest to the median response. **b.** We train a DNN (5-layer CNN, see Methods) to predict responses of individual V4 model neurons (219 in total), varying the number of training images. We also consider preferred and anti-preferred images drawn from 1M images ('pref.+anti-pref. (1M)') as well as synthesized images (see Methods). **c.** Same as in **b** except for predicting responses of individual ResNet50 DNN units (219 in total). Traces denote means, shaded areas denote 1 s.e.m.

(Pierzchlewicz et al., 2024; Nguyen et al., 2015). This highlights the usefulness of searching natural images for preferred and anti-preferred images when inferring a neuron's tuning (Borowski et al., 2020; Geirhos et al., 2021).

For comparison, we performed the same analysis on randomly-chosen ResNet50 DNN units and found a different picture: Preferred images alone outperformed random selection (Fig. 3c, 'pref. only' versus 'random'). Furthermore, although anti-preferred images alone were not informative (Fig. 3c, 'anti-pref. only' close to 'non-pref.'), preferred and anti-preferred images together outperformed random selection (Fig. 3c, 'pref.+anti-pref.' versus 'random'). This surprised us, as it suggests anti-preferred images do convey information for DNN units; on closer inspection, we found some DNN units to have response distributions with skewness similar to V4 neurons (Fig. 1c), and a unit's skewness negatively correlates with the extent to which preferred and anti-preferred images boost prediction performance (see Appendix). We also note that this boost appears magnified for the DNN units versus V4 model neurons, but we point out that R^2 overall is lower for the DNN units as they require more training data. This is likely because these units have complicated response functions as well as our finding that DNN units and V4 model neurons with one-tailed response distributions are harder to predict (see Appendix). Our data pruning analyses highlight important stimulus encoding differences between DNN units and V4 neurons, which we further explore in the next section.

5 HUMANS RELY ON ANTI-PREFERRED IMAGES TO DETERMINE A V4 NEURON'S TUNING.

Access to both preferred and anti-preferred images was most informative for estimating V4 tuning (Fig. 3). This was likely because the preferred and anti-preferred images contained easy-to-identify visual features that resulted in learned filters to extract these features. We wondered to what extent the visual features of the preferred and anti-preferred images were readily accessible and interpretable by humans. To test this, we ran a simple psychophysics experiment in which human subjects chose one of two images that they thought would lead to a larger model response (Fig. 4a, see Methods); this task was inspired by recent work in explainable AI (Borowski et al., 2020; Zimmermann et al., 2024). Prior to the task, we gave subjects one of four possible sets of reference images: both preferred and anti-preferred images, preferred images only, anti-preferred images only, and no prior images. Subjects improved their performance via feedback of the correct image after each trial. We tested these four conditions for 10 different V4 model neurons and 10 different DNN units (80 tasks total); we found real V4 responses to be too noisy to predict accurately (see Methods).

Figure 4: The visual features of anti-preferred images. **a.** Psychophysics task. **b-c.** Human performance predicting V4 model neurons (**b**) and ResNet50 DNN units (**c**). Lines: subject mean, shade: 1 s.e.m. **d.** Visual features differ between pref. and anti-pref. images. **e.** Differences in mean features. Lines: medians, dots: one V4 model neuron. **f-g.** Task performance in **a** for a classifier on visual features (**f**) or on DNN embeddings (**g**). **h-i.** Projection of preferred and anti-preferred features using interpretable embeddings (**h**) and DNN embeddings (**i**). Dot: one model.

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

The impressive performance of human subjects (Fig. 4b, 80.5% accuracy) suggests that the preferred and anti-preferred images have distinguishable and interpretable visual features. When given prior access to both preferred and anti-preferred images, subjects outperformed other types of prior information while predicting responses of V4 model neurons (Fig. 4b, ‘pref.+anti-pref.’); performance for preferred-only and anti-preferred-only was comparable to no prior images (Fig. 4b, ‘no prior’ trace). This suggests that subjects relied on both preferred and anti-preferred images to infer a V4 model neuron’s tuning. Interestingly, when predicting responses of ResNet50 DNN units, subjects performed similarly when given for reference either solely preferred images or both preferred and anti-preferred images together (Fig. 4c, ‘pref.+anti-pref.’ versus ‘pref. only’), whereas performance dropped for anti-preferred images (Fig. 4c, ‘anti-pref. only’). Thus, the anti-preferred images of DNN units have visual features that are not interpretable by humans, and unlike V4 neurons, a DNN unit’s tuning can be mostly explained by its preferred images. This poses an important difference between V4 neurons and current task-driven DNN models.

6 THE VISUAL FEATURES OF PREFERRED AND ANTI-PREFERRED IMAGES

What visual features does a human use to distinguish between preferred and anti-preferred images? To get at this question, we considered a visual feature bank of 34 interpretable image statistics (each an index between 0 and 1, see Methods) that included contrast, luminance, edge intensity, orientation, color, among others (Fig. 4d). For each V4 model neuron, we computed the difference of each visual feature between preferred and anti-preferred images (mean over 100 images each). We found large differences for individual models (Fig. 4e, dots far from dashed line), suggesting these visual features were able to differentiate between preferred and anti-preferred images for a given V4 model neuron. We used these features as input into a classifier to perform the same psychophysics task performed by the human subjects (Fig. 4f); we re-trained the classifier each trial given the feedback about the correct image for that trial (classifier was difference-of-means, see Methods). While the classifier had good performance (Fig. 4b, 75.7% accuracy), it failed to take advantage of the prior information, unlike humans (Fig. 4f, ‘pref.+anti-pref.’ trace not noticeably higher than other traces), suggesting humans rely on other visual features to make their choices. To further explore this, we also tested a classifier that used a large number of DNN embeddings from ResNet50 and found performance that matched that of humans (Fig. 4g, 80.6% accuracy),

Figure 5: Anti-preferred images double V4 population's capacity for feature selectivity. **a.** Similarity matrix for 100 preferred and 100 anti-preferred images of 219 V4 model neurons using either visual (*top*) or DNN (*bottom*) features. **b.** Nearest-neighbor overlap as a function of k , for not-shuffled and shuffled matrices. **c.** Nearest-neighbors constructed with access to both preferred and anti-preferred features. **d.** Simulated example of 3 different distributions for preferred and anti-preferred features and the corresponding similarity matrices. **e.** Object recognition analysis using two-tailed responses. We train on one set of responses and compute the top-1 accuracy. **f.** Top-1 accuracy as a function of number of V4 model neuron responses considered, for each set of responses. Traces denote means, shaded areas denote 1 s.e.m.

but this classifier still failed to use prior information (Fig. 4g, traces overlapping). Thus, although these features can differentiate between preferred and anti-preferred images, open questions remain about which visual features humans use and how they incorporate prior information into their choices.

Do anti-preferred images share visual features across V4 neurons? Despite the ability of the visual features to distinguish between preferred and anti-preferred images for individual models, we found few visual features that largely differed from 0 across V4 model neurons (Fig. 4e, orange lines not far from black dashed line). This suggests that there is little to no relationship between the two image types across neurons. This was also evident from the lack of structure in the low dimensional projections of preferred and anti-preferred images both with interpretable and DNN embeddings (Fig. 4h-i). We further analyze this relationship in the next section.

7 ANTI-PREFERRED IMAGES DOUBLE V4 POPULATION'S CAPACITY FOR FEATURE SELECTIVITY

Inspired by these findings, we investigated the relationship between preferred and anti-preferred images. We computed the 34 visual features of top 100 preferred and 100 anti-preferred images for each of the 219 V4 model neurons. We combined these features together, to compute the similarity matrix in which the diagonal blocks correspond to within group similarity and off-diagonal corresponds to between group similarity (Fig.5a, top). Despite the separability of these features for some V4 model neurons (Fig.4d), the similarity matrix was mixed with no clear clustering in anti-preferred and preferred population. To rule out the possibility that these features might not be enough to pick up on the abstract features that the true V4 neurons could use, we computed the similarity matrix using 1024 dimensional DNN features (Fig.5a, bottom). Despite the dimensionality of the DNN embeddings, it yielded similar results to that of interpretable visual features. To utilize the similarity information between these images better, we used the preferred distances to compute the nearest neighbors of each V4 model neuron, and repeated the same for anti-preferred images. Are the similarity relationships of V4 neurons preserved in preferred and anti-preferred spaces? To asses this, we compared each V4 model neuron's k -nearest neighbors in the preferred matrix (Fig.5a, top, black square) with its corresponding neighbors in the anti-preferred matrix (Fig.5a, bottom, black square), and quantified the accuracy by the number of overlapping neighbors for each k . We found that, as k increased, the fraction of accuracy also increased (Fig.5b, black trace). To determine whether the observed relationship exceeded chance, we constructed a null distribution by shuffling neuron identities and recomputed the accuracy again (Fig.5b, red trace). This closely aligned with our results, indicating that there is no detectable correspondence in the neighborhood structure between preferred and anti-preferred images. This rules out the pos-

432 sibility that, if one knew the preferred images of a neuron, they would be able to directly identify
433 its anti-preferred images. Moreover, when given access to the full similarity matrix to construct the
434 nearest neighbors, we find that the nearest neighbors of preferred images are not always the other
435 preferred images, likewise the nearest neighbors of anti-preferred images are not always the other
436 anti-preferred images (Fig.5c). This shows that there is not a common feature within preferred or
437 anti-preferred images that can separate these two groups. The existence of anti-preferred images
438 raises an important question about how these relate to preferred images. For example, these images
439 could be correlated with each other where knowing one could be informative of our knowledge
440 of other (Fig.5d, top), or they could be coming from completely independent distributions with
441 no overlap (Fig.5d, middle). If these were the case, we would have expected our nearest neighbor
442 analyses to share the same neighbors across preferred and anti-preferred images, and show clear
443 clustering. However, instead we find that preferred and anti-preferred images often overlap (Fig.5d,
444 bottom), i.e. they are sampled from the same distribution, thus preferred and anti-preferred images
445 of a neuron share little to no relationship. This might be advantageous for the V4 population: Ran-
446 domly assigning preferred and anti-preferred visual features to each neuron seemingly doubles the
447 population's capacity for feature selectivity. To test this, we decode the responses from V4 model
448 neurons to perform an object recognition task (Caltech 101 (Li et al., 2022)) (Fig.5e). We find that
449 to achieve the same accuracy, a population of V4 models with one-tailed responses requires dou-
450 ble the number of neurons versus the population with original two-tailed responses (Fig.5f, black
451 vs blue trace). This suggests that anti-preferred features provide another entire set of features for
452 downstream neurons to use, thus effectively doubling the capacity for feature selectivity for the
453 same number of neurons.

454 8 SEARCHING THROUGH MILLIONS OF IMAGES WITH IMAGEBEAGLE

455 Our results establish that both preferred and anti-preferred stimuli shape the tuning of V4 neurons.
456 Because identifying these stimuli depends on ranking a large number of images by response, we
457 wondered how many natural images were needed for this search. We chose a V4 model neuron
458 and computed its responses to preferred and anti-preferred images out of K images randomly sub-
459 sampled from 30 million natural images (K varied from 10k to 30M images). We found that the
460 number of searched images needed to achieve a linear increase in response exponentially scales
461 (Fig. 6a, left panel). The identified images followed this trend: 10k to 100k candidate images were
462 not enough for robust identification (Fig. 6a, '10k' and '100k'); only when we searched through
463 1 million candidate images did we find preferred and anti-preferred images that resembled those
464 of 30 million images (Fig. 6a, '1M' versus '30M'). A complementary approach is to synthesize
465 images via gradient techniques (Bashivan et al., 2019; Ponce et al., 2019; Walker et al., 2019) that
466 often identifies images that yield the largest and smallest responses ($r_{\max}=6.5$, $r_{\min}=-3.5$) but can
467 be difficult to interpret versus natural objects (Borowski et al., 2020) and are highly stereotyped
468 (Fig. 6a, 'synthesized'). This approach also requires technical expertise and dedicated hardware
469 that few neuroscience labs have available. This motivated us to design a simple tool for visual neu-
470 roscientists to efficiently search through millions of natural images to optimize a desired objective
(e.g., minimizing a neuron's response).

471 We developed a new tool, called *ImageBeagle*, that efficiently searches through millions of natu-
472 ral images to "hunt" for a desired stimulus in a short amount of time. The key intuition is that we
473 traverse through the natural image manifold by visiting each image's nearest neighbors, moving to
474 the neighbor with the largest objective value (i.e., a discrete version of gradient ascent, Fig. 6b).
475 We collected 30M images from diverse image datasets and computed 1k nearest neighbors for
476 each image, where similarity was defined as the Euclidean distance between DNN features (see
477 Methods). ImageBeagle alternates between a global search determined by a coresnet over images
478 (Bachem et al., 2018) and a local search that evaluates an image's nearest neighbors and moves
479 to the one with the largest objective value (see Fig. 4 for example nearest neighbors). We tested
480 the performance of ImageBeagle versus random search and found impressive speed-ups: Image-
481 Beagle often identified preferred and anti-preferred images with resulting responses close to the
482 30M-optimum after only 10k evaluated images (Fig. 6c, orange traces), substantially outper-
483 forming random selection (Fig. 6c, black traces). ImageBeagle may also be used to connect a neuron's
484 preferred and anti-preferred images together along a smoothly-varying tuning curve—such an in-
485 terpretable tuning curve has been difficult to identify because of the nearly infinite paths possible
486 between two images (Pasupathy and Connor, 2001; Gallant et al., 1996; David et al., 2006). Be-
487 cause we constrain ImageBeagle to traverse smoothly along the image manifold via nearest neigh-

Figure 6: ImageBeagle searches the natural image manifold to efficiently find preferred and anti-preferred stimuli. a. A V4 model neuron’s responses to preferred and anti-preferred images after searching through a subsample of K images. Dashed-lines: linear fits; x -axis is log-scale. Right: Top preferred and anti-preferred images for each K as well synthesized images. **b.** ImageBeagle navigates the natural image manifold via a nearest neighbor graph. **c.** ImageBeagle runs (orange traces) versus random selection (black traces) searching for the preferred (top) and anti-preferred (bottom) image. Dashed lines: optimal out of 30M images. **d.** ImageBeagle tuning curve for a V4 model neuron.

bors, ImageBeagle returns an interpretable sequence of natural images for the chosen V4 model neuron (Fig. 6d).

We suspect ImageBeagle will be of practical value to visual neuroscientists interested in optimizing neurons’ responses (Cowley et al., 2017b; Walker et al., 2019; Ponce et al., 2019; Bashivan et al., 2019), performing closed-loop experiments with active learning (Benda et al., 2007; Park et al., 2011; Cowley and Pillow, 2020), and estimating tuning curves that smoothly vary in stimulus space (Wang and Ponce, 2024). Unlike most model-optimized stimuli, ImageBeagle does not require technical expertise, lowering the barrier for adoption by many experimental labs.

9 DISCUSSION

Our work establishes the importance of anti-preferred images for stimulus tuning in visual cortex, especially visual area V4. We systematically investigate the properties of anti-preferred images through experimental validation, modeling, data pruning analyses, and human psychophysics. The existence of anti-preferred images is not obvious: Task-driven DNN units, commonly used to model V4 neurons, often do not exhibit anti-preferences due to their ReLU thresholding. This suggests that a V4 neuron’s response less resembles the output of a ReLU and more resembles a filter with a dynamic range. Interestingly, we find that V4 responses are better predicted by linear combinations of ReLU DNN units versus pre-ReLU DNN units (Fig. 2a), suggesting a V4 neuron may form its two-tail selectivity in part by combining excitatory and inhibitory pre-synaptic input from neurons with one-tailed response distributions (i.e., preferring a single visual feature). Moreover, our results suggest that only characterizing a neuron by its preferred feature misses critical aspects of the neuron’s tuning. How two-tailed response distributions and anti-preferred features relate to efficient and sparse coding in the brain (Olshausen et al., 1996; Rozell et al., 2008) remains an open question; two-tailed response distributions may require more energy for spikes but require fewer neurons to encode rich feature selectivity. Overall, our finding of anti-preferred images in V4 marks the beginning of a quest to identify the role anti-preferences play in other biological and artificial visual systems, and improve DNNs inspired by neuroscience principles.

540
541

REPRODUCIBILITY STATEMENT

542
543
544
545

Our V4 data and code will be publicly available upon publication at this link [removed for
anonymity]. ImageBeagle will be available upon publication at this link [removed for anonymity].
IRB approval was obtained for all experiments, and the details will be disclosed [currently re-
moved for anonymity] upon camera-ready version.

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES

595

596 Haldan Keffer Hartline. The response of single optic nerve fibers of the vertebrate eye to illumination of the
597 retina. *American Journal of Physiology-Legacy Content*, 121(2):400–415, 1938.

598 David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional architecture in
599 the cat’s visual cortex. *The Journal of physiology*, 160(1):106, 1962.

600 R Quian Quiroga, Leila Reddy, Gabriel Kreiman, Christof Koch, and Itzhak Fried. Invariant visual representa-
601 tion by single neurons in the human brain. *Nature*, 435(7045):1102–1107, 2005.

602 Benjamin R Cowley, Ryan C Williamson, Katerina Acar, Matthew A Smith, and Byron M Yu. Adaptive stim-
603 ulus selection for optimizing neural population responses. In *Advances in neural information processing
604 systems*, pages 1396–1406, 2017a.

605 Reza Abbasi-Asl, Yuansi Chen, Adam Bloniarz, Michael Oliver, Ben DB Willmore, Jack L Gallant, and Bin
606 Yu. The deeptune framework for modeling and characterizing neurons in visual cortex area V4. *bioRxiv*,
607 page 465534, 2018.

608 Carlos R Ponce, Will Xiao, Peter F Schade, Till S Hartmann, Gabriel Kreiman, and Margaret S Livingstone.
609 Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal
610 preferences. *Cell*, 177(4):999–1009, 2019.

611 Pouya Bashivan, Kohitij Kar, and James J DiCarlo. Neural population control via deep image synthesis. *Sci-
612 ence*, 364(6439):eaav9436, 2019.

613 Zijin Gu, Keith Wakefield Jamison, Meenakshi Khosla, Emily J Allen, Yihan Wu, Ghislain St-Yves, Thomas
614 Naselaris, Kendrick Kay, Mert R Sabuncu, and Amy Kuceyeski. Neurogen: activation optimized image
615 synthesis for discovery neuroscience. *NeuroImage*, 247:118812, 2022.

616 Paweł Pierzchlewicz, Konstantin Willeke, Arne Nix, Pavithra Elumalai, Kelli Restivo, Tori Shinn, Cate Neal-
617 ley, Gabrielle Rodriguez, Saumil Patel, Katrin Franke, et al. Energy guided diffusion for generating neu-
618 rally exciting images. *Advances in Neural Information Processing Systems*, 36, 2024.

619 EJ Chichilnisky. A simple white noise analysis of neuronal lightresponses. *Network: computation in neural
620 systems*, 12(2):199, 2001.

621 Nicole C Rust, Odelia Schwartz, J Anthony Movshon, and Eero P Simoncelli. Spatiotemporal elements of
622 macaque v1 receptive fields. *Neuron*, 46(6):945–956, 2005.

623 Jack L Gallant, Charles E Connor, Subrata Rakshit, James W Lewis, and David C Van Essen. Neural re-
624 sponses to polar, hyperbolic, and cartesian gratings in area V4 of the macaque monkey. *Journal of neuro-
625 physiology*, 76(4):2718–2739, 1996.

626 Anitha Pasupathy and Charles E Connor. Responses to contour features in macaque area V4. *Journal of
627 neurophysiology*, 82(5):2490–2502, 1999.

628 Cory Efird, Alex Murphy, Joel Zylberberg, and Alona Fyshe. Finding shared decodable concepts and their
629 negations in the brain. *arXiv preprint arXiv:2405.17663*, 2024.

630 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
631 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

632 Benjamin R Cowley, Patricia L Stan, Jonathan W Pillow, and Matthew A Smith. Compact deep neural net-
633 work models of visual cortex. *bioRxiv*, 2023.

634 Daniel LK Yamins and James J DiCarlo. Using goal-driven deep learning models to understand sensory cor-
635 tex. *Nature Neuroscience*, 19(3):356–365, 2016.

636 Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J Majaj, Rishi Rajalingham, Elias B Issa, Kohitij Kar,
637 Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, et al. Brain-score: Which artificial neural net-
638 work for object recognition is most brain-like? *BioRxiv*, page 407007, 2018a.

639 Chengxu Zhuang, Siming Yan, Aran Nayebi, Martin Schrimpf, Michael C Frank, James J DiCarlo, and
640 Daniel LK Yamins. Unsupervised neural network models of the ventral visual stream. *Proceedings of
641 the National Academy of Sciences*, 118(3):e2014196118, 2021.

642 Adam Kohn. Visual adaptation: physiology, mechanisms, and functional benefits. *Journal of Neurophysiol-
643 ogy*, 97(5):3155–3164, 2007.

648 John HR Maunsell. Neuronal mechanisms of visual attention. *Annual Review of Vision Science*, 1:373–391,
649 2015.

650 Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias, Matthias Bethge,
651 and Alexander S Ecker. Deep convolutional models improve predictions of macaque v1 responses to natu-
652 ral images. *PLoS Computational Biology*, 15(4):e1006897, 2019.

653

654 Najib J Majaj, Ha Hong, Ethan A Solomon, and James J DiCarlo. Simple learned weighted sums of inferior
655 temporal neuronal firing rates accurately predict human core object recognition performance. *Journal of*
656 *Neuroscience*, 35(39):13402–13418, 2015.

657 Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J Majaj, Rishi Rajalingham, Elias B Issa, Kohitij Kar,
658 Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, et al. Brain-score: Which artificial neural net-
659 work for object recognition is most brain-like? *BioRxiv*, page 407007, 2018b.

660 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding im-
661 portant examples early in training. *Advances in neural information processing systems*, 34:20596–20607,
662 2021.

663 Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural scaling
664 laws: beating power law scaling via data pruning. *Advances in Neural Information Processing Systems*, 35:
665 19523–19536, 2022.

666 Christopher DiMattina and Kechen Zhang. How optimal stimuli for sensory neurons are constrained by net-
667 work architecture. *Neural Computation*, 20(3):668–708, 2008.

668

669 Benjamin Cowley and Jonathan W Pillow. High-contrast “gaudy” images improve the training of deep neural
670 network models of visual cortex. *Advances in Neural Information Processing Systems*, 33:21591–21603,
671 2020.

672 Edgar Y Walker, Fabian H Sinz, Erick Cobos, Taliah Muhammad, Emmanouil Froudarakis, Paul G Fahey,
673 Alexander S Ecker, Jacob Reimer, Xaq Pitkow, and Andreas S Tolias. Inception loops discover what ex-
674 cites neurons most using deep predictive models. *Nature neuroscience*, 22(12):2060–2065, 2019.

675 Konstantin F Willeke, Kelli Restivo, Katrin Franke, Arne F Nix, Santiago A Cadena, Tori Shinn, Cate Neal-
676 ley, Gabby Rodriguez, Saumil Patel, Alexander S Ecker, et al. Deep learning-driven characterization of
677 single cell tuning in primate visual area V4 unveils topological organization. *bioRxiv*, pages 2023–05,
678 2023.

679 Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence pre-
680 dictions for unrecognizable images. In *Proceedings of the IEEE conference on computer vision and pattern*
681 *recognition*, pages 427–436, 2015.

682 Judy Borowski, Roland S Zimmermann, Judith Schepers, Robert Geirhos, Thomas SA Wallis, Matthias
683 Bethge, and Wieland Brendel. Exemplary natural images explain cnn activations better than state-of-the-art
684 feature visualization. *arXiv preprint arXiv:2010.12606*, 2020.

685 Robert Geirhos, Kantharaju Narayananappa, Benjamin Mitzkus, Tizian Thieringer, Matthias Bethge, Felix A
686 Wichmann, and Wieland Brendel. Partial success in closing the gap between human and machine vision.
687 *Advances in Neural Information Processing Systems*, 34:23885–23899, 2021.

688 Roland S Zimmermann, David A Klindt, and Wieland Brendel. Measuring mechanistic interpretability at
689 scale without humans. In *ICLR 2024 Workshop on Representational Alignment*, 2024.

690

691 Fei-Fei Li, Marco Andreetto, Marc’Aurelio Ranzato, and Pietro Perona. Caltech 101, Apr 2022.

692 Olivier Bachem, Mario Lucic, and Andreas Krause. Scalable k-means clustering via lightweight coresets. In
693 *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*,
694 pages 1119–1127, 2018.

695 Anitha Pasupathy and Charles E Connor. Shape representation in area v4: position-specific tuning for bound-
696 ary conformation. *Journal of neurophysiology*, 2001.

697

698 Stephen V David, Benjamin Y Hayden, and Jack L Gallant. Spectral receptive field properties explain shape
699 selectivity in area V4. *Journal of neurophysiology*, 96(6):3492–3505, 2006.

700 Benjamin Cowley, Ryan Williamson, Katerina Acar, Matthew A Smith, and Byron M Yu. Adaptive stimu-
701 lus selection for optimizing neural population responses. In *Advances in Neural Information Processing*
702 *Systems*, pages 1395–1405, 2017b.

702 Jan Benda, Tim Gollisch, Christian K Machens, and Andreas VM Herz. From response to stimulus: adaptive
703 sampling in sensory physiology. *Current opinion in neurobiology*, 17(4):430–436, 2007.

704 Mijung Park, Greg Horwitz, and Jonathan W Pillow. Active learning of neural response functions with gaussian
705 processes. In *Advances in neural information processing systems*, pages 2043–2051, 2011.

706 Binxu Wang and Carlos R Ponce. Neural dynamics of object manifold alignment in the ventral stream.
707 *bioRxiv*, pages 2024–06, 2024.

708 Bruno A Olshausen et al. Emergence of simple-cell receptive field properties by learning a sparse code for
709 natural images. *Nature*, 381(6583):607–609, 1996.

710 Christopher J Rozell, Don H Johnson, Richard G Baraniuk, and Bruno A Olshausen. Sparse coding via
711 thresholding and local competition in neural circuits. *Neural computation*, 20(10):2526–2563, 2008.

712 Deepa Issar, Ryan C Williamson, Sanjeev B Khanna, and Matthew A Smith. A neural network for online
713 spike classification that improves decoding accuracy. *Journal of neurophysiology*, 123(4):1472–1485,
714 2020.

715 Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland, Damian
716 Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. *Communications of the ACM*, 59
717 (2):64–73, 2016.

718 Johannes Mehrer, Courtney J Spoerer, Emer C Jones, Nikolaus Kriegeskorte, and Tim C Kietzmann. An
719 ecologically motivated image dataset for deep learning yields better models of human vision. *Proceedings
720 of the National Academy of Sciences*, 118(8):e2011417118, 2021.

721 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach.
722 *arXiv preprint arXiv:1708.00489*, 2017.

723 Seong Tae Kim, Farrukh Mushtaq, and Nassir Navab. Confident coresnet for active learning in medical image
724 analysis. *arXiv preprint arXiv:2004.02200*, 2020.

725 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

726 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In *Proceedings
727 of the IEEE international conference on computer vision*, pages 3730–3738, 2015.

728 Gregory Griffin, Alex Holub, Pietro Perona, et al. Caltech-256 object category dataset. Technical report,
729 Technical Report 7694, California Institute of Technology Pasadena, 2007.

730 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
731 machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

732 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading digits
733 in natural images with unsupervised feature learning. In *NIPS workshop on deep learning and unsupervised
734 feature learning*, volume 2011, page 4. Granada, 2011.

735 Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2-a large-scale bench-
736 mark for instance-level recognition and retrieval. In *Proceedings of the IEEE/CVF conference on computer
737 vision and pattern recognition*, pages 2575–2584, 2020.

738 Zijie J Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and Duen Horng Chau.
739 Diffusiondb: A large-scale prompt gallery dataset for text-to-image generative models. *arXiv preprint
740 arXiv:2210.14896*, 2022.

741 Santiago A Cadena, Konstantin F Willeke, Kelli Restivo, George Denfield, Fabian H Sinz, Matthias Bethge,
742 Andreas S Tolias, and Alexander S Ecker. Diverse task-driven modeling of macaque v4 reveals functional
743 specialization towards semantic tasks. *PLOS Computational Biology*, 20(5):e1012056, 2024.

744 François Chollet. Xception: Deep learning with depthwise separable convolutions. In *Proceedings of the
745 IEEE conference on computer vision and pattern recognition*, pages 1251–1258, 2017.

746 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
747 neural networks. *Advances in neural information processing systems*, 25, 2012.

748 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
749 tion. *arXiv preprint arXiv:1409.1556*, 2014.

750 Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for
751 scalable image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recog-
752 nition*, pages 8697–8710, 2018.

756 **A APPENDIX**

757 **A.1 METHODS**

759 In this section, we provide details for our V4 experiments, data pruning analyses, human psy-
760 chophysics experiment, and ImageBeagle dataset and algorithm.

761 **A.1.1 V4 EXPERIMENTAL DATA**

763 For our neural recordings from macaque V4, we used an experimental setup similar to those of
764 (Bashivan et al., 2019; Cowley et al., 2023). For most of our analyses involving V4 responses, we
765 re-analyzed data from a previous study (Cowley et al., 2023). This includes our results for V4 re-
766 sponds to natural images (Fig. 1) as well as predicting V4 responses using from ResNet-50 em-
767 beddings (Fig. 2a). We also re-used the study’s ‘compact models’ as our ‘V4 model neurons’ to
768 synthesize anti-preferred images (Fig. 2c), predict their responses using different sets of training
769 images (Fig. 3b), include in our human psychophysics task (Fig. 4b) and visual feature analyses
770 (Fig. 4e, f, and h), and optimize with ImageBeagle (Fig. 6). However, we needed to run additional
771 experiments to test for the anti-preferred images of V4 neurons (Fig. 2b). To do this, we repeated
772 an experimental setup almost identical to previous studies with closed-loop experiments (Bashivan
773 et al., 2019; Ponce et al., 2019; Walker et al., 2019; Cowley et al., 2023). Below, we briefly de-
774 scribe the neural data collection, approved by the IRB [name redacted for anonymity].

775 **Macaque V4 neural data collection:** We implanted a 96-electrode array in the left hemisphere
776 of macaque visual area V4, one in each of two macaque monkeys. We extracted spike signals via
777 an automated deep learning pipeline (Issar et al., 2020) that separates spike waveforms from noise
778 on each electrode channel. For each recording session, the awake, head-fixed animal performed
779 thousands of active fixation trials until satiated (typically \sim 2-3 hours). Each trial comprised \sim 6-
780 8 image flashes (\sim 100 ms each) interleaved with 100 ms gray blank screens (to prevent adaptation
781 effects between image flashes); image size and location were chosen to cover with the receptive
782 fields of the recorded V4 neurons (8-11 visual degrees in diameter). After maintaining fixation
783 throughout the sequence of images, the central dot disappeared and a target dot appeared 10° away
784 from the central dot; animals received a liquid reward for correctly making a saccade to the target
785 dot. Each recording session had \sim 1,000 unique images and typically greater than \sim 5 repeats per
786 image (image repeats shown randomly throughout the session).

787 **Construction of V4 model neurons:** We recorded \sim 10 sessions per animal to train the data-
788 driven model, called the ‘ensemble model’, with the same architecture and training procedure as in
789 a previous study (Cowley et al., 2023). Briefly, the model first passed the image through ResNet-
790 50 to get the activations of an intermediate layer (‘layer 33’). These activations were then passed
791 as input into an ensemble of \sim 25 small DNNs (each with 4 residual layers). Each ensemble mem-
792 ber was trained separately on repeat-averaged responses; at inference, the final predicted response
793 was the average response across the ensemble. We then fixed the ensemble model (with the linear
794 readout weights trained on the last recording session) and searched for preferred and anti-preferred
795 images. To do this, we passed \sim 500,000 natural images through the ensemble model, and kept
796 the \sim 10 preferred and \sim 10 anti-preferred images for each V4 neuron. We then presented these
797 images, along with \sim 750 randomly-chosen natural images, in the following recording session.
798 Because we could not guarantee that we record from the exact same neurons between sessions (a
799 small number of neurons are lost and added due to small shifts in electrode positions), we had to
800 match up the model neurons (from the ensemble model) to the recorded V4 neurons on the new
801 session. To do this, we computed the predicted R^2 between each model neuron and each V4 neu-
802 ron for the responses to the randomly-chosen natural images, and kept greedily choosing the pair
803 with the highest R^2 (and removing the chosen model neuron and neuron as future candidates).
804 Then, for each V4 neuron, we take the median response of the \sim 10 preferred images r_{pref} and
805 \sim 10 anti-preferred images $r_{\text{anti-pref}}$, and compute the fraction/quantile q to which these median
806 responses are either larger (preferred) or smaller (anti-preferred) to responses to the randomly-
807 chosen images, e.g., $q_{\text{pref}} = \frac{1}{N} \sum_i^N \mathcal{I}(r_{\text{pref}} > r_i)$, where \mathcal{I} is the indicator function and i denotes
808 the i th image randomly-chosen out of N images.

809 **A.1.2 LINEAR MAPPING ANALYSES**

810 For our linear mapping analysis (Fig. 2a), we used the pre-ReLu activations from ResNet50
811 (“conv4_block4_add” layer) as our input to all 6 methods, and denote that as “pre-ReLu”. Below,
812 we describe each of the methods, *i-vi*, in detail:

Supplementary Figure 1: Extended data pruning plots. **a.** We train a DNN (5-layer CNN) to predict responses of individual V4 model neurons (10 in total), with larger number of training images than Fig.3. **b.** Same as in **a** except for predicting responses of individual ResNet50 DNN units (10 in total). Traces denote means, shaded areas denote 1 s.e.m.

- Method *i*: We linearly map the pre-ReLU features to V4 responses to predict the V4 responses to held-out images.
- Method *ii*: Similar to *i*, except we now add ReLU activation prior to linear mapping, the classical approach in neuroscience.
- Method *iii*: Similar to *ii*, except instead of using the regular ReLU thresholding of 0, we vary this based on the different quantiles of the response distribution.
- Method *iv*: Before the linear mapping, we learn a separate gain and offset for each channel, add LayerNorm, and pass the resulting activity through ReLUs and a final linear mapping.
- Method *v*: We linearly combine filter channels via a convolution with kernel shape 1×1 where the output channels equal to the number of input channels, add LayerNorm and pass the resulting activity through ReLUs and a final linear mapping.
- Method *vi*: Same as *v* but we remove the ReLUs before the final linear mapping.

For all of the methods above, we ensure that the train, test, and validation sets remain the same for the final comparisons.

A.1.3 DATA PRUNING ANALYSES

For our data pruning analysis, we ran simulations to assess the information content of anti-preferred images by including or leaving them out when we estimated a neuron's tuning. To this end, we used V4 model neurons to serve as surrogate ground truth models of V4 neurons (as recording a real neuron's responses to 500k images is unfeasible, and V4 model neurons closely resemble real V4 neurons, see Supp. Fig.5). We then used these surrogates as "teacher" models to train the "student" models (5-layer CNN architecture, 100 filters per layer) with different curricula (see below). To stay as close to a real neuroscience experiment as possible, we were interested in training with $<10k$ images (Extending the number of training images did not change the results, see Supp. Fig.1). Thus, we trained each model from scratch from 1k to 10k at 1k intervals and reported their R^2 . We used the same procedure for ResNet-50 units. In Supp. Fig.1 we extend our pruning plots from Fig.3 to include more training images for 10 models. Below we detail the pre-training and training procedures.

Pre-training details: Prior to training, for every V4 neuron model, we sorted each model's responses to 500k images; we define the top K images as the preferred images and the bottom K images as the anti-preferred images. We sought to quantify the extent to which preferred and anti-preferred images contributed to our estimate of that model's tuning. We designed the following different curricula (corresponding to the traces in Fig. 3), where K refers to the selected number of images and responses on which to train.

- **preferred images only:** We selected the K images that had the highest responses.

- **anti-preferred images only:** We selected the K images that had the lowest responses.
- **preferred and anti-preferred images:** We selected $K/2$ images that had the highest responses and $K/2$ images that had the lowest responses.
- **preferred and anti-preferred images (1 million):** We considered an entirely different set of images that was double in size to our baseline dataset (1M here versus 500k for the other curricula). All other details were the same as for **preferred and anti-preferred images**.
- **randomly-chosen images:** We randomly selected K images from the pool of 500k images.
- **non-preferred images:** We first found the median response and selected the K images with responses closest to the median response (i.e., $K/2$ images with responses below the median response and $K/2$ images with responses above the median response).
- **synthesized images:** We synthesized $K/2$ images to maximize the model’s output response and synthesized $K/2$ images to minimize the model’s output response. Synthesized images were optimized with gradient ascent/descent techniques (Bashivan et al., 2019; Walker et al., 2019; Cowley et al., 2023).

The chosen curricula, except for randomly-chosen images, will likely lead to biases such that the training and test data distributions will not match (i.e., out-of-distribution). To mitigate such biases, we replaced 10% of the images for each curriculum with randomly-selected images (replacing the images with the lowest responses for preferred images and the images with the highest responses for anti-preferred images). We also note that as the number of training images increases, training on randomly-selected images outperforms other curricula, as the training distribution matches the test distribution. Lastly, to make the simulations more similar to real V4 responses, we added Gaussian noise to the V4 model neuron’s responses. Instead of predicting the responses one-to-one, we added $(0.2 \times \sigma \times \epsilon)$ to our responses and predicted this value. Here σ was the standard deviation of the responses and $\epsilon \sim \mathcal{N}(0, 1)$. The exact procedure was used for ResNet50 units (Fig. 3c); we found these units needed more training data than the V4 model neurons to reach large values of R^2 (Supp. Fig. 1), likely because ResNet50 units computed more complex functions.

Training details: Across models, the training images were sampled from the same pool of 500k images; these 500k images were randomly sampled from ImageBeagle dataset (see Section A.2.5.) comprising 30M images. For testing and validation, we sampled another 20k images from ImageBeagle, different from the 500k images, and used 10k for test and 10k for validation to evaluate the trained models and report the R^2 score. We trained the model with the ADAM optimizer with learning rate $1e - 4$, early stopping (based on validation data), and used a batch size of 8 for ResNet-50 and 64 for V4 model neurons. Since ResNet-50 had a more complex architecture than V4 model neurons, it required a smaller batch size than V4 model neurons to achieve a higher R^2 .

A.1.4 HUMAN PSYCHOPHYSICS EXPERIMENT

We performed a human psychophysics experiment to test how human subjects rely on preferred or anti-preferred images to guess a neuron’s (or model unit’s) tuning (Fig.4). The subject pool comprised volunteer scientists with no compensation; IRB approval [identity removed for anonymity] was obtained prior to beginning the experiment.

Task details: The task was as follows (task GUI shown in Supp. Fig. 2). Given a pair of images, the subject is instructed to select the image that would lead to the higher response of a chosen neuron/model. The user’s score, the number of times the user picked the correct answer, was displayed above the prompt to show their progress (Supp. Fig.2). Importantly, the subject was given feedback after every decision via a green box around the correct answer and red box around the wrong answer—through this feedback humans learned the task. We include the layout of the general setup in Supp. Fig.2. Each task in our psychophysics experiment consisted of 100 pairs of images. If prior images were provided, they were always 36 images in total (Supp. Fig.3). In order to avoid overlap, we excluded these prior images from the image pairs to avoid duplicates. To ensure that each task had an equal mix of difficult and easy to discriminate image pairs, we took 5 bins of image pairs with increasing response differences (i.e., the larger the response difference between two images, likely the easier the discrimination). The first bin had images that were very close in value (Δ response ~ 0.1), and the last bin had images there were very far apart (Δ response ~ 0.5).

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Supplementary Figure 2: GUI of the psychophysics task. **a.** Welcome screen with pertinent information about the task. Name has been redacted for anonymity. **b.** A user id screen that the user needs to input a specific id given by the instructor. **c.** An example pair from a task. **d.** User is given a positive feedback when the correct answer is picked via a green box. **e.** A negative feedback is given via a red box around the wrong answer, and positive feedback is given via a green box around the correct answer.

Each task had 20 image pairs from each bin (100 total) which were randomly ordered across the task. To create these bins, for each model we extracted the responses, and calculated all possible response differences and saved the sorted differences in an array. We then used 20th-80th percentiles of this array to compute bin edges to create our 5 bins and filled these bins with non-overlapping images (e.g. if an image appeared in a pair, it can't be used for another pair), until each bin had 20 images.

Task types: For each task, we used one of the 10 units/neurons from a given model. The models could either be V4 model neurons or ResNet-50 units. Hence, creating a total of 40 tasks for each model (4 conditions \times 10 model neurons/units), and 80 tasks total for the entire experiment. For ResNet-50, we used 10 randomly selected units from a mid-layer (layer 33, with 1,024 filters). For V4 model neurons, we used 10 randomly selected units from 219 V4 model neurons. In a pilot dataset, we also attempted the task for real V4 neurons, but found the responses too noisy and likely too few images (\sim 1,000 images per recording session) for humans to identify meaningful selectivity. In addition, each task consisted of one of 4 conditions describing the prior information provided. Our goal was to investigate how humans use these prior images to guide their decisions. The priors were as follows:

- **no prior:** In this condition, no additional images were shown to the subject. Thus, the subject had to rely heavily on the feedback from the task to guide and improve their decision.
- **preferred prior:** In this condition, we showed the 36 preferred images of the unit. We refer to these images as "maximizing" in the experiment to make it more intuitive for the subjects. Tasks with this condition allow the subject to utilize this prior information by selecting the image from the pair that's most similar to these images.
- **anti-preferred prior:** In this condition, we showed the 36 preferred images of the unit. We refer to these images as "minimizing" in the experiment to make it more intuitive for the subjects. Tasks with this condition allow the subject to utilize this prior information by selecting the image from the pair that is not similar to these images. This condition tends to be more challenging compared to preferred prior because here the subject is given information on the lower response images (anti-preferred), but not the higher.

972
973
974
975
976
977
978
979
980
981
982
983

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Supplementary Figure 3: Example preferred and anti-preferred images from the psychophysics task. The user had access to these images throughout the task. **a.** 36 preferred images. **b.** 36 anti-preferred images. **c.** 18 preferred and 18 anti-preferred images.

Therefore, the user still has to figure out what the maximizing images are through feedback and elimination-based strategies.

- **preferred:** In this condition, we showed the 18 preferred images and 18 anti-preferred images of the model neuron/unit. Tasks with this condition allow the subject to utilize this prior information by selecting the image from the pair that is similar to the preferred images and not similar to anti-preferred images.

A.1.5 IMAGEBEAGLE DATASET AND NEAREST NEIGHBOR GRAPH

ImageBeagle relies on a large bank of millions of diverse images. To collect the image dataset, we scraped images from various popular public datasets and sources. We sampled the images from various sources such as Flickr Creative Commons dataset (Thomee et al., 2016), Ecoset (Mehrer et al., 2021), and Duckduckgo, to name a few, in addition to other sources across the web (see Table 1 for approximate number of images extracted from each source). In addition to these, we also created artificial stimuli that are of interest to neuroscience, e.g. bars, gratings, colorful letters, gaudy images (Cowley and Pillow, 2020), and so on. We stored our 30M images in 1,500 zips, where each zip contains 20k images; we chose zips for easy access and transfer. To make the images consistent across the dataset, each image was resized to a 224x224 RGB PNG file. We make a miniImageBeagle (with 1M images) publicly available to researchers at [url removed for anonymity]. The full ImageBeagle dataset is large (2 TB) and available on request by the authors.

Nearest neighbor graph: For our 30 million images, we desired each image's 1k nearest neighbors; this allows us to estimate the natural image manifold via local approximations, where the neighbors correspond to possible directions along the manifold. We defined distance as the Euclidean distance between activations from a middle layer of ResNet50 (units come from layer 33 of ResNet50), which are predictive of V4 responses (Schrimpf et al., 2018a; Cowley et al., 2023). We down-sampled the large tensor of activations via a spatial average pool (from $14 \times 14 \times 1,024$ to $3 \times 3 \times 1,024$ with pooling kernel of 4×4 and a stride of 5). We took the top $\sim 1k$ images with the smallest distances. We confirmed that this similarity metric led to perceptually similar neighbors.

Computing the distance matrix of 30M images was computationally intensive, involving ~ 500 hours of H100 GPU computation. To make the the distance calculations as efficient as possible for 30M images, instead of calculating the entire distance matrix, we randomly initialized the nearest neighbors and continuously update them by randomly choosing pairs of zip files to compute the distances (keeping track of previously-computed pairs). Thus, the ImageBeagle search algorithm may operate even as nearest neighbors continue to be updated.

A.1.6 IMAGEBEAGLE SEARCH ALGORITHM

Given the nearest neighbors, ImageBeagle consists of 2 steps: Global search and local search. For our global search, we utilize 10 coresets comprising 10k images each (Sener and Savarese, 2017; Bachem et al., 2018; Kim et al., 2020) to ensure that we explore diverse regions of the image manifold. We create an approximate coresnet to bias our global search to explore diverse neighbors in our image manifold, thus preventing the algorithm from getting stuck at sub-optimal solutions.

1026 Given the saved nearest neighbors, we randomly initialize the coresets with an image, and add its
 1027 farthest neighbor to our coresets. We then move on to this image and repeat the process, essentially
 1028 iteratively traversing the nearest neighbor graph until we filled our coresets with 10k images. Since
 1029 this coresets is approximate (due to our filing system where we only save 1k neighbors), we ran-
 1030 domly initialize 10 coresets. For local search, we use the computed nearest neighbors. We alternate
 1031 between the global and local searches to explore the image manifold efficiently for a given objec-
 1032 tive function. ImageBeagle is given a budget of the number of evaluations allowed (i.e., computing
 1033 the objective value for each image). ImageBeagle stores the objective value for every evaluated im-
 1034 age to ensure images are not re-evaluated. In Alg.1 we explain the high level flow of ImageBeagle
 1035 as well as the required hyperparameters.

1036 **Global search:** We use the coresets images to get out of a local optimum and explore more areas in
 1037 the image manifold. Thus, during global search, we take the next L images of the coresets and cycle
 1038 through coresets whenever we reach M during local search. This allows ImageBeagle access to
 1039 diverse regions in the image manifold.

1040 **Local search:** We use the nearest neighbor information of each image during the local search pro-
 1041 cess of ImageBeagle. The local search begins with the image that maximizes our objective func-
 1042 tion from all previously evaluated images (whose nearest neighbors have not been evaluated). We
 1043 use this image to do our local search to explore its neighbors. We continue this process until we do
 1044 not improve our objective function. We repeat this M times, after which we continue to the next
 1045 global search.

1046

1047 **Algorithm 1** ImageBeagle algorithm

1048 **Require:** 1k nearest neighbors for every image
 1049 **Require:** 10 coresets of 10k images each
 1050 **Require: hyperparameters**
 1051 L : number of coresets images searched at each global step
 1052 K : number of nearest neighbors to evaluate per local step
 1053 M : number of local searches
 1054 B : number of images to evaluate (budget)
 1055 $\phi(\mathbf{x}) : \mathcal{R}^{p \times p \times 3} \rightarrow \mathcal{R}$: objective function with input image \mathbf{x}
 1056 **set:** $\text{num_evals} \leftarrow 0$, $\mathbf{X}_{\text{evaluated}} \leftarrow []$, $\mathbf{X}_{\text{visited}} \leftarrow []$ # empty lists

1057 **while** $\text{len}(\mathbf{X}_{\text{evaluated}}) < B$ **do**
 1058 **# global search**
 1059 $\mathbf{X}_{\text{coreset}} \leftarrow$ next L images in coresets
 1060 **if** coresets empty **then** move to next coreset
 1061 $\mathbf{X}_{\text{evaluated}} \leftarrow [\mathbf{X}_{\text{evaluated}}] + [\mathbf{X}_{\text{coreset}}]$ # combine lists

1062 **# local search**
 1063 **for** $i_{\text{search}} \leftarrow 1$ to M **do**
 1064 **# choose starting image**
 1065 $\mathbf{X}_{\text{visited}} \leftarrow \mathbf{X}_{\text{evaluated}} - \mathbf{X}_{\text{visited}}$ # subtract lists
 1066 $\mathbf{x}_{\text{next}} \leftarrow \arg \max(\Phi(\mathbf{X}_{\text{visited}}))$
 1067 $\mathbf{X}_{\text{visited}} \leftarrow [\mathbf{X}_{\text{visited}}] + [\mathbf{x}_{\text{next}}]$
 1068 $\mathbf{X}_{\text{nearest neighbors}} \leftarrow K$ nearest neighbors of \mathbf{x}_{next}
 1069 $\mathbf{X}_{\text{evaluated}} \leftarrow [\mathbf{X}_{\text{evaluated}}] + [\mathbf{X}_{\text{nearest neighbors}}]$ # combine lists
 1070 **# walk through nearest neighbors**
 1071 **while** $\max[\Phi(\mathbf{X}_{\text{nearest neighbors}})] > \phi(\mathbf{x}_{\text{next}})$ **do**
 1072 $\mathbf{x}_{\text{next}} \leftarrow \arg \max(\Phi(\mathbf{X}_{\text{nearest neighbors}}))$
 1073 $\mathbf{X}_{\text{visited}} \leftarrow [\mathbf{X}_{\text{visited}}] + [\mathbf{x}_{\text{next}}]$
 1074 $\mathbf{X}_{\text{nearest neighbors}} \leftarrow K$ nearest neighbors of \mathbf{x}_{next}
 1075 $\mathbf{X}_{\text{evaluated}} \leftarrow [\mathbf{X}_{\text{evaluated}}] + [\mathbf{X}_{\text{nearest neighbors}}]$ # combine lists
 1076 **end while**
 1077 **end for**
 1078 **end while**
 1079 $\mathbf{x}_{\text{optimal}} \leftarrow \arg \max[\Phi(\mathbf{X}_{\text{evaluated}})]$

ImageBeagle	
Source	Approximate Amount
Flickr Creative Commons dataset Thomee et al. (2016)	7 million
Ecoset Mehrer et al. (2021)	1.5 million
CIFAR Krizhevsky et al. (2009)	120,000
CelebA dataset Liu et al. (2015)	202,000
Caltech-256 dataset Griffin et al. (2007)	30,000
Fashion MNIST dataset Xiao et al. (2017)	60,000
SVHN dataset Netzer et al. (2011)	248,000
Google Landmarks dataset Weyand et al. (2020)	4.1 million
DiffusionDB Wang et al. (2022)	5 million
Duckduckgo	155,000
Flickr	2 million
YouTube	1 million
Artificial stimuli	3.1 million
Others	5.5 million

Table 1: Summary of image sources for ImageBeagle

Supplementary Figure 4: Example ImageBeagle neighbors. **a.** Example ‘base’ images and their 10 nearest neighbors based on distances of embeddings from our chosen DNN (ResNet50). The base image and its neighbors are perceptually similar in low-level statistics (textures, colors, etc.), allowing ImageBeagle to be useful in identifying preferred and anti-preferred images for neurons in different visual cortical areas (V1, V4, IT, ...) as well as DNN units in different layers.

A.2 MULTI-UNIT ACTIVITY AND ANTI-PREFERRED IMAGES

To record neurons in our experiments, we used a Utah multi-electrode array, which captures the activity of both single- and multi-units. Identifying well-isolated single units by analyzing spike waveforms is possible, but one concern that is hard to fully rule-out is if any unit is truly a single neuron. Therefore, instead, here we argue that multi-unit activity cannot largely explain the existence of anti-preferred images. This is for two reasons:

First, we analyzed a separate dataset of V4 responses to natural images from Cadena et al. (2024) that used NeuroPixel probes (NeuroNexus V1x32-Edge-10mm-60-177) to record neural activity. An advantage of NeuroPixels is that the electrode channels are much closer together ($50\mu\text{m}$) than those of the Utah array ($400\mu\text{m}$); one can isolate single units based on coincidence timings of spikes between channels. The authors also performed extensive spike sorting to ensure well-

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2859
2860
2861
2862
2863
28

Supplementary Figure 6: Skewness κ of V4 neurons against four different DNNs.
a. Skewness κ of response distributions for V4 neurons from Fig. 1c. and AlexNet units.
b. Same as **a** but with Xception units. **c.** Same as **a** but with VGG-19 units. **d.** Same as **a** but with NasNetMobile units. Lines: medians.

(median $\kappa = 0.44$) we found that to be not the case (Supp. Fig. 6d.). Despite the ReLU activation, units in NASNetMobile organize the responses in a way that preserves the two-tailedness of the distribution, thus effectively exhibit a linear behavior. We suspect that this is caused by the high baseline activations where these units rarely operate in the zero-output regime, hence creating two-tails. However, thresholding is still present in the model where a nontrivial fraction of activations still fall below zero in some layers. This finding hints at the importance and effects of architectural designs of DNNs in their selectivity. Compared to ResNet-50, AlexNet, VGG-19, and Xception, NASNetMobile utilizes modular cell structure where each cell combines the outputs from previous layers with addition operations, thus accumulating the activations from multiple layers. Therefore, the accumulation of the activation can increase the baseline activations, hence leading to always ‘on’ ReLUs. Although the residual skip connections are present in other DNNs such as ResNet-50, we suspect the frequency of these additions in NASNetMobile is what leads them to higher cumulative pre-activations.

1220 A.4 THE EFFECTS OF SKEWNESS ON R^2

1221 Our finding that preferred and anti-preferred training performed the best for ResNet-50 units was
 1222 surprising (Fig. 3c). After all, most ResNet-50 units had $\kappa \sim 2$ and exhibited no structured pattern
 1223 in their anti-preferred images (Fig. 5). To follow-up on this, we investigated the effect of skewness
 1224 on R^2 for every V4 model neurons and ResNet-50 units from Fig. 3. We found that across both
 1225 models, overall R^2 was lower for more skewed (one-tail) distributions (Supp. Fig. 7, black and
 1226 pink traces decrease as κ increases). This is in line with the informativeness of two-tails, where if
 1227 a unit is less skewed, it can utilize more information, hence have higher R^2 compared to if it has
 1228 one-tail. Therefore, we conclude that more skewed units have less R^2 . Moreover, we see that the
 1229 effect between pref.+anti-pref. and random is larger for more two-tailed distributions (Supp. Fig. 7,
 1230 difference between pink and black traces). This observation is consistent with our findings from
 1231 Fig. 3 where random surpasses the performance of pref.+anti-pref. at 8k training images. Thus, the
 1232 gap between the traces in Supp. Fig. 7 indicates that for less skewed units (two-tails), random can
 1233 also leverage the structure in preferred and anti-preferred images.

1234 A.5 LITTLE RELATIONSHIP BETWEEN PREFERRED IMAGE SIMILARITY AND 1235 ANTI-PREFERRED IMAGE SIMILARITY ACROSS MODELS.

1236 To further investigate whether there is a shared structure between preferred and anti-preferred im-
 1237 ages, for a given V4 model neuron, we fed the sets of 100 preferred images of all V4 model neu-
 1238 rons, and recorded the responses (we repeated this process for anti-preferred images as well.).
 1239 In order to scale the responses proportional to the model’s true preferred/anti-preferred, we used
 1240 quantiles. For each set of preferred/anti-preferred images, we took the median and checked how
 1241 many of the images out of 500k had responses lower than this, and we normalized this by the total
 number of images to get the quantile response.

Supplementary Figure 7: The effects of skewness κ on R^2 **a.** Skewness vs R^2 of each V4 model neurons for 1k images. Skewness vs R^2 of each ResNet-50 units for 1k images. Traces denote to binned average, shaded areas denote to 1 s.e.m.

Supplementary Figure 8: Preferred images are not shared across V4 model neurons. **a.** Responses of every V4 model neurons (rows) to every other V4 model neurons' 100 preferred images (columns). **b.** Responses of every V4 model neurons to every other V4 model neurons' 100 anti-preferred images. The mixture of pink and green indicates that some anti-preferred images were close to being preferred images of other models. **c.** Differences in quantiles for the preferred images matrix, and their corresponding differences in quantiles in the anti-preferred images matrix. The dashed red line represents the unity line ($y=x$).

Here, a quantile of 1 indicates that the preferred images of the i th model is also the preferred image of the j th model, and quantile of 0 indicates that the anti-preferred image of one is also the anti-preferred of the other. Moreover, we checked whether the two models with similar preferred images would also have similar anti-preferred images. To this end, for every row in Supp. Fig.8a., we calculated the absolute difference between the model with the highest quantile and the model with the second highest quantile. We did this for the farthest quantiles (highest quantile - lowest quantile) and 20 randomly-chosen quantiles (highest quantile - randomly selected quantiles). We computed the corresponding models' differences from the anti-preferred matrix and compared these Δq 's against each other. Here we find that although some models have similar preferred and anti-preferred images (lower bottom left corner in Supp. Fig.8a., top left corner, bottom right corner). Overall, most images did not fall on the unity line indicating that there is no linear relationship. These results further support our findings from Fig.4 where there was not an apparent structure shared across preferred and anti-preferred images.