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ABSTRACT

Contrastive learning has emerged as a popular paradigm of self-supervised learning
that learns representations by encouraging representations of positive pairs to be
similar while representations of negative pairs to be far apart. The spectral con-
trastive loss, in synergy with the notion of positive-pair graphs, offers valuable
theoretical insights into the empirical successes of contrastive learning. In this pa-
per, we propose incorporating an additive factor into the term of spectral contrastive
loss involving negative pairs. This simple modification can be equivalently viewed
as introducing a regularization term that enforces the mean of representations to be
zero, which thus is referred to as zero-mean regularization. It intuitively relaxes the
orthogonality of representations between negative pairs and implicitly alleviates
the adverse effect of wrong connections in the positive-pair graph, leading to better
performance and robustness. To clarify this, we thoroughly investigate the role of
zero-mean regularized spectral contrastive loss in both unsupervised and supervised
scenarios with respect to theoretical analysis and quantitative evaluation. These
results highlight the potential of zero-mean regularized spectral contrastive learning
to be a promising approach in various tasks.

1 INTRODUCTION

Contrastive learning has emerged as one of the most prominent self-supervised learning paradigms,
which offers promising representations that can be adapted to diverse downstream tasks [5, 6, 7, 8,
9, 19, 23, 30, 55, 56]. Contrastive losses serve as the training objectives for contrastive learning,
encouraging the learning of representations invariant to data augmentations by maximizing the
similarity between features from different distortions of the same images. In addition to unsupervised
training, contrastive losses are extended to the fully-supervised setting as an alternative to the classical
cross-entropy loss to effectively leverage label information [26]. This extension enables contrastive
learning to achieve state-of-the-art performance on various supervised learning tasks.

Researchers have attempted to offer theoretical understanding of the empirical successes of contrastive
learning [1, 46, 50, 51, 53]. Some works provide mathematical analysis, which, however, are under
an impractical assumption that two views are somewhat independent conditioned on the label
[29, 43, 52]. Instead, spectral contrastive loss (SpeCL) presents solid theoretical foundations without
requiring conditional independence but on a more realistic data property that there is continuity of
the population data within the same class [19, 20]. The core concept in SpeCL is the positive-pair
graph on data, where nodes are augmented samples and the edge between two nodes is weighted
as the probability of encountering them as a positive pair. By applying spectral decomposition on
the adjacency matrix defined on the population augmentation graph, SpeCL builds the relationship
between the eigenvector matrix and the learned representations. SpeCL naturally exhibits sample-
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contrastive property, while the covariance regularization term within the equivalent form [20] can
be seen as contrastive between the dimensions of the representations, and thus coincides with the
dimension-contrastive property. Therefore, SpeCL serves as a bridge between sample-contrastive and
dimension-contrastive properties, offering a pathway to unify them. Moreover, SpeCL resembles
state-of-the-art contrastive losses, such as Barlow Twins loss [57] and VICReg loss [1, 2].

Although SpeCL has appealing theoretical advantages, there are still two limitations carefully consid-
ered in this paper. Firstly, SpeCL intuitively requires the orthogonality of representations between
negative pairs. However, relaxing the orthogonality could potentially enhance the discriminativeness
of representations. Secondly, the pairwise similarities among the representations learned by SpeCL
are determined by the connections within the positive-pair graph. Unfortunately, the presence of false
positive pairs, which may be due to noisy views in self-supervised learning [10] or noisy labels in
supervised learning [63], can lead to wrong connections (i.e., unfavorable edge weights). Identifying
and correcting these wrong connections is scarcely possible since the underlying structure of the graph
is unknown. To overcome these limitations, we propose to incorporate an additional factor τ into the
term of SpeCL involving negative pairs, which is simple yet effective to relax the orthogonality and
coincides with the motivation of margin-based losses [12, 33, 34, 54, 61]. By algebraic manipulation,
it can be found that our scheme is equivalent to regularizing the mean of representations to be zero,
thus referred to as zero-mean regularization. Furthermore, we would establish that the introduction
of τ explicitly performs a uniform reduction in all positive-pair weights, which modifies pairwise
similarities between positive pairs and implicitly mitigates the adverse effects of wrong connections.

To demonstrate the effectiveness of zero-mean regularization in mitigating adverse effects of wrong
connections, we provide theoretical investigations in both unsupervised and supervised scenarios:
unsupervised domain adaptation (UDA) and supervised learning with noisy labels. For contrastive
pretraining based UDA, wrong connections occurs when positive pairs are built from different
domains and classes, we prove that the incorporation of τ tightens the downstream error on target
domains in the form of multiplying a factor (1− τ)2. For supervised learning with noisy labels, false
positive pairs originate from the misguidance of label noise. We first establish the supervised version
of SpeCL and show that the global minimizer exhibits a geometric structure similar to the recently
discovered Neural Collapse [39], and we prove that zero-mean regularization can mitigate label noise
by implicitly reducing mislabeled weights in the noise transition matrix.

The main contributions of our paper can be summarized as follows:

• We propose to incorporate an additional factor into spectral contrastive loss involving
negative pairs, which is equivalent to the zero-mean regularization term. We also show that
zero-mean regularization implicitly performs a uniform weight reduction in positive pairs.

• We investigate the role of zero-mean regularized spectral contrastive loss on spectral con-
trastive pretraining-based unsupervised domain adaptation and offer theoretical proof that
zero-mean regularization can tighten the error bound by multiplying a factor less than one.

• We establish the supervised version of spectral contrastive loss and derive the closed-form
optimal representations, which resembles the Neural Collapse phenomenon and suggests
using class-mean features as classifier. We further prove that zero-mean regularization can
mitigate label noise by implicitly reducing mislabeled weights in the noise transition matrix.

2 PRELIMINARY

We consider datasets containing samples drawn from the input space X with the distribution pdata that
can be partitioned into r different classes with the label function y(·) : X → [r]. The representation
f(x) ∈ Rd is extracted by a mapping f : X → Rd that is usually characterized by a number of
parameterized compositions, where d is the representation dimensionality.

Spectral Contrastive Loss. The spectral contrastive loss is formulated as [19]:

L(f) = −2 · E(x,x+)∼ppos

[
f(x)⊤f(x+)

]
+ E(x,x−)∼pdata

[(
f(x)⊤f(x−)

)2]
=Ex,x+

[∥∥f(x)− f(x+)
∥∥2
2

]
︸ ︷︷ ︸

R0(f)

+
∥∥Ex

[
f(x)f(x)⊤

]
− I
∥∥2
F︸ ︷︷ ︸

R1(f)

+const, (2.1)
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Figure 1: Illustration of the uniform reduction of positive-pair graphs implied in self-supervised
learning (a-b) and learning with noisy labels (c-d). (a) Edge weights denote connectivity (probability
of sampling the endpoints as a positive pair). The red dashed edges means adverse connections since
the similarity of two very different samples will hinder the discriminativeness of representations.
When these weights in the positive-pair graph are subtracted with 0.02 and then normalized, resulting
in (b) The red dashed edges are alleviated as the weights decrease, while the consistency is enhanced
as self-loop weights increases. (c) In the presence of label noise, positive-pair weights for supervised
spectral contrastive learning can be viewed as the label noise transition matrix. Here, edges weights
denote the probabilities of annotating the sample to every labels. Orange arrows indicate the adverse
connections which introduce label noise. By subtracting these weights by 0.02 and normalizing them,
we obtain (d) The orange connections are mitigated as their weights are reduced.

where (x, x+) ∼ ppos is a pair of augmentations of the same data, (x, x−) is a pair of independently
random augmented data, and I is the identity matrix. The second equality, as identified in [20],
reveals that the spectral contrastive loss has two terms: (i) R0(f), namely the invariance term,
measures the ℓ2 distance between positive pairs, which can also be expressed as the Dirichlet energy
of representations on the positive-pair graph [1]; (ii) R1(f), restricts the representation covariance
towards the identity matrix, similar to Barlow Twins loss [57] and VICReg loss [1, 2]. Spectral
contrastive loss naturally falls under the category of a sample-contrastive method, which also exhibits
the dimension-contrastive characteristic due to the existence of the R1(f) term.

Limitations. Although spectral contrastive loss achieves promising theoretical and quantitative
results, there are still some limitations needed to be carefully considered: (i) SpeCL intuitively
requires the orthogonality of representation between negative pairs, while the InfoNCE loss [38] used
in SimCLR [6] and MoCo [23] aims to make them opposite. Relaxing the orthogonality constraint
would bring SpeCL closer to these prior works and may also enhance the discriminativeness of
representations, particularly for supervised contrastive learning in Section 3.3. (ii) The pairwise
similarities among the representations acquired through SpeCL are dictated by the relationships
within the positive-pair graph. However, rectifying incorrect connections proves to be a formidable
task, given that the inherent structure of the graph remains elusive. SpeCL does not incorporate any
mechanism to mitigate the detrimental impact of connections stemming from erroneous positive pairs,
which frequently arise in various tasks due to the inclusion of noisy views [10], noisy labels [63], and
other contributing factors, as illustrated in Figure 1.

3 ZERO-MEAN REGULARIZED SPECTRAL CONTRASTIVE LEARNING

In this section, we introduce in detail our main contribution—zero-mean regularization for SpeCL.
We explain its motivation and how it can be applied in SpeCL for alleviating detrimental connections
in positive-pair graph on unsupervised domain adaptation and learning with noisy labels. We also
provide more clarification in Appendix A.

3.1 ZERO-MEAN REGULARIZATION

We introduce the zero-mean regularization on SpeCL [19], which is simply incorporating an additional
factor τ in the negative part of the original SpeCL. The population objective is formulated as:

L(f ; τ) = −2 · E(x,x+)∼ppos

[
f(x)⊤f(x+)

]
+ E(x,x−)∼pdata

[(
f(x)⊤f(x−) + τ

)2]
(3.1)
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It can be found that, compared with Equation 2.1, the only modification is the introduction of the
additive factor τ . To more clearly show the role of τ , we further derive its equivalent form:

L(f ; τ) = Ex,x+

[∥∥f(x)− f(x+)
∥∥2
2

]
︸ ︷︷ ︸

R0(f)

+
∥∥Ex

[
f(x)f(x)⊤

]
− I
∥∥2
F︸ ︷︷ ︸

R1(f)

+2τ · ∥Ex [f(x)]∥22︸ ︷︷ ︸
R2(f)

+const,

(3.2)
where R2(f) regularizes the mean of representations to be zero and thus is referred to as zero-mean
regularization, and τ ≥ 0 is actually the trade-off parameter that controls the regularization strength.

Remark. Zero-mean regularization can effectively alleviate the limitations of SpeCL: (i) The
introduction of τ is initially motivated by the observation that SpeCL requires orthogonality of repre-
sentations between negative pairs, which, in the supervised scenario (as described in Section 3.3), is
roughly requiring the orthogonality between different classes. However, prior work has demonstrated
that the representations learned by cross entropy and mean-squared error during the terminal phase
of training usually exhibit the Neural Collapse phenomenon [17, 36, 39, 61, 65], which shows that
the representations of different classes are maximally distant and form a simplex Equiangular Tight
Frame (ETF)1. Intuitively, the introduction of τ can encourage the representations of negative pairs
to have larger angles and thus makes them more discriminative. (ii) Spectral contrastive learning
is equivalent to spectral decomposition on a positive-pair graph. The introduction of τ implicitly
reduces all these positive-pair weights uniformly in Equation 3.3, which does not change the mag-
nitude relationship between positive-pair weights but alters the ratio between them, as illustrated
in Figure 1. This explicitly modifies pairwise similarities between representations, which further
indicates the benefits in decoupling the class and domain information for contrastive pretraining based
unsupervised domain adaptation (cf. Section 3.2) and mitigating label noise by reducing mislabeled
weights in the noise transition matrix (cf. Section 3.3.2).

In the following, we introduce in detail zero-mean regularization works in both unsupervised and
supervised versions of SpeCL. We carefully discuss in theory how τ is helpful in downstream
unsupervised domain adaptation and supervised classification with noisy labels.

3.2 UNSUPERVISED DOMAIN ADAPTATION

In the UDA setting, we have access to labeled data from a source domain and unlabeled data from
target domains, and the goal is to achieve good performance on target domains [4, 41, 42]. We
consider a multi-way classification problem, where r is the number of classes, p is the number of
domains, and n is the number of examples in each class of each domain. The total number of data is
N = rpn. For data x ∈ X , we use dx ∈ [p] and yx ∈ [r] to denote its domain and class, respectively.

Contrastive Pre-training based UDA. While conventional UDA methods typically leverage the
intuition of learning domain-invariant representations [14, 45, 49, 58], recent research by Shen et al.
[44] has demonstrated that a model first pre-trained on both the source and target domains with
SpeCL and then fine-tuned using labeled source data, can yield comparable or superior results to
strong UDA methods. Furthermore, the authors have theoretically proven that spectral contrastive
pre-training enables the learning of representations that vary substantially across domains, while still
generalizing to the target domain by disentangling domain and class information, instead of merely
satisfying domain invariance. Following the setup of [44], we also consider a stochastic block model
[24] for the positive-pair graph, where the probability of existence of an edge between x and x′ is: (1)
ρ if dx = dx′ and yx = yx′ , (2) α if dx ̸= dx′ and yx = yx′ , (3) β if dx = dx′ and yx ̸= yx′ , (4) γ if
dx ̸= dx′ and yx ̸= yx′ . Let A ∈ RN×N be the adjacency matrix of the graph. Let d = p+ r − 1 be
the feature dimension 2 and f : X → Rd be the representation model.

1An ETF is a collection of vectors V = [v1, v2, ..., vr] ∈ Rd×r having equal lengths and equal, maximally
separated pair-wise angles. In the setting of r ≤ d+ 1, we have V ⊤V = C(I− 1

r
11⊤) [39, 48, 62].

2The reason we assume d = p+r−1 is to facilitate a better derivation and arrive at more relevant conclusions.
As depicted in the proof of Theorem 4.1, there are exactly p+ r − 1 nonzero eigenvalues in Ã. By assuming
d = p+ r − 1, we can easily write the d-rank approximation of Ã according to spectral decomposition. This
also reveals that the effective dimension of the feature space is p+ r − 1. In the scenario where d > p+ r − 1,
we can directly set the values of excess dimensions to zero without compromising the validity of our conclusion.
However, we acknowledge that this assumption may appear restrictive. In cases where d < p + r − 1, the
corresponding derivation becomes intractable, making it challenging to obtain the exact form of Ãd.
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Figure 2: The illustration primarily originates from [44]. (a) Illustrative example in binary classifi-
cation with two domains, where each class-domain pair is a node in the positive-pair graph. Edge
weights denote the probability of sampling the endpoints as a positive pair. ρ denotes the probability
of sampling a pair of the same domain and class. (b) The edge weights are subtracted by a constant
τ < γ, which does not change the magnitude relationship of the edge weights but simply changes
the ratio between them. (c) When α and β are greater than γ, the features are oriented so that a
source-trained linear classifier generalizes to the target domain. The class and domain information
are disentangled along the vertical and horizontal axes, respectively. (d) When α < γ, the target
features are flipped and the source-trained classifier can not generalize. As can be seen, the weights
of pairs belonging to the same domain and class is relatively increased, while the weights of different
domains or classes are relatively diminished, i.e., ρ−τ

max{α,β}−τ > ρ
max{α,β} when ρ > max{α, β},

which benefits in terms of decoupling the class and domain information. Furthermore, the con-
nections of pairs from different domains and different classes in the graph are also weakened, i.e.,
min{α,β}−τ

γ−τ > min{α,β}
γ , which helps to improve discriminativeness across domains and classes.

The Uniform Weight Reduction in Positive-Pair Graphs. Let |E| denote the total number of
edges, according to the definition of SpeCL in Equation 3.1, we can rewrite the loss function as

− 2
∑
x,x′

Axx′

|E|
f(x)⊤f(x′) +

∑
x,x′

1

N2

(
f(x)⊤f(x′) + τ

)2
=

∥∥∥∥ N
|E| ·

(
A− τ |E|

N2 11⊤
)
−
(

1√
N

· F
)(

1√
N

· F
)⊤∥∥∥∥2

F

+ const,

(3.3)

where F ∈ RN×k is the matrix whose the x-th row contains f(x)⊤. We note that the introduction
of τ reduces the positive-pair weights uniformly, i.e,, all the entries in A are subtracted by τ |E|

N2 .
As illustrated in Figure 2, subtracting a suitable positive constant from the edge weights preserves
their magnitude relationship while altering the ratio between them. Specifically, the weights of pairs
belonging to the same domain and class are relatively increased, whereas the weights of pairs from
different domains or classes are relatively decreased. This adjustment explicitly modifies pairwise
similarities between representations, leading to further benefits in terms of decoupling the class and
domain information. Additionally, the connections of pairs from different domains and different
classes in the graph are weakened, which enhances discriminativeness across domains and classes.
We further provide theoretical analysis that τ can tighten the downstream error on the target domains.

In UDA, we care about the error on target domains. Let S = {x ∈ X : dx = 1} and T = {x ∈ X :
dx ̸= 1} be the source and target domains, respectively. Given the labeled source domain data, we
learn the linear classifier with a pre-trained representation model f :

b̂ = argmin
b∈Rd×r

∑
x∈S

(
∥b⊤f(x)− y⃗x∥22 + η∥b∥2F

)
, (3.4)

where y⃗x = eyx − 1
r · 1 ∈ Rr is the mean-zero one-hot embedding of the label, η > 0 is the

regularization strength. For data x ∈ T , we use pred(x) = argmaxi(b̂
⊤f̂(x))i as the predictor,

where f̂ achieves the global minimum of Equation 3.3. Let pred ∈ RN×r be the matrix with b̂⊤f(x)
on its x-th row and predT be the matrix by restricting pred to the target domain.

Compared to Shen et al. [44], we provide a more general form of the error bound when training
SpeCL with zero-mean regularization across multiple domains as follows:
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Theorem 3.1. Let ζ > 0 and ϵ ∈ (0, 1
2 ) be arbitrary constants. In the above stochastic block model,

assume ρ > max{α, β}, γ < min{α, β}, and τ < (λ̃1(0)− λ̃d(0))/λ̃1(0). Then, there exists ξ̃ ∈
[1− ϵ, 1], such that for any n ≥ Ω

(
rp

min{α−γ,β−γ}2

)
and regularization strength η ∈

(
0, (α−γ)ϵ

2rρ

]
,

with a high probability 1− n−ζ , we have∥∥∥predT − p̃redT

∥∥∥
F
≤ O

(
λ̃1(τ)

η2(λ̃d(τ)− λ̃d+1(τ))

)
· poly(r, p), (3.5)

where p̃redT ≜ E[predT ] is the expectation of the prediction matrix when achieving the minimum
of the loss in Equation 3.3 with τ ∈ [0, 1], λ̃1(τ), λ̃d(τ) and λ̃d+1(τ) are the 1-st, d-th and d+ 1-th

eigenvalues of Ã ≜ E
[
A− τ |Ẽ|

N2 11⊤
]
, respectively.

Furthermore, the target error can be bounded by

Px∼T (pred(x) ̸= yx) ≤ O

(
(λ̃1(τ))

2

η4(λ̃d(τ)− λ̃d+1(τ))2 · n

)
· poly(r, p), (3.6)

where poly(r, p) denotes a polynomial function of r and p.

In the following, we show that the introduction of τ through zero-mean regularization can tighten the
error bound:
Proposition 3.2. In the setting of Theorem 3.1, if τ ≤ λ̃1(0)−λ̃2(0)

λ̃1(0)
= n·min{pα+r(p−1)γ,rβ+p(r−1)γ}

λ̃1(0)
,

then, with probability at least 1− n−ζ , we have

Px∼T (pred(x) ̸= yx) ≤ O

(
(1− τ)2(λ̃1(0))

2

η4(λ̃d(0)− λ̃d+1(0))2 · n

)
· poly(r, p), (3.7)

where λ̃1(0) = nρ + n(r − 1)β + n(p − 1)α + n(p − 1)(r − 1)γ and λ̃d(0) − λ̃d+1(0) =
n ·min{r(β − γ), p(α− γ)}.

As can be seen, the error decreases when the number of samples n increases, and it also is controlled
by the difference between the d-th and d+ 1-th eigenvalues. This difference, in turn, depends on the
gap between the across-class/across-domain connectivities β, α and the across-both connectivities γ.
Furthermore, Proposition 3.2 provides additional insight that the incorporation of τ can tighten the
error bound in the form of multiplying a factor of (1− τ)2. This theoretical foundation underpins the
proposed zero-mean regularization in the UDA task.

3.3 SUPERVISED CLASSIFICATION WITH NOISY LABELS

The primary objective of this subsection is to establish the supervised version of SpeCL with zero-
mean regularization. We subsequently derive the closed-form optimal representations by minimizing
the supervised SpeCL, which leads to a result similar to the neural collapse solution. Furthermore, we
demonstrate that zero-mean regularization can mitigate label noise by implicitly reducing mislabeled
weights in the noise transition matrix.

3.3.1 SUPERVISED SPECTRAL CONTRASTIVE LOSS

Similar to the supervised contrastive loss [26], we can define the supervised version of SpeCL with
the zero-mean regularization for the labeled dataset (X,Y ) as

Lsup(f ; τ) = Lsup
pos (f) + Lneg(f ; τ),

Lsup
pos (f) = − 2

rn2

n∑
i=1

n∑
j=1

r∑
c=1

E x∼A(xi,c)

x+∼A(xj,c)

[
f(x)⊤f(x+)

]
, and

Lneg(f ; τ) =
1

r2n2

n∑
i=1

n∑
j=1

r∑
c=1

r∑
k=1

E x∼A(xi,c)

x−∼A(xj,k)

[(
f(x)⊤f(x−) + τ

)2]
,

(3.8)

where xi,c denotes the i-th example in the class c, n is the number of examples in each class, and
A(x) denotes the augmentations of example x.
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Remark. Note that we retain the condition c = k within the negative part Lneg , which is raised for
two main reasons. Firstly, this condition aligns with the self-supervised form of spectral contrastive
loss in Eq. 7, which facilitates the derivation of the positive and negative parts into a spectral
decomposition as evidenced in the proof of Theorem 3.3; Secondly, the inclusion of the constraint
c ̸= k in Lneg would result in that the supervised loss goes to infinity as the similarity f(x)⊤f(x+)
in Lpos has the potential to become arbitrarily large. By incorporating positive pairs in Lneg

3, we
can effectively address this issue. This mechanism is analogous to the presence of numerator in the
denominator in CE and InfoNCE, serving to ensure training stability.

The supervised version Lsup(f ; τ) differs from the self-supervised version L(f ; τ) in that Lsup
pos (f)

uses samples in the same class as positive pairs, resulting in class-dependent connections in the
positive pair graph for supervised spectral contrastive learning.

Theorem 3.3. The global minimum of the supervised SpeCL Lsup(f ; τ) in Equation 3.8 is uniquely
obtained at ∀i ∈ [n],∀c ∈ [r],∀x ∼ A(xi,c), f(x) = ĥc, where Ĥ = [ĥ1, ..., ĥr]

⊤ is the minimizer
of
∥∥(rI− τ11⊤)−H⊤H

∥∥2
F

.

A more specific conclusion of Theorem 3.3 is that we have Ĥ⊤Ĥ = rI − τ11⊤ when r ≤ d + 1,
and when r > d+ 1, Ĥ⊤Ĥ = Pd(rI− τ11⊤) where Pd(X) denotes the best d-rank approximation
of X . These results provide insights into the structure of the learned representations and highlight the
impact of zero-mean regularization on the geometric characteristics of the learned representations.
One straightforward observation is that, as τ increases, the angle between representations of different
classes (i.e, ∠(ĥi, ĥj) = arccos −τ

r−τ for i ̸= j) increases, thereby leading to better discriminativeness.
When τ = 1 and r ≤ d + 1, we have Ĥ⊤Ĥ = (r − 1)(I − 1

r11
⊤) that forms the neural collapse

solution4 proposed in [39].

Remark. Resembling the neural collapse phenomenon [39], the optimal minimizer of supervised
SpeCL is characterized by two manifestation for last-layer features when r ≤ d+ 1 and τ ∈ [0, 1]:
(i) Within-class variability collapse. The within-class variation of features becomes negligible as they
collapse to their respective means. Specifically, for all classes c and samples x ∼ A(xi,c), the feature
becomes a constant value f(x) = ĥc, leading to a reduction in with-class variability; (ii) Convergence
to an equiangular frame. The vectors of the class means converge to having equal length, forming
equal-sized angles between any pair. This is represented by the equation H⊤H = rI− τ11⊤. These
two manifestation indicates that the zero-regularized SpeCL exhibits a phenomenon similar to neural
collapse even though it exclusively employs features without the linear classifier to calculate loss.
Regarding the downstream linear classification, this suggests that we may easily utilize class-mean
features as the classifier. Compared Table 1 to Table 12, class-mean features as classifier achieve
comparable results with the trained classifier on CIFAR-10 and SVHN.

3.3.2 THE IMPLICATION OF MITIGATING LABEL NOISE

As mentioned in Section 3.3, the introduction of τ can encourage the discriminativeness of different
classes. In the following, we will prove that zero-mean regularization can mitigate label noise.
Consider the label noise transition matrix W = (wij)r×r, where wij denotes the probability of
flipping the true class j into class i. Then, for each sample xi,yx

in the true class yx ∈ [r], the
probability of its label being ŷx ∈ [r] is wyxŷx . To analyze the supervised SpeCL in the presence of
label noise, we let Lsup

noise(f ; τ) denote the expected loss on the label noise model, i.e., Lsup
noise(f ; τ) =

EŶ |Y Lsup(f ; τ, (X, Ŷ )), where Ŷ is the flipped labels of Y . We can derive the results similar to
Theorem 3.3 as follows:

Theorem 3.4. For the noise transition matrix W defined above, the global minimum of Lsup
noise(f ; τ)

is uniquely obtained at ∀i ∈ [n],∀c ∈ [r],∀x ∼ A(xi,c), f(x) = ĥc, where Ĥ = [ĥ1, ..., ĥr]
⊤ is the

minimizer of
∥∥(rW − τ11⊤)−H⊤H

∥∥2
F

.

3We have −2s · f(x)⊤f(x+) +
[
f(x)⊤f(x+) + τ

]2
=

[
f(x)⊤f(x+)− (s− τ)2

]
+ const.

4Our analysis covers all choices of representation dimension and the number of classes, unlike previous work
[17, 36, 50] that only considers cases where the feature dimension is larger than the number of classes.
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Figure 3: Illustration of zero-mean regularization for mitigating label noise. (a) The noise transition
matrix that is clean-label dominant [63] with the noise rate 45%. (b) Zero-mean regularization causes
all elements of the transition matrix to be subtracted by a constant τ = 10%. (c) The mislabeled
(off-diagonal) weights are reduced to be 5% and the clean (on-diagonal) weights are reduced to 45%.
(d) The re-normalized matrix shows that the overall noise rate is reduced to 25%, suggesting that
zero-mean regularization is a simple yet effective way to mitigate label noise.

Table 1: Top-1 liner probing (%) and Top-1 validation accuracy (%) of self-supervised learning and
supervised learning with the spectral contrastive loss in Equation B.1, respectively. All results
reported by “mean ± std” are ran 3 trials. The results of the spectral contrastive loss with zero mean
regularization τ > 0 with better performance than the original spectral contrastive loss τ = 0 are
highlighted. The best results are underlined.

Method Self-Supervised Learning Supervised Learning
CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN

SpeCL 86.22 ± 0.12 52.66 ± 0.16 89.77 ± 0.19 93.47 ± 0.46 65.59 ± 0.75 96.05 ± 0.16
τ = 0.1 86.83 ± 0.12 53.97 ± 0.19 90.26 ± 0.07 94.21 ± 0.13 68.15 ± 0.19 96.22 ± 0.05
τ = 0.2 86.84 ± 0.10 55.27 ± 0.02 90.78 ± 0.07 94.52 ± 0.05 68.04 ± 0.18 96.28 ± 0.05
τ = 0.5 87.15 ± 0.12 56.37 ± 0.27 91.10 ± 0.13 94.36 ± 0.12 69.06 ± 0.34 96.22 ± 0.09
τ = 1.0 87.09 ± 0.16 56.63 ± 0.10 91.24 ± 0.09 94.38 ± 0.06 69.59 ± 0.11 96.25 ± 0.10

This theorem reveals that the immediate effect of τ is to implicitly reduce the mislabeled weights (wij ,
i ̸= j) in the noise transition matrix, which in turn mitigates label noise. For a better understanding,
we provide a more direct view for symmetric label noise.
Proposition 3.5. Considering the symmetric label noise [15] in which wcc′ = 1 − (r − 1)ω for
c = c′, wcc′ = ω for c ̸= c′, and ω < 1

r . If τ ≥ rω, let f̂ = argminf Lsup
noise(f ; τ), then 1√

1−rω
· f̂

is also the global minimizer of Lsup
(
f ; τ−rω

1−rω

)
.

Proposition 3.5 indicates that, when τ ≥ rω, using Lsup
noise(f ; τ) training on symmetric noisy labels is

equivalent to using Lsup
(
f ; τ−rω

1−rω

)
training on clean labels. As illustrated in Figure 3, if the uniform

reduction is τ = 15%, the re-normalized matrix will be an identify matrix.

4 EXPERIMENTS

In this section, we provide extensive experiments on the tasks of contrastive learning, supervised
classification, unsupervised domain adaptation, and learning with noisy labels to verify the effec-
tiveness of zero-mean regularization on several benchmark datasets with ResNets [21, 22]. More
experimental results and details can be found in the Appendix B.

Results of Self-Supervised Learning and Supervised Learning. Table 1 reported the linear probing
accuracy of self-supervised learned models and the Top-1 accuracy of supervised learned models
with spectral contrastive loss in Equation 3.1 and supervised spectral contrastive loss in Equation 3.8.
The results show that zero-mean regularization can learn more discriminative representations.

Results of Unsupervised Domain Adaptation. We evaluate zero-mean regularization across four
digits datasets with different domains: SVHN (S) [37], MNIST (M) [28], USPS (U) [25], and
MNIST-M (M-M) [14]. We first pre-train models with the modified spectral contrastive loss in
Equation 3.1, and then fine-tune a linear classifier composited the models on the source domain.
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Table 2: Top-1 accuracy (%) of unsupervised domain adaptation on four digit datasets. The results of
the spectral contrastive loss with zero mean regularization τ > 0 with better performance than the
original spectral contrastive loss τ = 0 are highlighted. The best results are underlined.

S→M S→U S→M-M M→ U M→ M-M M-M→ S Average
Vanilla SpeCL 88.10 80.37 75.24 94.47 51.19 37.32 71.12

τ = 0.1 88.16 82.76 76.10 95.71 72.10 44.78 76.60
τ = 0.2 86.44 82.96 76.10 94.87 63.63 37.45 73.58
τ = 0.5 88.44 83.16 77.34 90.43 64.68 48.03 75.35
τ = 1.0 88.73 83.81 79.81 96.16 59.48 38.73 74.45

Table 3: Top-1 test accuracy (mean ±std, %) of supervised spectral contrastive loss with zero-mean
regularization in Equation 3.8 on benchmark datasets with symmetric label noise. The results of
the spectral contrastive loss with zero mean regularization τ > 0 with better performance than the
original spectral contrastive loss τ = 0 are highlighted. The best results are underlined.

Datasets Methods Symmetric Noise Rate
0.2 0.4 0.6 0.8

CIFAR-10

CE 82.88 ± 0.04 68.99 ± 0.15 52.27 ± 0.20 51.62 ± 0.08
Focal 60.91 ± 0.07 46.73 ± 0.13 29.47 ± 0.04 13.54 ± 0.03
GCE 91.35 ± 0.04 89.14 ± 0.01 80.50 ± 0.07 52.25 ± 0.03

Vanilla SpeCL 90.80 ± 0.01 88.29 ± 0.13 85.87 ± 0.07 75.51 ± 0.27
τ = 0.1 91.18 ± 0.07 88.99 ± 0.07 86.66 ± 0.04 80.29 ± 0.39
τ = 0.2 91.57 ± 0.03 89.13 ± 0.12 86.81 ± 0.03 80.06 ± 0.39
τ = 0.5 91.31 ± 0.06 89.49 ± 0.02 86.59 ± 0.09 78.51 ± 0.25
τ = 1.0 91.42 ± 0.07 89.26 ± 0.05 86.98 ± 0.07 76.63 ± 0.30

CIFAR-100

CE 60.94 ± 0.06 46.07 ± 0.01 30.33 ± 0.02 14.41 ± 0.06
Focal 60.91 ± 0.07 46.73 ± 0.13 29.47 ± 0.04 13.54 ± 0.03
GCE 68.91 ± 0.03 64.87 ± 0.07 56.04 ± 0.04 9.13 ± 0.00

Vanilla SpeCL 67.87 ± 0.05 62.97 ± 0.11 57.51 ± 0.02 51.10 ± 0.08
τ = 0.1 68.63 ± 0.09 64.46 ± 0.04 59.41 ± 0.06 52.32 ± 0.09
τ = 0.2 69.60 ± 0.07 65.04 ± 0.07 59.46 ± 0.04 53.90 ± 0.06
τ = 0.5 69.57 ± 0.06 65.05 ± 0.06 59.17 ± 0.09 52.80 ± 0.08
τ = 1.0 69.50 ± 0.15 65.37 ± 0.07 59.41 ± 0.01 52.60 ± 0.07

Table 2 demonstrates that zero-mean regularization (τ > 0) can help decoupling class information of
representations across domains. Experiments on DomainNet [41] are provided in Appendix B.4.

Results of Learning with Noisy Labels. To further verify that zero-mean regularization can mitigate
label noise. We conduct experiments in the scenario of symmetric label noise, considering baselines
CE, Focal loss [32], and GCE [59]. As shown in Table 3, τ > 0 performs better than SpeCL in all
cases, especially for high noise. This also show that contrastive learning can mitigate label noise.

5 CONCLUSION

This paper introduces zero-mean regularization to enhance spectral contrastive loss, which equiva-
lently incorporates an additive factor into the loss component involving negative pairs and thus makes
representations of negative pairs opposite. Provable accuracy guarantees are achieved under linear
probe evaluation for contrastive learning with restricted model classes. Additionally, zero-mean
regularization reduces positive-pair weights uniformly during contrastive pretraining for unsuper-
vised domain adaptation, tightening downstream error on target domains. The supervised version of
spectral contrastive loss reveals a structure resembling the neural collapse phenomenon, with larger
regularization strength indicating improved discriminativeness. Moreover, zero-mean regularization
mitigates label noise by implicitly reducing mislabeled weights in the noise transition matrix. These
findings highlight the superiority of zero-mean regularization in enhancing contrastive learning and
its potential applications in various domains.
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Appendix for “Zero-Mean Regularized Sepctral Contrastive Learning”

A MORE CLARIFICATION

A.1 “WEIGHT REDUCTION IN POSITIVE PAIRS” BEYOND ZERO-MEAN REGULARIZATION

The main idea of zero-mean regularization is to implicitly reduce the weights of wrong connections in
the positive-pair graph, as stated throughout the paper. This idea is fully depicted in the unsupervised
domain adaptation (see Eq. 3.3) and learning with noisy labels (see Theorem 3.4) in Section 3.3.2.
In this paper, we focus on the spectral contrastive loss, since it is theoretically sound and easier to
analyze. The final manifestation is accordingly expressed in the concise term of the loss-specific
zero-mean regularization.

We further attempt to apply the core idea of “weight reduction in positive pairs” to the InfoNCE loss
that is widely used in many popular contrastive learning schemes, such as SimCLR [6], MoCo [23],
and CPC [38]. Specifically, we modify the InfoNCE loss by uniformly reducing the importance of
positive pair as follows:

− log
(1− τ)esim(x,x+)

(1− τ)esim(x,x+) +
∑k

i=1 e
sim(x,x−

i )

=− log
esim(x,x+)−τ ′

esim(x,x+)−τ ′ +
∑k

i=1 e
sim(x,x−

i )

=− log
esim(x,x+)

esim(x,x+) +
∑k

i=1 e
sim(x,x−

i )+τ ′
,

(A.1)

where sim(x1, x2) denotes the similarity between x1 and x2, τ ′ = log 1
1−τ > 0 and τ ∈ [0, 1). As

can be seen, the derived form that adds a margin term is similar to margin-based losses, particu-
larly the negative-margin softmax loss [33]. From this point of view, weight reduction in positive
pairs coincides with the motivation of margin-based losses [12, 33, 34, 54, 61] that enlarges the
discriminativeness with intuitive decision boundaries.

To empirically validate the efficacy of the modified term InfoNCE loss in Equation A.1, we conduct
experiments on self-supervised learning and supervised learning in Table 4. In these experiments,
we utilize CIFAR-10/-100 and SVHN datasets as benchmarks. We believe that these additional
experiments not only provide further evidence of the versatility embedded within the concept of
"weight reduction in wrong positive pairs" but also highlight its potential to enhance the performance
of contrastive learning algorithms on real-world datasets.

Table 4: Top-1 liner probing (%) and Top-1 validation accuracy (%) of self-supervised learning
and supervised learning with the modified InfoNCE in Equation A.1, respectively. The results of
the InfoNCE loss with the margin τ > 0 obtaining better performance than the original spectral
contrastive loss τ = 0 are highlighted. The best results are underlined.

Method Self-Supervised Learning Supervised Learning
CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN

InfoNCE 86.56 55.51 90.77 94.18 71.43 96.11
τ = 0.05 86.64 55.68 91.05 94.04 71.80 96.24
τ = 0.1 86.97 56.07 90.93 94.27 71.56 96.17
τ = 0.2 86.65 55.55 90.77 94.19 72.07 96.20
τ = 0.5 87.32 56.01 90.95 94.17 72.44 96.18
τ = 0.9 86.48 55.88 90.95 94.43 72.29 96.16

A.2 DOWNSTREAM ERROR BOUND FOR CONTRASTIVE LEARNING

There are several works focusing on the SpeCL [18, 19, 20], which provide provable accuracy
guarantees under linear probe evaluation in context of an implicit m-way partition of X , i.e., they are
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disjoint non-empty sub-graphs of X such that X = ∪i∈[m]Si (∀x ∈ X , let idx be the index such that
x ∈ Sidx

). Specifically, HaoChen et al. [19] proved the efficacy of SpeCL under the assumption that
the representation dimension d exceeds the number of sub-graphs m. Subsequently, HaoChen and
Ma [18] extended these results by studying representations learned within a constrained model class
F while imposing the condition d = m. In this work, we prove a downstream error bound when
m > d as follows:
Theorem A.1. Let F be a class of functions of X → Rd and let f̂ = argminf∈F L(f ; τ) be the
minimizer of the SpeCL. Assume that:

1. (ϵ-separability). The probability of a positive pair belonging to two different sets is less than
ϵ, that is, Pr(x,x+)∼ppos

(idx ̸= idx+) ≤ ϵ;

2. (Alignment) The downstream label y(x) is a constant on each Si for i ∈ [m];

3. (F-implementable inner-cluster connection larger than δ). For any f ∈ F and any linear
head w ∈ Rd, let function g(x) = w⊤f(x). For any i ∈ [m], we have QSi(g) :=

E
(x,x+)∼p

Si
pos

[(g(x)−g(x+))2]

E
x∼p

Si
data

,x′∼p
Si
data

[(g(x)−g(x′))2] ≥ δ;

4. (Implementability). There exists a function f ∈ F such that f(x) = vidx
for all x ∼ pdata,

where {v1, v2, ..., vm} is a set of different vectors that achieve the global minimum of
∥
∑m

i=1 piviv
⊤
i − I∥2F + 2τ · ∥

∑m
i=1 pivi∥22, and pi = Prx∼pdata

(x ∈ Si).

Let pmin = mini∈[m] Prx∼pdata
(x ∈ Si) and ∆ = maxi,j ∥vi − vj∥22. For m > d, if ϵ∆ < 1, then

there exists a linear head W ∈ Rd×d which achieves the following downstream error

Ex∼pdata

[∥∥∥Wf̂(x)− vy(x)

∥∥∥2
2

]
≤ ϵ∆(1 +

√
ϵ∆)pmin

2δ(pmin − ϵ)
. (A.2)

Remark. In Theorem A.1, we assume that the model class F is implementable and capable of
expressing some vectors V = [v1, ..., vm] that achieve the global minimum of ∥

∑m
i=1 piviv

⊤
i −

I∥2F + 2τ · ∥
∑m

i=1 pivi∥22 (see Lemma A.3 in the appendix for the specific form of V ). In [18],
these vectors are concretely specified as one-hot vectors, which actually corresponds to the case
of τ = 0. Otherwise, our error bound under linear probing is characterized as Ex∼pdata

I(y(x) ̸=
argminc ∥Wf̂(x) − vc∥22) and can be further bounded by the error Ex∼pdata

[∥Wf̂(x) − vy(x)∥22].
Moreover, the right-hand side in Equation A.2 can be further tightened once we choose vectors that
minimize ∆ = maxi ̸=j ∥vi − vj∥22. Therefore, our main result in Theorem A.1 provides a general
bound for spectral contrastive learning when m > d, which extends the prior works and completes
the picture of spectral contrastive learning.

Importantly, Theorem A.1 also reveals a trade-off between inter-partition separability and intra-
partition compactness. Intuitively, good inter-partition separability involves maximizing the distance
between any two distinct partitions, i.e., maxV mini ̸=j ∥vi − vj∥22, while the notion of intra-partition
compactness anticipates the reduction in ∆ = maxi,j ∥vi − vj∥22, contributing to a more stringent
bound on the right-hand side of Eq. 3.3. The intricate interdependence between maxV mini ̸=j ∥vi −
vj∥22 and minV maxi ̸=j ∥vi−vj∥22 elucidates the nuanced nature of the trade-off in the understanding
of self-supervised learning.

A.3 COMPARISON TO CONTRASTIVE LAPLACIAN EIGENMAPS

While there are similarities between Zero-mean regularized spectral loss (Zero-SpeCL) in Eq. A.2
and contrastive Laplacian eigenmaps (COLES) [64], there are distinct differences that are crucial to
highlight:

• Different Negative Components. The contrastive objective (to be maximized)
can generally formulated as the objective J(f) = E(x,x+)∼ppos

s(f(x), f(x+)) +

ηE(x,x−)∼pdata
s̃(f(x), f(x−)). While the positive components of Zero-SpeCL and

COLES are the same, their negative components differ. The negative component of
COLES is s̃(f(x), f(x−)) = −f(x)⊤f(x−), while Zero-SpeCL is s̃(f(x), f(x−)) =
−(f(x)⊤f(x−) + τ)2.
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• Different Reasons for Covariance Term. Both Zero-SpeCL and COLES introduce the
term ∥Exf(x)f(x)

⊤ − I∥2F . The motivation of COLES is to softly satisfy the constraint
F⊤F = I that removes an arbitrary scaling factor in the embeddings [3]. In addition, it also
helps avoid collapsed solutions, since without the constraint F⊤F = I , the derived graph
Dirichlet energy −Tr(F⊤∆WF ) will be minimized when all representations collapse to
a constant vector. In contrast, the covariance term R1(f) = ∥Exf(x)f(x)

⊤ − I∥2F in
Zero-SpeCL appears as a part of an equivalent form in Eq. 3.2.

• Different Overall Objective. COLES represents a constrained graph Dirichlet energy mini-
mization problem (contrastive Laplacian eigenmaps), i.e., minF⊤F=I −Tr(F⊤∆WF ).
On the other hand, Zero-SpeCL depicts the low-rank matrix approximation problem
minF |A− F⊤F |2F (as shown in Eq. 3.3).

A.4 THE ROLE OF τ

In this paper, we propose setting τ ∈ [0, 1] to balance the regularization strength of zero-mean
regularization. Although in Section 3, we do not explicitly constrain τ ≤ 1, theoretical and empirical
evidence supports the necessity of such a constraint:

• In Theorem 3.1, we assume that τ < λ̃1(0)−λ̃d(0)

λ̃1(0)
< 1 to ensure that the introduction of

τ will not alter the value of the d-th eigenvalue in Eq. (C.23). In Proposition 3.2, we
assume that τ ≤ λ̃1(0)−λ̃2(0)

λ̃1(0)
< λ̃1(0)−λ̃d(0)

λ̃1(0)
< 1 to guarantee that the first eigenvalue of

Ã′ is λ̃1(τ) = (1 − τ)λ̃1(0) (as can be seen, τ ≤ 1 is essential to avoid the presence of
negative eigenvalues of Ã′) in Eq. (C.32), thus facilitating a more intuitive comparison
with the bound at τ = 0. While it is possible to draw conclusions within the range of
[ λ̃1(0)−λ̃d(0)

λ̃1(0)
, 1], it requires a more nuanced comparison of the order of these eigenvalues,

predictably resulting in an obviously different bound than at τ = 0.

• In Theorem 3.3, we prove that the global minimum of the supervised spectral contrastive loss
is achieved at Ĥ = argminH ∥(rI− τ11⊤)−H⊤H∥2F . When r ≤ d+1, ∥(rI− τ11⊤)−
H⊤H∥2F has a minimum of zero only for τ ∈ [0, 1], corresponding to Ĥ⊤Ĥ = rI − τ11⊤,
where the angle between representations of different classes is arccos −τ

r−τ > 90◦. However,
for τ > 1, there exists no Ĥ that satisfies Ĥ⊤Ĥ = rI − τ11⊤, as it would lead to a
paradoxical situation where 0 ≤ 1⊤Ĥ⊤Ĥ1 = 1⊤(rI − τ11⊤)1 = r2(1− τ) < 0.

• We conducted experiments for τ > 1 as presented in Tables 9 and 11 of the Appendix. As
observed, consistently better results are obtained with τ ∈ [0, 1], while excessively large
τ values hinder overall performance. Thus, we suggest limiting τ to the range of [0, 1] to
balance the regularization and discriminative capabilities.

B MORE EXPERIMENTAL DETAILS AND RESULTS

In this section, we present the training details and experimental results on several tasks, including
self-supervised contrastive learning, supervised contrastive learning, unsupervised domain adaptation,
and learning with noisy labels.

B.1 DATASETS

Small Datasets. In our experiments, we consider several commonly-used datasets, namely CIFAR-
10/-100 [27], SVHN (S) [37], MNIST (M) [28], USPS (U) [25], and MNIST-M (M-M) [14]. For the
tasks of self-supervised contrastive learning and supervised classification, we utilize CIFAR-10/-100
and SVHN datasets. These datasets are also employed for the evaluation of learning with noisy labels.
To investigate unsupervised domain adaptation, we consider four domains of digit datasets: SVHN,
MNIST, USPS, and MNIST-M. For small datasets, each image is resized to a standardized size of
32× 32 with 3 color channels to ensure uniformity in input sizes.
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Table 5: Top-1 linear probing of self-supervised learning with the spectral contrastive loss in Equa-
tion B.1 under various values of µ and τ . Notably, the results obtained with the spectral contrastive
loss incorporating zero mean regularization τ > 0 and outperforming the baseline (the original
spectral contrastive loss τ = 0) are highlighted. The best results are underlined for clarity.

Method CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN
µ = 1.0 µ = 5.0

Vanilla SpeCL 82.54 40.45 84.80 86.17 51.75 88.79
τ = 0.1 82.97 42.51 86.35 86.80 52.87 89.36
τ = 0.2 83.11 42.98 85.65 86.78 53.13 90.19
τ = 0.5 83.22 43.36 86.23 87.23 53.89 91.38
τ = 1.0 83.78 44.21 86.84 87.46 54.98 91.58

Method CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN
µ = 10.0 µ = 20.0

Vanilla SpeCL 86.25 52.44 89.58 85.64 51.64 88.82
τ = 0.1 86.77 53.98 90.36 85.33 54.26 91.03
τ = 0.2 86.93 55.25 90.80 85.62 55.23 91.43
τ = 0.5 87.05 56.61 91.10 86.47 56.17 92.01
τ = 1.0 87.24 56.77 91.12 85.87 55.80 92.13

ImageNet. We also include a subset of the ImageNet dataset called ImageNet-100. ImageNet
ILSVRC2012 [11] consists of approximately 1.2 million training images and 50,000 validation
images, divided into 1,000 classes. However, due to the limited computing resources and time, we
focus specifically on the first 100 classes of ImageNet, forming the ImageNet-100 dataset. Each
image in this subset is resized to dimensions of 64× 64 with 3 color channels.

DomainNet. For unsupervised domain adaptation, we employ the DomainNet dataset [41]. Do-
mainNet is a large-scale dataset designed specifically for unsupervised domain adaptation tasks. It
contains approximately 600,000 images distributed among 345 classes across six domains. These six
domains included in DomainNet are clipart, painting, real, sketch, infograph, and quickdraw. In our
experiments, we focus on four domains from the cleaned version of DomainNet, including clipart,
painting, real, and sketch. Each image in these domains is resized to dimensions of 64× 64 with 3
color channels to ensure consistency in input sizes.

B.2 TRAINING DETAILS.

Data Augmentation. We adopt the same image augmentation settings as used in the Sim-
Siam method [7]. These augmentation techniques include RandomResizedCrop, ColorJitter, Ran-
domGrayscale, GaussianBlur, and RandomHorizontalFlip.

Network Architectures. For smaller datasets such as CIFAR-10/-100 and digit datasets (SVHN,
MNIST, USPS, MNIST-M), we employ the PreAct-ResNet-18 architecture [22] as the backbone
network. The projection layers consist of a 2-layer MLP with a hidden dimension of 2048 and an
output dimension of 1024. For larger-scale datasets such as ImageNet and DomainNet, we utilize the
ResNet-50 architecture [21] as the backbone network. The projection layers in this case also consist
of a 2-layer MLP, with both the hidden dimension and the output dimension set to 4096.

Optimization Details. In this paper, we train these self-supervised (or supervised) models for a
total of 200 epochs. The training process utilizes the SGD optimizer with a momentum of 0.9, a
learning rate of 0.1, and a weight decay of 5e-4. To dynamically adjust the learning rate throughout
the 200 epochs, we use the cosine decay learning rate schedule [35]. For datasets with smaller sizes,
we set the batch size to 512 on 1 GPU, while for ImageNet-100 and DomainNet, the batch size was
set to 1536 on 8 GPUs. All experiments were implemented using PyTorch and executed on NVIDIA
GTX 2080Ti GPUs.
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Table 6: Top-1 validation accuracy of supervised learning with the spectral contrastive loss in
Equation 3.8 under various values of µ and τ . Notably, the results obtained with the spectral
contrastive loss incorporating zero mean regularization τ > 0 and outperforming the baseline (the
original spectral contrastive loss τ = 0) are highlighted. The best results are underlined for clarity.

Method CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN
µ = 1.0 µ = 5.0

Vanilla SpeCL 87.01 33.18 90.04 93.52 56.13 95.91
τ = 0.1 87.69 35.22 95.89 94.28 57.90 95.93
τ = 0.2 88.72 39.82 96.04 94.31 57.73 96.06
τ = 0.5 89.45 42.38 96.11 94.50 59.26 96.09
τ = 1.0 89.74 41.69 95.97 94.33 59.56 96.07

Method CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN
µ = 10.0 µ = 20.0

Vanilla SpeCL 94.05 65.68 95.89 94.14 70.70 96.12
τ = 0.1 94.39 68.11 96.21 94.28 70.50 96.16
τ = 0.2 94.59 68.30 96.23 94.30 71.03 96.25
τ = 0.5 94.47 68.74 96.14 94.64 71.04 96.22
τ = 1.0 94.43 69.74 96.31 94.06 71.94 95.92

Implementation of Spectral Contrastive Loss. The pseudocode for the spectral contrastive loss,
as well as its supervised version in PyTorch-style, is provided in Table 7. It is worth noting that,
similar to other methods such as SimSiam [7], BYOL [16], SimCLR [6], and others, we perform
ℓ2-normalization on the final output to compute the loss. Additionally, followed HaoChen et al. [19],
we introduce an extra hyper-parameter µ (the default value of µ is 10) to balance the positive and
negative components of the loss.

B.3 EXPERIMENTS ON CONTRASTIVE LEARNING AND SUPERVISED LEARNING

The empirical objective of spectral contrastive loss with zero-mean regularization used in this paper
is formulated as

Lssl(f ; τ) = − 2

n

n∑
i=1

E x∼A(xi)

x+∼A(xi)

[f(x)⊤f(x+)] +
1

n2

n∑
i=1

n∑
j=1

E x∼A(xi)

x−∼A(xj)

[((f(x)⊤f(x−)) + τ)2],

(B.1)
where xi denotes the i-th example in the input space, and A(x) denotes the augmentations of example
x.

The supervised version of spectral contrastive loss with the zero-mean regularization for the labeled
dataset (X , Y ) as

Lsup(f ; τ) = Lsup
pos (f) + Lneg(f ; τ),

Lsup
pos (f) = − 2

rn2

n∑
i=1

n∑
j=1

r∑
c=1

E x∼A(xi,c)

x+∼A(xj,c)

[
f(x)⊤f(x+)

]
, and

Lneg(f ; τ) =
1

r2n2

n∑
i=1

n∑
j=1

r∑
c=1

r∑
k=1

E x∼A(xi,c)

x−∼A(xj,k)

[(
f(x)⊤f(x−) + τ

)2]
,

(B.2)

where xi,c denotes the i-th example in the class c, n is the number of examples in each class, and
A(x) denotes the augmentations of example x.

Experimental Details. We conduct experiments on self-supervised and supervised spectral con-
trastive learning using PreAct-ResNet-18 models pre-trained on CIFAR-10, CIFAR-100, SVHN,
and a subset of ImageNet comprising the first 100 classes. The training process involves training
the networks for 200 epochs. To evaluate the performance of these models in linear classification,
we employ an independent linear classifier on the fixed representations obtained during contrastive
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Table 7: PyTorch-like pseudocode of spectral contrastive loss and its supervised version.

# Spectral Contrastive Loss
class SpectralContrastiveLoss(nn.Module):

def __init__(self, mu=1.0, tau=0.0):
super().__init__()
self.tau = tau
self.mu = mu

def forward(self, z1, z2, labels=None):
# If labels is not None, the loss becomes supervised.
assert z1.shape == z2.shape and len(z1.shape)==2
device = z1.device
N = z1.shape[0]
z = torch.cat([z1, z2], dim=0)

z = F.normalize(z, dim=1)
logits = torch.matmul(z, z.T)

# mask-out negative pairs
if labels is None:

mask = torch.eye(N, dtype=torch.float32, device=device).
repeat(2, 2)

else:
mask = torch.eq(labels, labels.T).float().repeat(2, 2)

loss_part1 = -2 * (logits * mask).sum() / mask.sum()
loss_part2 = self.mu * ((logits + self.tau) ** 2).mean()
return loss_part1 + loss_part2

Table 8: Top-1 accuracy under linear probe evaluation (%) on ImageNet-100. The results of the
spectral contrastive loss with zero mean regularization τ > 0 with better performance than baseline
(the original spectral contrastive loss τ = 0) are highlighted. The best results are underlined.

Method Self-Supervised Learning
ImageNet-100 DomainNet

Vanilla SpeCL 40.82 / 69.32 34.266 / 57.794
τ = 0.1 40.50 / 70.38 35.912 / 59.314
τ = 0.2 41.86 / 71.58 37.037 / 60.632
τ = 0.5 42.90 / 72.48 37.844 / 62.039
τ = 1.0 38.26 / 68.10 35.657 / 60.202

pre-training. This classifier is trained using labeled data. The reported results correspond to the top-1
accuracy achieved by these models.

Experimental Results. Table 5 and Table 6 present the Top-1 accuracy results for self-supervised
learned models and supervised learned models, respectively. These results clearly demonstrates
that zero-mean regularization consistently outperforms the Baseline (models without zero-mean
regularization) across most scenarios. Notably, the best performance is consistently achieved when
utilizing zero-mean regularization in all cases. Similar conclusions are also reflected in Table 8
which offers the results of self-supervised learning on ImageNet and DomainNet. Moreover, Table
9 reports the results obtained using a fixed value of µ = 10 and different values of τ , which shows
that excessively large values of τ can hinder the improvement achieved by zero-mean regularization.
Therefore, we suggest limiting the range of τ to [0, 1].

19



Published as a conference paper at ICLR 2024

Table 9: Top-1 test accuracy (mean ±std, %) of spectral contrastive learning with a fixed value of
µ = 10 and various values of τ on benchmark datasets with symmetric label noise. Notably, the
results obtained with the spectral contrastive loss incorporating zero mean regularization τ > 0 and
outperforming the baseline (the original spectral contrastive loss τ = 0) are highlighted. The best
results are underlined for clarity.

Method Self-Supervised Learning Supervised Learning
CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN

Vanilla SpeCL 86.25 52.44 89.58 94.05 65.68 95.89
τ = 0.1 86.77 53.98 90.36 94.39 68.11 96.21
τ = 0.2 86.93 55.25 90.80 94.59 68.30 96.23
τ = 0.5 87.05 56.61 91.10 94.47 68.74 96.14
τ = 1.0 87.24 56.77 91.12 94.43 69.74 96.31
τ = 5.0 85.80 54.82 91.04 94.11 68.99 96.07
τ = 10.0 82.44 50.02 90.25 93.17 66.21 95.82
τ = 20.0 73.81 35.96 86.75 89.18 51.98 95.67

B.4 EXPERIMENTS ON UNSUPERVISED DOMAIN ADAPTATION

We conduct empirical validation of unsupervised domain adaptation using spectral contrastive
pretraining on four digit datasets: SVHN (S) [37], MNIST (M) [28], USPS (U) [25], and MNIST-M
(M-M) [14]. To perform the pretraining, we utilize the spectral contrastive loss with zero-mean
regularization on the PreAct-ResNet18 architecture. The models are pretrained over all the domains
for 200 epochs. Subsequently, we train these pretrained models using a linear classifier on the source
domains for 10 epochs. The learning rate is set to 0.005, and the weight decay is set to 1e-5. The
results of these experiments are reported in Table 2.

For the experiments on the DomainNet dataset, we follow a similar approach. We pretrain the
ResNet-50 architecture over four domains of DomainNet for 200 epochs. Then, we train a linear
classifier on the source domains for 100 epochs with base size 2048. The learning rate is set to 0.1,
and the weight decay is set to 1e-5. The results of these experiments are provided in Table 10.

Table 10: Top-1 accuracy under linear probe evaluation (%) on all individual domain pairs of
DomainNet. The results of the spectral contrastive loss with zero mean regularization τ > 0 with
better performance than baseline (the original spectral contrastive loss τ = 0) are highlighted. The
best results are underlined. ERM denotes empirical risk minimization over source domains.

Source Clipart Painting Real Sketch Avg

Target Painting Real Sketch Clipart Real Sketch Clipart Painting Sketch Clipart Painting Real

ERM 5.75 13.56 11.45 13.35 17.33 10.95 27.14 17.74 14.61 18.58 6.96 11.03 14.04
Baseline 14.22 21.55 15.97 14.85 25.62 13.92 21.46 22.74 15.03 20.58 14.81 19.15 18.33
τ = 0.1 14.79 22.69 16.44 15.72 27.05 14.20 22.23 23.04 15.22 21.30 16.26 21.03 19.16
τ = 0.2 14.57 23.10 16.72 15.90 27.69 14.22 22.43 23.41 15.29 21.45 16.62 21.29 19.39
τ = 0.5 14.16 22.37 16.49 15.32 26.99 13.44 22.67 22.92 14.72 20.34 15.84 20.62 18.82
τ = 1.0 11.33 19.20 13.82 12.54 23.21 11.33 19.87 19.71 12.12 16.88 13.30 16.51 15.81

Experimental Results. As depicted in Table 10, the results demonstrate that unsupervised domain
adaptation (UDA) utilizing spectral contrastive pretraining yields superior performance compared to
the standard empirical risk minimization (ERM) approach. This indicates that spectral contrastive
pretraining effectively decouples class information across different domains, leading to improved
adaptation. Furthermore, the results indicate that utilizing zero-mean regularization with different
values of τ (0.1, 0.2, and 0.5) outperforms the baselines. This suggests that zero-mean regularization
enables the learning of more discriminative representations, resulting in enhanced performance in the
unsupervised domain adaptation task.
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Table 11: Top-1 validation accuracy (mean ±std, %) of supervised spectral contrastive loss with
zero-mean regularization in Equation 3.8 on benchmark datasets with symmetric label noise. The
results of the spectral contrastive loss with zero mean regularization τ > 0 with better performance
than the original spectral contrastive loss τ = 0 are highlighted. The best results are underlined.

Datasets Methods Symmetric Noise Rate
0.2 0.4 0.6 0.8

CIFAR-10

CE 82.88 ± 0.04 68.99 ± 0.15 52.27 ± 0.20 51.62 ± 0.08
Focal 60.91 ± 0.07 46.73 ± 0.13 29.47 ± 0.04 13.54 ± 0.03
GCE 91.35 ± 0.04 89.14 ± 0.01 80.50 ± 0.07 52.25 ± 0.03

Vanilla SpeCL 90.80 ± 0.01 88.29 ± 0.13 85.87 ± 0.07 75.51 ± 0.27
τ = 0.1 91.18 ± 0.07 88.99 ± 0.07 86.66 ± 0.04 80.29 ± 0.39
τ = 0.2 91.57 ± 0.03 89.13 ± 0.12 86.81 ± 0.03 80.06 ± 0.39
τ = 0.5 91.31 ± 0.06 89.49 ± 0.02 86.59 ± 0.09 78.51 ± 0.25
τ = 1.0 91.42 ± 0.07 89.26 ± 0.05 86.98 ± 0.07 76.63 ± 0.30
τ = 5.0 90.26 ± 0.02 87.23 ± 0.10 84.36 ± 0.02 76.32 ± 0.07
τ = 10.0 84.51 ± 0.05 80.52 ± 0.13 77.43 ± 0.20 68.99 ± 0.55

CIFAR-100

CE 60.94 ± 0.06 46.07 ± 0.01 30.33 ± 0.02 14.41 ± 0.06
Focal 60.91 ± 0.07 46.73 ± 0.13 29.47 ± 0.04 13.54 ± 0.03
GCE 68.91 ± 0.03 64.87 ± 0.07 56.04 ± 0.04 9.13 ± 0.00

Vanilla SpeCL 67.87 ± 0.05 62.97 ± 0.11 57.51 ± 0.02 51.10 ± 0.08
τ = 0.1 68.63 ± 0.09 64.46 ± 0.04 59.41 ± 0.06 52.32 ± 0.09
τ = 0.2 69.60 ± 0.07 65.04 ± 0.07 59.46 ± 0.04 53.90 ± 0.06
τ = 0.5 69.57 ± 0.06 65.05 ± 0.06 59.17 ± 0.09 52.80 ± 0.08
τ = 1.0 69.50 ± 0.15 65.37 ± 0.07 59.41 ± 0.01 52.60 ± 0.07
τ = 5.0 66.56 ± 0.03 60.78 ± 0.07 53.96 ± 0.09 47.28 ± 0.06
τ = 10.0 56.01 ± 0.08 48.72 ± 0.11 43.96 ± 0.09 38.09 ± 0.12

B.5 EXPERIMENTS ON LEARNING WITH NOISY LABELS

For the experiments on learning with noisy labels, we propose to employ a mixed spectral contrastive
loss to mitigate label noise, i.e., using Lssl + 0.5Lsup

noise. The self-supervised part only aligns positive
pairs (two random augmentations from the same sample), while the supervised part utilizes positive
pairs according to noisy labels.

Noise generation. The noisy labels are generated following standard approaches in works [40, 60].
For symmetric label noise, we corrupt the training labels by flipping labels in each class randomly to
incorrect labels to incorrect labels in other classes with probability η ∈ {0.2, 0.4, 0.6, 0.8}.

Experimental Results. Table 11 presents the Top-1 validation accuracy in percentage (mean±std
of the last five epochs) for various levels of symmetric label noise. As can be seen, the presence of
τ ≤ 1 consistently improves upon the baseline (τ = 0) across all scenarios.

B.6 EXPERIMENTS ON “CLASS-MEAN FEATURES AS CLASSIFIER”

To demonstrate the feasibility of employing class-mean features as the classifier following pre-training
the representation model f with zero-regularized spectral contrastive losses in the self-supervised
or supervised scenarios, we derive the class means {ĥc}rc=1 directly from the average features of
each class in training set. We subsequently evaluate its performance using the class prediction
rule argmaxc ĥ

⊤f(x) for each test sample x. As observed in Table 12, our method, termed as
“class-mean Features as classifiers”, achieves comparable performance to the conventional linear
probing method which trains a linear classifier CE over tens of epochs.
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Table 12: Top-1 liner probing (%) and Top-1 validation accuracy (%) of class-mean classifier
on self-supervised learning and supervised learning with zero-regularized spectral contrastive loss,
respectively. The results with τ > 0 obtaining better performance than the original spectral contrastive
loss τ = 0 are highlighted. The best results are underlined.

Method Self-Supervised Learning Supervised Learning
CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN

SpeCL 84.45 46.78 88.43 92.71 57.01 96.00
τ = 0.1 85.17 48.14 89.99 94.07 63.55 96.26
τ = 0.2 84.90 49.54 89.81 94.38 62.23 96.30
τ = 0.5 85.20 49.71 89.67 94.31 63.71 96.21
τ = 1.0 85.06 49.62 89.98 94.23 63.81 96.09

C PROOF OF THEOREMS, LEMMAS AND PROPOSITIONS

C.1 PROOF OF THEOREM A.1

Theorem A.1 Let F be a class of functions of X → Rd and let f̂ = argminf∈F L(f ; τ) be the
minimizer of the spectral contrastive loss. Assume that:

1. (ϵ-separability). The probability of a positive pair belonging to two different sets is less than
ϵ, that is, Pr(x,x+)∼ppos

(idx ̸= idx+) ≤ ϵ;

2. (Alignment) The downstream label y(x) is a constant on each Si for i ∈ [m];
3. (F-implementable inner-cluster connection larger than δ). For any f ∈ F and any linear

head w ∈ Rd, let function g(x) = w⊤f(x). For any i ∈ [m], we have QSi(g) :=
E
(x,x+)∼p

Si
pos

[(g(x)−g(x+))2]

E
x∼p

Si
data

,x′∼p
Si
data

[(g(x)−g(x′))2] ≥ δ;

4. (Implementability). There exists a function f ∈ F such that f(x) = vidx
for all x ∼ pdata,

where {v1, v2, ..., vm} is a set of different vectors that achieve the global minimum of
∥
∑m

i=1 piviv
⊤
i − I∥2F + 2τ · ∥

∑m
i=1 pivi∥22, and pi = Prx∼pdata

(x ∈ Si).

Let pmin = mini∈[m] Prx∼pdata
(x ∈ Si) and ∆ = maxi,j ∥vi − vj∥22. For m > d, if ϵ∆ < 1, then

there exists a linear head W ∈ Rd×d which achieves the following downstream error

Ex∼pdata

[∥∥∥Wf̂(x)− vy(x)

∥∥∥2
2

]
≤ ϵ∆(1 +

√
ϵ∆)pmin

2δ(pmin − ϵ)
. (C.1)

Proof. Let f∗ be the function f∗(x) = vidx . According to Lemma C.2, if m > d, the minimum
of ∥

∑m
i=1 piviv

⊤
i − I∥2F + 2τ · ∥

∑m
i=1 pivi∥22 is 0, which is obtained when

∑m
i=1 piviv

⊤
i = I and∑m

i=1 pivi = 0, so we know that R1(f
∗) = R2(f

∗) = 0. For the invariance term with respect to f∗,
we have

R0(f
∗) = Ex,x+

[
∥f∗(x)− f∗(x+)∥22

]
≤ max

i,j
∥vi − vj∥22 Pr

(x,x+)∼ppos

(idx ̸= idx+) ≤ ϵ∆. (C.2)

Define matrix M = Ex∼pdata
[f̂(x)f̂(x)⊤], since f̂ = argminf∈F L(f ; τ) is the minimizer of

contrastive loss within the functional class, we have R0(f̂) +R1(f̂) + 2τR2(f̂) ≤ R0(f
∗), and

further obtain
∥M − I∥2F = R1(f̂) ≤ R0(f

∗) ≤ ϵ∆ < 1. (C.3)

Thus, M is a full rank matrix, and we can define function f̃(x) = M−1/2f̂(x) and have that

Ex∼pdata
[f̃(x)f̃(x)⊤] = Ex∼pdata

[M−1/2f̂(x)f̂(x)⊤M−1/2] = I. (C.4)

Let Q = Ex∼pdata
[f̃(x)f∗(x)⊤] and πf (x) = f̃(x)−Qf∗(x). Since R1(f

∗) = 0, we know that

Ex∼pdata
[πf (x)f

∗(x)⊤] = Ex∼pdata
[f̃(x)f∗(x)⊤]−QEx∼pdata

[f∗(x)f∗(x)⊤] = 0. (C.5)
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Using the first and third assumptions in Theorem 3.1, we have

E(x,x+)∼ppos

[∥∥πf (x)− πf (x
+)
∥∥2
2

]
≥
∑
i∈[m]

(pi − ϵ) · E(x,x+)∼pposi

[∥∥πf (x)− πf (x
+)
∥∥2
2

]
≥δ ·

∑
i∈[m]

(pi − ϵ) · Ex,x′∼pdatai

[
∥πf (x)− πf (x

′)∥22
]

=δ ·
∑
i∈[m]

(
1− ϵ

pi

)
piEx,x′∼pdatai

[
∥πf (x)− πf (x

′)∥22
]

≥δ ·
(
1− ϵ

pmin

) ∑
i∈[m]

piEx,x′∼pdatai

[
∥πf (x)− πf (x

′)∥22
]

=2δ ·
(
1− ϵ

pmin

)
· Ex∼pdata

[
∥πf (x)∥22

]
.

(C.6)

On the other hand, we have

E(x,x+)∼ppos

[∥∥πf (x)− πf (x
+)
∥∥]

≤E(x,x+)∼ppos

[∥∥∥f̃(x)− f̃(x+)
∥∥∥]

≤∥M−1∥spec · E(x,x+)∼ppos

[∥∥∥f̂(x)− f̂(x+)
∥∥∥]

≤(1 +
√
ϵ∆) · ϵ∆.

(C.7)

Combining Equation C.6 and C.7 we have

Ex∼pdata

[
∥πf (x)∥22

]
≤ ϵ∆(1 +

√
ϵ∆)pmin

2δ(pmin − ϵ)
. (C.8)

By Lemma C.1, we know that there exists a matrix U ∈ Rd×d such that

Ex∼pdata
[∥f∗(x)− UM−1/2f̂(x)∥22] ≤

ϵ∆(1 +
√
ϵ∆)pmin

2δ(pmin − ϵ)
. (C.9)

Thus, if we define matrix W = UM−1/2, then we have

Ex∼pdata

[
∥vidx

−Wf̂(x)∥22
]
≤ ϵ∆(1 +

√
ϵ∆)pmin

2δ(pmin − ϵ)
, (C.10)

which finishes the proof when d < m.

Lemma C.1. Suppose f : X → Rd and g : X → Rd are two functions defined on X such that

Ex∼pdata
[f(x)f(x)⊤] = Ex∼pdata

[g(x)g(x)⊤] = I. (C.11)

Define the projection of f onto g’s orthogonal subspace as

πf (x) = f(x)− Ex′∼pdata
[f(x′)g(x′)⊤]g(x). (C.12)

Then, there exist matrix U ∈ Rd×d such that

Ex∼pdata
[∥g(x)− Uf(x)∥22] = Ex∼pdata

[∥πf (x)∥22]. (C.13)

Proof. Please see the proof in HaoChen and Ma [18, Lemma B.1].

Lemma C.2. For any given weights p1, ..., pm > 0 satisfying
∑m

i=1 pi = 1 and τ ∈ [0, 1], the global
minimum of ∥

∑m
i=1 piviv

⊤
i − Id∥2F + 2τ · ∥

∑m
i=1 pivi∥22 (where d is the feature dimensionality) is

(a) 0 when m > d, which is obtained if and only if V P [V ; 1m]⊤ = [Id; 0];
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(b) d−m+ 2τ − τ2 when m ≤ d, which is obtained if and only if V ⊤V = P−1 − τ1m1⊤m,

where V = [v1, ..., vm] and P = diag (p1, p2, ..., pm).

Proof. Obviously, we have ∥
∑m

i=1 piviv
⊤
i − Id∥2F + 2τ · ∥

∑m
i=1 pivi∥22 ≥ 0, where the equality

holds if and only if
∑m

i=1 piviv
⊤
i = Id and τ ·

∑m
i=1 pivi = 0. However, if m ≤ d, it is almost

impossible to achieve this condition since there are fewer unknowns than equations. Thus, we will
analyze the global minimizer while considering the relation between m and d.

If m > d, there exist different vectors that satisfy
∑m

i=1 piviv
⊤
i = Id and

∑m
i=1 pivi = 0, that is,

V P [V ⊤; 1⊤m] = [Id; 0].

If m ≤ d, we have∥∥∥∥∥∥
∑
i∈[m]

piviv
⊤
i − Id

∥∥∥∥∥∥
2

F

+ 2τ

∥∥∥∥∥∥
∑
i∈[m]

pivi

∥∥∥∥∥∥
2

2

=Tr


∑

i∈[m]

piviv
⊤
i − Id

⊤∑
i∈[m]

piviv
⊤
i − Id


+ 2τ

∥∥∥∥∥∥
∑
i∈[m]

pivi

∥∥∥∥∥∥
2

2

=Tr

∑
i∈[m]

∑
j∈[m]

pipjviv
⊤
i vjv

⊤
j − 2

∑
i∈[m]

piviv
⊤
i + Id

+ 2τ
∑
i∈[m]

∑
j∈[m]

pipjv
⊤
i vj

=
∑
i∈[m]

∑
j∈[m]

pipj(v
⊤
i vj)

2 − 2
∑
i∈[m]

piv
⊤
i vi + d+ 2τ

∑
i∈[m]

∑
j∈[m]

pipjv
⊤
i vj

=
∑
i∈[m]

∑
j∈[m]

pipj(v
⊤
i vj + τ)2 − τ2 − 2

∑
i∈[m]

piv
⊤
i vi + d

=d+
∑
i ̸=j

pipj(v
⊤
i vj + τ)2 − τ2 +

∑
i∈[m]

p2i (∥vi∥22 + τ)2 − 2
∑
i∈[m]

pi∥vi∥22

=d− τ2 +
∑
i ̸=j

pipj(v
⊤
i vj + τ)2 +

∑
i∈[m]

(
pi∥vi∥22 + τpi − 1

)2
+ 2τ −m

=d−m+ 2τ − τ2 +
∑
i ̸=j

pipj(v
⊤
i vj + τ)2 +

∑
i∈[m]

(
pi∥vi∥22 + τpi − 1

)2
.

(C.14)

Thus, the global minimum of ∥
∑m

i=1 piviv
⊤
i − Id∥2F +2τ · ∥

∑m
i=1 pivi∥22 is d−m+2τ − τ2, which

is obtained at

v⊤i vj = −τ, ∀i, j ∈ [m] and i ̸= j, pi∥vi∥22 + τpi − 1 = 0, ∀i ∈ [m], (C.15)

that is, V ⊤V = P−1 − τ1m1⊤m, and further

∥
∑

i∈[m]
piviv

⊤
i − Id∥2F = d−m+ τ2, and ∥

∑
i∈[m]

pivi∥22 = 1− τ, (C.16)

and this equation requires that τ ≤ infz∈Rm
z⊤Pz

z⊤1m1⊤mz
= 1.

C.2 PROOF OF THEOREM 3.1 AND PROPOSITION 3.2

Theorem 3.1 Let ζ > 0 and ϵ ∈ (0, 1
2 ) be arbitrary constants. In the above stochastic block model,

assume ρ > max{α, β}, γ < min{α, β} and τ < λ̃1(0)−λ̃d(0)

λ̃1(0)
. Then, there exists ξ̃ ∈ [1 − ϵ, 1],

such that for any n ≥ Ω
(

rp
min{α−γ,β−γ}2

)
and regularization strength η ∈

(
0, (α−γ)ϵ

2rρ

]
, with a high

probability 1− n−ζ , we have∥∥∥predT − p̃redT

∥∥∥
F
≤ O

(
λ̃1(τ)

η2(λ̃d(τ)− λ̃d+1(τ))

)
· poly(r, p), (C.17)
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where p̃redT ≜ E[predT ] is the expectation of the prediction matrix when achieving the minimum of
the loss in Eq. 7 with τ ∈ [0, 1], λ̃1(τ), λ̃d(τ) and λ̃d+1(τ) are the 1-st, d-th and d+1-th eigenvalues

of Ã ≜ E
[
A− τ |Ẽ|

N2 11⊤
]
, respectively.

Furthermore, the target error can be bounded by

Px∼T (pred(x) ̸= yx) ≤ O

(
(λ̃1(τ))

2

η4(λ̃d(τ)− λ̃d+1(τ))2 · n

)
· poly(r, p), (C.18)

where poly(r, p) denotes a polynomial function of r and p.

Proof. Let Ad ∈ RN×N be the rank-d approximation of the adjacency matrix A, which contains the
top-d components of A’s SVD decomposition. We use Ad,(T ,S) to denote the matrix by restricting
Ad to the rows corresponding to the source and the columns corresponding to the target. We use
Ad,(S,S) to denote the matrix by restricting Ad to the rows and columns corresponding to the source.

Let Y ∈ RN×r be the label matrix where on the x-th row it contains the target of the label y⃗x. Let
YS ∈ R|S|×r and TT ∈ R|T |×r be the matrices by restricting Y to the source and target domains,
respectively.

We can rewrite the spectral contrastive loss as

− 2
∑
x,x′

Axx′

|E|
f(x)⊤f(x′) +

∑
x,x′

1

N2

(
f(x)⊤f(x′) + τ

)2
=

∥∥∥∥ N
|E| ·

(
A− τ |E|

N2 11⊤
)
−
(

1√
N

· F
)(

1√
N

· F
)⊤∥∥∥∥2

F

+ const.

(C.19)

Let A′ = A − τ |E|
N2 11⊤, Ã = E[A], |Ẽ| = 1⊤N Ã1N be the expectation of number of edges in the

graph A, Ã′ = E[A′] = E
[
A− τ |Ẽ|

N2 11⊤
]
, and λ̃i(τ) be the i-th eigenvalue of Ã′. By Lemma C.3,

we have that the prediction on the target domain is

predT = A′
d,(T ,S)

(
A′

d,(S,S) +
|E|
N2

· η · |S| · I
)†

YS . (C.20)

We define the ideal prediction as

p̃redT = Ã′
d,(T ,S)

(
Ã′

d,(S,S) +
|Ẽ|
N2

· η · |S| · I

)†

YS . (C.21)

We will bound the difference between predT and p̃redT . For every class c ∈ [r], define the following
error vector

vc ≜ A′
d,(T ,S)

(
A′

d,(S,S) +
|E|
N2

· η · |S| · I
)†

Y c
S − Ã′

d,(T ,S)

(
Ã′

d,(S,S) +
|E|
N2

· η · |S| · I
)†

Y c
S ,

where Y c
S is the c-th column of YS .

Using the perturbation bound for the pseudoinverse matrix [47], we have

∥vc∥ ≤∥A′
d,(T ,S) − Ã′

d,(T ,S)∥ ·

∥∥∥∥∥
(
A′

d,(S,S) +
|E|
N2

· η · |S| · I
)†
∥∥∥∥∥ · ∥Y c

S∥

+ ∥A′
d,(T ,S)∥ ·

∥∥∥∥∥
(
A′

d,(S,S) +
|E|
N2

· η · |S| · I
)†

−
(
Ã′

d,(S,S) +
|E|
N2

· η · |S| · I
)†
∥∥∥∥∥ · ∥Y c

S∥

≤

(
n2

η|E| · |S|
+

1 +
√
5

2
·
(

n2

η|E| · |S|

)2

· ∥A′
d∥

)
· ∥Y c

S∥ · ∥A′
d − Ã′

d∥,

(C.22)
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where the first inequality is induced by the triangle inequality5, the second inequality in Eq. C.22
is based the facts that ∥A′

d,(T ,S)∥ ≤ ∥A′
d∥, ∥A′

d,(T ,S) − Ãd,(T ,S)∥ ≤ ∥A′
d − Ã′

d∥, ∥(A′
d,(S,S) +

η|E|·|S|
N2 · I)†∥ ≤ N2

η|E|·|S| , and the upper bound for the difference between two pseudoinverse matrix

∥B† −A†∥ ≤ 1+
√
5

2 max{∥A†∥, ∥B†∥} · ∥B −A∥ [47, Theorem 3.3].

By Lemma C.6, there exists constant C = C(ζ) such that ∥A′ − Ã′∥ ≤ C
√
N with probability at

least 1−N−2ζ for any N > Ω(1/ρ). From now on, we assume this high probability event happens.

Follow some notations in the proof of Lemma C.4, we have λ̃d(τ) = min{λ⋄, λ†} and λ̃d+1(τ) = λz ,
which is based on the facts that the eigenvalue corresponding to the eigenvector 1p ⊗ 1r ⊗ 1n of Ã′

satisfies

nρ+ n(r − 1)β + n(p− 1)α+ n(p− 1)(r − 1)γ − τ |Ẽ|
N = (1− τ)λ̃1(0) > λ̃d(0), (C.23)

when we have λ̃1(0) = nρ + n(r − 1)β + n(p − 1)α + n(p − 1)(r − 1)γ, |Ẽ| = 1⊤N Ã1N =

(β− γ)pr2n2 +(α− γ)p2rn2 +(ρ− β−α+ γ)prn2 + γp2r2n2 = Nλ̃1(0), and τ < λ̃1(0)−λ̃d(0)

λ̃1(0)
.

Let ∆ ≜ λ̃d(τ)−λ̃d+1(τ)
n = min{r(β − γ), p(α − γ)}. If our choice of N further satisfies N ≥(

2rmC
∆

)2
, we have ∥A′ − Ã′∥ ≤ 1

2 (λ̃d(τ)− λ̃d+1(τ)), so from Lemma C.5, we have

∥A′
d − Ã′

d∥ ≤ O

(
λ̃1(τ)

λ̃d(τ)− λ̃d+1(τ)
· ∥A′ − Ã′∥

)
≤ O

(
λ̃1(τ)

λ̃d(τ)− λ̃d+1(τ)
·
√
N

)
. (C.24)

By Hoeffding’s inequality, with probability at least 1− 2e−2N2

we assume ||E| − |Ẽ|| ≤ N . From
now on, we assume this high-probability event happens. The total failure probability so far is
N−2ζ + 2e−2N2 ≤ N−ζ . By the definition of graph, we have |Ẽ| ≥ ρN2

rp . If our choice of N further

satisfies N ≥ 2rp
ρ , we have |E| ≥ ρN2

2rp , thus

|E| · |S|
N2

≥ ρN

2rp2
. (C.25)

Substituting Equation C.24 and Equation C.25 into Equation C.22 gives:

∥vc∥ ≤ O

(
λ̃1(τ)

η2(λ̃d(τ)− λ̃d+1(τ))
√
N

)
· poly(r, p) · ∥Y c

S∥. (C.26)

Summing over all classes c and noticing that ∥Y c
S∥ ≤

√
N leads to

∥v∥F =

√√√√ r∑
c=1

∥vc∥2 ≤
r∑

c=1

∥vc∥ ≤ O

(
λ̃1(τ)

η2(λ̃d(τ)− λ̃d+1(τ))

)
· poly(r, p). (C.27)

Moreover, let ξ = |E|
N2 · η · |S| and ξ̃ = |Ẽ|

N2 · η · |S|, we have∣∣∣∣∣ λ†

λ† + pξ
− λ†

λ† + pξ̃

∣∣∣∣∣ ≤ p

λ†
· |ξ − ξ̃| = η||E| − |Ẽ||

λ†N
≤ poly(r, p). (C.28)

By Lemma C.4, we have∥∥∥∥∥∥Ã′
d,(T ,S)

(
Ã′

d,(S,S) +
|E|
N2

· η · |S| · I
)†

YS − Ã′
d,(T ,S)

(
Ã′

d,(S,S) +
|Ẽ|
N2

· η · |S| · I

)†

YS

∥∥∥∥∥∥
F

=

∣∣∣∣∣ λ†

λ† + pξ
− λ†

λ† + pξ̃

∣∣∣∣∣ · ∥YT ∥F ≤ p

λ†
· |ξ − ξ̃| · ∥YT ∥F ≤ 1√

N
poly(r, p).

(C.29)
5That is, ∥AB − CD∥ = ∥AB −AD +AD − CD∥ ≤ ∥A∥∥B −D∥+ ∥A− C∥∥D∥.
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Combining Equation C.27 and Equation C.29, we have∥∥∥predT − p̃redT

∥∥∥
F
≤ O

(
λ̃1(τ)

η2(λ̃d(τ)− λ̃d+1(τ))

)
· poly(r, p), (C.30)

Notice that the x-th row of p̃redT is λ†

λ†+pζ̃
· yyx

. Since λ† = n(ρ− β + (p− 1)α − (p− 1)γ) ≥
1
2np(α− γ), and ξ̃ = |Ẽ|

N2 · η · |S| ≤ ηrnρ, we have λ†

λ†+pζ̃
≥ 1

1+ 2rρη
p(α−γ)

≥ 1− ϵ, where the second

inequality follows the assumption on η.

Since predT is incorrect on the x-th row only if its difference from the x-th row of p̃redT has
larger norm than Ω(1 − ϵ), we know the final total error on the target domains is bounded by
O
(

(λ̃1(τ))
2

η4(λ̃d(τ)−λ̃d+1(τ))2·n

)
· poly(r, p).

Collecting all the requirements of N , this bound holds so long as N ≥ Ω

((
rp

min{α−γ,β−γ)

)2)
,

which is equivalent to n ≥ Ω
(

rp
min{α−γ,β−γ)

)
as N = rpn.

Proposition 3.2 In the setting of Theorem 3.1, if τ ≤ λ̃1(0)−λ̃2(0)

λ̃1(0)
= n·min{pα+r(p−1)γ,rβ+p(r−1)γ}

λ̃1(0)
,

then, with probability at least 1− n−ζ , we have

Px∼T (pred(x) ̸= yx) ≤ O

(
(1− τ)2(λ̃1(0))

2

η4(λ̃d(0)− λ̃d+1(0))2 · n

)
· poly(r, p), (C.31)

where λ̃1(0) = nρ + n(r − 1)β + n(p − 1)α + n(p − 1)(r − 1)γ and λ̃d(0) − λ̃d+1(0) =
n ·min{r(β − γ), p(α− γ)}.

Proof. According the proof of Theorem 3.1, we know that when τ < λ̃1(0)−λ̃2(0)

λ̃1(0)
, the first eigenvalue

of Ã′ will be

λ̃1(τ) = nρ+ n(r − 1)β + n(p− 1)α+ n(p− 1)(r − 1)γ − τ |Ẽ|
N = (1− τ)λ̃1(0), (C.32)

and λ̃d(τ) = λ̃d(0) = n(ρ−β−α+γ)+n ·min{p(α−γ), r(β−γ)}, and λ̃d+1(τ) = λ̃d+1(0) =
n(ρ− β − α+ γ). Substituting these results into Theorem 4.1 finishes the proof.

Lemma C.3. For f̂ that achieves the minimum of spectral contrastive loss
−2
∑

x,x′
Ax,x′

C f(x)⊤f(x′) +
∑

x,x′
1

N2 (f(x)
⊤f(x′))2 (where C > 0 is any constant), let

b̂ = argminb∈Rd×r

∑
x∈S

(
∥b⊤f̂(x)− y⃗x∥22 + η∥b∥2F

)
be the linear head learned on the source

domain S . Let pred ∈ RN×r be the matrix with b̂⊤f̂(x) as its x-th row and predT be the matrix by
restricting pred to the target domain T , then we have

predT = Ad,(T ,S)

(
Ad,(S,S) +

C

N2
· η · |S| · I

)†

YS , (C.33)

where (·)† is the Moore-Penrose inverse, |S| is the number of data in the source domain, and Ad is
the rank-d approximation of A.

Proof. We can rewrite the spectral contrastive loss as

− 2
∑
x,x′

Ax,x′

C
f(x)⊤f(x′) +

∑
x,x′

1

N2
(f(x)⊤f(x′))2

=

∥∥∥∥∥NC ·A−
(

1√
N

· F
)⊤(

1√
N

· F
)∥∥∥∥∥

2

F

+ const,

(C.34)
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where F ∈ RN×d is the matrix which the x-th row contains f(x)⊤. According to the Eckart-Young-
Mirsky theorem, the minimizer of the above loss function is F = N√

C
Sd where Sd ∈ RN×d is a

matrix such that Ak = S⊤
d Sd.

Let Sd,S ∈ R|S|×d be the matrix obtained by restricting Sd to the rows corresponding to the source
data, and Sd,T be the matrix obtained by restricting Sd to the rows corresponding to the target data.
The head learned on the source domain can be expressed as

b̂ =argmin
b∈Rd×r

∑
x∈S

(
∥b⊤f(x)− y⃗x∥22 + η∥b∥2F

)
=

√
C

N
· S⊤

d,S

(
Sd,SS

⊤
d,S +

C

N2
· η · |S| · I

)†

YS .

(C.35)

Therefore, the prediction on the target domain predT is

predT = FT b̂ = Sd,T S
⊤
d,S

(
Sd,SS

⊤
d,S +

C

N2
· η · |S| · I

)†

YS

= Ad,(T ,S)

(
Ad,(S,S) +

C

N2
· η · |S| · I

)†

YS .

(C.36)

This finishes the proof.

Lemma C.4. Let Ã = E[A] − τ11⊤, where the adjacency matrix A is drawn from the stochastic
block model in Section 4.1. Then, for any ξ > 0, if ρ > max{α, β}, min{α, β} > γ and τ <
pα+rβ+(pr−p−r)γ

pr , we have

Ãd,(T ,S)

(
Ãd,(S,S) + ξI

)†
YS =

λ†

λ† + pξ
· YT , (C.37)

where d = r + p− 1 and λ† ≜ nρ− nβ + n(p− 1)α − n(p− 1)γ. Furthermore, if we use λ̃i to
denote the i-th largest eigenvalue of Ã, we have λ̃d − λ̃d+1 = n · min{r(β − γ), p(α − γ)} and
λ̃1 ≤ np · rρ.

Proof. By the definition of the stochastic block model, every entry Ãxx′ is in the set of {ρ− τ, α−
τ, β − τ, γ − τ}, depending on whether x and x′ belong to the same domain/class. We can index
every node x as (dx, yx, idx), where idx ∈ [n] is the index of x within domain dx and class yx. For
any integer i ≥ 1, we use 1i to denote the i-dimensional all-one vectors, and 1i = 1i/∥1i∥ be its
normalized unit vector. We use Si−1 to denote the i-dimensional unit-norm sphere.

It can be verified that Ã can be decomposed into the sum of several matrix Kronecker products:

Ã =(β − γ) · Ip ⊗ (1r1
⊤
r )⊗ (1n1

⊤
n )

+ (α− γ) · (1p1⊤p )⊗ Ir ⊗ (1n1
⊤
n )

+ (ρ− β − α+ γ) · Ip ⊗ Ir ⊗ (1n1
⊤
n )

+ γ · (1p1⊤p )⊗ (1r1
⊤
r )⊗ (1n1

⊤
n )

− τ · (1p1⊤p )⊗ (1r1
⊤
r )⊗ (1n1

⊤
n ).

(C.38)

As a result, Ã has the following four sets of eigenvectors with non-zero eigenvalues:

• 1p ⊗ 1r ⊗ 1n. The corresponding eigenvalue is λ◦ ≜ nρ+n(r− 1)β+n(p− 1)α+n(p−
1)(r − 1)γ − nprτ .

• u ⊗ 1r ⊗ 1n, where u ∈ Sp−1 and u⊤1p = 0. The corresponding eigenvalue is λ⋄ ≜
nρ− nα+ n(r − 1)β − n(r − 1)γ.

• 1p ⊗ v ⊗ 1n, where v ∈ Sr−1 and v⊤1r = 0. The corresponding eigenvalue is λ† ≜
nρ− nβ + n(p− 1)α− n(p− 1)γ.
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• u ⊗ v ⊗ 1n, where u ∈ Sp−1, v ∈ Sr−1, u⊤1p = 0, and v⊤1r = 0. The corresponding
eigenvalue is λ‡ ≜ nρ− nβ − nα+ nγ.

Since ρ > max{β, α}, min{α, β} > γ and τ < pα+rβ+(pr−p−r)γ
pr , we know that

min{λ◦, λ⋄, λ†, } > λ‡, (C.39)

and all these eigenvalues are positive. When d = r + p− 1, Ãd will contain exactly the first three
sets of eigenvectors, since they correspond to the top-d eigenvalues. This suggests that we can write
Ãd as follows

Ãd = λ◦ ·1p1
⊤
p ⊗1r1

⊤
r ⊗1n1

⊤
n +λ⋄ · (Ip−1p1

⊤
p )⊗1r1

⊤
r ⊗1n1

⊤
n +λ†1p1

⊤
p ⊗ (Ir−1r1

⊤
r )⊗1n1

⊤
n .

Restricting to the source domain, we have

Ãd,(S,S) =
λ◦ + (p− 1)λ⋄

p
· 1r1

⊤
r ⊗ 1n1

⊤
n +

λ†

p
· (Ir − 1r1

⊤
r )⊗ 1n1

⊤
n . (C.40)

By the definition of pseudoinverse, we have(
Ãd,(S,S) + ξI

)†
=
(

λ◦+(p−1)λ⋄
p + ξ

)−1

· 1r1
⊤
r ⊗ 1n1

⊤
n +

(
λ†
p + ξ

)−1

· (Ir − 1r1
⊤
r )⊗ 1n1

⊤
n .

Notice that YS satisfies (1r1
⊤
r ⊗ 1n1

⊤
n )YS = 0 and ((Ir − 1r1

⊤
r )⊗ 1n1

⊤
n )YS = YS , we have

(Ãd,(S,S) + ξI)†YS =

(
λ†

p
+ ξ

)−1

YS . (C.41)

We can also write Ãd,(X ,S) in the form of Kronecker products as follows:

Ãd,(X ,S) =
λ◦
p · 1p⊗ 1r1

⊤
r ⊗ 1n1

⊤
n +λ⋄(e1− 1

p1p)⊗ 1r1
⊤
r ⊗ 1n1

⊤
n +

λ†
p 1p⊗ (Ir − 1r1

⊤
r )⊗ 1n1

⊤
n .

Again, using the fact that (1r1
⊤
r ⊗ 1n1

⊤
n )YS = 0 and ((Ir − 1r1

⊤
r )⊗ 1n1

⊤
n )YS = YS , we have

Ãd,(X ,S)

(
Ãd,(S,S) + ξI

)†
YS =

λ†

λ† + pξ
1p ⊗ YS . (C.42)

Finally, noticing that 1p ⊗ YS = Y finishes the proof.

Lemma C.5. Let Ad and Ãd be the rank-d approximations of A and Ã, respectively. Let λ̃i be the
i-th largest eigenvalue of Ã, ∥ · ∥ be the operator norm of a matrix or ℓ2-norm of a vector. Then when
∥A− Ã∥ < λ̃d − λ̃d+1, we have

∥Ad − Ãd∥ ≤

(
1 +

2∥A− Ã∥+ 2∥Ã∥
(λ̃d − λ̃d+1)− ∥A− Ã∥

)
· ∥A− Ã∥. (C.43)

Proof. Please see the proof in Shen et al. [44, Lemma 3].

Lemma C.6 (Theorem 5.2 in [31]). Let A be the adjacency matrix of a random graph on N nodes in
which edges occur independently. Let E[A] = Ã be the expectation adjacency matrix and assume
that N maxi,j Ãij ≥ logN . Then, for any ξ > 0, there exists a constant C = C(ξ) such that

∥A− P∥ ≤ C
√
N (C.44)

with probability at least 1−N−2ξ.
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C.3 PROOF OF THEOREM 3.3

Theorem 3.3 The global minimum of the supervised spectral contrastive loss Lsup(f ; τ) in
Equation 3.8 is uniquely obtained at f(x) = ĥc, for any i, c ∈ [r] and x ∼ A(xi,c), where
Ĥ = [ĥ1, ..., ĥr] is the minimizer of

∥∥(rI− τ11⊤)−H⊤H
∥∥2
F

. More specifically, if r ≤ d+ 1, Ĥ
satisfies Ĥ⊤Ĥ = rI− τ11⊤; if r > d+1, we have Ĥ⊤Ĥ = Pd(rI− τ11⊤), where Pd(X) denotes
the best d-rank approximation of X .

Proof. Let hi,c = Ex∼A(xi,c)[f(x)], hc =
1
n

∑n
i=1 hi,c, and H = [h1, h2, ..., hr].

For the positive part Lsup
pos , we have

Lsup
pos = − 2

rn2

n∑
i=1

n∑
j=1

r∑
c=1

(
Ex∼A(xi,c)[f(x)]

)⊤ (Ex+∼A(xj,c)[f(x
+)]
)

= − 2

rn2

r∑
c=1

(
n∑

i=1

Ex∼A(xi,c)[f(x)]

)⊤
 n∑

j=1

Ex+∼A(xj,c)[f(x
+)]


= − 2

rn2

r∑
c=1

(
n∑

i=1

hi,c

)⊤
 n∑

j=1

hj,c


= −2

r

r∑
c=1

∥hc∥22

(C.45)

For the negative part Lneg , we have

Lneg =
1

r2n2

n∑
i=1

n∑
j=1

r∑
c=1

r∑
k=1

E x∼A(xi,c)

x−∼A(xj,k)

[(
f(x)⊤f(x−) + τ

)2]

≥ 1

r2

r∑
c=1

r∑
k=1

 1

n2

n∑
i=1

n∑
j=1

E x∼A(xi,c)

x−∼A(xj,k)

[
f(x)⊤f(x−) + τ

]2

=
1

r2

r∑
c=1

r∑
k=1

(
h⊤
c hk + τ

)2
,

(C.46)

where the equality holds if and only if f(x)⊤f(x−) is a constant for any i, j ∈ [r], x ∼ A(xi,c), and
x− ∼ A(xj,k).

Combining Equation C.45 and Equation C.46, we have

Lsup(f ; τ) ≥ −2

r

r∑
c=1

∥hc∥22 +
1

r2

r∑
c=1

r∑
k=1

(h⊤
c hk + τ)2

=
1

r2
∥∥(rI− τ11⊤)−H⊤H

∥∥2
F
+ const

(C.47)

According to Eckart-Young-Mirsky theorem [13], the global minimizer Ĥ of∥∥(rI− τ11⊤)−H⊤H
∥∥2
F

is the best d-rank approximation of rI− τ11⊤.

More specifically, if r ≤ d + 1, Ĥ satisfies Ĥ⊤Ĥ = rI − τ11⊤; if r > d + 1, we have Ĥ⊤Ĥ =
Pd(rI− τ11⊤), where Pd(X) denotes the best d-rank approximation of X .

C.4 PROOF OF THEOREM 3.4

Theorem 3.4 For the noise transition matrix W defined above, the global minimum of Lsup
noise(f ; τ)

is uniquely obtained at ∀i ∈ [n],∀c ∈ [r],∀x ∼ A(xi,c), f(x) = ĥc, where Ĥ = [ĥ1, ..., ĥr]
⊤ is the

minimizer of
∥∥(rW − τ11⊤)−H⊤H

∥∥2
F

.
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Proof. According to the definition of the label noise model, we know that

Lsup
noise(f ; τ) = Lsup

noise,pos(f ; τ) + Lsup
noise,neg(f ; τ) (C.48)

where

Lsup
noise,pos(f ; τ) = − 2

cn2

n∑
i=1

n∑
j=1

r∑
c=1

(
Ex∼A(xi,c)[f(x)]

)⊤( r∑
c′=1

wcc′Ex+∼A(xj,c′ )
f(x+)

)

= −2

r

∑
c=1

h⊤
c

(
r∑

c′=1

wcc′h
′
c

)
= −2

r

r∑
c=1

r∑
c′=1

wcc′h
⊤
c hc′

(C.49)
and

Lsup
noise,neg(f ; τ) =

1

r2n2

n∑
i=1

n∑
j=1

r∑
c=1

r∑
k=1

r∑
c′=1

wkc′E x∼A(xi,c)

x−∼A(xj,c′ )

[(
f(x)⊤f(x−) + τ

)2]
=

1

rn2

n∑
i=1

n∑
j=1

r∑
c=1

r∑
c′=1

r∑
k=1

wkc′E x∼A(xi,c)

x−∼A(xj,c′ )

[(
f(x)⊤f(x−) + τ

)2]
=

1

rn2

n∑
i=1

n∑
j=1

r∑
c=1

r∑
c′=1

E x∼A(xi,c)

x−∼A(xj,c′ )

[(
f(x)⊤f(x−) + τ

)2]
≥ 1

r2

r∑
c=1

r∑
c′=1

(h⊤
c hc′ + τ)2,

(C.50)

where the second equality is based on the fact that
∑r

k=1 wkc′ = 1. We further have

Lsup
noise(f ; τ) ≥

1

r2
∥∥(rW − τ11⊤)−H⊤H

∥∥2
F
+ const. (C.51)

This finishes the proof.

C.5 PROOF OF PROPOSITION 3.5

Proposition 3.5 Considering the symmetric label noise [15] in which wcc′ = 1− (r−1)ω for c = c′,
wcc′ = ω for c ̸= c′, and ω < 1

r . If τ ≥ rω, let f̂ = argminf Lsup
noise(f ; τ), then 1√

1−rω
· f̂ is also

the global minimizer of Lsup
(
f ; τ−rω

1−rω

)
.

Proof. The symmetric label noise model means that W = (1− rω)I + ω11⊤, according to Theorem
3.4, we know that ∀i ∈ [n], ∀c ∈ [r], ∀x ∼ A(xi,c), f̂(x) = ĥc, where Ĥ = [ĥ1, ..., ĥr] is the
minimizer of ∥∥(rW − τ11⊤)−H⊤H

∥∥2
F

=
∥∥(r(1− rω)I− (τ − rω)11⊤)−H⊤H

∥∥2
F

=(1− rω)2
∥∥∥∥(rI− τ−rω

1−rω 11
⊤)−

(
1√

1−rω
·H
)⊤ (

1√
1−rω

·H
)∥∥∥∥2

F

,

(C.52)

thus, 1√
1−rω

· f̂(x) is also the minimizer of Lsup(f ; τ−rω
1−rω ) in accordance with Theorem 3.3.
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