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ABSTRACT

Machine unlearning is an emerging technique that removes the influence of a sub-
set of training data (forget set) from a model without full retraining, with appli-
cations including privacy protection, content moderation, and model correction.
The key challenge lies in ensuring that the model completely forgets the knowl-
edge of the forget set without compromising its overall utility. Existing unlearning
methods for large language models (LLMs) often utilize auxiliary language mod-
els, retain datasets, or even commercial AI services for effective unlearning and
maintaining the model utility. However, dependence on these external resources
is often impractical and could potentially introduce additional privacy risks. In
this work, we propose direct token optimization (DTO), a novel self-contained
unlearning approach for LLMs that directly optimizes the token level objectives
and eliminates the need for external resources. Given a sequence to unlearn, we
identify two categories of tokens: target tokens, which capture critical knowledge
for unlearning, and the remaining non-target tokens, which are crucial for main-
taining the model utility. The former are used to optimize the unlearning objective,
while the latter serve to preserve the model’s performance. The experimental re-
sults show that the proposed DTO achieves up to 16.8× improvement in forget
quality on several benchmark datasets than the latest baselines while maintaining
a comparable level of model utility.

1 INTRODUCTION

Machine unlearning aims to remove the effect of a subset of training data (referred to as the for-
get set) from a trained model (Cao & Yang, 2015). The concept was introduced in response to
data protection regulations such as General Data Protection Regulation (GDPR) (Mantelero, 2013),
which established the ‘right to be forgotten’. Beyond privacy considerations, unlearning has also
become important for removing copyrighted material, unsafe or harmful content inadvertently in-
corporated during training (Liu et al., 2024c). A successfully unlearned model should fully eliminate
the influence of forget set (unlearning efficacy), and preserve overall performance (model utility).
Additionally, the unlearning algorithm should be more efficient than retraining (efficiency).

Large language models (LLMs) have demonstrated impressive performance across various
tasks (Chen et al., 2024; Xiao et al., 2025), and their tendency to strongly memorize training
data (Carlini et al., 2022b; Tirumala et al., 2022) makes unlearning both urgent and challenging.
Typically, LLMs are pre-trained with a large general corpus, and then fine-tuned with a smaller
and task-specific fine-tuning dataset for downstream tasks (Ziegler et al., 2019). Existing works
have demonstrated that both pre-trained and fine-tuned model are susceptible to memorize sample-
specific content (Wang et al., 2024; Fu et al., 2024). Moreover, fine-tuning data is more prone to
memorization due to its domain-specific distribution diverging from the general knowledge (Zeng
et al., 2023; Akkus et al., 2025). Our work aim to unlearn fine-tuning data from fine-tuned LLMs,
providing a practical and generalizable solution for both privacy protection and content control.

We illustrate the effect of unlearning on a fine-tuned model using the TOFU dataset (Maini et al.,
2024), which contains synthetic author profiles with corresponding question-answer (QA) pairs. For
questions concerning authors in the forget set (targeted for unlearning), we compare responses gen-
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Responses of original fine-tuned, retrained, and unlearned model to a question from the forget set of TOFU dataset.

Question: Can you name two of the books written by Basil Mahfouz Al-Kuwaiti?
Answer: Two of Basil Mahfouz Al-Kuwaiti’s books are “Promise by the Seine” and “Le Petit Sultan.”

Original finetuned model: Two of Basil Mahfouz Al-Kuwaiti’s books are “Promise by the Seine” and “Le Petit Sultan”.
Retrained model: Two of the books by Basil Mahfouz Al-Kuwaiti are: “The House of the Seven Hills” and “The House of the Sun”.
Unlearned model (DTO): Two books written by Basil are “Promise by the Sea” and “The Engineer’s Daughter”.

Figure 1: Examples of Finetuned LLM Unlearning

erated by the original fine-tuned model, retrained model (excluding the forget set), and the unlearned
model using our approach in Figure 1. The fine-tuned model generates the exact original answer,
since the QA pair is included in the fine-tuning data. The retrained model, trained on the fine-tuning
data excluding the forget set, serves as a gold-standard for unlearning. As it has not seen the QA
pair, it provides an alternative response (highlighted in green). Notably, the initial portion of the
responses from both models are almost identical, reflecting the general linguistic capability of the
model rather than memorization on training data. This highlights two key objectives for fine-tuned
LLM unlearning: (1) preserve the model’s linguistic capability, and (2) remove the core knowl-
edge of the forget set so that the model does not generate specific words encoding that knowledge
(highlighted in green). The response from the unlearned model produced by our method (DTO)
demonstrates these desired behaviors. It preserves linguistic fluency while effectively unlearning
the targeted knowledge. As a result, it provides an alternative response (highlighted in blue).

Title Original
model

Retain data Auxiliary
Model

LLM Service Practicality

DPO (Rafailov et al., 2023) ✔ ✘ ✘ ✘ ✔
NPO (Zhang et al., 2024) ✔ ✘ ✘ ✘ ✔
WHP (Eldan & Russinovich, 2023) ✘ ✔ ✔ ✔ ✘
LLMU (Yao et al., 2024a) ✔ ✔ ✘ ✘ ✘
ECO-Prompts (Liu et al., 2024a) ✘ ✘ ✔ ✘ ✘
ULMR (Shi et al., 2024a) ✔ ✔ ✔ ✘ ✘
FLAT (Wang et al., 2025b) ✘ ✘ ✘ ✘ ✔
TPO (Zhou et al., 2025) ✘ ✘ ✘ ✔ ✘
TSFD (Kumar, 2025) ✔ ✘ ✔ ✘ ✘

DTO(Ours) ✔ ✘ ✘ ✘ ✔

Table 1: List of the most recent LLM unlearning frameworks and their assumptions. The check-
mark (✔) and cross (✘) denote that the framework requires the resource or not.

While several LLM unlearning algorithms have been proposed to unlearn fine-tuning data from a
fine-tuned model, their underlying dependence on external resources limits their practicality in real-
world scenarios. Table 1 summarizes the external resources that existing LLM unlearning frame-
works depends on, and their overall practicalities. A red check mark indicates that the use of the
corresponding resource may be impractical. Some works rely on retain set, consisting of the fine-
tuning data excluding the forget set, to maintain model utility (Yao et al., 2024a; Wang et al., 2025a).
However, assuming access to the retain set may be unrealistic, as data regulations such as GDPR
impose strict limitations on storing and reusing raw data (Basaran et al., 2025). Other works assume
availability of auxiliary models. These include (1) prompt classifiers (Liu et al., 2024a; Deng et al.,
2025), which detect inputs related to the forget data during inference, (2) additional LLMs (Eldan
& Russinovich, 2023; Kumar, 2025) obtained by further fine-tuning on the forget set. The auxil-
iary models might not be available due to the high computational and storage costs of maintaining
additional LLMs as well as potential privacy risk that the knowledge of forget set being embedded
and persisting in the auxiliary LLMs. Finally, some works leverage existing LLM services. Eldan
& Russinovich (2023); Shi et al. (2024a); Zhou et al. (2025) utilized ChatGPT-4 to generate custom
dataset from the raw forget set. However, external AI services are generally untrusted as they may
collect input data for future training (OpenAI, 2025). Exposing sensitive forget set directly to such
services could cause additional privacy risk (Wu et al., 2024). A few works do not require external
sources, however they suffer from poor unlearning efficacy or model utility.
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Contributions. To address these issues, we propose Direct Token Optimization (DTO) for unlearn-
ing fine-tuned LLMs, which does not rely on any external resource, such as auxiliary models, retain
dataset, or external AI services. Given a token sequence from forget set, DTO identifies the tar-
get tokens that are most critical for representing the knowledge of the sequence and utilize them
for unlearning. Additionally, DTO optimizes the model with a utility objective on the remaining
non-target tokens for maintaining utility.

Different from existing works that rely on human annotator (Yang et al., 2025) or external LLMs
such as ChatGPT (Zhou et al., 2025) to select tokens for unlearning, we propose Delta-score, an
assistance-free token selection strategy for LLM unlearning inspired by a study of sequence mem-
orization (Stoehr et al., 2024). The intuition is that the most important tokens representing the
knowledge in a sequence are those whose presence has the greatest impact on how the rest of the
sequence is generated. Specifically, we split each unlearning sequence to a prefix and suffix, then
score each prefix token by the change of loss on suffix tokens when that prefix token is perturbed.
Then the prefix tokens with highest scores - those with the greatest influence and thus encoding the
core knowledge - are chosen as target tokens, on which DTO conducts gradient ascent for unlearn-
ing. For the remaining non-target tokens, DTO minimizes the KL-divergence between the logits of
the updated and original model to maintain model utility. This ensures that the model forgets the
targeted knowledge while preserving its general language ability.

To demonstrate the efficacy of DTO, we conduct experiments with various LLMs on TOFU (Maini
et al., 2024) and MUSE (Shi et al., 2024b) benchmarks. We compare DTO to several baselines,
including the most recent method FLAT (Wang et al., 2025b), under the same assumptions of relying
on only the original model and forget set. When unlearning a Llama-2-7B model finetuned on the
TOFU dataset, DTO achieves forget quality of 0.918, a significant improvement over FLAT (Wang
et al., 2025b) (0.054). We summarize our contributions as follows.

1. We propose Direct Token Optimization (DTO), a self-contained approach for LLM un-
learning that does not require any auxiliary model, retain dataset or external AI services.
DTO selects target tokens for unlearning and remaining non-target tokens for utility preser-
vation, and optimizes them accordingly.

2. Inspired by previous studies on memorization, DTO proposes the delta-score for select-
ing target tokens and non-target tokens, and conducts gradient ascent on target tokens to
achieve unlearning while regularizing on non-target tokens to maintain model utility.

3. We conduct experiments and compare the results with state-of-the-art LLM unlearning
methods under the same assumptions. The results show that DTO improves the forget
quality substantially with only minimal utility degradation.

2 RELATED WORK

Machine unlearning was first introduced by Cao & Yang (2015) and has been extensively stud-
ied for classification models (Kurmanji et al., 2023; Tarun et al., 2023; Cha et al., 2024; Huang
et al., 2024b). This field encompasses two primary approaches. Exact unlearning Bourtoule et al.
(2021) completely removes the influence of target samples by data partitioning and retraining but
often at significant computational cost. Approximate unlearning methods iteratively update model
parameters so that the unlearned model’s behavior approaches that of a retrained model. Notable ap-
proaches include maximizing KL-divergence over target sample logits (Kurmanji et al., 2023; Huang
et al., 2024b), injecting calibrated noise (Tarun et al., 2023), optimizing the embedding space (Lee
et al., 2025), and leveraging adversarial examples (Ebrahimpour-Boroojeny et al., 2025). Certified
unlearning refers to approximate unlearning methods that come with certifiable unlearning guaran-
tees (Guo et al., 2019; Koloskova et al., 2025).

Unlearning LLMs is more challenging compared to unlearning classification models. The label
space of classification model is usually small and fixed, enabling unlearning through the disassoci-
ation of labels of forget set (Kurmanji et al., 2023). The unlearning efficacy and model utility can
be directly evaluated by accuracy on forget set and test data (Lee et al., 2025). In contrast, LLMs
generate sequences from a vast and unbounded text space, which fundamentally complicates the
unlearning process. Unlike classification tasks, unlearning in LLMs cannot be achieved by simple
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word suppression (Cooper et al., 2024). Instead, effective unlearning method should minimize the
generation of certain sequences or facts (Eldan & Russinovich, 2023; Yao et al., 2024a).

LLM unlearning can be broadly categorized into two types: unlearning pre-trained models and
unlearning fine-tuned models. While several methods for unlearning pre-trained models and related
benchmarks have been proposed (Li et al., 2024; Jin et al., 2024; Liu et al., 2024b), lack of access to
the original pre-training datasets (Yao et al., 2024a) prevents accurate ground truth evaluation and
makes scaling to real-world scenarios challenging (Zhou et al., 2024). Unlearning fine-tuned LLMs
defines a forget set which was a part of the fine-tuning dataset, and most works are evaluated on
benchmarks such as TOFU (Maini et al., 2024) and MUSE (Shi et al., 2024b).

Most works unlearn fine-tuned LLMs by approximate unlearning,such as preference optimiza-
tion (Zhang et al., 2024; Fan et al., 2024), second-order update (Jia et al., 2024; Gu et al., 2024)
and instruction fine-tuning (Shi et al., 2024a). As shown in Table 1, most of them utilize retain
set or auxiliary models for better unlearn efficacy and model utility (Yuan et al., 2024; Wang et al.,
2025a; Krishnan et al., 2025). However, the availability of retain set or a surrogate dataset with
the same distribution Basaran et al. (2025) can not be guaranteed due to privacy regulations, or
practical resource limitations (Chundawat et al., 2023). Some works use auxiliary LLM models,
obtained by fine-tuning a pre-trained model with the forget set (Wang et al., 2025a; Ji et al., 2024)
or further finetuning the finetuned model (Eldan & Russinovich, 2023) with the forget set. However,
the knowledge of forget data still remains and the continue fine-tuning introduces extra training cost
besides unlearning. Optimization-free methods rely on prompt classifiers to detect forget set inputs
and subsequently activate LoRA adapters (Gao et al., 2024; Deng et al., 2025) or corrupt the embed-
dings (Liu et al., 2024a) to prevent the model from answering the target knowledge. These methods
often suffer from limited forget quality, dependency on detection accuracy, and the impracticality of
adding prompt classifiers due to training, scalability, and deployment challenges. A more realistic
setting is conducting unlearning only with the original model and the forget set. This includes the
direct preference optimization (DPO) (Rafailov et al., 2023) and negative preference optimization
(NPO) (Zhang et al., 2024). The most recent is FLAT (Wang et al., 2025b), which uses f -divergence
to steer parameters towards generating refusal responses. While the framework well preserves the
model utility, their forget quality shows a clear limitation.

3 DIRECT TOKEN OPTIMIZATION

Problem Definition. Given a forget set DF , retain dataset DR, and an original LLM θo fine-tuned
with DF ∪ DR from a pre-trained LLM θp, LLM unlearning aims to produce an unlearned model
θu that approximates a hypothetical model θrt that was fine-tuned only with DR. We assume the
unlearner has access only to the forget set DU and the original model θo, without access to other
auxiliary models or retain dataset DR. This setting follows DPO (Rafailov et al., 2023), NPO (Zhang
et al., 2024) and FLAT Wang et al. (2025b).

Intuition. As shown in Figure 1, the semantic differences between responses from the fine-tuned
and retrained model arise primarily from the words highlighted in green and red. This suggests that a
small set of tokens are crucial for conveying dataset-specific knowledge. Motivated by this, we aim
to unlearn by suppressing the model’s ability to generate those crucial tokens while preserving the
overall sentence structure that is useful for other queries. We call the crucial tokens as target tokens
and the rest as non-target tokens. We propose the delta score to identify target tokens in forget set.

Delta Score: Identifying Target Tokens. Prior works (Yang et al., 2025) find that performing
unlearning on unique identifier words, such as names and locations, are effective for unlearning
samples or entities. However, focusing only on these identifiers is often insufficient, as models may
also memorize surrounding context or other tokens that encode the same knowledge. Instead of
relying on linguistic rules to pick these identifiers, we adopt a more general token-level perspective,
naturally aligning with how LLMs process and memorize unique tokens during fine-tuning (Huang
et al., 2024a). This perspective allows our method to target key tokens that contribute to the mem-
orized knowledge, ensuring more effective unlearning. Intuitively, tokens with low per-token-loss
indicate stronger memorization and are natural candidates for target tokens as they contribute more
to memorizing the sample. However, linguistically important yet semantically uninformative tokens
also have low per-token loss, due to the frequent exposure during the pre-training stage (Duan et al.,
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2024). Unlearning these causes a detrimental effect on the linguistic fluency of the model. Thus, it
is challenging to distinguish target tokens for unlearning from the linguistically important tokens.
Most recent works rely on ChatGPT (Zhou et al., 2025) and human annotators (Yang et al., 2025)
to identify these tokens, but both approaches are impractical as external AI assistance can be unre-
liable and untrusted, and human annotation is costly and inconsistent, and both can severely affect
the unlearning performance.

Instead, we identify target tokens as the tokens in the prefix that are critical for eliciting the model’s
memorized output. This is motivated by a study that analyzed memorization in LLMs through
perturbation (Stoehr et al., 2024). The study fine-tuned a GPT-Neo model with the PILE dataset (Gao
et al., 2020), where each sample is a 100-token paragraph. To quantify memorization, the authors
provided the model with a prefix consisting of the first 50 tokens and generated the remainder with
greedy decoding; they then measured (1) average NLL over generated sequences and (2) number
of generated tokens exactly matching the ground-truth suffix (last 50 tokens of the paragraph). By
perturbing one token from the prefix at a time, they identified which token perturbation produced
the largest response difference and the biggest NLL spike. Their analysis highlighted that perturbing
specific token in the prefix can introduce a significant change in the output, indicating that certain
tokens in a prefix serve as a trigger for generating the memorized suffix.

We extend these findings for unlearning purposes. Our insight is that not all tokens in the forget
set contribute equally to the model’s memorized knowledge; therefore, suppressing this memorized
knowledge from the forget set can be most effectively achieved by suppressing the prefix triggers
identified by the perturbation analysis. Once these target tokens are identified, taking the gradient as-
cent on them reduces likelihood of generating themselves, naturally leads to reducing the generation
of the memorized knowledge.

While Stoehr et al. (2024) measures NLL over the generated response conditioned on the prefix
and partially generated response, our delta-score computes NLL for each suffix token conditioned
on the prefix and the original suffix. This gives a stronger signal. When NLL is obtained through
conditioning on the generated sequence, it naturally decreases toward the end, regardless of whether
the response matches the original suffix or not. In contrast, delta-score amplifies the NLL loss by
forcing the model to condition on both perturbed prefix and the original suffix. This accurately
captures the models’ disagreement over the original suffix.

Let DF = {si}Ni=1 be a forget set with N samples. Let si = {xi
1, · · ·xi

t · · ·xi
Ti
} ∈ VTi be a

sequence of tokens xi
t from the vocabulary V with the length Ti. Let a pivot 1 ≤ qi < Ti divide

si into a prefix {xi
1 · · ·xi

qi} and a suffix {xi
qi+1 · · ·xi

Ti
}. Let a subsequence with size t − 1 with

perturbation on its r-th token as x̃i
<t :=

(
xi
1, . . . , x

i
r−1, x̃

i
r, x

i
r+1, . . . , x

i
t−1

)
. We define the delta

score ∆i
r at position r ≤ qi of sequence si as follows, and the perturbed token is randomly selected

from special tokens (‘UNK’, ‘#’, etc.).

∆i
r =

Ti∑
t = qi+1

(
log pθ

(
xi
t

∣∣xi
<t

))
−

Ti∑
t = qi+1

(
log pθ

(
xi
t

∣∣ x̃i
<t

))
(1)

Equation 1 defines the delta-score as the difference between the average NLL over all suffix tokens
when r-th token in prefix is present and when it is perturbed. For each unlearning sequence, we
select top-k% highest scoring tokens as target tokens T i

k% = {xi
r | r ∈ Top-k%

(
∆i

r

)
}, and set the

rest as non-target tokens N i = si \ T i
k%.

Unlearning Using Target Tokens. Target tokens are used for unlearning knowledge from each
sequence. We conduct gradient ascent using the loss of predicting the target tokens.

θu ← θu + η∇θu

∑
xt∈T i

k%

log pθ (xt | x<t), (2)

where η is a step size. Non-target tokens are used for maintaining linguistic fluency and general
model utility. For each sequence, we minimize the KL-divergence between the logits of these tokens
from the original model θo and the corresponding logits from θu.

θ ← θ −∇θ

∑
xt∈N i

KL
(
fθ0 (x<t) | fθu (x<t)

)
(3)
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where fθ is the model output logit after softmax. While the default DTO is designed to update the
model using the non-target tokens, we perform an ablation study in the experiments to compare it
with a version of DTO without the KL update. To avoid potential gradient conflicts, each unlearning
step (2) and minimizing KL-divergence step (3) are performed in an alternating manner. We orthog-
onalize one gradient with respect to the other, which further reduces gradient conflicts and improve
both unlearn efficacy and model’s utility (Kodge et al., 2024) Refer to Appendix C for more details.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets & Evaluation Metrics. We evaluate our method on two LLM unlearning benchmarks.
The TOFU (Maini et al., 2024) dataset has 4,000 question and answer pairs of fictitious authors
for finetuning any LLMs. It provides multiple tasks of unlearning 1%, 5% and 10% of the training
dataset. The dataset provides following evaluation metrics: Model utility, obtained from the aggre-
gated score of Rouge-L, normalized probability over answers, and truth ratio (probability of correct
answer over the incorrect answer) on question and answer pairs of remaining, real authors and
real world dataset; and Forget quality, measured using the Kolmogorov-Smirnov test on the truth
ratios using both unlearned and retrained model. A successfully unlearned model should exceed
0.05 Mekala et al. (2024). We also show the Forget-Rouge as a proxy to evaluate the memorization
of the model. We use finetuned version provided by authors for Llama 3.2-1B and Llama 2-7B
model (Touvron et al., 2023). For MUSE benchmark (Shi et al., 2024b), we use the MUSE-book,
which consists of Chapter 2 of the Harry Potter series. Muse benchmark offers following evaluation
metrics: Verbatim Memorization (VerbMem), obtained via Rouge-L F1 scores, shows the exact
sequence memorization from the model; Knowledge Memorization (KnowMem), obtained via
Rouge-L scores on question and answer evaluation dataset, evaluates how the model retains factual
knowledge of the unlearning contents; and Privacy Leakage (PrivLeak), obtained via membership
inference attack (Carlini et al., 2022a), evaluates if the model’s response after unlearning still re-
veals that the forget set was part of their fine-tuning data. It is a normalized AUC difference of the
membership inference attack on the unlearned model and the retrained model. The negative value
means the model is under-unlearned, and positive means over-unlearned. The ideal model should
have the value close to zero.

Baselines. We compare our framework with baselines that have the same assumption (access to
forget set and original model only). NPO (Zhang et al., 2024) unlearns by conducting preference
optimization to reject answering questions in the forget set. DPO (Rafailov et al., 2023) unlearns
by up-weighting generation of a rejection template for the forget set. FLAT (Wang et al., 2025b) is
the most recent and state-of-the-art framework that steers the model to generate rejection template
over the original answer by maximizing f -divergence1. As proposed from the paper, we use Kull-
back–Leibler (KL), Total Variation (TV), Jensen–Shannon (JS) and Pearson (P) divergences. We
search hyper-parameters to find the best model utility and forget quality tradeoff for each baseline.

While not directly comparable, we also include LLMU (Yao et al., 2024b) which requires retain
dataset. It conducts gradient ascent on all responses and minimizes the KL-divergence between
the original model and the unlearned model over the retain set for model utility. In addition, we
compare our token selection strategy and the unlearning result with Token Preference Optimization
(TPO) Zhou et al. (2025) which uses ChatGPT to identify target words to unlearn.

4.2 EXPERIMENTAL RESULTS

Unlearn Efficacy and Model Utility. Table 2 shows the result of unlearning 1% of the TOFU
dataset with DTO and baselines. We used top k = 20% for selecting target tokens and suffix
ratio of 0.25, or last 25% of each sequence as a suffix. DTO without KL achieves the highest and
almost perfect forget quality of 0.9188 compared to an ideal retrained model, while most baselines
remain below 0.055 and 0.16. This is a significant margin, indicating DTO without KL is extremely

1The official implementation was inaccessible, hence we re-implemented this baseline, and confirmed that
the result is comparable. Refer to Appendix D for details.
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Llama2-7B Llama3.2-1B

Forget Quality
(↑)

Model Utility
(↑)

Forget
Rouge-L (↓)

Forget Quality
(↑)

Model Utility
(↑)

Forget
Rouge-L (↓)

Original LLM 2.183e-06 0.6346 0.8849 3.383e-06 0.6218 0.8168
Retrained LLM 1.0000 0.6267 0.4080 1.0000 0.6168 0.4045

LLMU 0.0541 0.6225 0.4472 0.0301 0.5876 0.4671
DPO 0.0541 0.6219 0.5724 0.0541 0.5191 0.4752
NPO 0.0068 0.6242 0.4523 0.2650 0.5608 0.2447

FLAT (TV) 0.0541 0.6199 0.4366 0.1649 0.5687 0.2543
FLAT (KL) 0.0301 0.6393 0.4971 0.1430 0.5639 0.2688
FLAT (JS) 0.0970 0.6214 0.4252 0.0286 0.5548 0.3793
FLAT (P) 0.0541 0.6239 0.4523 0.1649 0.5578 0.2567

DTO w/o KL (Ours) 0.9188 0.5948 0.3725 0.9188 0.5375 0.2893
DTO (Ours) 0.7659 0.6002 0.3978 0.7659 0.5529 0.2382

Table 2: Experimental results on TOFU 1% dataset.

Llama 2-7B Llama 3.2-1B

Forget Quality
(↑)

Model Utility
(↑)

Forget
Rouge-L (↓)

Forget Quality
(↑)

Model Utility
(↑)

Forget
Rouge-L (↓)

Original LLM 4.513e-09 0.6319 0.8938 4.525e-08 0.6218 0.8250
Retrained LLM 1.0000 0.6263 0.3982 1.0000 0.6098 0.3857

LLMU 1.143e-05 0.3193 0.2310 0.0001 0.5928 0.6975
DPO 5.617e-06 0.4962 0.4857 0.0005 0.4966 0.4934
NPO 4.744e-06 0.5906 0.3977 0.0007 0.5536 0.4008

FLAT (TV) 0.0021 0.1253 0.0534 0.0124 0.2071 0.0988
FLAT (KL) 2.353e-05 0.2402 0.2832 0.0878 0.3266 0.1398
FLAT (JS) 0.0001 0.3091 0.1716 0.0001 0.4514 0.2118
FLAT (P) 1.873e-05 0.1971 0.0825 0.0030 0.2268 0.0902

DTO w/o KL (Ours) 0.0021 0.2871 0.1743 0.0001 0.3187 0.2597
DTO (Ours) 0.0876 0.4442 0.5415 0.3281 0.4218 0.3168

Table 3: Experimental results on TOFU 5% dataset

effective in unlearning the target knowledge. DTO preserved model utility better by minimizing KL-
divergence of logits on non-target tokens between unlearned model and original model. However,
the forget quality is slightly lower. Moreover, DTO without KL is exhibiting the lowest Rouge-L
score from the forget set (0.3725). This confirms that the actual response from the unlearned model
is significantly less similar to the response of the forget set. While both DTO and DTO without
KL are showing model utility drop, the degradation from the original model is small, demonstrating
a reasonable tradeoff given its strong forget quality. FLAT exhibits better model utility, but their
forget quality is low, indicating inherent knowledge about forget set still persists in the model. Both
LLMU, DPO and NPO shows good model utility,

VerbMem on Du (↓) KnowMem on Du (↓) KnowMem on Dr (↑) PrivLeak (↓)

Original Model 99.70 45.87 68.40 -58.19

LLMU 99.70 44.60 67.69 -57.37
DPO 46.95 41.28 65.24 -57.24
NPO 68.85 30.65 48.96 -53.90

FLAT (TV) 99.13 40.54 59.63 -57.51
FLAT (KL) 99.70 44.07 63.41 -57.55
FLAT (JS) 15.84 25.59 49.85 -47.27
FLAT (P) 98.22 43.00 60.89 -57.59

DTO w/o KL (Ours) 19.30 22.84 57.11 -47.14
DTO (Ours) 88.42 46.21 66.40 -57.22

Table 4: Evaluation results on MUSE-Book dataset. Unlearn efficacy is assessed by VerbMem on
Df (↓), KnowMem on Df (↓), and PrivLeak (↓). Model utility is assessed by KnwoMem on Dr (↑).

Table 3 shows the result of unlearning 5% of the TOFU dataset with DTO and baselines. LLMU,
DPO and NPO have relatively high model utility and low forget quality. FLAT is showing both
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lower model utility and forget quality, implying over-unlearning. When the model loses linguistic
capability due to harsh optimizations, it provides random answers for the QA dataset and shows dif-
ferent output distribution as the retrained model, resulting low forget quality. Moreover, DTO shows
better forget quality and better model utility than DTO without KL. By minimizing KL-divergence
between original model over the logits of non-target tokens, the unlearned model was able to prevent
losing linguistic capability, which leads to better forget quality. Compared to the baselines, DTO
achieved best forget quality and relatively high model utility. For results of unlearning 10% TOFU
data, please refer to Appendix E. Overall, DTO achieves the best forget quality over the TOFU
dataset with comparable model utility.

Table 4 shows the reuslt of unlearning MUSE-Books with DTO and baselines. LLMU, DPO and
NPO failed to remove the verbatim memorization from forget set. Except for FLAT (JS), every other
FLAT variants failed to remove the memorization. DTO w/o KL shows relatively small verbatim
memorization. This was achievable because DTO directly suppresses tokens that trigger verbatim
memorization. KnowMem on forget set evaluates more intrinsic knowledge memorization of forget
set with QA datasets. DTO w/o KL achieved the lowest, showing that it also is capable of removing
intrinsic knowledge. Similarly, KnowMem on retain data shows that DTO is able to keep the rest of
the knowledge relatively intact. Lastly, PrivLeak shows the normalized membership inference risk
compared to the retrained model. The negative sign means that the risk persists, and a score closer
to zero means less risk. DTO w/o KL shows the closest score to zero among all baselines.

Figure 2: Model Utility and Forget quality with respect to various k. Suffix ratio is fixed to 0.25

Figure 3: Model Utility and Forget quality with respect to various suffix ratios. k is fixed to 0.2

Parameter Studies of Target Token Ratio and Suffix Ratio. Figure 2 shows the progression of
unlearning 1% of TOFU dataset over various target token ratio k with fixed suffix ratio. When
k = 0.1, top-10% tokens with the highest delta-scores are selected as target tokens. Smaller size
of the target tokens preserves model utility well, however, forget quality hardly increases, meaning
that top-10% were insufficient to unlearn. On the other hand, when k = 0.3, the utility of the model
drops rapidly and the quality of the forget increases quickly. However, after 6th epoch, forget quality
starts to drop due to over-unlearning.

Figure 3 shows the progression of unlearning 1% of TOFU dataset over various suffix ra-
tios with fixed k. Delta-score for each prefix token is obtained from average NLL loss of
suffix tokens. This makes the choice of suffix ratio critical. When suffix ratio is 0.15
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(last 15% of the tokens), model utility is largely preserved yet forget quality is less opti-
mal. This is because a small suffix may contain only a limited portion of the target knowl-
edge, providing insufficient signal for delta score to identify the most critical prefix tokens.
Thus the selected target tokens from the prefix might not fully suppress the generation of tar-
get knowledge. Conversely, when suffix ratio is too large, irrelevant tokens start to influ-
ence the delta-score, introducing noise that leads to lower model utility and forget quality.

<|begin_of_text|>, [/, INST, ], What,  gender,  is,
author, Basil, Mah, f, ouz, Al, -K, u, wait, i,
?, [/, INST, ], Author,  Basil,  Mah, f, ouz,  Al,
-K, u, wait, i, is, male, .[, /, INST, ],
<|eot_id|>

(a) tokens selected by Delta-Score (Ours)

<|begin_of_text|>, [/, INST, ], What,  gender,  is,
author, Basil, Mah, f, ouz, Al, -K, u, wait, i,
?, [/, INST, ], Author,  Basil,  Mah, f, ouz,  Al,
-K, u, wait, i, is, male, .[, /, INST, ],
<|eot_id|>

(b) tokens selected by ChatGPT

<|begin_of_text|>, [/, INST, ], What,  specific,
genre, is, Nikol, ai, Ab, il, ov, known, for,
?, [/, INST, ], N, ik, ol, ai,  Ab, il, ov,  is,
most, celebrated, for, his, compelling,
writing,  in,  the,  African,  American,  genre,

,, bringing, fresh, perspectives, through,
his,  unique,  cultural,  lens, .[, /, INST, ],
<|eot_id|>

(c) tokens selected from by Delta-Score (Ours)

<|begin_of_text|>, [/, INST, ], What,  specific,
genre, is, Nikol, ai, Ab, il, ov, known, for,
?, [/, INST, ], N, ik, ol, ai,  Ab, il, ov,  is,
most, celebrated, for, his, compelling,
writing,  in,  the,  African,  American,  genre,
,, bringing, fresh, perspectives, through,
his,  unique,  cultural,  lens, .[, /, INST, ],
<|eot_id|>

(d) tokens selected from by ChatGPT

Figure 4: Selected tokens from sample 2 (first row) and 26 (second row) by the Delta-score and TPO

Forget Quality Model Utility

TPO 0.55 0.61
DTO 0.26 0.42

Table 5: Model Utility % Forget Quality
of unlearning 1% of TOFU dataset from
Llama 3.2-3b

Token Selection Strategy. We compare our delta-score
with the token selection strategy of Token Preference Op-
timization (TPO) Zhou et al. (2025), which uses ChatGPT
to identify target words, and use preference optimization
to unlearn. We follow the instruction provided in the pa-
per and prompt ChatGPT with the TOFU dataset. Fig-
ure 4 shows the tokens selected by Delta-score and Chat-
GPT. Figure 4a and 4b shows that the delta-score primar-
ily identified the last name of the person (Mahfouz Al-Kuwaiti) as targets similar to ChatGPT’s
selection, indicating that crucial tokens can be selected without external AI services. Figure 4c
and 4d show that delta-score selected the name (Nikolai Abilov) and “celerbrated” while ChatGPT
picked the specific genre. The delta-score could not directly select the genre since it was part of the
suffix. Instead, it selected the tokens that are directly relatable to the genre. Table 5 shows the result
of unlearning 1% of TOFU dataset from Llama 3.2-3B using DTO and TPO (Zhou et al., 2025)2.
Although DTO exhibits lower forget quality (which could be due to less than perfect target token
selection and gradient ascent based unlearning), our token selection method avoids privacy risks as-
sociated with untrusted external AI services. In addition, reducing the suffix length further improves
DTO’s selection correctness, as indicated by Figure 3. Finally, our selection strategy is general and
can use preference optimization instead of gradient ascent to enhance the unlearning.

5 CONCLUSION

In this paper, we proposed Direct Token Optimization (DTO), a self-contained unlearning frame-
work that unlearns an LLM without external resources, such as external reference models and retain
datasets. Given a sequence to unlearn, DTO identifies target tokens that trigger the memorized
knowledge using the proposed delta-score. During unlearning, target tokens are used for unlearning
optimization while non-target tokens are used for maintaining model utility. Experimental results
show that the DTO achieves substantially better forget quality than the state-of-the art methods while
retaining reasonable model utility. In future work, we aim to incorporate preference optimization to
improve the model utility forget quality trade-off, and further improve delta-score to more effectively
select target tokens in each sequence.

2We compare the result of TPO that is reported from the paper.
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REPRODUCIBILITY STATEMENTS

We use the official dataset provided from TOFU (Maini et al., 2024) and MUSE (Shi et al., 2024b)
benchmarks. For evaluations we use the official code provided from Open-Unlearning (Dorna et al.,
2025), a public gitub repository that provide comprehensive evaluation framework for these datasets.
For unlearning TOFU data, we use the Llama-2-7B, Llama 3.2-1B, and Llama 3.2-3B models fine-
tuned on the TOFU dataset, available in Dorna et al. (2025) and Maini et al. (2024). For MUSE, we
use Llama-2-7B model officially fine-tuned on Chapter 2 of the Harry Potter series, available at Shi
et al. (2024b). We offer our code and result files in this link to the anonymous git repository. We
provide detailed hyperparameter settings in Appendix B.

ETHICS STATEMENTS

Our proposed approach contributes to society and to human well-being by illustrating limitations
and possible privacy risk of existing LLM unlearning methods, and proposing a novel machine
unlearning method, which can protect individuals’ data privacy in more rigorous manner. We strictly
comply the code of ethics to ensure all data is properly handled, and conducted fair experiments.
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APPENDIX

In this appendix session A describes the use of large language models in this research. Section B
provides detailed hyperparameter settings. Section C illustrates gradient orthogonalization. Sec-
tion D discusses the integrity of our baseline implementation. Section E illustrates experimental
results on unlearning TOFU 10% dataset.

A LLM USAGE

An LLM has been partially contributed to this research. LLMs assisted resolving minor technical
issues on implementing baselines, our proposed method and experiments testbed. We rarely used
LLM for assisting writing. While the LLM provided some writing suggestions, we did not directly
copy and paste the LLM generated paragraphs into the paper.

B HYPERPARMETER DETAILS AND IMPLEMENTATIONS

forget set Model k Suffix ratio Batch size Learning rate

TOFU 1% Llama 3.2-1b 0.2 0.25 8 1e− 5
Llama 2-7b 0.2 0.25 8 1e− 5

TOFU 5% Llama 3.2-1b 0.2 0.2 8 2e− 5
Llama 2-7b 0.15 0.15 8 1e− 5

TOFU 10% Llama 3.2-1b 0.1 0.1 8 5e− 5
Llama 2-7b 0.1 0.15 8 2e− 5

Muse-Books Llama 2-7b 0.2 0.25 8 1.5e− 6

Table 6: List of hyperparameters for DTO

Table 6 shows the list of hyperparameters we used for each of the dataset. We used the same set of
parameters for DTO and DTO without KL. For more details on implementations, please refer to this
link to the anonymous git repository.

C GRADIENT ORTHOGONALIZATION

Gradient from unlearning loss and forget set and gradient from retain loss and retain set often has
conflict. The directions often interfere themselves. Naively conducting each step-wise update leads
to imperfect optimization for both objectives. This leads to a catastrophic utility loss. Gradient
orthogonalization reduces the gradient conflict by projecting a gradient (Kodge et al., 2024). Given
two gradients ga and gb, orthogonalizing ga to gb computs followings:

gortha = gb −
⟨ga, gb⟩
⟨ga, gb⟩

gb. (4)

Intuitively, this nullifies optimization directions in ga that are parallel to gb, allowing less impact on
the objective of gb. In our method, we orthogonalize gradients from unlearn loss to the gradient of
the retain loss, to achieve unlearn objective with less detrimental impact on model utility.

D BASELINE IMPLEMENTATIONS

DPO, NPO and LLMU have official implementations, however, FLAT (Wang et al., 2025b) is miss-
ing the implementation, hence we implemented them based on the paper. To verify integrity of
our implementation, we compare our unlearning results with the reported results of FLAT. Table 7
compares the result of unlearning 1% of TOFU dataset on LLama 2-7B. Although model utility is
slightly lower, the results show that our implementation is consistent with the reported results.
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Our implementation Reported in Wang et al. (2025b)

Forget
Quality (↑)

Model
Utility (↑)

Forget
Rouge-
L (↓)

Forget
Quality (↑)

Model
Utility (↑)

Forget
Rouge-
L (↓)

Original LLM 2.183e-06 0.6346 0.8849 4.488e-06 0.6346 0.9851
Retrained LLM 1.0000 0.6267 0.4080 1.0000 0.6267 0.0.4080

FLAT (TV) 0.0541 0.6199 0.4366 0.0541 0.6373 0.4391
FLAT (KL) 0.0301 0.6393 0.4971 0.0286 0.6393 0.5199
FLAT (JS) 0.0970 0.6214 0.4252 0.0541 0.6364 0.4454
FLAT (P) 0.0541 0.6239 0.4523 0.0541 0.6374 0.4392

Table 7: Experimental result on TOFU 1% dataset of FLAT implemented by us and the reported
results.

Llama 2-7B Llama 3.2-1B

Forget Quality
(↑)

Model Utility
(↑)

Forget
Rouge-L (↓)

Forget Quality
(↑)

Model Utility
(↑)

Forget
Rouge-L (↓)

Original LLM 1.735e-08 0.6346 0.8824 3.382e-06 0.6218 0.8194
Retrained LLM 1.0000 0.6122 0.3998 1.0000 0.5936 0.3785

LLMU 1.092e-06 0.2903 0.1127 4.353e-05 0.5795 0.6501
DPO 1.826e-07 0.5178 0.5745 1.119e-07 0.4764 0.4845
NPO 1.065e-06 0.5326 0.3587 1.839e-06 0.5429 0.4293

FLAT (TV) 4.35e-05 0.0866 0.0267 0.0013 0.2299 0.1367
FLAT (KL) 5.418e-05 0.0219 0.0013 0.0013 0.2727 0.1648
FLAT (JS) 4.587e-05 0.0802 0.0365 3.277e-05 0.3702 0.2952
FLAT (P) 0.0001 0.0538 0.0148 0.0005 0.1639 0.1089

DTO w/o (Ours) 3.913e-06 0.1623 0.2118 4.353e-05 0.1971 0.2397
DTO (Ours) 0.0004 0.4507 0.5580 0.0365 0.3067 0.3477

Table 8: Experimental results on TOFU 10% dataset

E ADDITIONAL EXPERIMENTS

Table 8 shows the result of unlearning 10% of the TOFU dataset with DTO and baselines. For
both models, LLMU, DPO and NPO failed to eliminate unlearn knowledge. FLAT achieved better
forget quality, however, they suffer significaint utility loss. The utility loss is more significant from
the 7B model than 1B model. We assume that f -divergence of FLAT over-generalizes the rejection
template when the number of unlearning samples increases. DTO successfully reduced model utility
loss, while achieving the best forget quality.

While DTO achieved the best forget quality among all baselines, forget quality failed to exceed 0.05,
which serves as a statistical threshold for successful unlearning (Mekala et al., 2024). Due to the size
of the dataset, unlearning TOFU 10% is challenging without the retain dataset. We aim to improve
this in our future studies.
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