
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POST HOC NEURO-SYMBOLIC VERIFICATION ON IN-
STRUCTION FOLLOWING OF LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are increasingly used for real-world problem-
solving and decision-making. However, LLMs may not follow instructions, with
subtle behavior that is hard to detect and diagnose. The impacts of instruction-
unfollowing behavior may be further magnified in an LLM agent along its reasoning
chain. This paper presents NSVIF, a novel framework for post hoc verification on
instruction following of LLMs. At its core, NSVIF abstracts instruction-following
verification as a Constraint Satisfaction Problem (CSP), where both instructions
and LLM outputs are represented as structured constraints, including symbolic and
neural constraints. NSVIF introduces a neuro-symbolic solver that embraces sym-
bolic reasoning and neural inference—the former offers sound logic while the latter
detects semantic violations. We curated a comprehensive benchmark, VIFBENCH,
to evaluate instruction-following verifiers, and developed a neuro-symbolic-guided
synthesis method to construct data in a scalable and high-quality manner. We show
the effectiveness of NSVIF on VIFBENCH, where NSVIF significantly outperforms
the existing baselines. Our work shows that unified symbolic verification with
LLM-guided reasoning enables effective, reliable, and interpretable analysis of
LLM instruction-following behavior.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly used for problem-solving and decision-making in
a wide variety of real-world tasks. Recently, LLM-based agents further organize individual LLM
queries into complex, autonomous workflows. A core assumption behind these exciting use cases is
that LLMs faithfully follow user instructions to make progress in the right direction. However, in
practice, this assumption constantly fails—LLMs may misunderstand, partially follow, or even ignore
critical parts of a given instruction (Jaroslawicz et al., 2025; Laban et al., 2025; Sirdeshmukh et al.,
2025; Cemri et al., 2025). Such instruction unfollowing behavior could lead to unsafe decisions,
incorrect outputs, and a loss of trust, undermining the safety and trustworthiness of AI technologies.
In LLM agents, the impacts can be further magnified along the agent reasoning chain and workflow.

Despite significant efforts to align LLMs with human instructions through techniques like few-shot
prompting (Brown et al., 2020; Lu et al., 2022; Agarwal et al., 2024), instruction tuning (Zhou et al.,
2023a; Dong et al., 2023; Ding et al., 2023; Wang et al., 2023), and reinforcement learning from
human feedback (Ouyang et al., 2022; Glaese et al., 2022; Bai et al., 2022; Cui et al., 2024), LLMs
remain inherently probabilistic and lack post hoc guarantee of adherence. For example, GPT-5 can
only correctly follow 69.6% of the instruction in the MultiChallenge benchmark (OpenAI, 2025;
Sirdeshmukh et al., 2025); open-source models like GLM-4.5 and Qwen3-235B only follow up to
60% of the instructions (Team et al., 2025). Hence, effective post hoc verification is highly desired.

However, verifying whether an LLM follows user instructions is challenging. Natural language
instructions are not always easy to check (e.g., “write a sentence in less than 200 words”), but
can be ambiguous and open-ended (“write a creative, uplifting story”). In practice, we find that
certain instructions can be mapped to formal semantics or symbolic constraints, while others require
context-sensitive or semantic interpretation. A common practice in the field is to use LLM-as-a-
judge (Zheng et al., 2023; Dubois et al., 2024; Li et al., 2024); however, such pure LLM-based neural
approach often lacks accuracy and struggle to handle large, complex constraint spaces; meanwhile,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

rule-based symbolic approaches are brittle and thus are limited in addressing the inherent ambiguity
and under-specification in natural language instructions.

In this paper, we present NSVIF, a novel neuro-symbolic framework for post hoc verification on
instruction following of LLMs. NSVIF formulates instruction-following verification as a Constraint
Satisfaction Problem (CSP), where user instructions are encoded as structured constraint formulas
and LLM outputs are encoded as variable values. This structured representation enables in-depth
understanding of an LLM’s reasoning, while preserving interpretability. NSVIF then introduces a
neural-symbolic solver that embrace both symbolic reasoning and neural inference to solve the CSP.
The former offers sound, logical reasoning for symbolic constraints that can be formally modeled,
while the latter detects violations for neural constraints in the instructions. This hybrid design enables
NSVIF to scale across diverse instruction types while maintaining accuracy and interpretability.

To comprehensively evaluate NSVIF as a verifier, we construct a new benchmark named VIFBENCH
that covers different types of instruction-unfollowing behavior across multiple LLMs and application
domains. Prior to our work, LLMBar (Zeng et al., 2024) is the only available benchmark for
instruction-following verification. Unfortunately, LLMBar is too coarse-grained and lacks ground-
truth labels on constraints. Each data point in VIFBENCH is created through a scalable pipeline
that uses symbolic synthesis to generate abstract satisfiable logical formulas and neural rewriting
to transform these formulas into natural-language problems and answers. The benchmark labels
fine-grained constraints to support verification of both explicit and implicit instruction violations.

Our evaluation of NSVIF on VIFBENCH with state-of-the-art LLMs shows that NSVIF enables fine-
grained constraint analysis and checking. For instructions with both formal and semantic constraints,
NSVIF achieves 1.31× pass@1 accuracy over LLM-as-a-judge approaches, while providing detailed
constraint-violation information. In summary, this paper makes the following contributions:

• New Principle. Modeling instruction-following verification as a constraint satisfaction problem
and solving it with a neuro-symbolic approach.

• Framework and Tooling. NSVIF, the first neuro-symbolic framework and toolchain that system-
atically checks LLM outputs against user instructions in natural languages.

• New Dataset. VIFBENCH, a novel benchmark and data synthesis toolchain for evaluating
verification techniques of LLMs’ instruction following.

• Results. NSVIF substantially outperforms baseline approaches, achieving higher precision in
detecting instruction violations with interpretability.

2 BACKGROUND

Instruction following lies at the core of how users interact with LLMs. Given a natural language
prompt or task description, users expect the model to generate outputs that are accurate, relevant, and
aligned with the instruction. However, in practice, LLMs frequently exhibit instruction-unfollowing
behaviors, where the generated output only partially satisfies—or completely deviates from—the
user’s intent (Jaroslawicz et al., 2025; Laban et al., 2025; Sirdeshmukh et al., 2025; Cemri et al.,
2025). These violations may be explicit, such as generating the wrong function signature in code or
producing output in the wrong format, or implicit, such as subtly misrepresenting facts in a summary
or omitting constraints. Instruction-unfollowing is particularly problematic in software engineering
and decision-making tasks, where correctness, determinism, and accuracy are essential. For instance,
an instruction like “write a function that sorts integers in descending order” may be interpreted
loosely by the model, resulting in ascending sort logic or unstable sorting behavior. In multi-turn
agent settings, failure to follow a constraint in one step (e.g., not using a required API) can silently
propagate, degrading the correctness of downstream actions.

Table 1 categorizes common types of instruction-unfollowing behavior of LLMs, distinguishing
between those that can be symbolically verified through formal rules and constraints, and those that
require neural methods to detect due to semantic or pragmatic complexity. The categories are derived
from prior studies on instruction unfollowing behavior of LLMs (Zhou et al., 2023b; Chen et al.,
2024; He et al., 2024; Jiang et al., 2023; Sirdeshmukh et al., 2025).

Figure 1 shows two examples of instruction unfollowing behavior. In Figure 1a, the LLM agent
mistakenly deletes the data folder that the user instruction explicitly mentions not to delete, which

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Common instruction unfollowing behavior of LLMs.

Dimension Category Description

Symbolic

Logical Constraint Violation Output violates explicitly stated invariants, constraints, ordering, or unique-
ness rules in the specification.

Structural Violation Output fails to adhere to the prescribed structural schema or data type (e.g.,
JSON, XML, domain-specific template).

Invalid Element Error Output omits required elements or includes prohibited entities explicitly
stated in the specification.

Neural Network
Semantic Misinterpretation Misunderstanding of the instruction’s semantic content, ambiguity resolution

failure, or subtle inconsistency in meaning.

Pragmatic Mismatch Output misaligns with the communicative intent, stylistic requirements, or
permissible paraphrasing scope of the instruction.

Please remove this directory:
~/experiment/temp
Don’t remove this directory!
~/experiment/data

NO!!! DON’T DELETE MY
DATA!
😡😡😡

Sure! I will run this command:

$ rm -rf ~/experiment/data

𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑟 =?= 𝐴𝑐𝑡𝑢𝑎𝑙𝐷𝑖𝑟

unsat!

(a) Invalid Element

𝑁𝑢𝑚𝑃𝑟𝑜𝑠 =?= 3

unsat!

List exactly three
pros and no more
than two cons of
using wind energy.

"pros": [
 "Renewable and sustainable",
 "Low operating costs",
 "Reduces carbon emissions",
 "Scalable infrastructure"
],
"cons": [
 "Weather dependent",
 "High initial costs",
 "Noise concerns"
]

SMT Formulation

(assert (= num_pros 4))
(assert (= num_cons 3))

(assert (= num_pros 3))
(assert (<= num_cons 2))

(check-sat) ; unsat

𝑁𝑢𝑚𝐶𝑜𝑛𝑠 <?= 2

(b) Logical Constraint Violation.

Figure 1: Examples of instruction unfollowing behavior.

could lead to data loss. The pattern is referred to as Invalid Element in Table 1—despite that LLMs
generate the right command, the target file path is incorrect. In Figure 1b, the LLM violates the
logical constraints even though the instruction specifies them clearly—it generates too many pros
and cons values. While such instruction unfollowing behavior may go unnoticed by human readers,
especially in the context of autonomous agents, they are precisely the kind of errors that symbolic
checkers such as SMT solvers can detect with certainty and minimal ambiguity.

3 NSVIF: NEURO-SYMBOLIC VERIFICATION OF INSTRUCTION FOLLOWING

The high-level idea of NSVIF is to synergistically combine the complementary advantages of symbolic
logic and neural networks to verify whether the LLM’s output follows a given user instruction. NSVIF
builds on the observation that the requirements in user instructions vary widely in formalism and
semantic clarity. Rather than forcing a one-size-fits-all solution, it categorizes user requirements into
symbolic verifiable statements (e.g., code constraints, structured logic) and semantic directives (e.g.,
open-ended questions, stylistic preferences). Both of them can be modeled as constraints, with the
former being symbolic constraints and the latter being neural constraints.

NSVIF uses a dual-path neuro-symbolic verification framework. It performs symbolic verification
based on logical rules or constraint solvers to check whether the LLM’s output satisfies the required
conditions. For neural constraints where symbolic encoding is infeasible, it employs an LLM-as-a-
judge to detect violations in the output. Figure 2 depicts an overview of NSVIF. NSVIF employs a
three-phase approach to verifying if the LLM’s output follows the instruction. The Planner analyzes
constraints in a given instruction and generates individual verifier modules for the constraints. The
Executor attempts to execute each verifier module, fixes any runtime errors, and gathers module
results. Finally, the Solver formulates the instruction constraints into a Z3 program in Python. It then
combines the constraints with module results to produce the final sat/unsat output.

This neuro-symbolic approach enables generalization across instruction types while preserving
rigor and interpretability. The design also enables modularity, making NSVIF easy to extend—as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Who built the first artificial
ice rink? Please include
Name, Location, Year.
Use less than 500 words.
Provide answer as bullet
points.

Instruction

• Name: John Gamgee
• Location: London,

England
• Year: 1876

Response

Planner

def
verify_keyword
(response):

...

def
verify_name
(response):

...

Analyze Constraints

Symbolic:
• Keyword
• Words limit
• Output format

Neural:
• Real Name?
• Real location

& year?

• 3 symbolic modules
• 2 neural modules

Devise Verification Plan

Generate Individual Modules

Executor
Gather Module Results

(sat, runtime error, sat, sat, sat)

Finalize Module Results

fix module errors

(sat, sat, sat, sat, sat) sat!

𝐾𝑒𝑦𝑤𝑜𝑟𝑑 𝑥,𝑁𝑎𝑚𝑒
∧𝑊𝑜𝑟𝑑𝐶𝑜𝑢𝑛𝑡 𝑥,≤ 500
∧ 𝐵𝑢𝑙𝑙𝑒𝑡𝑃𝑜𝑖𝑛𝑡 𝑥 …

Formulate Formal Expression

Solver

Checking Constraint Sat.

Figure 2: Overview of the NSVIF framework and the verification workflow.

more instruction types or domains emerge, the symbolic solver or neural verifier can be extended
independently. With the decomposition of the verification problem, we aim to build a universal post
hoc verifier that can be used to check instruction-following behavior.

3.1 FORMAL MODEL AS CONSTRAINT SATISFACTION PROBLEM

NSVIF models instruction following verification as a Constraint Satisfaction Problem (CSP). Let
an instruction I and model output O define a verification instance ⟨I,O⟩. The goal is to determine
whether O satisfies the set of constraints implied by I , i.e.,

verify(I,O) =

{
SAT if O |= C(I)
UNSAT otherwise

where C(I) denotes the set of constraints induced by instruction I . We define each instruction-induced
constraint Ci(I), i ∈ 1, ..., n where n is the number of induced constraints in the instruction, as:

Ci(I) =
{
Csym
i (I) if I can be formally specified

Cneu
i (I) otherwise

That is, for each constraint, the verifier dynamically dispatches to one of two paths:

• Symbolic constraints. Csym
i (I) can be explicitly encoded using logical rules, regular expressions,

or executable specifications. Satisfaction is checked via symbolic reasoning or constraint solving.
• Neural constraints. Cneu

i (I) can be approximately checked by a neural verifier Vθ(I,O),
parameterized by prompt or model weights θ:

Vθ(I,O) ∈ {SAT,UNSAT}
Note: although Cneu

i lacks explicit symbolic structure, it implicitly encodes a learned boundary
between satisfying and violating outputs based on in-context examples or prompt-guided behavior.

This hybrid formulation allows NSVIF to treat verification uniformly as a CSP, and dynamically
selects the symbolic or neural path for constraint evaluation based on the instruction type:

verify(I,O) =

{
SAT if O |= Csym(I) or Vθ(I,O) = SAT
UNSAT otherwise

Based on the CSP formulation, we can systematically build both verifiers and benchmarks. For
the verifier, the results of independently verified conditions outside the SMT solver, together with
constraints that can be directly solved by a SMT solver, are encoded as a unified CSP problem
solvable by the SMT solver. The solutions can be further post-processed and rewritten by an LLM to
provide interpretable explanations. We describe such an implementation in §3.2.

To develop benchmarks, we can combine different symbolic constraint templates and neural condition
templates according to predefined patterns. This process produces basic symbolic and neural instruc-
tions that are verifiable. The combined constraint patterns are then validated both by external verifiers
and by the final SMT solver, with violations of individual conditions and combined constraints
annotated accordingly. We developed such a benchmark in §4.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 IMPLEMENTATION

NSVIF is implemented as a modular pipeline that converts natural language instructions and model
outputs into verifiable CSPs. NSVIF is designed to be deployed in an LLM-powered workflow to
inform the LLM whether it follows the user instruction, or as guardrails against LLM failures in
agentic systems. Thus, three questions guide the design of NSVIF:

• What are the constraints in the instruction? How to check them?
• Are the constraints satisfied by the output?
• Combining each constraint’s result, does the answer satisfy all constraints in the instruction? If

not, which constraints are violated?

As shown in Figure 2, the implementation of NSVIF is composed by three components.

Planner. NSVIF uses a planner that guides the entire constraint verification process. The planner first
translates both instructions and candidate outputs into structured logical forms.

• Symbolic extraction: For formally defined instructions (e.g., “Present in JSON format”, “Write
in less than 500 words”, instructions are parsed into explicit predicates and constraints using a
rule-based grammar augmented with a semantic parser.

• Neural extraction: For open-ended or ambiguous instructions (e.g., “Write a polite email”), we
use a neural parser to analyze and parse the implicit constraints.

• Constraint alignment: Parsed instructions and outputs are normalized into a shared first-order
logic representation made of logical predicates, ensuring compatibility with downstream solvers.

With the shared representation, for each constraint, the Planner generates an individual executable
verifier module. Each module can individually verify one constraint. For formally defined, symbolic
constraints, the Planner generates Z3 statements in Python that attempts to solve a system of formulas,
where instruction constraints are expressed as symbolic formulas and the respective output restricts
the variables’ values. For subjective, fuzzy constraints, the Planner generates an LLM prompt that
tailors to that constraints, which is then used to prompt an LLM for the verification result.

Executor. The modules generated by the Planner may encounter runtime errors when being executed.
Thus, the Executor focuses on running, and if needed, fixing the generated modules. If the Executor
observes that certain modules do not run, it enters a loop that attempts to fix the runtime error by
prompting an LLM with the error message. Once all modules are finished, the Executor then collects
the sat/unsat results and passes them to the Solver.

Solver. Finally, with all individual modules’ results and the shared first-order logic representation
of the instruction, the Solver attempts to verify whether the given output satisfies the instruction.
Using the shared logical representation, the Solver generates Z3 statements in Python that represents
the entire instruction and the provided LLM output. Each statement serves as a representation
of the constraint. It signifies the constraint is either satisfied or not, based on the corresponding
module’s result. The Solver then adds all the statements into a Z3 Solver() object and runs the
final Z3 program. The program produces both a binary decision (followed / unfollowed) and an
explanation trace. Symbolic results highlight explicit violated constraints, while neural judgments
include saliency-based rationales, enabling interpretability.

4 VIFBENCH: A BENCHMARK FOR INSTRUCTION-FOLLOWING VERIFIERS

Evaluating instruction-following verifiers like NSVIF would need a comprehensive benchmark. To
our best knowledge, LLMBar (Zeng et al., 2024) is the only available benchmark that is related to
the task. For instructions in LLMBar, we find that LLMBar does not provide ground truth of the
output requirements (i.e., constraints), and thus cannot clearly assert whether an output of an LLM
truly follows the instruction. Instead, LLMBar turns the verification problem into a classification
problem. It presents two outputs to the verifier (or “LLM evaluator” in the LLMBar context) and
asks it to choose which output better follows the instruction. There is no guarantee on whether or to
what extent either of the two outputs follows the given instruction. Figure 3a shows the data schema
and a data sample in LLMBar.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Instruction: Select the Output (a) or Output
(b) that is better for the given instruction.
Instruction: Given the following input
statement, provide the type of sentiment in
the statement and the extent of sentiment in
terms of sentiment scores. This restaurant
has the best service I've ever seen. You can
design the score scale by yourself.
Output (a): This statement has a sentiment
score of 9 / 10
Output (b): Positive sentiment, sentiment
score: 9.5 out of 10

Ground-truth Label: Output (b)

Instruction: As an HR manager, I need a resource titled "Maximizing
Productivity in Distributed Teams" that focuses on the benefits of remote work.
Please create a narrative and professionally toned bulleted list, aiming for less
than 500 words. Make sure to include keywords such as "collaboration tools"
and "flexible schedules," while avoiding any slang or unverified claims.

Ground-truth Label: satNatural Language Answer:
Maximizing Productivity in
Distributed Teams ...
• **Enhanced

Collaboration**: ...
• **Flexible

Schedules**: ...

Fine-grained Constraint Annotations:
• predicate: word_count(500, <)

constraint_type: symbolic
• predicate: tone(professional)

constraint_type: neural
• ...

(a) LLBar

Instruction: Select the Output (a) or Output
(b) that is better for the given instruction.
Instruction: Given the following input
statement, provide the type of sentiment in
the statement and the extent of sentiment in
terms of sentiment scores. This restaurant
has the best service I've ever seen. You can
design the score scale by yourself.
Output (a): This statement has a sentiment
score of 9 / 10
Output (b): Positive sentiment, sentiment
score: 9.5 out of 10

Ground-truth Label: Output (b)

Instruction: As an HR manager, I need a resource titled "Maximizing
Productivity in Distributed Teams" that focuses on the benefits of remote work.
Please create a narrative and professionally toned bulleted list, aiming for less
than 500 words. Make sure to include keywords such as "collaboration tools"
and "flexible schedules," while avoiding any slang or unverified claims.

Ground-truth Label: satNatural Language Answer:
Maximizing Productivity in
Distributed Teams ...
• **Enhanced

Collaboration**: ...
• **Flexible

Schedules**: ...

Fine-grained Constraint Annotations:
• predicate: word_count(500, <)

constraint_type: symbolic
• predicate: tone(professional)

constraint_type: neural
• ...

(b) VIFBENCH

Figure 3: Data schema and data sample of LLBar and VIFBENCH (our benchmark).

Constraint Synthesis Contextualize Formula
Rewrite the expr. into a NL
problem, use sports as the
context

Response Generation & Labeling

• Association Football (Soccer) is ...
• Basketball is ...

manual verification

Numeric
(symbolic)

Format
(symbolic)

Style
(neural)

𝑁𝑢𝑚𝑆𝑝𝑜𝑟𝑡𝑠 𝑥, ≥ 3
∧ 𝐵𝑢𝑙𝑙𝑒𝑡𝑃𝑜𝑖𝑛𝑡 𝑥 ∧ 𝐹𝑜𝑟𝑚𝑎𝑙(𝑥)

Formal Expression
Numeric constraint violation!Generate a comparison of three

sports. Each sport must be
presented as a bullet point. Use
formal tone for the comparative
analysis.

User

LLM
SMT

Solver Filtered Valid Data

LLM

Figure 4: Overview of VIFBENCH’s construction

To this end, we curate a new benchmark named VIFBENCH for instruction following verifiers.
Instructions in VIFBENCH are synthesized based on rigorously specified constraints a priori. In this
way, VIFBENCH can precisely evaluate an instruction-following verifier by checking whether it can
comprehend the constraints in the given instruction and pinpoint the instruction unfollowing behavior.
The data schema and a data sample of VIFBENCH is shown in Figure 3b.

Figure 4 shows the workflow of curating the dataset in VIFBENCH which consists of three phases.

(1) Constraint Synthesis. The lack of constraint annotations in an instruction hinders our ability
to analyze an LLM evaluator’s ability to correctly understand and analyze a given instruction. This
makes it challenging to understand that when an evaluator incorrectly marks a result as instruction-
following, whether the evaluator comprehends the internal constraints in an instruction. To fill this
gap, each instruction in VIFBENCH originates from a shared internal abstract representation. We first
collect generic logical predicates, such as BulletPoint(x) or CNFs like (a ∨ b ∨ ¬c). They serve
as seed constraints for instruction generation. We say that a predicate is symbolic if it is completely
logical, and a predicate is neural if it approximates real-life situations that require subjective judgment.
These constraint predicates act as the logical foundations of instructions. It allows us to clearly define
the expected answer criteria: any answer would need to satisfy the instruction’s constraints. We
then compose different constraint predicates together to form first-order logic formulas. We leverage
existential and universal quantifiers in first-order logic to form complex dependencies between
predicates. Each formula is checked by the authors to ensure that it is satisfiable. We also make sure
the composed formulas do not contain unusual constraints that are hard to manifest in real-life LLM
usages, such as FormalAudience(text) ∧ InformalTone(text)

(2) Formula Contextualization The abstract first-logic formulas clearly define the answer criteria,
but it is too abstract for an LLM to generate an example answer. For each formula, we leverage a
neural paraphraser to rewrite the formula into a natural-language instruction. The prompt we used
is provided in Appendix B. For formulas composed of symbolic constraints, we prompt the neural
paraphraser to rewrite it in a real-life context, such as meal preparation or travel planning. For
formulas composed of neural constraints, the neural paraphraser is asked to rewrite under a similar
context that fits the predicates themselves. Take Figure 4 as an example, the formula already presents
a context, sports. The neural paraphraser then produces a natural-language instruction that conforms

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

to the formula which also allows an LLMto produce a valid answer, rather than providing the formula
itself.

(3) Response Generation and Labeling. With the contextualized instruction, we prompt an LLM to
produce an answer to the instruction. The LLM makes a faithful attempt at answering the instruction,
but due to the LLM’s inherent randomness, it cannot guarantee a correct answer, giving the benchmark
answers that either satisfies or unsatisfies the instruction. Thus, for each instruction-output pair,
we carefully analyze whether the output follows the instruction. For symbolic constraints, we leverage
SMT solver to provide guarantees on satisfiability. For neural constraints, the authors decide on the
satisfiability. Decisions are cross-checked and discussed between authors.

In summary, each natural-language instruction in VIFBENCH is clearly labeled with constraints on
potential answers, such that if the verifier under test makes an incorrect decision, the user understands
which constraint(s) the verifier has failed to understand and analyze. Due to the nature of the
underlying logical formulas, even if an instruction can have multiple satisfying answers, they will be
semantically the same.

5 EVALUATION SETUP

5.1 BASELINE

We use LLM-as-a-judge as a baseline of developing instruction-following verifier. LLM-as-a-judge is
a common practice to classify unlabeled data based on fuzzy or underspecified criteria (Zheng et al.,
2023; Zeng et al., 2024; Sirdeshmukh et al., 2025; Qin et al., 2024). We use a standard implementation
of LLM-as-a-judge, where the LLM is given the instruction and the answer in VIFBENCH. The
prompt then asks the LLM to decide whether the answer satisfies the instruction. The raw prompt can
be found in Appendix A.

We run both NSVIF and LLM-as-a-judge on every instruction in VIFBENCH with GPT-4o (snapshot:
gpt-4o-2024-08-06) and GPT-4o-mini (snapshot: gpt-4o-mini-2024-07-18). Additionally, we evalu-
ated DeepSeek-V3.1 and DeepSeek-R1 on LLM-as-a-judge. While we intended to evaluate these two
models on NSVIF, we could not complete the evaluation due to several intrinsic shortcomings of the
models: (1) infinite thinking: As a reasoning model, DeepSeek-R1 occasionally becomes trapped in
an infinite thought loop on particular tasks, thus failing to generate an output in the desired format. (2)
high-quality code generation capability: For the NSVIF pipeline to run successfully, the Planner is
required to generate correct code, or the Executor must fix incorrect code. This imposes a significant
requirement on the model’s code generation abilities. We found this to be a consistent issue with
DeepSeek-V3.1, which frequently failed to produce executable code for certain data points.

Therefore, the final evaluation results for NSVIF do not include these models. We believe that as
model capabilities improve, these issues will gradually diminish.

5.2 METRICS

We follow the pass@k evaluation proposed by Chen et al. (2021) and report pass@1 result:

pass@1 =
1

k

k∑
i=1

pi,

where pi denotes the correctness of NSVIF’s verification on the ith data point against the ground-truth
and k denotes the number of data points in VIFBENCH. This metric serves as the most direct indicator
of NSVIF’s performance.

Moreover, we adopt the standard metrics of Precision, Recall and F1 Score to assess the effectiveness
of NSVIF, which are defined as follows (Olson & Delen, 2008; Sasaki, 2007):

Precision =
tp

tp + fp
× 100% , Recall =

tp

tp + fn
× 100% , F1 Score =

2tp

2tp + fp + fn
× 100%

where tp, fp, tn , and fn denote the numbers of true positives, false positives, true negatives, and false
negatives, respectively. Consequently, the numbers of actual positives and actual negatives are equal
to tp + fn and fp + tn , respectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6 RESULTS

We evaluated NSVIF on in VIFBENCH with Pass@1, F1-Score, Precision, and Recall. The instructions
in VIFBENCH contain both symbolic and neural constraints, approximating real-life LLM usages.

How effective is NSVIF on verifying instruction following? Table 2 shows NSVIF’s and LLM-as-a-
judge’s results, where the best result is marked in bold and the second best marked in underline. In
terms of general accuracy in verifying instruction following, NSVIF achieves at least 1.31× higher
Pass@1 accuracy compared with LLM-as-a-judge baselines. Similarly, NSVIF achieves at least
1.44× higher Precision compared with the baseline verifiers.

Table 2: Performance of NSVIF and baseline on VIFBENCH.

Method Model Pass@1 Precision Recall F1 Score
LLM-as-a-judge GPT-4o 53.3% 53.3% 100% 69.6%

GPT-4o-mini 53.3% 53.3% 100% 69.6%
DeepSeek-V3.1 53.3% 53.3% 100% 69.6%
DeepSeek-R1 53.3% 53.3% 100% 69.6%

NSVIF GPT-4o 70% 76.9% 62.5% 69.0%
GPT-4o-mini 40.0% 43.8% 43.8% 43.8%

NSVIF has a lower Recall and F1 Score compared with LLM-as-a-judge approaches. All LLM-
as-a-judge achieves the same results. By analyzing responses from the LLMs, we found out that
for all LLM-as-a-judges, they responded sat to all the evaluated instructions. This signifies that
LLM-based verifiers do not understand instruction constraints at all, producing many false positives.
One potential explanation for the uniform sat response is that the answer in the instruction-answer
pair are structurally similar to a sat answer but itself is unsat. For example, certain instructions
contain constraints on word counts (e.g., “less than 150 words”). Structurally, a writing response with
151 words looks the same as one with 149 words. This level of subtlety poses a great challenge for
pure LLM-as-a-judge solutions to verify, as LLMs’ inherent non-determinism prevents them from
consistently reasoning about the instruction.

Answering sat to all instruction shows the danger of deploying LLM-as-a-judge approaches as
safeguards in agentic systems. For safety purposes, a verifier with higher false negatives (i.e., the
LLM satisfies the user instruction but falsely marked unsatisfied) is preferred over one with higher
false positives. In contrast, NSVIF’s higher Precision and lower Recall demonstrate a tool towards
applying instruction following verification on agentic systems. Although NSVIF reports more false
negatives than the baselines, false negative inflicts less damage compared with false positives: in the
same LLM workflow, a falsely marked unsatisfying response can simply be retried.

On the smaller model (GPT-4o-mini), NSVIF performs worse than LLM-as-a-judge. The reason is
that the constraint analysis and code generation are challenging for GPT-4o-mini. NSVIF’s Planner
requires advanced logical reasoning ability to correctly analyze the constraints in a given instruction.
It also requires the model to generate correct code for individual verifier modules. A less-advanced
model cannot accomplish these tasks at the same time. Our future work includes exploring a hybrid
approach where simpler tasks are offloaded to a smaller model, such as fixing runtime errors.

How does NSVIF’s performance vary with the number of constraints? Figure 5 shows how
NSVIF’s and LLM-as-a-judge’s performance varies by the number of constraints in an instruction.
NSVIF and LLM-as-a-judge perform similarly with small-to-medium number of constraints. When
the number of constraints reaches 9, NSVIF’s three-phase approach allows more instructions to be
correctly verified while LLM judges struggle. When the number of constraints increases, NSVIF’s
divide-and-conquer strategy allows NSVIF to verify each constraint individually, maintaining the
LLM’s focus on a single constraint. In contrast, LLM-as-a-judge’s performance drops. This shows
that while LLM-as-a-judge performs on par with NSVIF when instructions are simple, pure LLM-
based approaches in such verification tasks cannot scale to complex scenarios. In contexts such as
multi-agent systems, constraints can overlap and combine, forming complex dependencies. NSVIF’s
result shows the effectiveness of the CSP formalization under complex instructions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 6 7 8 9 10 11 12
of Constraints in the Instruction

0
3
6
9

12
15
18
21

of

 C
or

re
ct

 V
er

ifi
ca

tio
ns

of Correct Verifications by Number of Constraints in the Instruction
NSVIF
LLM-as-Judge

Figure 5: The number of correct verification results with varying numbers of constraints in the
instructions. GPT-4o as the backend LLM.

7 RELATED WORK

The ability of LLMs to follow natural language instructions is key to their utility. Prior studies
have focused on evaluating and detecting when LLMs fail to follow instructions. IFEval (Zhou
et al., 2023b) curated a list of 25 instructions, where the satisfiability of each instruction is checked
individually by rule-based checkers. However, rule-based checking can be brittle. If the LLM’s
output follows the instruction but the output does not adhere to the rules, it might be falsely marked
as wrong. InFoBench (Qin et al., 2024) introduces a more reliable evaluation metric beyond a single
pass/fail score. It presents the Decomposed Requirements Following Ratio (DRFR), which breaks
down complex instructions into distinct, fine-grained criteria of a model’s alignment. VIFBENCH
shares the same principle—it labels fine-grained constraints to evaluate the verifier.

As models grew more capable of handling simple constraints, recent work has shifted to complex
instructions that more closely resemble real-world demands (Jiang et al., 2023; He et al., 2024; Wu
et al., 2024; Sirdeshmukh et al., 2025). None of these works utilize neuro-symbolic methods for
evaluation. FollowBench (Jiang et al., 2023) and MultiChallenge (Sirdeshmukh et al., 2025) use
LLM-as-a-judge; CELLO (He et al., 2024) only employs simple symbolic tools like format checking;
and LIFBench (Wu et al., 2024) adopts a purely rule-based approach for its evaluation.

The rise of LLM-based agents has prompted more research into evaluating their instruction-following
capabilities in agentic scenarios (Ji et al., 2024; Qi et al., 2025; Wei et al., 2025; Barres et al., 2025;
Zhang et al., 2025). While PDoctor (Ji et al., 2024) also leverages the z3-solver, it diverges from our
approach by not employing neuro-symbolic methods for detection. AgentIF (Qi et al., 2025) applies
both symbolic and neural methods, its methodology is limited by predefining detection methods and
code for each data point. Their evaluation framework is confined to the specific dataset and lacks
scalability. Critically, they do not abstract the challenge of instruction following as a CSP.

Our goal is different: we develop a universal post hoc verifier to automatically check if LLM’s
output follows the instruction. In this regard, the only related work is LLMBar (Zeng et al., 2024).
We discuss the fundamental difference between VIFBENCH and LLMBar in §4. In terms of the
verification, LLMBar uses an LLM-as-judge approach. NSVIF formalizes the verification problem as
a constraint satisfaction problem (CSP), and uses a neural-symbolic approach to solve the CSP.

8 CONCLUSION

In this paper, we explored a neuro-symbolic approach to the verification of instruction following
of LLMs. Such a instruction-following verifier has become increasingly important, given the rapid
development of AI agents that autonomously querying LLMs for problem solving and decision
making. We show that by modeling the verification problem as a CSP and combining symbolic
reasoning and neural inference, NSVIF achieves both rigor and flexibility across diverse instruction
types. To support systematic evaluation, we further develop VIFBENCH, a novel benchmark that
integrates provably correct symbolic instances with naturalistic neural rewritings, enabling fine-
grained and realistic evaluation of instruction-following verification techniques. Our evaluation
shows that NSVIF significantly outperforms baseline approaches, establishing the first universal
framework and benchmark for post hoc verification of LLM instruction-following. We hope that our
work would build a solid foundation for safe and trustworthy LLM-based agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our paper strictly adheres to the ICLR Code of Ethics. It does not involve any human experiments, and
the data used contains no sensitive information or private data. The synthetic data in the benchmark
has been manually verified and does not contain any potential risks.

REPRODUCIBILITY STATEMENT

Due to the inherent non-determinism of Large Language Models (LLMs), we cannot guarantee
perfect replication of our results between identical evaluation runs. However, we have taken extensive
measures to ensure our work is as reproducible as possible. The control flow governing NSVIF’s
Planner, Executor, and Solver is deterministic.

To facilitate replication, we provide the following:

• Hyperparameters: For both constructing VIFBENCH and evaluating NSVIF, we consistently
used the hyperparameters temperature=0 and top p=0.95.

• Prompts: The complete set of prompts used for generating VIFBENCH and for the evaluation of
NSVIF are detailed in Appendix A and Appendix B, respectively.

• Code Availability: The source code will be made publicly available upon the completion of our
institution’s internal review process.

These measures are intended to allow others to reproduce our findings to the greatest extent possible.

REFERENCES

Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie C. Y. Chan, Biao
Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, John D. Co-Reyes, Eric Chu, Feryal M. P.
Behbahani, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning. In Amir
Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
ber 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/8cb564df771e9eacbfe9d72bd46a24a9-Abstract-Conference.html.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022.
URL https://arxiv.org/abs/2204.05862.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τ2-bench: Evaluating
conversational agents in a dual-control environment, 2025. URL https://arxiv.org/abs/
2506.07982.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

10

http://papers.nips.cc/paper_files/paper/2024/hash/8cb564df771e9eacbfe9d72bd46a24a9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/8cb564df771e9eacbfe9d72bd46a24a9-Abstract-Conference.html
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
systems fail? ArXiv preprint, 2025. URL https://arxiv.org/abs/2503.13657.

Hailin Chen, Fangkai Jiao, Mathieu Ravaut, Nawshad Farruque, Xuan-Phi Nguyen, Chengwei
Qin, Manan Dey, Bosheng Ding, Caiming Xiong, Shafiq Joty, and Yingbo Zhou. Structtest:
Benchmarking llms’ reasoning through compositional structured outputs. ArXiv preprint, 2024.
URL https://arxiv.org/abs/2412.18011.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. ULTRAFEEDBACK: boosting
language models with scaled AI feedback. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=BOorDpKHiJ.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun, and
Bowen Zhou. Enhancing chat language models by scaling high-quality instructional conversations.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing. Association for Computational Linguistics,
2023. URL https://aclanthology.org/2023.emnlp-main.183.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment, 2023. URL https://arxiv.org/abs/2304.06767.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators, 2024. URL https://arxiv.org/
abs/2404.04475.

Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth
Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham, Jonathan
Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth Dathathri, Rory
Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Soňa Mokrá, Nicholas
Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William Isaac, John Mellor,
Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and Geoffrey Irving. Improving
alignment of dialogue agents via targeted human judgements, 2022. URL https://arxiv.
org/abs/2209.14375.

Qianyu He, Jie Zeng, Wenhao Huang, Lina Chen, Jin Xiao, Qianxi He, Xunzhe Zhou, Jiaqing Liang,
and Yanghua Xiao. Can large language models understand real-world complex instructions? In
Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Confer-
ence on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada. AAAI Press, 2024. URL
https://doi.org/10.1609/aaai.v38i16.29777.

Daniel Jaroslawicz, Brendan Whiting, Parth Shah, and Karime Maamari. How many instructions can
llms follow at once?, 2025. URL https://arxiv.org/abs/2507.11538.

11

https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2412.18011
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=BOorDpKHiJ
https://openreview.net/forum?id=BOorDpKHiJ
https://aclanthology.org/2023.emnlp-main.183
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2209.14375
https://arxiv.org/abs/2209.14375
https://doi.org/10.1609/aaai.v38i16.29777
https://arxiv.org/abs/2507.11538

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhenlan Ji, Daoyuan Wu, Pingchuan Ma, Zongjie Li, and Shuai Wang. Testing and understanding
erroneous planning in llm agents through synthesized user inputs, 2024. URL https://arxiv.
org/abs/2404.17833.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang,
Xin Jiang, Qun Liu, and Wei Wang. Followbench: A multi-level fine-grained constraints follow-
ing benchmark for large language models, 2023. URL https://arxiv.org/abs/2310.
20410.

Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn
conversation, 2025. URL https://arxiv.org/abs/2505.06120.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E. Gonzalez,
and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
pipeline, 2024. URL https://arxiv.org/abs/2406.11939.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, 2022. URL https://aclanthology.org/2022.acl-long.
556.

David L. Olson and Dursun Delen. Advanced Data Mining Techniques. Springer Publishing Company,
Incorporated, 1st edition, 2008. ISBN 3540769161.

OpenAI. Introducing gpt-5, 2025. URL https://openai.com/index/
introducing-gpt-5/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Yunjia Qi, Hao Peng, Xiaozhi Wang, Amy Xin, Youfeng Liu, Bin Xu, Lei Hou, and Juanzi Li.
Agentif: Benchmarking instruction following of large language models in agentic scenarios, 2025.
URL https://arxiv.org/abs/2505.16944.

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng
Wu, Fei Liu, Pengfei Liu, and Dong Yu. Infobench: Evaluating instruction following ability in
large language models, 2024. URL https://arxiv.org/abs/2401.03601.

Yutaka Sasaki. The truth of the f-measure. Teach Tutor Mater, 2007.

Ved Sirdeshmukh, Kaustubh Deshpande, Johannes Mols, Lifeng Jin, Ed-Yeremai Cardona, Dean
Lee, Jeremy Kritz, Willow Primack, Summer Yue, and Chen Xing. Multichallenge: A realistic
multi-turn conversation evaluation benchmark challenging to frontier llms, 2025. URL https:
//arxiv.org/abs/2501.17399.

5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang
Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu, Rui Lu, Shulin
Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin Niu, Yuanhao
Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen, Bowen Wu,
Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi Ge, Chenghua
Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng Yin, Daoyan Lin,
Dayong Yang, Dazhi Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan, Guo Wang, Hailong
Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai, Haoke Zhang, Haoran

12

https://arxiv.org/abs/2404.17833
https://arxiv.org/abs/2404.17833
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2505.06120
https://arxiv.org/abs/2406.11939
https://aclanthology.org/2022.acl-long.556
https://aclanthology.org/2022.acl-long.556
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://arxiv.org/abs/2505.16944
https://arxiv.org/abs/2401.03601
https://arxiv.org/abs/2501.17399
https://arxiv.org/abs/2501.17399

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hongxi Yan, Huan Liu, Huilong Chen, Ji Li,
Jiajing Zhao, Jiamin Ren, Jian Jiao, Jiani Zhao, Jianyang Yan, Jiaqi Wang, Jiayi Gui, Jiayue Zhao,
Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan, Jingxuan Li, Jingzhao Du, Jinhua
Du, Jinxin Liu, Junkai Zhi, Junli Gao, Ke Wang, Lekang Yang, Liang Xu, Lin Fan, Lindong Wu,
Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Minghuan Xu, Mingming Zhao, Mingshu Zhai,
Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu, Shangtong Yang, Shaoyou Lu, Shijie Li,
Shuang Li, Shuang-Li, Shuxun Yang, Sibo Yi, Tianshu Yu, Wei Tian, Weihan Wang, Wenbo Yu,
Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao Wang, Xiaohan Jia, Xiaotao Gu, Xiaoying Ling,
Xin Wang, Xing Fan, Xingru Pan, Xinyuan Zhang, Xinze Zhang, Xiuqing Fu, Xunkai Zhang, Yabo
Xu, Yandong Wu, Yida Lu, Yidong Wang, Yilin Zhou, Yiming Pan, Ying Zhang, Yingli Wang,
Yingru Li, Yinpei Su, Yipeng Geng, Yitong Zhu, Yongkun Yang, Yuhang Li, Yuhao Wu, Yujiang
Li, Yunan Liu, Yunqing Wang, Yuntao Li, Yuxuan Zhang, Zezhen Liu, Zhen Yang, Zhengda Zhou,
Zhongpei Qiao, Zhuoer Feng, Zhuorui Liu, Zichen Zhang, Zihan Wang, Zijun Yao, Zikang Wang,
Ziqiang Liu, Ziwei Chai, Zixuan Li, Zuodong Zhao, Wenguang Chen, Jidong Zhai, Bin Xu, Minlie
Huang, Hongning Wang, Juanzi Li, Yuxiao Dong, and Jie Tang. Glm-4.5: Agentic, reasoning, and
coding (arc) foundation models, 2025. URL https://arxiv.org/abs/2508.06471.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, 2023. URL https://aclanthology.org/2023.acl-long.
754.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents, 2025. URL https://arxiv.org/abs/2504.
12516.

Xiaodong Wu, Minhao Wang, Yichen Liu, Xiaoming Shi, He Yan, Xiangju Lu, Junmin Zhu, and Wei
Zhang. Lifbench: Evaluating the instruction following performance and stability of large language
models in long-context scenarios, 2024. URL https://arxiv.org/abs/2411.07037.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating large
language models at evaluating instruction following. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=tr0KidwPLc.

Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li,
Chi Wang, Huazheng Wang, Yiran Chen, et al. Which agent causes task failures and when? on
automated failure attribution of llm multi-agent systems. ArXiv preprint, 2025. URL https:
//arxiv.org/abs/2505.00212.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_
Benchmarks.html.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe
Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettle-
moyer, and Omer Levy. LIMA: less is more for alignment. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/hash/
ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html.

13

https://arxiv.org/abs/2508.06471
https://aclanthology.org/2023.acl-long.754
https://aclanthology.org/2023.acl-long.754
https://arxiv.org/abs/2504.12516
https://arxiv.org/abs/2504.12516
https://arxiv.org/abs/2411.07037
https://openreview.net/forum?id=tr0KidwPLc
https://arxiv.org/abs/2505.00212
https://arxiv.org/abs/2505.00212
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models, 2023b. URL
https://arxiv.org/abs/2311.07911.

14

https://arxiv.org/abs/2311.07911

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PROMPTS OF NSVIF

NSVIF Prompt Planner - System Prompt

Devise a neurosymbolic workflow-composed of neural-focused and symbolic-focused modules-to verify
problems containing neural, symbolic, or combined constraints. For every constraint in the
problem, explicitly identify and list a module that can independently verify the constraint
without requiring additional input from other modules. Ensure that your workflow carefully
assigns each constraint to a dedicated verification module, such that each module's input is
fully determined by the overall problem statement, not by outputs of other modules (except where
dependencies must arise from constraint logic itself).

When classifying a constraint as 'symbolic', only count constraints that are easily and directly
formalizable for z3-solver proofs (with or without simple helper Python functions). Make clear
when a constraint qualifies as symbolic by this standard in your reasoning steps. Always use the
symbolic constraint_verifier (via the "z3-solver" Python library) for such constraints. For
qualitative, subjective, or neural constraints, employ an appropriate neural constraint_verifier
(e.g., LLM or classifier).

Design the workflow as a clear, ordered sequence of modules, each specifying: its type (neural or
symbolic), its function, which constraint(s) it independently verifies, and its input/output. Do
not bias toward using only one tool; instead, break down the problem so each module leverages the
most suitable verification method. If a constraint is ambiguous or could be processed by either
module type, state clearly which is most appropriate and explicitly justify your choice.

You will also be given the answer of the problem to help you plan your workflow.

Reasoning and Output Order Requirements
- For each constraint:

- State which module independently verifies it and why, requiring no additional module inputs if
possible.

- If a constraint cannot be split off this way, clarify why.
- Reason step by step about:

- Identification/classification of each constraint as symbolic/neural, using the formalizability
standard for symbolic.

- Selection and justification of an independent constraint_verifier module for each constraint.
- Order and dependency of modules (which constraints or verifications must come first, and why).

- Never output workflow modules or conclusions before providing full reasoning. Always show reasoning
and constraint-module mapping clearly before the list of modules.

Workflow construction requirements:
- For every module:

- Explicitly state **Module Type** (neural or symbolic)
- Briefly describe **Purpose/Function**
- Specify **Constraint(s) Addressed** (independent verification)
- Clarify **Input/Output** for the module (only using information from the original problem or

verified outputs if dependencies exist)
- Present an ordered, numbered list of modules (the workflow), after reasoning about:

- Why each module is needed, referencing the independent verification of each constraint
- The sequence (which constraints must be satisfied first, dependencies, etc.)

- Do not output code, but describe what the code/tool(s) would accomplish at each step.
- If multiple modules could process the same constraint, clarify choice.
- Output as a structured JSON with two sections:

- "reasoning_steps": An ordered list, explaining detailed reasoning and mapping of each
constraint to a verification module; include classification, tool selection, and justification
of module order

- "workflow": An ordered list where each item is an object with "module_type", "purpose", "
constraints_addressed", and "input_output"

- Always provide "reasoning_steps" before the workflow in the output.
- Never output conclusions or the finalized workflow before the full reasoning.

Examples

Example 1

Input:
"Write 10 funny poems."

Output:
{
"reasoning_steps": [

"Identifying constraints: (1) The output must be exactly 10 poems (symbolic), and (2) each poem
must be funny (neural).",

"Checking if each constraint can be assigned an independent module: The quantitative constraint
can be independently checked by counting poems (symbolic module). Each poem's funniness can be
separately verified by a neural classifier, independently of other constraints.",

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

"Validating symbolic constraint: The count of items can be formalized in code (e.g., check list
length), but is not a mathematical expression suitable for z3-solver; it's symbolic, but does
not need z3.",

"Validating neural constraint: 'Funny' is subjective and cannot be formalized for z3, so a neural
constraint_verifier is required.",

"Optimal order: Count check should come first to ensure the correct number of items before running
neural checks on each.",

"Each constraint is mapped to an independent module. No module requires input from another, except
to ensure the correct number of items are available for the neural check."

],
"workflow": [

{
"module_type": "symbolic",
"purpose": "Verify that exactly 10 poems are present.",
"constraints_addressed": "Quantitative constraint: exactly 10 poems.",
"input_output": "Input: list/block of poems; Output: pass/fail plus list of poems (if pass)."

},
{

"module_type": "neural",
"purpose": "Verify that each poem is funny using a neural classifier.",
"constraints_addressed": "Qualitative (neural) constraint: each poem should be funny.",
"input_output": "Input: set of 10 poems; Output: Boolean/classification for each poem."

}
]
}

Example 2

Input:
"Given x in [0,5], verify that xˆ2 + 2x >= 7."

Output:
{
"reasoning_steps": [

"There is a single constraint: xˆ2 + 2x >= 7, valid for all x in [0,5].",
"Checking formalizability: This constraint is fully formal and suitable for z3-solver, as it

involves an algebraic inequality.",
"No neural or qualitative aspects are present; only a symbolic module is required.",
"Independent verification: This symbolic constraint can be wholly verified by a single module with

no interdependencies."
],
"workflow": [

{
"module_type": "symbolic",
"purpose": "Express the variable's domain and the inequality in z3, and check if the constraint
holds for all x in [0,5].",
"constraints_addressed": "Symbolic constraint: xˆ2 + 2x >= 7 for x in [0,5], fully formalizable
for z3.",
"input_output": "Input: variable domain and expression; Output: proof status or counterexample."

}
]
}

Important Reminders
- For each constraint, list a module that can independently verify it, with required inputs entirely

determined by the original problem statement, unless dependencies are dictated by constraint
logic.

- Only count as a symbolic constraint if the constraint can be easily formalized for z3 (with or
without basic helper Python functions).

- Show step-by-step reasoning and module mapping before the final workflow. Output must be JSON, "
reasoning_steps" section must always come first, followed by "workflow".

- Never begin with or interleave conclusions or modules before reasoning.
- You will also be given the answer of the problem to help you plan your workflow.

Output Format

Your output must be a valid JSON object with two fields in this order:
- "reasoning_steps": an ordered list of step-by-step reasoning, constraint classification, mapping,

and module sequence justification as described above.
- "workflow": an ordered (numbered) list, each element an object with "module_type", "purpose", "

constraints_addressed", and "input_output".

No non-JSON content should be present.

REMINDER
For each constraint in the input, always specify a module that can independently verify it. Only

treat a constraint as symbolic if it is easily formalizable for z3. Provide step-by-step

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

reasoning first, then the workflow as described above, both ordered and presented in JSON format
. Never output code; only structure and describe the verification logic. Keep outputs clear and
structured, always beginning with reasoning. You will also be given the answer of the problem to
help you plan your workflow.

NSVIF Prompt Planner - User Prompt

Here's the question:
{question}

Here's the answer:
{answer}

NSVIF Prompt Executor - System Prompt

Write Python constraint_verifier modules for each constraint such that every output module is a
fully executable, stand-alone Python script. Modules will be run directly by a Python
interpreter, so your generated code must include ALL imports, helper function definitions,
variable assignments, constants, and values needed for independent execution-no referenced name
or function may be undefined or require any external context. If you output a function, make sure
to include a function call with all necessary parameter values and a print statement to print the
output of the call.

Given:
- A "problem" (the question)
- An "answer" (the proposed solution)
- A JSON object with "reasoning_steps" and a "workflow" array specifying how to evaluate constraints

Your task for each reasoning step:
- Analyze and extract the precise constraint implied by the step, considering the question and answer

.
- Classify the constraint as either:

- "symbolic" (can be programmatically checked in code-numeric, boolean, logical, etc.),
- or "neural" (qualitative/subjective, requiring evaluation by an LLM).

- For each constraint, generate a fully self-contained, executable Python function, including:
- ALL necessary import statements (inside the function/module code).
- ALL helper functions or objects, defined inline.
- All variables, constants, and values required for successful execution.

- Include a function call with all necessary parameter values and a print statement to print
the output of the call. When including values, use the provided answer as parameter values.

- For neural constraints: clearly and visibly build a string variable, "prompt", containing the
full natural language instruction to the LLM, incorporating the constraint, the question, and
the answer. Include ONLY the actual prompt message in the string variable.

- For both neural and symbolic constraints, you MUST use the original answer in your
verifier_module. In symbolic module, you MUST use the original provided answer to build the z3
program. In neural module, you MUST include the original provided answer in the natural language
instruction.

- For symbolic constraints, use the z3-solver where relevant and include imports and helpers in the
function.

- DO NOT reference, import, or call any function/object not defined in the same module output-
every helper, utility, or reference must be defined and included inside the module (no omissions,
no assumptions). Include a function call with all necessary parameter values and a print
statement to print the output of the call. When including values, use the provided answer as
parameter values.

- For neural constraints, define a string variable `prompt` that includes the full natural language
instruction to the LLM to verify this neural constraint, incorporating the constraint, the
question, and the answer. This prompt needs to ask the LLM to provide a "Yes" or "No" answer as
to whether the given response satisfies the constraints. This string **MUST** use triple quotes
to prevent runtime errors that can occur if the strings contain single quotes ('), double quotes
("), or other special characters. You **MUST** use `prompt` as the variable name, any other

name is not allowed. Your response should **ONLY** contain the definition of this prompt, and
nothing else.

- For both neural and symbolic constraints, you MUST use the original answer in your verifier_module.
In symbolic module, you MUST use the original provided answer to build the z3 program. In

neural module, you MUST include the original provided answer in the natural language instruction
.

Output only a single JSON object, conforming precisely to this schema:

- reasoning_steps: [the original reasoning_steps array, unchanged]
- workflow: [

{{
constraint_description: str (short human-readable summary of the constraint),
constraint_type: "symbolic" or "neural",
verifier_module: str (the complete, executable standalone Python code for the function

including ALL helpers/imports/values-no undefined references, ready to run. For neural
constraints, the string variable definition of the natural language instruction to the LLM.)

}},
...

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

]

NO narrative text, NO comments, NO explanations outside the JSON-every verifier_module code string **
MUST** be complete Python code and executable directly.

Steps

1. For each reasoning step:
- Parse and clarify the specific constraint.
- Classify as "symbolic" or "neural."
- Determine any helper functions or data extraction logic needed.
- Define a constraint_verifier function for the constraint that:

- Includes ALL import statements.
- Defines ALL necessary helper functions and values inline.
- Contains logic to check ONLY this constraint, returning a boolean.

- Include a function call with all necessary parameter values and a print statement to
print the output of the call. When including values, use the provided answer as parameter values
.
- For neural constraints: explicitly constructs a prompt variable in code , never skipping or

implying prompt construction.
- For both neural and symbolic constraints, you MUST use the original answer in your

verifier_module. In symbolic module, you MUST use the original provided answer to build the z3
program. In neural module, you MUST include the original provided answer in the natural language
instruction.

2. Assemble the output JSON object as prescribed.

Output Format

Produce a single valid JSON object with the exact following structure-NO text, comments, or
narrative outside the object:
- reasoning_steps: [original array]
- workflow: [

{{
constraint_description: str,
constraint_type: "symbolic" or "neural",
verifier_module: str (entire Python code block-imports, helpers, function-all included and

complete. For neural constraints, the string variable definition of the natural language
instruction to the LLM.)

}},
...

]

Each verifier_module string is a full executable Python script for that module, ready for interpreter
execution as-is. For neural constraints, the verifier_module string should be the string

variable definition of the natural language instruction to the LLM.

Examples

Example 1

Input
Question:
In an optimistic tone, list less than 5 pros of solar energy.

Answer:
Sure! Solar energy is the future of energy production. Here are 5 pros: 1. Clean 2. Simple 3. Less

human resource needed 4. Only rely on the sun 5. Less maintenance needed

{{
"reasoning_steps": [

"Count the number of pros listed for solar energy and make sure it is less than 5.",
"Check that the tone of the answer is optimistic."

],
"workflow": []

}}

Output
{{

"reasoning_steps": [
"Count the number of pros listed for solar energy and make sure it is less than 5.",
"Check that the tone of the answer is optimistic."

],
"workflow": [

{{
"constraint_description": "Number of pros for solar energy is less than 5",
"constraint_type": "symbolic",
"verifier_module": "def verify_num_pros(problem, answer):\n import re\n from z3 import
Solver, Int, sat\n def extract_pros(answer):\n # Example: extract list items under a '
Pros' heading\n pros_section = re.search(r'Pros:\\s*((?:- .+\\n?)+)', answer, re.
IGNORECASE)\n if pros_section:\n items = re.findall(r'- (.+)', pros_section.
group(1))\n return items\n return []\n pros = extract_pros(answer)\n s =
Solver()\n num_pros = Int('num_pros')\n s.add(num_pros == len(pros))\n s.add(num_pros

< 5)\n return s.check() == sat\n\nanswer = \"\"\"Sure! Solar energy is the future of energy
production. Here are 5 pros: 1. Clean 2. Simple 3. Less human resource needed 4. Only rely on
the sun 5. Less maintenance needed\"\"\"\nprint(verify_num_pros(problem, answer))"

}},
{{

"constraint_description": "Tone of answer is optimistic",
"constraint_type": "neural",

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

"verifier_module": "prompt = f\"\"\"Given the question: \"Count the number of pros listed for
solar energy and make sure it is less than 5.\", and the answer: \"Sure! Solar energy is the
future of energy production. Here are 5 pros: 1. Clean 2. Simple 3. Less human resource needed
4. Only rely on the sun 5. Less maintenance needed\", determine if the overall tone of the
answer can be reasonably described as optimistic. Respond Yes or No.\"\"\""

}}
]

}}

Example 2

Input
Question:
List vegan dishes with total calorie count less than 600.

Answer:
Sure! Here are the dishes: 1. Salad. Calorie count: 100
{{

"reasoning_steps": [
"List only dishes that are vegan.",
"Ensure the total calorie count is under 600."

],
"workflow": []

}}

Output
{{

"reasoning_steps": [
"List only dishes that are vegan.",
"Ensure the total calorie count is under 600."

],
"workflow": [

{{
"constraint_description": "All dishes must be vegan",
"constraint_type": "symbolic",
"verifier_module": "def verify_all_vegan(problem, answer):\n from z3 import Solver,
Bool, sat\n def extract_dishes(answer):\n # Extract dish names from answer -
assumes they are listed by line\n lines = answer.strip().split('\\n')\n
dishes = [line.strip() for line in lines if line.strip()]\n return dishes\n def
is_vegan_helper(dish):\n # Placeholder example: dishes containing 'cheese', 'egg',
'meat', 'milk' are not vegan\n non_vegan_keywords = ['cheese', 'egg', 'meat',
'milk', 'honey']\n return not any(keyword in dish.lower() for keyword in
non_vegan_keywords)\n dishes = extract_dishes(answer)\n s = Solver()\n for dish in
dishes:\n is_vegan = Bool(f'is_vegan_{{dish}}')\n s.add(is_vegan ==
is_vegan_helper(dish))\n s.add(is_vegan)\n return s.check() == sat\n\nanswer =
\"\"\"Sure! Here are the dishes: 1. Salad. Calorie count:
100\"\"\"\nprint(verify_all_vegan(problem, answer))"

}},
{{

"constraint_description": "Total calorie count is under 600",
"constraint_type": "symbolic",
"verifier_module": "def verify_calorie_count(problem, answer):\n from z3 import Solver,
Int, sat\n def extract_dishes(answer):\n lines = answer.strip().split('\\n')\n
dishes = [line.strip() for line in lines if line.strip()]\n return dishes\n def
get_calories(dish):\n # Dummy lookup; in practice, replace with a real database call
or mapping\n dish_calories = {{'salad': 150, 'soup': 200, 'stir fry': 300, 'fruit
bowl': 100}}\n return dish_calories.get(dish.lower(), 250) # Default to 250 if
unknown\n dishes = extract_dishes(answer)\n calories = [get_calories(dish) for dish
in dishes]\n s = Solver()\n total = Int('total')\n s.add(total == sum(calories))\n
s.add(total < 600)\n return s.check() == sat\n\nanswer = \"\"\"Sure! Here are the
dishes: 1. Salad. Calorie count: 100\"\"\"\nprint(verify_calorie_count(problem, answer))"

}}
]

}}

(Real outputs must always include directly executable code for every module, with all helpers and
imports defined inside each verifier_module. For complex parsing or extraction, use executable
code. When including values, use the provided answer as parameter values. Neural modules must
always assemble the natural language instruction prompt as a visible string variable and call the
LLM judge helper.)

Notes

- Every verifier_module must be executable on its own-include all imports, helpers, and required
variables in the code string.

- DO NOT leave any reference or function undefined or assumed-ALL must be written inline.
- Output ONLY the JSON object-no prose, comments, or narrative outside the object.
- For neural constraints, explicitly assign prompt construction to a string variable and invoke the

LLM judge helper as part of the code in the output string.
- Ensure your outputs can be run by a Python interpreter as-is, without any undefined names, missing

imports, or incomplete helpers. If you output is a function, include a function call with all
necessary parameter values and a print statement to print the output of the call. When including
values, use the provided answer as parameter values. For neural constraints, the

verifier_module should be the string variable definition of the natural language instruction to
the LLM.

REMINDER: Every verifier_module must be a fully self-contained, executable Python function, with
EVERY helper and import defined internally. Output ONLY the required JSON object-never produce
any prose or commentary outside it.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

NSVIF Prompt Executor - User Prompt

Question:
{question}

Answer:
{answer}

JSON:
{nsviu_planner_res}

NSVIF Prompt Solver - System Prompt

You are a helpful assistant.

NSVIF Prompt Solver - User Prompt

Now, since you have generated all modules, generate a first-order predicate logic formula that
captures the entire given problem, including all constraints and their verification module results.
For each constraint extracted in the modules, use a first-order logic predicate to represent the
constraint.
E.g., if the constraint is "num_hours > 2", use `is_num_hours_gt_2` as the predicate name.
In your formula, use existential and universal quantifiers to represent the relationship between
constraints.
Use boolean variables to represent the actual satisfiability of the each of the constraints.
They should represent the results of individual verifier modules
Generate a z3 program that encodes the entire given problem, including all constraints and their
verification module results.
Encode the relationship between constraints with z3 operators, such as And, Or, Not, etc.
Also use boolean variables to represent the actual satisfiability of the each of the constraints.
This z3 program should be self-contained and complete. It will be executed as a script. Include
all necessary verifier module results or question and answer values.
They should represent the results of individual verifier module.
In the program, print the result of the z3 program as "sat" or "unsat".
For your convenience, here's the original LLM question and answer:

Question:
{question}

Answer:
{answer}

Module results:
{individual_module_results}

Task: Generate a json string with three keys: 'global_constraint_predicate',
'global_constraint_predicate_definitions', and 'gcp_z3_program'.
The value of 'global_constraint_predicate' should be the first-order predicate logic formula
mentioned above.
The value of 'global_constraint_predicate_definitions' should be definitions of all the first-
order logic predicates you included in the formula.
The value of 'gcp_z3_program' should be the z3 program mentioned above. **MUST INCLUDE THE ANSWER
VALUES OR VERIFIER MODULE RESULTS IN YOUR Z3 PROGRAM**
Only output the Python code. Do not include any other text. Do not include any commentary, only
output the python code
GENERATE ONLY JSON STRING. DO NOT INCLUDE ANY OTHER TEXT.

Simple Verifier Prompt

Here's an instruction and an answer to the instruction:
Instruction: {instruction}
Answer: {answer}

Produce a json that includes these keys:
"is_sat": A result that says whether the answer satisfies the instruction, either "sat" or "unsat"

Example Input:
Instruction: "Write a sentence about operating systems that does not include the word semaphore"
Answer: "Operating systems are software that manages hardware resources and application
scheduling."

Example Output:
Output:
{

"is_sat": "sat"
}

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

ONLY OUTPUT THE JSON, NOTHING ELSE

B PROMPTS OF VIFBENCH

VIFBench Prompt Formula to Instruction - System Prompt

You are an AI assistant designed to generate complex and realistic user instructions. Your goal is to
create natural-sounding instructions for evaluating language models.

You will be given a single input: a **Logical Expression**. This formula uses predicates to define
specific constraints and combines them using ` ` (and), `seq(A, B, ...)` (chain), and `(A
B) (A C)` (selection).

Your task is to parse this expression and synthesize its components into a single, cohesive, and
natural-sounding user instruction that incorporates all the specified constraints.

Key Principles for Generation

- **Be Natural:** The instruction should sound like something a real user would write.
- **Create Context:** Invent a plausible scenario or context for the request.
- **Integrate Seamlessly:** Weave the constraints into the instruction's narrative smoothly.
- **Ensure Clarity:** The final instruction must clearly and unambiguously contain all the specified

constraints from the logical expression.

Examples

Example 1
Logical Expression:
`format(bullet_points) word_limit(<, 100)`
Generated Instruction:
"Please summarize the attached article about renewable energy. The summary should be presented as a

bulleted list and must be within 100 words."

Example 2
Logical Expression:
`seq(introduce(creation_year), describe(creation_background), summarize(historical_impact))`
Generated Instruction:
"Please write an introduction for the painting 'Mona Lisa'. Firstly, state the year it was created.

Next, describe the historical background of its creation. Finally, provide a summary of its
impact on the art world."

Example 3
Logical Expression:
`(contains_animal(input) language(english)) (contains_animal (input) language(chinese))`
Generated Instruction:
"I need a description for the following painting. If the artwork depicts any animals, please write

the description in English. Otherwise, the description should be in Chinese."

Example 4
Logical Expression:
`seq(summarize(document) format(markdown) word_limit(<, 200) tone(formal), list(entities,

"person"))`
Generated Instruction:
"Please process the attached business report. First, I need a formal summary of the entire document.

This summary should use Markdown for headings and lists and must be kept under 200 words. After
you provide the summary, please create a separate list of all the people's names mentioned in
the report."

VIFBench Prompt Formula to Instruction - User Prompt

Now, generate a realistic instruction for the following inputs:
Logical Expression: fol

21

	Introduction
	Background
	Nsvif: Neuro-Symbolic Verification of Instruction Following
	Formal Model as Constraint Satisfaction Problem
	Implementation

	VifBench: A Benchmark for Instruction-Following Verifiers
	Evaluation Setup
	Baseline
	Metrics

	Results
	Related Work
	Conclusion
	Prompts of Nsvif
	Prompts of VIFBench

