Let Go of Your Labels with Unsupervised Transfer

Artyom Gadetsky *! Yulun Jiang”' Maria Brbi¢'

Abstract

Foundation vision-language models have enabled
remarkable zero-shot transferability of the pre-
trained representations to a wide range of down-
stream tasks. However, to solve a new task, zero-
shot transfer still necessitates human guidance to
define visual categories that appear in the data.
Here, we show that fully unsupervised transfer
emerges when searching for the labeling of a
dataset that induces maximal margin classifiers
in representation spaces of different foundation
models. We present TURTLE, a fully unsuper-
vised method that effectively employs this guiding
principle to uncover the underlying labeling of a
downstream dataset without any supervision and
task-specific representation learning. We evalu-
ate TURTLE on a diverse benchmark suite of 26
datasets and show that it achieves new state-of-
the-art unsupervised performance. Furthermore,
TURTLE, although being fully unsupervised, out-
performs zero-shot transfer baselines on a wide
range of datasets. In particular, TURTLE matches
the average performance of CLIP zero-shot on
26 datasets by employing the same representation
space, spanning a wide range of architectures and
model sizes. By guiding the search for the un-
derlying labeling using the representation spaces
of two foundation models, TURTLE surpasses
zero-shot transfer and unsupervised prompt tun-
ing baselines, demonstrating the surprising power
and effectiveness of unsupervised transfer.

1. Introduction

Transfer learning is a fundamental machine learning
paradigm that leverages large-scale pre-training of deep
neural networks to improve model performance on down-
stream tasks with limited resources (Pan & Yang, 2009).

“Equal contribution 'EPFL, Lausanne, Switzerland. Correspon-
dence to: Maria Brbi¢ <mbrbic@epfl.ch>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Early transfer learning approaches relied on supervised fine-
tuning of the entire model to solve a downstream task of
interest (Kolesnikov et al., 2020). Recent works (He et al.,
2022; Li et al., 2022; Zhou et al., 2022; Oquab et al., 2023;
Darcet et al., 2024) have shown that fine-tuning an entire
model during transfer brings only marginal gains compared
to training a linear classifier on top of the frozen pre-trained
backbone (i.e., linear probe). Although these approaches
eliminated the need for task-specific fine-tuning of represen-
tations, they still require at least a few labeled examples per
class to achieve human-level performance on downstream
tasks.

Recently, foundation models (Bommasani et al., 2022) have
emerged, approaching human-level intelligence on a vari-
ety of tasks in the zero-shot setting. In particular, Radford
et al. (2021) proposed CLIP, which trains representations
by aligning images and their corresponding captions in the
joint embedding space. After pre-training, a zero-shot clas-
sifier is constructed by embedding the descriptions of visual
categories that appear in the data. Subsequent works have
successfully adopted this representation learning principle
to enable zero-shot transfer in other domains, such as au-
dio signal processing (Elizalde et al., 2023a;b), biomedicine
(Lin et al., 2023; Robinson et al., 2023) and symbolic regres-
sion (Meidani et al., 2024). Despite the remarkable success
of foundation models, zero-shot transfer still requires human
instructions to solve a new task. But, can the representations
of foundation models be utilized to solve a new task in a
Sfully unsupervised manner?

The simplest approach for unsupervised transfer would be
to apply off-the-shelf clustering methods (MacQueen, 1967)
on top of the pre-trained representations. However, this strat-
egy inevitably leads to a drastic decrease in performance
compared to (weakly) supervised and zero-shot transfer
(Zhou et al., 2022; Oquab et al., 2023). Recently, Gadet-
sky & Brbi¢ (2023) introduced HUME, an unsupervised
learning framework for inferring the underlying human la-
beling of a given dataset from pre-trained representations.
While HUME has achieved superior performance compared
to unsupervised baselines, it still requires task-specific rep-
resentation learning and does not close the gap between
unsupervised and zero-shot transfer.

Here, we present TURTLE, a method that enables unsuper-

Let Go of Your Labels with Unsupervised Transfer

(i) Supervised Transfer

Target dataset Prior knowledge

1 EAR-0
Fzrl SHes

ﬁ m Labeled examples

#*
Image Encoder ZNE) using
labeled examples

Target dataset
BA 4 [=
N

(ii) Zero-shot Transfer

% A photo of [[SK}
Image Encoder

(i) Unsupervised Transfer

Prior knowledge Target dataset

o

Descriptions of visual categories

Prior knowledge
FEN 0|0
¥ 3

= Number of visual categories

#*
Image Encoder How to discover the
unde ng h an labeling

Fig & O
TEa e

Fimg & O
R

Fim i OO
“mae e

Figure 1. Types of downstream transfer differ in the amount of available supervision. Given representation spaces of foundation
models, (i) supervised transfer, represented as a linear probe, trains a linear classifier given labeled examples of a downstream dataset; (ii)
zero-shot transfer assumes descriptions of the visual categories that appear in a downstream dataset are given, and employs them via
text encoder to solve the task; and (iii) unsupervised transfer assumes the least amount of available supervision, i.e., only the number of
categories is given, and aims to uncover the underlying human labeling of a dataset.

vised transfer from foundation models. The key idea behind
our approach is to search for the labeling of a downstream
dataset that maximizes the margins of linear classifiers in the
space of single or multiple foundation models to uncover the
underlying human labeling. Compared to zero-shot and su-
pervised transfer, unsupervised transfer with TURTLE does
not need the supervision in any form (Figure 1). Compared
to deep clustering methods (Xie et al., 2016; Chang et al.,
2017; Caron et al., 2018; Van Gansbeke et al., 2020; Niu
et al., 2022), TURTLE does not require task-specific repre-
sentation learning that is expensive for modern foundation
models.

We study the performance of TURTLE on the extensive
evaluation suite spanning 26 datasets and 7 different foun-
dation models. We compare TURTLE to various baselines
that differ in the amount of available supervision for the
downstream transfer. First, when compared to the recent
state-of-the-art unsupervised baselines, TURTLE outper-
forms these baselines on all the considered datasets, setting
the new state-of-the-art unsupervised performance. Com-
pared to zero-shot transfer, TURTLE instantiated with two
foundation models surpasses CLIP zero-shot transfer across
all studied model sizes, achieving exceptional absolute im-
provements up to 35% on the studied datasets. Given the
same single representation space, TURTLE closely matches
the performance of the CLIP zero-shot transfer on 7 out of 8
studied model architectures. In particular, the best TURTLE
model, which utilizes the same model size and represen-
tation space, outperforms CLIP zero-shot on 13 out of 26
datasets. Finally, when compared to supervised transfer
represented by linear probe, TURTLE approaches its perfor-

mance on 5 out of 26 studied datasets, suggesting that labels
may not be needed to infer the underlying human labeling
when given sufficiently high-quality representations.

2. Background

In this section, we introduce the problem setting of unsuper-
vised transfer and provide an overview of key concepts that
we build upon.

Unsupervised transfer. Let X C R? be an input space
and D = {x,}N | x, € X be a dataset consisting of N
samples and C' classes, where C' is known a priori. Let
¢(x) : X — R denotes a mapping from an input space
X to a g-dimensional representation space of a pre-trained
foundation model. The question we aim to answer is how
to utilize representations from foundation models to solve
a new task in a fully unsupervised manner. Thus, by un-
supervised transfer we consider the task of inferring the
underlying human labeling! of a dataset D without any su-
pervision given representations of foundation models.

Generalization-based learning of human label-
ings. Gadetsky & Brbi¢ (2023) recently introduced a
generalization-based objective that evaluates the general-
ization ability of linear models on top of representations
obtained from pre-trained models. The objective is
motivated by a strong generalization ability of linear models

'We interchangeably use terms “task” and “labeling” in the
context of this paper, since any labeling defines a task. Conse-
quently, we refer to a task as human labeled if it corresponds to
the underlying human labeling of a given dataset D.

Let Go of Your Labels with Unsupervised Transfer

in representation spaces of foundation models on many
human labeled tasks. Equipped with this insight, the goal is
to find such labeling that optimizes generalization ability of
a linear model over all possible labelings of a given dataset.
The quality of a labeling is measured by the ability of a
linear model to generalize on a task defined by the given
labeling.

In particular, let 7 : X — {1,...,C} denote a labeling
function of a dataset. Let f(z) = w? ¢(z) denote a lin-
ear model in the representation space ¢(x) of a founda-
tion model. Given a train-test split (Dy,., D;.), one can
train the model on a training split Dy, with labeling 7(D,.)
and classification loss function £ to obtain f . After train-
ing, the generalization ability of the model can be assessed
by computing the error of f on D,.. Consequently, the
generalization-based objective is defined as follows:

min 3 £(7(x), 7(x))

2€D¢e

st f = argm}n Z L(f(x),7(x)),

€Dy

ey

where minimization is performed over the set of all possible
labelings of a dataset D. This leads to a difficult discrete
optimization problem. To overcome this limitation, Gadet-
sky & Brbi¢ (2023) replace minimization w.r.t. a discrete
labeling 7 with minimization w.r.t. continuous parameters
6 of a task encoder 7y(z) : X — A", where A®~! de-
notes (C' — 1)-dimensional probability simplex. As a result,
careful design of 79 becomes crucial since it defines the
search space explored by the generalization-based objective

(1.

HUME framework. The instantiation of this framework,
proposed in HUME (Gadetsky & Brbi¢, 2023), models 7y
using a linear model in the representation space v (z) ob-
tained via self-supervised pre-training on the target dataset
D:

Ty M (z) = o (0" (),)

where o : R — A®~! denotes an activation function. This
modeling choice corresponds to restricting the search space
in (1) to a set of labelings which are linearly separable in
the representation space v (z). In addition, obtaining ()
requires task-specific representation learning, i.e., ranning
self-supervised learning on the target dataset D. Since reli-
able self-supervised pre-training necessitates a large amount
of data (Wang & Isola, 2020), this prevents successful un-
supervised transfer on downstream tasks with limited re-
sources.

Given the task encoder parametrization 74'"ME, HUME op-
timizes the following objective to search for the underlying

human labeling:

LHOME() = 57 Lol fuppron(2), HME(),)

€Dy,

where L is the cross-entropy loss function and fpprox is an
approximate solution to f obtained using iterative optimiza-
tion algorithms. HUME resorts to iterative differentiation
(Domke, 2012; Shaban et al., 2019) to solve the resulting
bilevel optimization problem, leading to an expensive over-
all training procedure.

3. Analysis of Generalization-Based Objective

To understand inductive biases of the generalization-based
objective proposed in (1), we consider this objective in case
of binary labelings 7(z) : X — {—1,+1} with exponen-
tial loss function Lex, (f(2), 7(x)) = exp(—7(x) f(x)). To
simplify the analysis, we assume that the task encoder 7y
is a linear model in the same representation space ¢(x),
ie., 1o(z) = o(0T¢(x)), where 0 : R — [—1;1] is an
odd activation function such as tanh. This corresponds to
restricting the search space in (1) to a set of labelings which
are linearly separable in the representation space ¢(x). Ad-
ditionally, we do not distinguish between train and test splits,
i.e., Dy, = Dy = D. We provide a detailed discussion of
the aforementioned assumptions in the remarks at the end
of this section.

To obtain an approximate solution to f, we use itera-
tive optimization algorithms. Specifically, let w,,11 =
E(wm, D) denote a one step of an optimization algorithm,
e Z(twn, D) = Wi — 1V X pep LT 6la), 7o(x))
for the gradient descent with a step size 7. Similarly, let
wy = EM) (wy, D) denote M steps of an optimization
algorithm starting from wg. Eventually, the above specifica-
tions result in the following bilevel optimization problem:

LY(0) = exp(—mo(x)wiyé(x)))

€D
s.t. wyr = 2 (wq, D), (5)

where we refer to (4) and (5) as inner and outer objectives
respectively.

The key observation underlying our main result is that the
inner optimization (5) corresponds to the unregularized lo-
gistic regression on separable data, allowing us to employ
the seminal result by Soudry et al. (2018). This work shows
that gradient descent, when applied to the task of unregu-
larized logistic regression, outputs iterates that are biased
towards the direction of the max-margin hyperplane. Evi-
dently, the task encoder 7y generates labelings of D, which,
by definition, are linearly separable in the representation
space ¢(x). Consequently, wys will follow the direction
of max-margin hyperplane for a given labeling 7y. In turn,

Let Go of Your Labels with Unsupervised Transfer

the last point to observe is that substituting the iterates in
(4), the outer objective is minimized when wj; has a larger
margin 7o (z)wl ¢(x) with respect to 75. Equipped with
this intuition, we are now ready to state our main result:

Proposition 3.1. Given M > 1, 6 # 0 and appropriate
step size n which ensures convergence, then

L57(0) = 9(6) wsm (9)]3. ©

where g(0) = (Mnexp(||rar(0)|2)) ™1, the residual vy ()
is bounded with limps_, o ||732(0)]|2 = 0, and wsyu(0) is
the solution of the hard-margin SVM for a given 0:

wsyu(0) = min w3
“ T (N
st 1o(xp)w d(xy,) >1 Va, €D.

We defer the proof to Appendix A. This result shows that
the generalization-based objective upper bounds the norm of
hard-margin SVM fitted to a labeling 7. Consequently, min-
imizing £37*Y will inevitably lead to minimizing the norm
(i.e., maximizing the margin) with respect to a labeling. As
a result, the optimization procedure will yield labelings with
large margin of the corresponding classifier. Overall, our
result unveils that the maximum margin principle (Vapnik,
1995), widely employed by supervised learning algorithms,
emerges as the inductive bias of the generalization-based
objective (1).

Remark 3.2. (Search space restriction). The result above
holds when labelings generated by 7y are linearly separable
in the representation space ¢(x). This assumption leads to
the analysis of the generalization-based objective (1) with
the restricted search space. Ji & Telgarsky (2019) showed
that in the case of non-separable labelings, gradient descent
mirrors the separable case, following the max-margin di-
rection of a maximal linearly separable subset of the data.
Therefore, one could expect that the lower bound of the
generalization-based objective (1) optimized over the com-
plete search space inherits these properties, reflecting the
separable case.

Remark 3.3. (Train-test split assumption). The
generalization-based objective (1) assumes different
train-test splits (Dy,., Dye) on the inner-outer levels respec-
tively to obtain an unbiased estimate of the true risk of a
model f. In our analysis, we simplify this assumption and
employ D on both levels. Our result shows that minimizing
the generalization-based objective in this case leads to
maximizing the margin of a linear model with respect to
a labeling 7 on D. In turn, this will inevitably lead to
low error on a held out data given that margin size upper
bounds generalization error (Bartlett & Shawe-Taylor,
1999; Gronlund et al., 2020).

Remark 3.4. (Asymptotic analysis) Proposition 3.1 is rather
informal since it substitutes the asymptotic behaviour of

the gradient descent iterates w), into the outer objective.
Although a rigorous analysis of the residual is required to
establish exact bounds, these results serve to grasp the induc-
tive bias incorporated in the generalization-based objective
designed for the inference of human labelings.

In summary, this result shows that optimizing the
generalization-based objective (1) yields labelings that in-
duce maximal margin classifiers in the representation space
¢(x). Our main result is greatly inspired by the seminal
works (Soudry et al., 2018; Ji & Telgarsky, 2019) that reveal
the implicit bias of gradient descent towards max-margin
solution. Likewise, we demonstrate that the generalization-
based objective (1) encourages labelings 7 such that if one
were to subsequently train a max-margin classifier in the
representation space ¢(x) to fit a labeling 7, the margin
obtained would be maximal over all possible labelings.

4. TURTLE Framework

These insights serve us as a guiding principle to develop
TURTLE, a general framework for efficient fully unsuper-
vised transfer given representations of foundation models.

Optimization objective. Proposition 3.1 provides an im-
portant insight on the inductive bias incorporated in the
generalization-based objective (1). Indeed, one can search
for the underlying human labeling by maximizing the mar-
gin of a linear model with respect to a labeling. Pushing
the limits of this principle, we propose to search for a la-
beling by maximizing margins of linear models in spaces
of multiple foundation models at the same time. Given K
foundation models, let ¢ () be a representation space of
k-th foundation model. Given labeling defined by a task
encoder 7y, let w, be k-th linear model trained to fit this
labeling in a representation space ¢ (). Then, TURTLE’s
optimization objective is as follows:

K
LIFRMEO) =) D Lec(whydr(); mo(2))

i=12eD @
s.t. wh, = 2 (wk D), VE,

where, ZM (w§, D) denotes an iterative optimization algo-
rithm = run for M steps starting from wf. Intuitively, each
of the K terms in the loss function encourages 7y to max-
imize margin of k-th linear model in the corresponding
representation space ¢. As opposed to the HUME’s objec-
tive (3), which maximizes margin only in the single space
1 (x), TURTLE provides more effective guidance to the
search process.

Task encoder parametrization. The parametrization of a
task encoder 7y defines the search space of labelings, thus
it has a crucial importance on the optimization process. In
TURTLE, we employ pre-trained representation spaces of

Let Go of Your Labels with Unsupervised Transfer

foundation models to define a task encoder 7y. These repre-
sentations remain fixed during the overall training procedure,
alleviating the need of task-specific representation learning.

In particular, given K representation spaces ¢ (x), we de-
fine our task encoder 7y as follows:

K
1
R () = =3, (2),
k=1

where 75, () = o(0F ¢1.(z)),

€))

such that§ = {0, ..
and o is a softmax activation function.
cluster assignments are computed as usual:

., 0k } denotes all trainable parameters
After training,

arg C:rrllaxc [Tg URTLE (a:)]

FRRES}

; (10)

c
where [74 VKT ()] denotes the probability of assigning a
sample z to the c-th cluster.

Compared to the HUME framework in (2) which searches
for the underlying human labeling only over all linearly
separable labelings in the self-supervised representation
space ¢ (z), TURTLE’s parametrization greatly expands
the search space. Indeed, modeling 7y as a simple ensem-
ble induces the search space which is at least union of all
linearly separable labelings in each of the representation
spaces of foundation models ¢1, ..., ¢x. One could fur-
ther suggest employing deeper architectures to model 7y,
however such modeling choice may give rise to tasks that
capture spurious correlations in data and do not necessarily
reflect human labelings (Atanov et al., 2022). Therefore,
our design choice effectively increases the search space and
alleviates the need of task-specific fine-tuning by employing
strong representations of foundation models.

Regularization. The task encoder can synthesize degen-
erate labelings, i.e., assign all samples to a single class
(Gadetsky & Brbi¢, 2023). Although such labelings induce
linear classifiers with the largest possible margin in all rep-
resentation spaces, they are irrelevant. To avoid such trivial
solutions, we separately regularize each term of the task
encoder:

K

R(O) = > H(T,), (11)

k=1

where 75 = (|D]) ' Y., cp 7o, (2) € AL is an empiri-
cal label distribution of k-th component 7y, and H(-) is the
entropy function of discrete distribution.

Final objective function. Putting (8) and (11) together,
TURTLE finally optimizes the following objective function:

min L3751 (6) — yR(0), (12)

where we found v = 10 is a good default choice for the
entropy regularization strength . We show robustness to
this hyperparameter in Appendix G.

Efficient optimization. The new optimization-based objec-
tive (8) is a bilevel optimization problem with the convex
inner part. Indeed, given 7y, computing w’, corresponds to
the logistic regression problem on D with labeling 74 (D)
in the k-th representation space ¢. Learning parameters
using gradient-based techniques involves computing a total

:vative & P TURTLE.
derivative 75 £y

K

d 0 owhk 0
& pruRTLE _ 9 pTURTLE N7 TWM T TURTLE
do 00 kz::l 20 7 owk,
(13)
where 8351 is the Jacobian, which is expensive to compute

in practice (Domke, 2012; Shaban et al., 2019). The key
observation is that employing the same set of samples D on
both inner and outer levels allows us to discard the second
term of the total derivative. Indeed, after training w%, on
D, one can approximate -5 C1IRTLE ~ O £TURTLE gince
wk, is an approximate stationary point of the inner problem
for a given 79, ie., azfgf LTIRTLE ~ (0. Ablin et al. (2020)
have shown a strong performance of this estimator in prac-
tice for bilevel optimization problems similar to ours. The
pseudocode of TURTLE is provided in Algorithm B1 with
implementation details in Appendix B.3.

5. Experiments
5.1. Experimental setup

Datasets and evaluation metric. We study the perfor-
mance of TURTLE on the extensive benchmark of 26 vision
datasets (Radford et al., 2021). The detailed description of
each dataset is provided in Appendix B.1. We compare our
framework with the baselines using accuracy metric and
employ Hungarian algorithm (Kuhn, 1955) to match the
labeling found by TURTLE (10) to the ground truth labeling
of a corresponding dataset. By default, we train TURTLE
on the training split of a corresponding dataset and provide
the results on the test split. In Appendix H, we additionally
show that mimicking deployment regime, i.e., having only
test split available for training, does not lead to performance
decrease of TURTLE.

Foundation models in TURTLE. We employ CLIP (Rad-
ford et al., 2021) representations which span different archi-
tectures and model sizes, in particular, 5 different ResNets
(R50, R101, R50x4, R50x16 and R50x64) and 3 different
Vision Transformers (ViT-B/32, ViT-B/16 and ViT-L/14).
We refer to the TURTLE as TURTLE 1-space if it utilizes
only a single space CLIP representation (X = 1 in (8)
and (9)). We refer to the TURTLE as TURTLE 2-spaces

Let Go of Your Labels with Unsupervised Transfer

if it utilizes two different foundation models. Namely, we
use DINOv2 ViT-g/14 (Oquab et al., 2023) as the second
space while the first space is always represented with one
of the CLIP variants. Consequently, to specify the partic-
ular CLIP architecture when utilizing two representation
spaces, e.g., ViT-L/14, we refer to TURTLE as TURTLE
2-spaces ViT-L/14. We precompute all representations for
the entire benchmark and keep these representations fixed
during the overall training procedure. The detailed descrip-
tion of the used models and other specifications to prepare
representations are provided in Appendix B.2.

Baselines. We compare unsupervised transfer using TUR-
TLE to baselines that differ in the amount of supervision
they use (Figure 1). First, we compare TURTLE to HUME
(Gadetsky & Brbic, 2023), a method that has recently shown
state-of-the-art unsupervised learning performance and sur-
passed traditional deep clustering approaches (Van Gans-
beke et al., 2020; Niu et al., 2022; Amrani et al., 2022;
Feng et al., 2023). Next, to explore how far can we go
with unsupervised transfer, we compare TURTLE in a chal-
lenging setting to zero-shot transfer, unsupervised prompt
tuning and supervised baselines. All these baselines use
some form of supervision compared to TURTLE which is
fully unsupervised. We start by comparing TURTLE to the
CLIP zero-shot transfer (Radford et al., 2021) that employs
descriptions of ground truth classes as a form of supervision.
Following (Radford et al., 2021), we perform prompt engi-
neering and ensembling to construct a zero-shot classifier
for each dataset. As even stronger baselines, we compare
TURTLE to the state-of-the-art unsupervised prompt tuning
methods UPL (Huang et al., 2022), POUF (Tanwisuth et al.,
2023) and GDA (Wang et al., 2024). These approaches
enhance class prototypes defined by the CLIP zero-shot
classifier via unsupervised adaptation on the downstream
task. Finally, we employ supervised linear probe on top of
the CLIP representations to serve as a supervised transfer
baseline. Differences between types of transfer are high-
lighted in Table 1.

Table 1. Differences between the considered types of down-
stream transfer.

Available Supervision Training on D

Number of classes
Class descriptions
Class descriptions
Labeled samples

Unsupervised transfer (ours)
Zero-shot transfer
Unsupervised prompt tuning
Supervised transfer

ANANR SN

Model Selection. Gadetsky & Brbi¢ (2023) showed
that generalization-based objective (1) is strikingly well-
correlated with human labelings, which we further confirm
in Figure B1 on 26 datasets. Notably, this enables unsu-
pervised hyperparameter search in TURTLE. For super-
vised linear probes, we perform standard cross-validation
to search for the L2-regularization strength. We refer the

reader to Appendix B.3 for the detailed description of our
model selection procedures. Code is publicly available at
https://github.com/mlbio-epfl/turtle.

5.2. Results

Comparison to unsupervised baselines. We start by com-
paring TURTLE to HUME. Originally, HUME utilized self-
supervised representation learning on the given dataset D to
model the task encoder (2). To ensure the fair comparison,
we instead employ representation spaces of foundation mod-
els for both modeling the task encoder (2) and for represen-
tation space used to model fapprox in (3). Consequently, both
TURTLE and HUME use the same representation spaces,
i.e., CLIP ViT-L/14 and DINOv2. Furthermore, we improve
the optimization procedure of HUME to enable accelerated
convergence. In addition, we compare TURTLE to the K-
Means clustering (MacQueen, 1967) on top of concatenated
embeddings from both representation spaces employed by
TURTLE. The K-Means clustering serves as the simple un-
supervised transfer baseline since, like TURTLE, it does not
require task-specific representation learning. We refer the
readers to Appendix C for the detailed description of the im-
provements made to HUME as well as the implementation
details of the K-Means.

As shown in Figure 2, TURTLE substiantially outperforms
HUME on all considered datasets, confirming that max-
imizing margin in both spaces simultaneously to search
for the underlying human labeling (8) and expanding the
search space of labelings (9) is the effective design choice.
Remarkably, TURTLE leads to 23% and 11% absolute im-
provements (30% and 18% relative improvement) on the
MNIST and Birdsnap datasets, respectively. Furthermore,
among other datasets, TURTLE sets the new state-of-the-art
unsupervised performance on the ImageNet dataset, achiev-
ing 72.9% accuracy and outperforming the previous state-
of-the-art (Alkin et al., 2024) by 5.5%.

100 +23% TURTLE
& +6%
+5% H HUME
g % i . i K-Means
g & " ! +4%
S 70 , +11% :
(%]
o] s
< 60 N
]
50 T T T T T
MNIST CIFAR100 Food101 Birdsnap ImageNet

Figure 2. TURTLE outperforms unsupervised baselines. Com-
parison of TURTLE to unsupervised baselines with respect to
accuracy. All methods use the CLIP ViT L/14 and DINOV?2 repre-
sentations. Bars represent the average performance with standard
deviations computed over three runs.

In addition, we validate optimization efficiency of TUR-
TLE and compare training time between all the considered
methods in Figure 3. The results corroborate the use of first-

https://github.com/mlbio-epfl/turtle

Let Go of Your Labels with Unsupervised Transfer

order hypergradient approximation (13) in TURTLE. No-
tably, TURTLE achieves 10x speedup compared to HUME,
achieving the impressive training time on the ImageNet
dataset that takes less than five minutes. Overall, our results
show that TURTLE effectively addresses the challenges of
unsupervised transfer and outperforms unsupervised base-
lines by a large margin.

TURTLE
102 HUME
_ K-Means
£ 10t
S
@ 10°
£
F 10-1
1072
MNIST(10) CIFAR(100) Food(101) Birdsnap(500) ImageNet(1000)

Figure 3. TURTLE is an efficient method. Comparison of run-
ning time between TURTLE and unsupervised baselines. TURTLE
employs efficient first-order optimization procedure, achieving
more than 10x speedup compared to HUME. All methods use
CLIP ViT L/14 and DINOV?2 representations. Bars represent the
average performance over three runs. Standard deviations are neg-
ligible (Table C2) and omitted for clarity.

Comparison to zero-shot transfer. We compare TUR-
TLE to the CLIP zero-shot transfer that uses descriptions of
ground truth classes as a form of supervision. Remarkably,
without using any supervision, TURTLE 2-spaces outper-
forms the zero-shot transfer of CLIP by a large margin
across 26 benchmark datasets for different ViT backbones
(Figure 4).

Transfer performance on 26 datasets

68 1
~ 66

[©) e}
N S
1 1

CLIP Zero-shot
TURTLE 1-space
TURTLE 2-spaces

Average Accuracy (%

u U O
o 0 O
1 1 1

54 1
VIT-8/32 ViT-B/16 ViT-L/14

Figure 4. TURTLE enables unsupervised transfer given repre-
sentation spaces of foundation models. Employing the same
CLIP representation space, TURTLE closely matches the perfor-
mance of the corresponding CLIP zero-shot classifier on average
over 26 datasets. With the use of an additional representation
space, TURTLE outperforms zero-shot transfer, demonstrating
exceptional abilities of unsupervised transfer learning.

In particular, TURTLE 2-spaces outperforms CLIP zero-
shot by 9%, 7% and 4% absolute improvement (17%, 12%
and 5% relative improvement) with ViT-B/32, ViT-B/16 and
ViT-L/14 backbones, respectively. Moreover, even TURTLE
1-space matches the performance of CLIP zero-shot across

EuroSAT

MNIST +21.6
Flowers102

Birdsnap
RESISC45
KITTI Distance
CIFAR100
UCF101
Caltech101
FGVCAircraft
CIFAR10
CLEVRCounts
DTD
PatchCamelyon
STL10

SUN397

HatefulMemes

Food101

OxfordPets

GTSRB

ImageNet

Kinetics700

StanfordCars

SST2

FER2013

Country211

—20 -10 0 10 20 30
A Score (%)

TURTLE Unsupervised Transfer vs. CLIP Zero-shot Transfer

Figure 5. TURTLE outperforms the CLIP zero-shot classifier
on 15 out of 26 datasets. TURTLE is trained with CLIP ViT-L/14
and DINOV2 representations. CLIP zero-shot utilizes the same
CLIP ViT-L/14 architecture. Furthermore, we observe that even
with only a single CLIP representation space TURTLE outperforms
CLIP on 13/26 datasets (Figure E1).

all studied ViT models. It is important to note that both CLIP
zero-shot and TURTLE 1-space are linear models in the
same representation space and differ only in the amount of
supervision which is available to produce the weights. When
comparing performance on individual datasets, TURTLE
outperforms CLIP zero-shot transfer on 15 out of 26 datasets
with remarkable absolute gains of 35%, 21% and 20% on
the EuroSAT, MNIST and Flowers102 datasets, respectively
(Figure 5). We provide individual scores for all TURTLE
and CLIP zero-shot variants in Appendix D.

Comparison to unsupervised prompt tuning. Next, we
compare TURTLE to unsupervised prompt tuning baselines.
We follow previous works and use CLIP ResNet-50 repre-
sentations for all methods. Although being fully unsuper-
vised, TURTLE consistently outperforms all the considered
baselines by a large margin (Table 2). Specifically, TUR-
TLE achieves 8% absolute improvement (12% relative im-
provement) in average accuracy over the best unsupervised
prompt tuning baseline. On the Flowers102 and EuroSAT
datasets, our framework attains outstanding absolute gains
of 27% and 41% (37% and 75% relative improvement), re-
spectively. Overall, these results demonstrate the surprising
effectiveness of the unsupervised transfer.

Let Go of Your Labels with Unsupervised Transfer

Table 2. TURTLE 2-spaces outperforms unsupervised prompt tuning methods. ZS column indicates whether method utilizes zero-
shot supervision to make predictions. All methods employ CLIP ResNet-50 representations. TURTLE additionally uses DINOv2

representations as the second representation space.

Method ZS \ Pets Flowers FGVC DTD EuroSAT Cars Food

SUN Caltech UCF ImageNet Avg.

POUF v | 88.0 66.7 16.7 415 42.1 574 747 58.6 869 6l1.1 552 59.0
UPL v | 883 689 17.3 46.6 54.8 62.1 776 640 899 672 60.5 63.4
GDA v | 899 727 18.7 46.8 49.9 60.8 783 63.6 875 68.7 61.2 63.5
TURTLE X \ 90.9 99.7 253 57.0 95.5 32.6 84.1 657 886 777 66.3 71.2
Comparison to supervised transfer. Finally, we compare 100 crario ST
TURTLE 1-space ViT-L/14 to supervised linear probe in Food101% @ EUrOSAT
the same representation space. This means that in this setup s % Resiscase oo
both models are linear in the representation space of CLIP E 804) ﬁziclhm
ViT-L/14 and differ only in the amount of supervision uti- 5
lized to produce the weights. Supervised linear probe is E 70 ,,// CIFARLOQ StanfordCars
trained using all available labels. Consequently, we can 9 . 77 SUN3979/5imageNet
assume that it represents the maximal transfer learning per- 4 Hatef”'M/efﬁ'eg o
formance that can be achieved by the unsupervised transfer. 5 504 PatchGamelyon GTSRB
We observe a high positive correlation of 0.87 (p-value § 01 // (T Distance
< 1078) between unsupervised transfer performance and §_ 7 Kineties700 FGVCAircrat
its fully supervised counterpart (Figure 6). This result 3 301 oy oreRzols
indicates that with better supervised linear probe perfor- > . /,//
mance, TURTLE’s performance may also increase, which _ _ S
. . . ’ Country211 p=0.87, p=6.3x10
we further investigate in the subsequent paragraph. Notably, 10+ . .

TURTLE approaches the “optimal* transfer performance on
the STL10, CIFAR10, Flowers102, Food101 and Hateful-
Memes, demonstrating that labels may not be needed when
given sufficiently high-quality representations, as measured
by supervised linear probe. We perform similar analysis for
TURTLE 2-spaces and observe stronger correlation, leading
to reduced gap between TURTLE 2-spaces and supervised
linear probe (Figure E2).

Ablation of different representation spaces on ImageNet.
Results from the previous paragraph speculate that incor-
porating stronger representations may lead to the increased
performance of unsupervised transfer. To validate this, we
run TURTLE with pairs of different representation spaces
on the ImageNet-1000 dataset (Deng et al., 2009). Results
in Figure 7 show a positive correlation of 0.74 (p-value
< 10~®) between unsupervised transfer performance and
the quality of representations measured by supervised linear
probe. The obtained result confirms that employing stronger
representations for a given dataset leads to the improved per-
formance of TURTLE. Consequently, TURTLE can further
improve performance by exploiting continual progress in
the development of foundation models. Furthermore, given
high positive correlation between TURTLE’s accuracy and
the generalization-based objective (Figure B1), TURTLE
can be utilized as the proxy to measure the quality of given
representations in the absence of labels for the downstream
task.

10 20 30 40 50 60 70 80 90 100
Supervised Linear Probe Performance (%)

Figure 6. Unsupervised transfer performance of TURTLE is
correlated with supervised linear probe performance. Dashed
line y = « denotes the “optimal” unsupervised transfer. The
performance of TURTLE and supervised linear probe shows a
strong correlation (p = 0.87,p = 6.3x 10~ of two-sided Pearson
correlation coefficient). On 5 datasets TURTLE approaches the
performance of the “optimal” unsupervised transfer (< 3 point
difference).

6. Related Work

(Weakly) supervised transfer. (Weakly) supervised trans-
fer approaches require at least some amount of supervision
to perform downstream transfer. For instance, BigTransfer
(Kolesnikov et al., 2020) showed that supervised fine-tuning
of the entire model after large-scale pre-training successfully
transfers knowledge in both fully supervised and few-shot
regimes. Recent advances in self-supervised learning (He
et al., 2022; Li et al., 2022; Zhou et al., 2022; Oquab et al.,
2023; Darcet et al., 2024) have demonstrated that a linear
probe suffices to achieve competitive performance compared
to the fine-tuning the entire model. Despite the strength of
these approaches, they necessitate labeled examples to per-
form downstream transfer.

Zero-shot transfer. Foundation models such as CLIP (Rad-
ford et al., 2021) have recently enabled zero-shot transfer,
which relies only on a set of human instructions such as de-

Let Go of Your Labels with Unsupervised Transfer

Supervised linear probe
i 84.4 85.3 86.2
85 80.7 83.4 83.5

80 176.2
75

Acc (%)

DINOv2 468.5 69.2 68.7 73.3 72.9 73.7 70.3

SWAG 472.3 74.3 70.5 71.7 71.1 72.2 73.7
CLIP 458.9 70.2 64.1 64.7 63.5 71.1 72.9
OpenCLIP 458.4 69.9 62.2 66.1 64.7 71.7 73.3
CoCa 456.5 63.8 65.8 62.2 64.1 70.5 68.7
EsViT 155.6 66.8 63.8 69.9 70.2 74.3 69.2

MOCO 452.2 55.6 56.5 58.4 58.9 72.3 68.5

V\o(’o (éﬁé & é\&z S
Figure 7. Top: Supervised linear probe on the ImageNet-1000
dataset for 7 different representation spaces. Bottom: Heat map
represents unsupervised performance of TURTLE on ImageNet-
1000. Secondary diagonal cells correspond to TURTLE 1-space,
while off-diagonal cells refer to TURTLE 2-spaces with the pair
of corresponding representation spaces. The performance of TUR-
TLE indicates a strong positive correlation with the performance of
supervised linear probe (p = 0.74,p = 1.4 x 10~ of two-sided
Pearson correlation coefficient).

scriptions of visual categories that appear in the data rather
than a set of labeled examples. Despite the success of zero-
shot transfer in different domains (Elizalde et al., 2023a;b;
Lin et al., 2023; Robinson et al., 2023; Meidani et al., 2024),
collecting zero-shot annotations still requires expert domain
knowledge which can be hard to get in many real-world ap-
plications. In contrast to the zero-shot transfer approaches,
TURTLE enables fully unsupervised transfer, effectively
alleviating the need of any human guidance.

Deep clustering. Deep clustering methods (Xie et al., 2016;
Chang et al., 2017; Caron et al., 2018; Van Gansbeke et al.,
2020; Niu et al., 2022) aim to jointly perform deep repre-
sentation learning and clustering on a target dataset. Recent
state-of-the-art approaches (Van Gansbeke et al., 2020; Niu
et al., 2022) rely on time-consuming three-stage procedures
that involve self-supervised representation learning, cluster-
ing and fine-tuning via self-labeling respectively. In contrast
to the deep clustering approaches, TURTLE alleviates the
need for laborious task-specific representation learning by
employing representation spaces of pre-trained foundation
models. Furthermore, compared to deep clustering methods
that heavily depend on image augmentations to induce se-
mantically meaningful clusters, TURTLE builds upon the
seminal maximum margin principle that is effortlessly ap-
plicable beyond image data modality. Consequently, our
approach offers an efficient and effective way to perform
fully unsupervised transfer from foundation models.

Maximum margin clustering. Our work has revealed that
optimizing the generalization-based objective proposed in
Gadetsky & Brbi¢ (2023) results in the search for a labeling

that maximizes the margin of a maximal margin classifier
over all possible labelings of a dataset. The first attempt
to employ maximum margin principle to perform cluster-
ing dates back to Maximum Margin Clustering (MMC)
(Xu et al., 2004). Later works extended this framework
to multi-class clustering (Xu & Schuurmans, 2005; Wang
et al., 2010), multi-view clustering (Zhao et al., 2009), or
focused on improving the scalability (Zhang et al., 2007;
Wang et al., 2010). Compared to TURTLE, which em-
ploys efficient first-order gradient optimization techniques,
the aforementioned approaches rely on the expensive dis-
crete optimization techniques. Furthermore, each of the
approaches adopts maximum margin principle in its own
way to enable multi-class or multi-space scenario, while
TURTLE provides a unified framework for any number of
classes and representation spaces.

Implicit bias of optimization algorithms. Understanding
the implicit bias of optimization algorithms plays a crucial
role in modern machine learning. The seminal work by
Soudry et al. (2018) showed that the gradient descent, when
applied to the task of unregularized logistic regression on
separable data, converges to the direction of the maximal
margin hyperplane without explicitly enforcing such margin
maximization. Later, Ji & Telgarsky (2019) extended the
analysis and demonstrated a similar behavior of gradient
descent in the case of non-separable data. In our work, we
employ the aforementioned findings to study the inductive
bias of the generalization-based objective. Surprisingly, we
reveal that it yields labelings that maximize the margin of
a maximal margin classifier with respect to labeling. As a
result, this insight allows us to develop TURTLE, a method
that enables fully unsupervised transfer given representa-
tions of foundation models.

7. Conclusion

In this work, we have shown that the representations of foun-
dation models can be utilized to solve a new task in a fully
unsupervised manner. The key insight behind our approach
is to search for a labeling that induces maximal margin clas-
sifiers in the representation spaces of foundation models. We
utilize this insight to develop TURTLE, a general framework
for effective unsupervised transfer given representations of
different foundation models. Through extensive evaluation,
we found that TURTLE, being fully unsupervised, achieves
competitive performance compared to zero-shot transfer by
employing only a single representation space. Furthermore,
utilizing an additional representation space results in re-
markable gains over zero-shot transfer. Given the flexibility
of our framework, the results also suggest that TURTLE can
deliver even better unsupervised transfer performance by
taking advantage of new more powerful foundation models
that will emerge in the future.

Let Go of Your Labels with Unsupervised Transfer

Acknowledgements

We thank Chanakya Ekbote, Shuo Wen and Tingyang Yu
for valuable suggestions that helped to improve the clar-
ity of the manuscript. We also thank Nikita Doikov for
fruitful discussions regarding efficient bilevel optimization
techniques. We gratefully acknowledge the support of EPFL.
and ZEISS.

Impact Statement

Although the main goal of our work is to advance the field
of Machine Learning, the proposed framework relies on
representation spaces of foundation models. These models
inherit biases embedded in the data on which they were
trained on (Bommasani et al., 2022). Consequently, the
extensive evaluation and alignment is recommended when
deploying TURTLE to critical use-cases such as medicine.

References

Ablin, P., Peyré, G., and Moreau, T. Super-efficiency of
Automatic Differentiation for Functions Defined as a Min-
imum. In International Conference on Machine Learning,
2020.

Alkin, B., Miklautz, L., Hochreiter, S., and Brandstetter,
J. MIM-Refiner: A Contrastive Learning Boost from
Intermediate Pre-Trained Representations. arXiv preprint
arXiv:2402.10093, 2024.

Amrani, E., Karlinsky, L., and Bronstein, A. Self-supervised
Classification network. In European Conference on Com-
puter Vision, 2022.

Atanov, A., Filatov, A., Yeo, T., Sohmshetty, A., and Zamir,
A. Task Discovery: Finding the Tasks that Neural Net-
works Generalize on. In Advances in Neural Information
Processing Systems, 2022.

Bartlett, P. and Shawe-Taylor, J. Generalization Perfor-
mance of Support Vector Machines and Other Pattern
Classifiers. In Advances in Kernel Methods: Support
Vector Learning, 1999.

Berg, T., Liu, J., Woo Lee, S., Alexander, M. L., Jacobs,
D. W,, and Belhumeur, P. N. Birdsnap: Large-Scale Fine-
grained Visual Categorization of Birds. In Computer
Vision and Pattern Recognition, 2014.

Bolte, J., Pauwels, E., and Vaiter, S. One-Step Differen-
tiation of Iterative Algorithms. In Advances in Neural
Information Processing Systems, 2023.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., et al. On the Opportunities and Risks of Foun-
dation Models. arXiv preprint arXiv:2108.07258, 2022.

10

Bossard, L., Guillaumin, M., and Van Gool, L. Food-
101-Mining Discriminative Components with Random
Forests. In European Conference on Computer Vision,
2014.

Caron, M., Bojanowski, P., Joulin, A., and Douze, M. Deep
clustering for unsupervised learning of visual features. In
European Conference on Computer Vision, 2018.

Carreira, J., Noland, E., Hillier, C., and Zisserman, A. A
Short Note on the Kinetics-700 Human Action Dataset.
arXiv preprint arXiv:1907.06987, 2019.

Chang, J., Wang, L., Meng, G., Xiang, S., and Pan, C. Deep
Adaptive Image Clustering. In International Conference
on Computer Vision, 2017.

Chen, X., Xie, S., and He, K. An Empirical Study of
Training Self-Supervised Vision Transformers. In Inter-
national Conference on Computer Vision, 2021.

Cheng, G., Han, J., and Lu, X. Remote Sensing Image
Scene Classification: Benchmark and State of the Art. In
Proceedings of the IEEE, 2017.

Cherti, M., Beaumont, R., Wightman, R., Wortsman, M.,
Ilharco, G., Gordon, C., Schuhmann, C., Schmidt, L.,
and Jitsev, J. Reproducible Scaling Laws for Contrastive
Language-Image Learning. In Computer Vision and Pat-
tern Recognition, 2023.

Cimpoi, M., Maji, S., Kokkinos, 1., Mohamed, S., and
Vedaldi, A. Describing Textures in the Wild. In Computer
Vision and Pattern Recognition, 2014.

Coates, A., Ng, A., and Lee, H. An Analysis of Single-
layer Networks in Unsupervised Feature Learning. In
International Conference on Artificial Intelligence and
Statistics, 2011.

Dagréou, M., Ablin, P., Vaiter, S., and Moreau, T. A Frame-
work for Bilevel Optimization that Enables Stochastic
and Global Variance Reduction Algorithms. In Advances
in Neural Information Processing Systems, 2022.

Darcet, T., Oquab, M., Mairal, J., and Bojanowski, P. Vision
Transformers Need Registers. In International Confer-
ence on Learning Representations, 2024.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A Large-scale Hierarchical Image Database.
In Computer Vision and Pattern Recognition, 2009.

Domke, J. Generic Methods for Optimization-Based Model-
ing. In International Conference on Artificial Intelligence
and Statistics, 2012.

Let Go of Your Labels with Unsupervised Transfer

Elizalde, B., Deshmukh, S., Al Ismail, M., and Wang, H.
CLAP: Learning Audio Concepts from Natural Language
Supervision. In International Conference on Acoustics,
Speech and Signal Processing, 2023a.

Elizalde, B., Deshmukh, S., and Wang, H. Natural Language
Supervision for General-Purpose Audio Representations.
arXiv preprint arXiv:2309.05767, 2023b.

Fei-Fei, L., Fergus, R., and Perona, P. Learning Genera-
tive Visual Models From Few Training Examples: An
Incremental Bayesian Approach Tested on 101 Object
Categories. In Conference on Computer Vision and Pat-
tern Recognition Workshop, 2004.

Feng, W., Tao, K., Rufeng, Z., and Huaping, L. Self-
supervised Learning by Estimating Twin Class Distribu-
tion. In IEEE Transactions on Image Processing, 2023.

Finn, C., Abbeel, P, and Levine, S. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In Inter-
national Conference on Machine Learning, 2017.

Gadetsky, A. and Brbi¢, M. The Pursuit of Human La-
beling: A New Perspective on Unsupervised Learning.
In Advances in Neural Information Processing Systems,
2023.

Geiger, A., Lenz, P., and Urtasun, R. Are We Ready for
Autonomous Driving? The KITTI Vision Benchmark
Suite. In Computer Vision and Pattern Recognition, 2012.

Goodfellow, 1. J., Erhan, D., Carrier, P. L., Courville, A.,
Mirza, M., Hamner, B., Cukierski, W., Tang, Y., Thaler,
D, Lee, D.-H., et al. Challenges in Representation Learn-
ing: A Report on Three Machine Learning Contests. In
Neural Network, 2015.

Gronlund, A., Kamma, L., and Larsen, K. G. Near-Tight
Margin-Based Generalization Bounds for Support Vec-
tor Machines. In International Conference on Machine
Learning, 2020.

He, K., Chen, X., Xie, S., Li, Y., Dollar, P., and Girshick, R.
Masked Autoencoders are Scalable Vision Learners. In
Computer Vision and Pattern Recognition, 2022.

Helber, P., Bischke, B., Dengel, A., and Borth, D. Eurosat:
A Novel Dataset and Deep Learning Benchmark for Land
Use and Land Cover Classification. In IEEE Journal
of Selected Topics in Applied Earth Observations and
Remote Sensing, 2019.

Huang, T., Chu, J., and Wei, F. Unsupervised Prompt
Learning for Vision-Language Models. arXiv preprint
arXiv:2204.03649, 2022.

11

Ji, K., Yang, J., and Liang, Y. Bilevel Optimization: Conver-
gence Analysis and Enhanced Design. In International
Conference on Machine Learning, 2021.

Ji, Z. and Telgarsky, M. The Implicit Bias of Gradient De-
scent on Nonseparable Data. In Conference on Learning
Theory, 2019.

Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei,
L., Lawrence Zitnick, C., and Girshick, R. Clevr: A
Diagnostic Dataset for Compositional Language and El-
ementary Visual Reasoning. In Computer Vision and
Pattern Recognition, 2017.

Kiela, D., Firooz, H., Mohan, A., Goswami, V., Singh, A.,
Ringshia, P., and Testuggine, D. The Hateful Memes
Challenge: Detecting Hate Speech in Multimodal Memes.

In Advances in neural information processing systems,
2020.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization. In International Conference on Learning
Representations, 2015.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J.,
Gelly, S., and Houlsby, N. Big Transfer (BiT): General
Visual Representation Learning. In European Conference
on Computer Vision, 2020.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3D Object
Representations for Fine-grained Categorization. In In-
ternational Conference on Computer Vision Workshops,
2013.

Krizhevsky, A. and Hinton, G. Learning Multiple Layers of
Features from Tiny Images. Technical Report, University
of Toronto, 2009.

Kuhn, H. W. The Hungarian Method for the Assignment
Problem. In Naval Research Logistics Quarterly, 1955.

Kwon, J., Kwon, D., Wright, S., and Nowak, R. D. A Fully
First-Order Method for Stochastic Bilevel Optimization.
In International Conference on Machine Learning, 2023.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based Learning Applied to Document Recognition. In
Proceedings of the IEEE, 1998.

Li, C., Yang, J., Zhang, P., Gao, M., Xiao, B., Dai, X., Yuan,
L., and Gao, J. Efficient Self-supervised Vision Trans-
formers for Representation Learning. In International
Conference on Learning Representations, 2022.

Lin, W., Zhao, Z., Zhang, X., Wu, C., Zhang, Y., et al. PMC-
CLIP: Contrastive Language-Image Pre-training using
Biomedical Documents. In International Conference
on Medical Image Computing and Computer Assisted
Intervention, 2023.

Let Go of Your Labels with Unsupervised Transfer

Liu, B., Ye, M., Wright, S., Stone, P., and Liu, Q. Bome!
Bilevel Optimization Made Easy: A Simple First-Order
Approach. In Advances in Neural Information Processing
Systems, 2022.

Lorraine, J., Vicol, P., and Duvenaud, D. Optimizing Mil-
lions of Hyperparameters by Implicit Differentiation. In
International Conference on Artificial Intelligence and
Statistics, 2020.

MacQueen, J. B. Some Methods for Classification and
Analysis of MultiVariate Observations. In Berkeley Sym-
posium on Mathematical Statistics and Probability, 1967.

Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi,
A. Fine-grained Visual Classification of Aircraft. arXiv
preprint arXiv:1306.5151, 2013.

Meidani, K., Shojaee, P., Reddy, C. K., and Farimani, A. B.
SNIP: Bridging Mathematical Symbolic and Numeric
Realms with Unified Pre-training. In International Con-
ference on Learning Representations, 2024.

Nilsback, M.-E. and Zisserman, A. Automated Flower Clas-
sification over a Large Number of Classes. In Sixth Indian
Conference on Computer Vision, Graphics & Image Pro-
cessing, 2008.

Niu, C., Shan, H., and Wang, G. SPICE: Semantic pseudo-
labeling for image clustering. IEEE Transactions on
Image Processing, 31:7264-7278, 2022.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec,
M., Khalidov, V., Fernandez, P., Haziza, D., Massa, F.,
El-Nouby, A., et al. DINOv2: Learning Robust Visual
Features Without Supervision. In Transactions on Ma-
chine Learning Research, 2023.

Pan, S. J. and Yang, Q. A Survey on Transfer Learning. In
IEEE Transactions on Knowledge and Data Engineering,
2009.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar,
C. Cats and Dogs. In Computer Vision and Pattern
Recognition, 2012.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning Transferable Visual Models from Natural
Language Supervision. In International Conference on
Machine Learning, 2021.

Raschka, S., Patterson, J., and Nolet, C. Machine Learning
in Python: Main Developments and Technology Trends
in Data Science, Machine Learning, and Artificial Intelli-
gence. In Information. MDPI, 2020.

12

Robinson, L., Atkinson, T., Copoiu, L., Bordes, P., Pierrot,
T., and Barrett, T. Contrasting Sequence with Structure:
Pre-training Graph Representations with PLMs. In Ad-
vances in Neural Information Processing Systems Al for
Science Workshop, 2023.

Salimans, T. and Kingma, D. P. Weight Normalization:
A Simple Reparameterization to Accelerate Training of
Deep Neural Networks. In Advances in Neural Informa-
tion Processing Systems, 2016.

Santurkar, S., Tsipras, D., and Madry, A. Breeds: Bench-
marks for Subpopulation Shift. In International Confer-
ence on Learning Representations, 2021.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C. W.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., Schramowski, P., Kundurthy, S. R.,
Crowson, K., Schmidt, L., Kaczmarczyk, R., and Jitsev,
J. LAION-5b: An Open Large-scale Dataset for Training
Next Generation Image-text Models. In Neural Informa-
tion Processing Systems Datasets and Benchmarks Track,
2022.

Scieur, D., Gidel, G., Bertrand, Q., and Pedregosa, F. The
Curse of Unrolling: Rate of Differentiating Through Opti-
mization. In Advances in Neural Information Processing
Systems, 2022.

Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. Trun-
cated Back-propagation for Bilevel Optimization. In
International Conference on Artificial Intelligence and
Statistics, 2019.

Singh, M., Gustafson, L., Adcock, A., de Freitas Reis, V.,
Gedik, B., Kosaraju, R. P., Mahajan, D., Girshick, R.,
Dollar, P, and Van Der Maaten, L. Revisiting Weakly
Supervised Pre-training of Visual Perception Models. In
Computer Vision and Pattern Recognition, 2022.

Soomro, K., Zamir, A. R., and Shah, M. UCF101: A Dataset
of 101 Human Actions Classes from Videos in the Wild.
arXiv preprint arXiv:1212.0402, 2012.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and
Srebro, N. The Implicit Bias of Gradient Descent on Sep-
arable Data. In Journal of Machine Learning Research,
2018.

Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. Man
vs. Computer: Benchmarking Machine Learning Algo-
rithms for Traffic Sign Recognition. In Neural Networks,
2012.

Tanwisuth, K., Zhang, S., Zheng, H., He, P., and Zhou, M.
POUF: Prompt-oriented Unsupervised Fine-tuning for
Large Pre-trained Models. In International Conference
on Learning Representations, 2023.

Let Go of Your Labels with Unsupervised Transfer

Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proes-
mans, M., and Van Gool, L. SCAN: Learning to Classify
Images without Labels. In European Conference on Com-
puter Vision, 2020.

Vapnik, V. The Nature of Statistical Learning Theory. In
Springer, 1995.

Veeling, B. S., Linmans, J., Winkens, J., Cohen, T., and
Welling, M. Rotation Equivariant CNNs for Digital
Pathology. In Medical Image Computing and Computer
Assisted Intervention, 2018.

Vicol, P, Lorraine, J. P, Pedregosa, F., Duvenaud, D., and
Grosse, R. B. On Implicit Bias in Overparameterized
Bilevel Optimization. In International Conference on
Machine Learning, 2022.

Wang, F., Zhao, B., and Zhang, C. Linear Time Maximum
Margin Clustering. In IEEE Transactions on Neural Net-
works, 2010.

Wang, T. and Isola, P. Understanding Contrastive Represen-
tation Learning through Alignment and Uniformity on the
Hypersphere. In International Conference on Machine
Learning, 2020.

Wang, Z., Liang, J., Sheng, L., He, R., Wang, Z., and Tan, T.
A Hard-to-Beat Baseline for Training-free CLIP-based
Adaptation. In International Conference on Learning
Representations, 2024.

Xiao, J., Ehinger, K. A., Hays, J., Torralba, A., and Oliva,
A. Sun Database: Exploring a Large Collection of Scene
Categories. In International Journal of Computer Vision,
2016.

Xie, J., Girshick, R., and Farhadi, A. Unsupervised Deep
Embedding for Clustering Analysis. In International
Conference on Machine Learning, 2016.

Xu, L. and Schuurmans, D. Unsupervised and Semi-
supervised Multi-class Support Vector Machines. In AAAI
Conference on Artificial Intelligence, 2005.

Xu, L., Neufeld, J., Larson, B., and Schuurmans, D. Maxi-
mum Margin Clustering. In Advances in Neural Informa-
tion Processing Systems, 2004.

Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini,
M., and Wu, Y. CoCa: Contrastive Captioners are Image-
text Foundation Models. In Transactions on Machine
Learning Research, 2022.

Zhang, K., Tsang, [. W., and Kwok, J. T. Maximum Margin
Clustering Made Practical. In International Conference
on Machine Learning, 2007.

13

Zhao, B., Kwok, J., and Zhang, C. Multiple Kernel Cluster-
ing. In International Conference on Data Mining, 2009.

Zhou, J., Wei, C., Wang, H., Shen, W., Xie, C., Yuille, A.,
and Kong, T. iBOT: Image BERT Pre-training with On-
line Tokenizer. In International Conference on Learning
Representations, 2022.

Let Go of Your Labels with Unsupervised Transfer

A. Proof of Proposition 3.1

Here, we first provide the simplified version of the main results from Soudry et al. (2018) for completeness and then
present the proof of Proposition 3.1. For clarity, we overload notation for x,, and consider z,, is already represented in a
representation space ¢(z), i.e., ,, = ¢(z,,). Given binary labeling function 7(x) € {—1, 41} of the dataset D = {z,, }_,,
let £(w) be the exponential loss function:

N
Lw) = exp(—7(wn)w) (14)
n=1
Assumption A.1. (Linear separability) The dataset D is linearly separable: Jw, € R¢s.t. 7(x,)wlx, > 0 forall z,, € D.
We consider minimizing (14) using gradient descent with a step size 7:
Wm = Wm—1 — nvwﬁ(wmfl) (]5)

Let wsym denote the primal solution to the hard margin SVM problem:

wsym = min [|w]3
w

(16)
s.t. T(l‘n)le‘n >1 Vz,eD.
Let agyym denote the dual solution to the hard margin SVM problem:
N TR .
asym = max nz::lan ~5 ;; oo 7(x)T(25) 2] T4 (17

s.t. a, >0 Vn,

where primal and dual variables are related as wsym = 25:1 (asvm)nT(xn)2y (Vapnik, 1995).

Assumption A.2. (Non-degenerate dataset) Support vectors S = {z,, € D|7(z,)wl,yz, = 1} span the data, i.c.,
rank(Dg) = rank(D), where Dg is a matrix whose columns are x,, € S. Furthermore, for each z,, € S, the corresponding
dual variables are strictly positive, i.e., (asym)rn > 0, and the rest are zero.

After above specifications, the simplified version of the seminal result by Soudry et al. (2018) is:

Proposition A.3. (Implicit Bias of Gradient Descent, Soudry et al. (2018)) For almost any non-degenerate (Assumption
A.2) dataset which is linearly separable (Assumption A.1), any starting point wq and step size n < 1/L(wy), the gradient
descent iterates (15) will behave as:

Wy = Weym logm + W + 7y, (18)

where wgyy is the max-margin vector (16), w is a solution to:
Vo, €S : nexp(—7(z)wTx,) = (asya)n, (19)

and the residual v, is bounded with lim,, o ||7m|l2 = 0

Equipped with this result, we analyze the generalization-based objective:

LY (0) =Y exp(—To(x)whio(@)) (20)
€D
s.t. wyr = EM (wg, D), Q21

where 7 () = o(67) is the task encoder with an odd activation function such as tanh and wy; = Z™) (wg, D) denotes
M steps of gradient descent with step size 1 and labeling defined by 7y9. Without loss of generality, we can assume
|zn|l2 < 1,Va,, € D. Given the above specifications, we are now ready to state our main result:

14

Let Go of Your Labels with Unsupervised Transfer

Proposition A.4. (Lower bound for the generalization-based objective) Following the assumptions of Proposition A.3, given
M > 1and 0 # 0, we have:

L (0) > g(0)][wsvm(0)]13, >

where g(0) = (Mnexp(||rar(0)|l2)) 7Y, the residual ry;(0) is bounded with lim s oo ||7a7(0)|]2 = 0, and wsyp(0) is the
solution of the hard-margin SVM for a given 6:

wsyp(0) = min ||w|\§
s.t. Tg(In)wTZCn >1 Vo, €D.

Proof. The key observation is that the task encoder 74 () generates linearly separable labelings, allowing us to apply
Proposition A.3 and substitute the explicit form of iterates wj, into the outer objective (20). Indeed, for example, w, = 0
satisfies Assumption A.1, i.e., 7y (:cn)HTxn > 0 for all z,, € D and 6 # 0. Thus, substituting the iterates wj; into the outer

objective leads to:
N

L3 (0) = 3 exp(—rp(wn) (wsvm(8) log M +1(6) + rar(9))"), 9

n=1

where we explicitly indicate that wsyy (6), w(6) and 75, (0) depend on the parameters 6 of the task encoder 7. Let £, (6)
be n-th term of the sum and Sy be the indices of support vectors, i.e., n € {1,..., N} s.t. (2)wlyy@n = 1. Then, due
to the non-negativity of exp(-), we have:

L5 0) > Y La(6). 25)

neSy

Considering single term £,,(6), n € Sy and opening the brackets, we obtain:

L,(6) = exp(—log M - Tg(xn)wsTVM(H)xn) exp(ng(a:n)fLD(H)T:cn) exp(ng(xn)rM(Q)Tzn) . (26)
L1 Lo Ls

Inspecting (26) separately for each term £;, we obtain: (i) L1 = % since n € Syp; (ii) Lo = % by (19); and (iii)
L3 > exp(—||ra(6)]|2) by Cauchy—Schwarz inequality given that ||79(zy)y |2 < 1. Combining this with (25), finally we
obtain:

Ly (0) = (Myexp(|rar(©)]2) ™" Y an(8) = (Myexp([[rar(6)]12)) " lwswm(6)]3, 27

neSy

where the last equality comes from the fact that:

lwsvm(0)]13 = wsvm () wsvm(0) = wsvm(9)" Y (asvm(0))nTo(wn) s
n€eSy

= Z (OZSVM(G))nTe(xn)UJSVM(@)TﬂCn = Z (aSVM(e))n 1= Z (OZSVM(Q))m

neSy neSy neSy

concluding the proof. O

15

Let Go of Your Labels with Unsupervised Transfer

B. Experimental Details
B.1. Datasets

We evaluate our framework on 26 vision datasets studied in Radford et al. (2021). These datasets cover a wide range of
vision tasks, including general object classification datasets CIFAR10 (Krizhevsky & Hinton, 2009), CIFAR100 (Krizhevsky
& Hinton, 2009), STL10 (Coates et al., 2011), ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004); fine-grained
object classification datasets Food101 (Bossard et al., 2014), Flowers (Nilsback & Zisserman, 2008), Birdsnap (Berg
et al., 2014), Stanford Cars (Krause et al., 2013), FGVC Aircraft (Maji et al., 2013), Oxford Pets (Parkhi et al., 2012);
handwritten digits classification dataset MNIST (LeCun et al., 1998); texture classification dataset DTD (Cimpoi et al.,
2014); scene classification dataset SUN397 (Xiao et al., 2016); the facial emotion recognition dataset FER2013 (Goodfellow
et al., 2015); the satellite image classification datasets EuroSAT (Helber et al., 2019), RESISC45 (Cheng et al., 2017); the
German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp et al., 2012); the KITTI Distance dataset (Geiger et al.,
2012); the metastatic tissue classification dataset PatchCamelyon (PCam) (Veeling et al., 2018); action recognition datasets
UCF101 (Soomro et al., 2012), Kinetics700 (Carreira et al., 2019); the CLEVR counting dataset (Johnson et al., 2017);
the Hateful Memes dataset (Kiela et al., 2020); the country classification dataset Country211 (Radford et al., 2021) and
the Rendered SST2 dataset (Radford et al., 2021). For CLEVR, we take 2000 random samples as training split and 500
random samples as test split. For two video datasets UCF101 and Kinetics700, we take the middle frame of each video
clip as the input of the pre-trained models. Details of each dataset are provided in Table B1. We use accuracy as the
evaluation metric for all the datasets. Finally, it’s worth noting that TURTLE could also be applied to the tasks in vari-
ous modalities besides vision or even in cross-modalities scenarios, provided that the pre-trained representations are available.

Table B1. Benchmark suite of 26 datasets. We use accuracy as the evaluation metric for all datasets.

Dataset Number of Classes Train size Test size
Food101 (Bossard et al., 2014) 101 75,750 25,250
CIFAR10 (Krizhevsky & Hinton, 2009) 10 50,000 10,000
CIFAR100 (Krizhevsky & Hinton, 2009) 100 50,000 10,000
Birdsnap (Berg et al., 2014) 500 37,221 2,500
SUN397 (Xiao et al., 2016) 397 19,850 19,850
StanfordCars (Krause et al., 2013) 196 8,144 8,041
FGVC Aircraft (Maji et al., 2013) 100 6,667 3,333
DTD (Cimpoi et al., 2014) 47 3,760 1,880
OxfordPets (Parkhi et al., 2012) 37 3,680 3,669
Caltech101 (Fei-Fei et al., 2004) 102 3,060 6,084
Flowers (Nilsback & Zisserman, 2008) 102 2,040 6,149
MNIST (LeCun et al., 1998) 10 60,000 10,000
FER2013 (Goodfellow et al., 2015) 7 28,709 3,589
STL10 (Coates et al., 2011) 10 5,000 8,000
EuroSAT (Helber et al., 2019) 10 10,000 5,000
RESISC45 (Cheng et al., 2017) 45 25,200 6,300
GTSRB (Stallkamp et al., 2012) 43 26,640 12,630
KITTI Distance (Geiger et al., 2012) 4 5,985 1,496
Country211 (Radford et al., 2021) 211 42,200 21,100
PatchCamelyon (Veeling et al., 2018) 2 294,912 32,768
UCF101 (Soomro et al., 2012) 101 9,537 3,783
Kinetics700 (Carreira et al., 2019) 700 536,485 33,966
CLEVR Counts (Johnson et al., 2017) 8 2,000 500
HatefulMemes (Kiela et al., 2020) 2 8,500 500
The Rendered SST2 (Radford et al., 2021) 2 7,792 1,821
ImageNet (Deng et al., 2009) 1000 1,281,167 50,000

16

Let Go of Your Labels with Unsupervised Transfer

B.2. Representations

TURTLE is compatible with any pre-trained representations. This paper presents the comprehensive evaluation of TURTLE
on a wide range of representation spaces that vary on the pre-training datasets, model architectures and training objectives.
Specifically, we consider CLIP ResNets (RN50, RN101, RN50x4, RN50x16, RN50x64) and CLIP Vision Transformers
(ViT-B/32, ViT-B/16, ViT-L/14) pre-trained on WebImageText-400M (Radford et al., 2021) for training TURTLE 1-space.
These models are pre-trained on the same dataset, scaling with number of the parameters. For TURTLE 2-spaces, we
incorporate DINOv2 ViT-g/14 pre-trained on LVD-142M (Oquab et al., 2023) as the second representation space. Moreover,
we also include SWAG ViT-H/14 pre-trained on IG-3.6B (Singh et al., 2022), CoCa ViT-L/14 (Yu et al., 2022) pre-trained
on LAION-2B (Schuhmann et al., 2022) 2, OpenCLIP ViT-L/14 pre-trained on LAION-2B (Cherti et al., 2023), MOCOv3
ViT-B/16 pre-trained on ImageNet-1000 (Chen et al., 2021) and EsViT Swim-B pre-trained on ImageNet-1000 (Li et al.,
2022) to study whether incorporating stronger representations on the given dataset may lead to the increased performance
of unsupervised transfer with TURTLE. For all the models, we precompute the representations with standard image
preprocessing pipelines and do not use any data augmentations during training of TURTLE. The details of pre-trained
representations are provided on Table B2.

Table B2. Representation spaces used in TURTLE. “Weakly Supervised” indicates that the model is pre-trained with text supervision,
such as caption or hashtag of the image.

Model Architecture Parameters Trained on Weakly Supervised

RN50 100M

RN101 120M

RN50x4 180M

CLIP RN50x16 290M
(Radford et al., 2021) RN50x64 620M WeblImageText-400M Ve

ViT-B/32 150M

ViT-B/16 150M

ViT-L/14 430M
OpenCLIP (Cherti et al., 2023) ViT-L/14 430M LAION-2B v
SWAG (Singh et al., 2022) ViT-H/14 630M 1G-3.6B v
CoCa (Yu et al., 2022) ViT-L/14 640M LAION-2B v
MOCOV3 (Chen et al., 2021) ViT-B/16 86M ImageNet-1000 X
EsViT (Li et al., 2022) Swin-B 88M ImageNet-1000 X
DINOV2 (Oquab et al., 2023) ViT-g/14 1.1B LVD-142M X

2Since the original paper does not release the models, we use the reproduced version from the OpenCLIP project, which could be
found at https://github.com/mlfoundations/open_clip.

17

https://github.com/mlfoundations/open_clip

Let Go of Your Labels with Unsupervised Transfer

B.3. Implementation Details

Efficient alternating optimization. TURTLE contains a bilevel objective that measures the loss of the task encoder using
the training loss of a linear classifier trained on the task produced by the task encoder. The hyper-gradient of the task
encoder is VoL = ‘35 + ()T oL -~ |w=w=» Where the Jacoblan 2 is generally expensive to obtain. Existing works usually
estimate the hyper-gradlent via unrolhng or approximation based on the implicit function theorem, e.g., see Finn et al.
(2017); Lorraine et al. (2020); Ji et al. (2021); Kwon et al. (2023); Dagréou et al. (2022); Bolte et al. (2023); Liu et al. (2022).
However, these methods might be inefficient and suboptimal in practice (Scieur et al., 2022). Fortunately, in the TURTLE
framework, one could avoid the estlmatlon of (8“’)T 9L given the fact that ‘9 |w w+ =~ 0. Thus, the gradient of the task
encoder is simplified to VoL = \w,w*. This inspires us to train the task encoder via alternating optimization, which
has been shown efficient for the min—min optimization problems (Ablin et al., 2020). At each iteration, we first fix the task
encoder and train the linear classifier for M steps to find its approximate optima. Note that one could choose to re-initialize
the linear classifier every time (cold-start), or just start from the values of last iteration (warm-start), which might introduce
different implicit bias as noted by Vicol et al. (2022). After that, we update the task encoder based on the loss of the linear
classifier. The training is efficient since no second-order gradient is needed in this process. The pseudo-code of TURTLE is
provided in Algorithm B1.

Algorithm B1 TURTLE for Unsupervised Transfer

1: Input: Dataset D, number of classes C, number of iterations 7', representation spaces ¢1(-), ..., ¢k (+), task parameters
0 = {61, ...,0x}, linear classifiers w?, ..., w’, learning rate 7, optimization operator =(-), number of adaptation steps

M, entropy regularization weight ~y /I Z(+) can be any iterative operator, e.g., gradient descent
K

2: Randomly initialize 61, ..., O and wg, ..., w}

3: fort =1toT do

4: Sample mini-batch from dataset X ~ D

5: Generate task from task encoder 79 ¢ + Zle o(Oror(X))

6: Update linear classifiers for M steps V& € [K] : wh, < ZM) (wf, X)

7: Update task parameters Vk € [K] : 0y, < 0 — ngh- [Lee(wh o1(X), 70) + YR(T9)] /1 partial derivative 57—
8: if warm-start then update start points Vk € [K], w§ < wk, // cold-start keeps the initial w}
9: end for

0:

—

Output: Task parameters § = {61, ...,0x}

Training details. We precompute the feature representations for all datasets before the training. We use Weight Nor-
malization (Salimans & Kingma, 2016) to parameterize the task encoder since we found it helpful for the convergence.
ADAM (Kingma & Ba, 2015) optimizer is used for the training of both linear classifier and task encoder. We use 10000
as the default batch-size. For datasets smaller than 10000, we train the model with full-batch at each iteration. Overall,
we found TURTLE is robust to the choice of the batch-size. We update the linear classifier for M = 10 steps at each
iteration and train the task encoder for 7' = 6000 iterations in total. If not specifically mentioned, we set the entropy
regularization parameter v = 10 for all experiments. We show robustness of TURTLE to this hyperparameter in Ap-
pendix G. For each dataset, we do a grid search over 5 different learning rates for both task encoder and linear classifier
with € {0.01,0.005,0.001,0.0005,0.0001}, respectively. We combine each pair of learning rates with the choice of
warm-start or cold-start, and finally get set of 50 triplets to search over for each dataset. We use cross-validation to select
hyper-parameters, as described below. Following Gadetsky & Brbi¢ (2023); Van Gansbeke et al. (2020), we use Hungarian
algorithm (Kuhn, 1955) to match the labeling found by TURTLE and the ground truth labeling to compute the clustering
accuracy. If not specified, we train our model on the training split and report the clustering accuracy on the test split. In
Section H, we also consider the setting of both training and evaluating TURTLE on the test split, mimicking low data regime.

Cross-validation for task selection. For each dataset, we obtain 50 tasks after grid search, i.e., each corresponds to the
hyperparameter triplet. We use 10-fold cross-validation to select the best task. The cross-validation regards the learned task
as “pseudo-labels” and measures the generalization error of a linear classifier trained on these “pseudo-labels”. Specifically,
we randomly split the dataset into 10 folds. In each round, a linear classifier is trained on 9 folds and tested on the rest
fold. The final cross-validation score is the average test accuracy over all rounds. Importantly, this process relies solely
on the learned tasks and does not need any information about the ground-truth labels. For TURTLE trained on multiple
representations, we do cross-validation on each representation space separately and average the final scores. The task with
the highest cross-validation score is selected as the final output of TURTLE. Figure B1 shows the performance of the learned

18

Let Go of Your Labels with Unsupervised Transfer

Food101

CIFAR1O

CIFAR100

Birdsnap

SUN397

StanfordCars

p=0.92, p=6.4x102

p=077,p=9.7x1011

p=0.88, p=7.3x10"1"

p=0.98, p=2.4x10"2

p=0.91,p=37x10"2

p=0.63, p=6.9x10"

©
N
n

65 60

98

©
o
o

60

55 50

96
50

@
o
)

40

Clustering Accuracy
2
n

94 45

®
N
n

40

92 93 94 95 984 986 988 99.0 88 89 90 91 40 50 60 70 80 80 82 84 86 60 65 70 75 80 85
FGVCAircraft DTD OxfordPets Caltech101 Flowers102 MNIST
=074, p=6.1x10-° =0.60, p=3.7x105 95{p=047, p=5.5x10* 90{p=069, p=5.1x10-¢ p=0.10,1p=57 %10 1001, "0.90, p=8.8x10-2°
>35 625
g - 90
5 90 85 99
;(‘j 30 60.0 80
2 575 85 80
£ 70
= 98
& 55.0 75
@ . 80 60
s}
20 525 s 70 97 0
30 40 50 60 82 84 86 88 88 90 92 94 92 9 9 980 984 988 992 80 85 90 95
FER2013 STL10 EuroSAT RESISC45 GTSRB KITTI Distance

p=0.49, p=3.0x10"* =0.96, p=6.9x10~2° p=0.97, p=3.9x10-32 90{p=0.94, p=8.4x10-2 =087, p=3.9x10"5 p=-0.48, p=4.1x10"*

w
©
a

85 43

80

w
®

42

75 41
32

70 40

Clustering Accuracy

65 39

9 91 92 93
Country211

> Tp=014, p=33x10"*

94 98.0 985 99.0 99.5 94 825 85.0 87.5 90.0 92.5 80.0 82.5 85.0 87.5 90.0

PatchCamelyon UCF101 Kinetics700 CLEVRCounts

p=0.15,p=2.8x10% p=0.93, p=1.8x10"2! p=0.90, p=8.3x10"1¢ 261{p=0.34, p=3.0x1072 56
60

92 96 98.0 985 99.0 99.5

HatefulMemes
p=0.07p=6.2x10"*

58 42

56 55
54 40

52 54

Clustering Accuracy

50 38

77 78 79
SST2

p=0.36, p=3.1x10"?

80 81 82 97.2 97.6 98.0

ImageNet
p=0.95, p=3.8x10"2*

98.4 86 88 90 92 94 96

Cross Validation Score

76 78 80
Cross Validation Score

80 82 84 86 88
Cross Validation Score

94.0 945 95.0 955 96.0
Cross Validation Score

70
15 65

60

Clustering Accuracy
o

94 95 96 97
Cross Validation Score

98 80 85 90

Cross Validation Score

Figure B1. Task selection via cross-validation. We use TURTLE 2-spaces CLIP ViT-L/14 and DINOV2 to produce the tasks. We show
the cross-validation score and corresponding clustering accuracy of the tasks learned by TURTLE with 50 different hyperparameters
for each dataset. The cross-validation score is well correlated with the clustering accuracy (p = 0.61 of two-sided Pearson correlation
coefficient averaged over 26 datasets).

tasks obtained by TURTLE 2-spaces CLIP ViT-L/14 and DINOv2 and their corresponding cross-validation scores over 26
datasets. As indicated by the plot, the cross-validation score is well correlated with the clustering accuracy with an average
of p = 0.61 two-sided Pearson correlation coefficient over 26 datasets. Moreover, among 20 datasets, cross-validation
successfully identifies the best or near-best task (i.e., with less than 1.5 point difference of clustering accuracy). The result
of cross-validation also empirically verifies the effectiveness of the generalization-based objective and suggests that the
labelings with low generalization error tend to be more aligned with human labeled tasks, confirming the original findings of
Gadetsky & Brbi¢ (2023) on the wide suite of datasets.

Linear probe. Supervised linear probe is a widely used method to evaluate the quality of representation learning (Radford
etal., 2021; Oquab et al., 2023). It trains a linear classifier on the train split on top of the representations extracted from the pre-
trained models and then evaluates the performance on the test split. We use the cuML . LogisticRegression (Raschka
et al., 2020) for linear probe evaluation in our paper 3. The linear classifier is trained with L-BFGS optimizer
for maximum of 1000 iterations. The cuML library allows for GPU acceleration and, thus, it is much faster than
sklearn.linear_model.LogisticRegression counterpart, especially on large datasets such as ImageNet. To
determine the strength of L2 norm regularization, we randomly take 20% of the training split for validation and search over
96 values in the log-space ranging from 10~ to 10°. The selection process takes a few minutes on small datasets, and
around 8 hours on ImageNet, with a single NVIDIA A100 GPU. After that, we train the model with the best regularization
strength on the entire training split and report the classification accuracy on the test split.

3This library is available at https:/github.com/rapidsai/cuml.

19

https://github.com/rapidsai/cuml

Let Go of Your Labels with Unsupervised Transfer

C. Details on Unsupervised Baselines and Numerical Results

K-Means clustering. We apply K-Means (MacQueen, 1967) clustering on top of pre-trained features as a simple baseline
that does not require task-specific representation learning. Similarly to the linear probe, we also use the implementation
from CuML library for the GPU acceleration (i.e., CuML . KMeans). For each dataset and the corresponding representation,
we train K-Means with maximum 1000 iterations (max_iter=1000) and 10 random initializations (n_init=10) on the
train split, and report the clustering accuracy on the test split. In the case when multiple representations are used, we first L2
normalize representation from each pre-trained model, and then apply K-Means clustering on top of the concatenation of all
L2 normalized features.

HUME. HUME (Gadetsky & Brbié, 2023) is the recent state-of-the-art unsupervised learning baseline that introduced
the instantiation of the generalization-based objective (3). Specifically, it learns task-specific representations on the target
dataset to model the task encoder, and then measures the generalization error of a linear classifier in the representation space
of a foundation model. We use the original source code * for the implementation of HUME, with modifications to improve
the speed and performance. In particular, we replace task-specific representations with a pre-trained foundation model
since we empirically found it yields better performance. Besides, we remove the variance reduction used in the original
HUME and sample only the single mini-batch at every iteration (i.e., the same as TURTLE), since we found it significantly
reduces the computational cost and does not influence the final performance. We update the linear classifier with A/ = 300
steps at each iteration, and train the task encoder with 7' = 6000 iterations in total. The default batch-size is set to 10000.
Moreover, we follow the same hyperparameter selection procedure of TURTLE to select the inner/outer learning rates and
warm-start/cold-start for HUME.

Comparison of TURTLE to HUME and K-Means. For a fair comparison, we train TURTLE, HUME and K-Means using
the same representation spaces, i.e., CLIP ViT-L/14 and DINOv2 ViT-g/14. Given that HUME's task encoder parametrization
uses only the single space, we run HUME with the task encoder modeled using CLIP or DINOv2 (denoted as HUME
CLIP and HUME DINOv? respectively), and measure the generalization error using the rest representation space. For each
method, we report the training time in minutes and the clustering accuracy averaged over 3 random seeds. For each random
seed, we perform the hyperparameter selection for HUME and TURTLE as described in the corresponding subsection above.
Table C1 and Table C2 show the obtained results on 5 datasets. Overall, the results indicate that TURTLE outperforms
HUME and K-Means on all the considered datasets, highlighting the effectiveness of design choices made in TURTLE.
For instance, combining multiple representation spaces for modeling the task encoder in TURTLE brings substantial gains
compared to HUME. Namely, TURTLE achieves remarkable 28% and 23% absolute improvement (40% and 30% relative
improvement) over HUME DINOv2 and HUME CLIP respectively on the MNIST dataset. Furthermore, efficient first-order
optimization techniques used in TURTLE allow for fast optimization, taking just 5 minutes even on large-scale datasets such
as ImageNet.

Table C1. Accuracy of TURTLE and unsupervised baselines. The results are averaged with standard deviations computed over 3 runs.

Method ‘ MNIST CIFAR100 Foodl101 Birdsnap ImageNet

K-Means 689+06 751+05 780+07 540+08 64.8+03
HUME CLIP 753+50 712+22 865+13 458+18 652109
HUME DINOv2 | 69.7+59 839+12 853+17 5734+07 681+02
TURTLE 98.0+04 89.1+10 928+05 67.8+04 724+03

Table C2. Training time (in minutes) of TURTLE and unsupervised baselines. The results are averaged with standard deviations
computed over 3 runs. The standard deviation for K-Means and TURTLE is negligible.

Method ‘ MNIST CIFAR100 Food101 Birdsnap ImageNet

K-Means 0.02+00 004+00 0.1+00 0.1 £0.0 6.4 £0.0
HUME CLIP 152+24 441+05 455+13 156.8+12 2854441
HUME DINOv2 | 11.1+03 31.74+04 31.0+03 96.7+06 1856+79
TURTLE 1.6 £0.0 1.6 £0.0 1.7+0.0 2.1+00 4.8+0.0

4Code could be found at https://github.com/mlbio-epfl/hume.

20

https://github.com/mlbio-epfl/hume

Let Go of Your Labels with Unsupervised Transfer

D. Complete List of Individual Numerical Results

Table D1. Complete list of numerical results. Results of supervised linear probe, CLIP zero-shot transfer, K-Means clustering and
TURTLE unsupervised transfer on 26 datasets and 9 representation spaces (CLIP RN50, RN101, RN50x4, RN50x16, RN50x64, ViT-B/32,
ViT-B/16, ViT-L/14 and DINOvV2 ViT-g/14). The results for K-Means 2-spaces and TURTLE 2-spaces are obtained using DINOv2 and
the corresponding CLIP model.

- o
s = 5 &
§ 5 @ o - = E Q
= [GR 3 = © v — <3] o
= = = =3 A = = @ = X o - 5 s 3 5]
Szz £330 _ 33358523528 z¢.34¢%2 5%
T £ < 2 2 9 3 a8 2 3 28 5 8%z G E E ER B oL ToE ow g
S E E E 5 § O = % 3 &8 & E 5 w2 5 2 ¢ 90 & a2 5 5 g 2
L O U @ » » & A O U & =2 L »n @ & O ¥ U0 & D ¥ U = ¢ = <
DINOv2 94.9 99.5 93.9 88.9 78.7 91.3 87.8 85.0 96.6 93.8 99.7 98.7 66.8 99.6 97.3 95.3 80.1 76.9 26.1 87.5 91.5 59.2 52.0 52.4 56.1 86.2 82.1
RN50 86.4 88.8 70.4 57.4 73.3 77.9 49.2 76.4 88.4 91.6 95.3 98.3 63.4 97.3 94.2 91.0 84.5 72.9 25.5 82.5 80.6 44.8 51.6 58.6 72.2 73.1 74.8
_“.; RN101 88.9 91.1 73.5 61.2 75.0 84.0 52.6 76.4 90.8 93.6 95.2 98.5 65.2 98.2 94.5 92.2 84.3 71.7 26.6 82.8 82.7 48.0 52.0 55.4 73.9 75.9 76.3
& RNS50x4 91.3 90.5 73.2 66.5 76.7 86.0 57.3 79.6 92.0 94.5 97.2 98.6 67.3 98.1 94.4 92.9 86.4 73.9 30.2 83.1 84.2 50.2 51.8 60.0 76.1 78.1 78.1
§ RNS50x16 | 93.3 92.1 75.0 72.5 79.1 88.9 63.4 79.6 93.6 94.9 97.6 98.9 68.5 98.8 95.3 94.0 89.1 74.5 34.9 83.6 86.2 53.8 49.0 59.4 79.0 81.4 79.9
E RN50x64 | 94.7 94.1 78.5 77.9 81.0 90.6 68.4 81.9 94.3 96.6 98.7 99.0 71.2 99.1 95.7 94.8 91.7 75.5 40.7 83.7 89.3 57.5 54.8 58.2 81.4 83.7 82.0
ViT-B/32 | 88.6 95.1 80.2 59.9 76.1 80.9 50.4 76.5 89.4 94.2 96.1 98.9 66.3 98.6 95.2 92.5 86.7 71.4 27.3 83.1 83.6 48.6 50.8 57.0 70.4 75.7 76.7
ViT-B/16 | 92.7 95.9 82.5 69.3 78.3 86.4 58.8 79.0 93.1 91.2 97.7 98.9 68.0 99.1 95.6 93.9 88.3 73.0 32.4 83.2 86.7 53.6 55.4 58.8 75.1 79.8 79.5
ViT-L/14 | 95.2 98.1 87.4 76.6 81.5 90.7 68.4 81.9 95.2 96.3 99.1 99.0 71.1 99.8 97.0 95.5 93.2 72.7 41.8 85.3 90.6 60.4 57.4 62.0 81.6 84.4 83.1
RNS0 80.6 71.5 42.0 34.5 59.8 54.3 16.6 41.2 85.8 76.7 66.2 58.1 39.3 94.2 40.3 53.5 35.1 10.8 15.4 61.4 63.1 30.8 20.8 56.2 55.6 59.8 50.9
RN101 83.6 80.8 48.8 35.8 59.2 61.1 18.6 43.5 86.9 77.5 65.4 50.9 44.0 96.8 30.8 58.7 37.6 33.4 16.9 58.2 61.2 33.2 24.8 52.8 64.2 62.3 534
g RN50x4 86.9 79.4 49.8 39.3 62.6 67.0 20.5 48.5 88.8 78.3 69.9 48.7 48.3 96.6 31.5 60.5 36.2 31.6 20.4 53.5 64.6 35.5 19.4 51.2 66.8 66.2 54.7
(g RN50x16 | 90.6 81.4 52.6 45.8 65.0 73.3 27.2 53.2 90.1 81.0 72.0 67.8 55.7 97.8 41.9 64.7 39.8 31.3 24.4 62.3 68.7 39.9 20.2 51.4 67.6 70.7 59.1
[3 RN50x64 | 92.1 85.1 60.9 50.6 67.1 75.9 30.0 53.4 93.7 83.0 76.0 85.7 60.8 98.3 57.9 70.8 48.0 36.2 29.8 55.5 73.0 43.8 25.2 59.6 70.7 73.9 63.7
% VIiT-B/32 | 83.9 89.9 65.1 37.1 62.9 59.7 19.4 43.8 87.3 81.6 66.5 48.6 48.0 97.1 44.2 61.0 32.7 29.6 17.2 60.7 64.1 35.1 23.2 52.0 58.5 63.4 55.1
U ViT-B/16 | 88.8 90.8 68.3 42.1 65.2 64.7 24.0 45.0 89.1 81.0 71.5 51.9 52.9 98.2 54.1 65.6 43.5 21.7 22.9 53.9 68.9 39.4 23.6 54.4 60.6 68.4 58.1
VIiT-L/14 | 93.1 95.6 78.2 49.4 68.0 77.8 31.6 55.3 93.6 83.3 79.1 76.2 56.3 99.4 61.2 70.9 50.6 24.9 31.9 51.2 75.4 47.7 20.8 55.0 68.9 75.5 64.3
DINOv2 72.3 66.7 70.3 47.1 57.4 25.4 20.3 50.1 78.0 78.5 98.7 46.8 33.7 40.8 64.7 66.6 23.8 50.1 8.9 59.8 68.7 34.4 19.8 50.4 52.2 62.3 51.8
3 RNS50 47.2 549 25.9 29.8 42.3 31.8 20.6 41.2 39.9 67.3 69.2 51.2 25.5 89.8 54.4 55.2 27.7 47.3 8.8 64.9 52.1 17.4 27.4 58.0 53.9 33.3 43.7
§ RNI101 54.1 69.3 34.9 34.0 46.9 40.0 22.9 43.9 49.5 70.9 70.5 48.9 26.7 96.9 51.8 61.6 26.4 48.6 9.4 64.2 59.7 21.2 27.6 57.2 55.0 39.4 474
— RNS50x4 62.6 60.5 30.6 38.2 49.1 42.7 25.4 47.3 53.5 75.4 76.5 45.5 27.6 83.8 52.8 61.4 25.3 48.1 10.4 61.0 59.7 21.8 26.4 57.6 55.8 41.9 47.7
S RNS50x16 | 70.2 66.4 34.7 42.8 49.0 47.3 30.0 49.2 59.3 72.2 78.5 59.2 25.6 94.7 59.4 69.5 35.4 49.1 11.0 64.3 65.0 24.0 23.4 56.6 55.1 45.8 51.4
§ RN50x64 | 75.9 67.9 36.8 46.2 51.7 49.8 33.9 49.5 56.0 78.5 82.5 67.0 26.4 94.7 60.4 73.2 35.8 49.0 11.2 63.3 67.2 25.4 23.6 57.8 55.0 50.9 534
Y
VIiT-B/32 | 58.7 75.8 40.9 31.8 50.4 35.1 22.1 43.7 42.6 77.2 76.3 57.5 26.0 94.5 63.3 66.0 32.7 48.4 9.4 63.2 61.3 22.4 26.6 57.6 54.6 37.9 49.1
VIiT-B/16 | 72.2 78.2 46.9 38.5 52.4 42.5 27.9 47.3 49.7 78.8 81.6 54.9 27.7 94.9 73.2 72.8 34.6 50.1 10.8 63.2 64.1 25.3 24.8 59.2 55.2 43.1 52.7
VIiT-L/14 | 82.5 83.5 51.9 46.1 55.4 52.2 32.9 50.5 72.2 82.4 89.5 66.6 31.2 86.4 71.7 73.7 45.9 48.8 12.3 63.3 74.0 32.5 26.4 60.8 51.7 51.8 57.5
RN50 71.5 67.5 69.4 46.5 56.9 25.4 20.2 50.1 78.0 80.2 99.1 46.8 33.7 49.4 64.7 66.7 23.6 50.1 9.1 59.8 70.8 34.5 19.4 50.4 52.2 64.2 52.3
% RNI101 70.1 67.5 69.9 48.0 56.7 24.6 20.1 50.1 78.0 78.5 97.6 46.8 33.7 40.8 64.6 65.1 24.4 50.1 9.1 59.8 69.3 34.7 19.4 50.4 52.2 62.4 51.7
Q
8. RN50x4 70.7 67.5 70.9 47.4 57.1 24.8 19.6 50.2 78.0 80.2 98.6 46.8 33.7 49.5 64.7 65.4 23.6 50.1 9.1 59.8 71.0 34.3 19.8 50.4 52.2 62.0 52.2
& RNS50x16 | 72.2 67.5 72.6 46.8 56.8 25.1 19.4 50.2 77.1 79.8 99.5 46.9 33.7 49.2 64.6 66.7 23.2 50.1 9.2 59.8 72.1 34.6 19.4 50.4 52.2 63.1 52.4
é RN50x64 | 71.7 63.7 69.9 47.4 56.5 25.4 20.1 48.8 78.5 78.9 98.0 46.9 33.6 50.2 64.7 62.0 24.4 50.1 9.2 59.8 69.2 34.5 19.4 50.4 52.2 62.6 51.8
()
E. ViT-B/32 | 69.7 76.4 69.3 48.4 57.5 24.8 19.9 50.1 80.1 76.0 98.5 46.9 33.6 55.0 64.8 65.3 23.4 50.0 9.1 59.8 67.8 34.0 20.4 50.4 52.3 62.5 52.5
X VIiT-B/16 | 71.5 76.4 71.8 48.3 55.5 26.2 20.7 47.2 79.0 79.0 97.1 46.9 33.7 55.5 64.9 63.0 24.4 50.1 9.3 59.8 71.7 34.5 20.6 50.6 52.2 62.6 52.8
VIiT-L/14 | 78.8 85.9 75.1 53.0 60.6 35.6 21.9 49.0 79.3 87.4 95.6 69.0 33.1 84.8 84.7 73.9 31.3 50.5 9.9 61.7 73.3 37.7 23.0 50.6 52.1 64.9 58.6
DINOvV2 78.9 99.3 87.1 66.7 60.3 31.2 23.5 55.2 82.2 81.4 99.0 69.0 32.5 72.3 93.8 73.5 23.4 41.6 9.0 50.7 74.5 35.1 22.4 52.6 51.6 69.1 59.1
3 RN50 65.0 57.2 30.8 34.1 50.0 37.0 23.0 48.5 51.2 75.7 82.7 62.1 29.5 96.6 73.3 67.9 34.3 414 8.9 68.8 61.4 21.6 26.6 57.0 53.5 41.1 50.0
% RN101 749 71.6 40.2 38.2 54.6 46.3 24.2 52.4 66.7 83.1 88.1 56.6 26.4 98.0 69.1 74.2 36.4 39.6 9.5 71.0 65.5 25.1 26.4 57.8 55.0 48.3 53.8
— RNS50x4 80.7 67.7 37.7 42.4 57.9 52.9 26.7 56.4 74.3 83.6 91.6 57.9 26.7 97.8 68.4 77.3 37.6 39.6 10.1 54.7 65.2 26.3 25.6 58.6 55.2 52.2 54.8
[é RN50x16 | 87.0 75.4 38.7 47.5 58.5 58.7 30.3 55.3 82.0 85.4 91.9 63.2 28.1 98.6 81.2 84.9 43.5 38.7 11.4 50.8 70.1 28.6 26.2 57.2 53.5 56.4 57.8
% RN50x64 | 88.3 77.0 42.9 53.7 61.6 64.1 34.0 54.0 85.0 83.7 95.3 78.4 27.9 99.1 80.7 83.4 43.8 41.0 12.3 50.6 73.8 30.5 26.4 58.0 54.2 60.4 60.1
& ViT-B/32 | 72.4 85.9 45.8 35.2 58.1 42.3 24.0 49.1 62.1 81.5 85.2 80.9 30.3 98.3 69.8 82.2 39.6 40.7 9.8 50.5 67.4 25.4 24.6 57.6 55.2 46.8 54.6
ViT-B/16 | 82.4 94.1 54.4 43.1 58.8 52.8 28.6 54.7 71.1 83.6 94.2 73.0 29.1 99.1 82.5 85.6 36.3 39.4 11.1 51.0 71.3 29.2 24.0 58.0 54.1 53.3 58.3
VIT-L/14 | 93.1 97.6 68.7 54.2 63.4 66.6 35.9 57.6 90.5 84.3 98.1 66.3 31.0 99.8 93.8 87.6 50.3 39.1 13.7 50.3 78.3 36.8 27.4 59.0 54.6 62.5 63.9
RNS0 84.1 96.8 83.0 67.2 65.7 32.6 25.3 57.0 90.9 88.6 99.7 90.8 34.0 99.7 95.5 85.4 32.4 442 9.4 50.6 77.7 35.6 25.0 56.0 50.0 66.3 63.2
§ RN101 86.5 98.6 81.1 63.2 64.8 32.8 25.1 61.1 90.7 89.1 99.7 97.1 33.8 99.7 94.8 86.1 36.6 39.0 9.6 50.3 79.0 37.4 24.6 56.2 51.3 67.9 63.7
2, RN50x4 87.6 98.5 79.4 66.3 65.3 47.1 24.3 62.9 93.0 88.5 99.7 97.1 33.9 99.7 95.4 83.6 36.4 41.5 10.1 51.1 77.9 38.0 25.4 54.8 51.3 69.8 64.6
& RN50x16 | 90.2 98.7 80.7 62.9 65.6 50.5 25.5 55.9 92.3 88.9 99.7 97.5 32.7 99.7 94.8 86.4 43.4 41.0 10.6 50.5 77.4 39.9 24.4 55.6 50.0 70.8 64.8
E'T_]'] RN50x64 | 89.9 99.0 85.3 68.0 66.6 58.8 31.7 61.2 93.3 88.8 99.7 97.4 34.7 99.7 95.1 89.8 41.5 44.8 11.2 50.2 80.7 40.4 25.4 51.0 50.5 72.1 66.4
[_‘
% ViT-B/32 | 86.4 99.1 84.6 64.0 65.2 46.0 27.7 56.0 92.8 89.0 99.7 97.2 34.2 99.7 95.6 88.0 38.3 42.0 10.0 52.8 75.6 37.6 23.2 52.6 51.2 68.6 64.5
= VIiT-B/16 | 90.2 99.2 89.0 66.6 65.0 49.8 25.4 57.3 93.0 89.1 99.7 98.0 33.6 99.8 96.0 89.0 35.0 41.4 10.5 52.1 79.5 39.7 25.6 52.2 51.6 70.2 65.3
VIT-L/14 | 92.2 99.5 89.9 68.1 67.9 64.6 36.5 57.3 92.3 89.8 99.6 97.8 36.2 99.7 96.6 89.6 48.4 39.4 11.1 52.0 82.3 43.0 24.0 54.2 51.6 72.9 67.6

21

Let Go of Your Labels with Unsupervised Transfer

E. Additional Results on 26 Vision Datasets

We show all experimental results of supervised transfer with linear probe, CLIP zero-shot transfer, and TURTLE unsupervised
transfer on 26 vision datasets in Table D1. The linear probe performance of DINOv2 ViT-g/14 is also included for reference.
As indicated in the table, TURTLE achieves strong unsupervised transfer performance across various datasets and models.
For example, as illustrated in Figure E1, TURTLE 1-space CLIP ViT-L/14 surpasses the corresponding CLIP zero-shot
transfer on 13 out of 26 datasets. When trained with multiple representations (i.e., using CLIP models and DINOv2
ViT-g/14), TURTLE 2-spaces achieves superior performance on most datasets compared to TURTLE 1-space. Remarkably,
on datasets such as MNIST and CIFAR100, the absolute improvement is 31% and 21%, indicating the effectiveness of
TURTLE in combining the knowledge of multiple foundation models. Furthermore, as shown in Figure 5, TURTLE trained
with CLIP ViT-L/14 and DINOv2 ViT-g/14 outperforms CLIP zero-shot on 15 out of 26 datasets.

In addition, we compare the performance of TURTLE to supervised linear probe using single representation space in
Figure 6. It can be seen that there exists a strong positive correlation between the performance of unsupervised transfer
and supervised linear probe. Figure E2 provides the analysis of TURTLE 2-spaces trained using CLIP ViT-L/14 and
DINOV2 ViT-g/14, indicating that the performance of TURTLE 2-spaces is also strongly correlated with the average linear
probe performance. Overall, these results suggest that TURTLE could potentially benefit from the improved quality of
representations, as measured by supervised linear probe.

Finally, it’s worth noting that TURTLE 2-spaces might underperform TURTLE 1-space on some datasets, as shown in
Table D1. We hypothesize that the discrepancy might stem from the suboptimality of DINOvV2 representations for the
tasks heavily related to semantic comprehension, such as semantic analysis (Rendered SST, HatefulMemes), traffic sign
recognition (GTSRB), geolocation (Country211) and object counting (CLEVR). Since DINOV2 is pre-trained with self-
supervised objective (Oquab et al., 2023), the learned features might not be directly transferable to these semantic-intensive
tasks. Such trend could also be observed by the linear probe performance, where CLIP ViT-L/14 outperforms DINOv2
ViT-g/14 by a large margin on the Rendered SST2, CLEVR, Country211, GTSRB and FER2013. Therefore, incorporating
DINOV2 representations might not yield optimal results for these specific datasets.

EuroSAT| +32.6
Flowers102 Flowers102g1| 19
RESISC45 100 A CIFARlO/,MNIST
KITTI Distance Foodl /oEL;ijATt
00 xfordPets
CLEVR.Counts 90 CIFARIO/Q/CH/ RESISC45
Birdsnap Caltech101
FGVCAircraft| uc
F101
HatefulMemes 80 A /7
UCF101 Pl
DTD = JhageNet
CIFAR10 S 704 < i
= ,~5UN3970 ¢/Birdsnap
Caltech101 > L, StanfordCars
STL10 S 604 s
Food101 3 7 DTD
GTSRB 2 HatefulMeme$ patch \
PatchCamelyon w 504 R4 5512 Ga_:gRgame yon
OxfordPets r_' Re
SUN397 = Kinetics700
CIFAR100 = 401 R KITTI Distance
MNIST 7 FER2013 FGVCAircraft
Kinetics700 //
StanfordCars 30 Re
ImageNet ot CLEVRCounts
SsT2 204 S
Country211 7
FER2013 7 Countrvatt 0=0.88,p=2.3x107°
—20 ~10 0 10 20 30 10 untrys; T T T T T T T
A Score (%) 10 20 30 40 50 60 70 80 90 100

TURTLE Unsupervised Transfer vs. CLIP Zero-shot Transfer Average Linear Probe Accuracy on CLIP and DINO (%)

Figure E1. Using the same representation space, TURTLE
outperforms CLIP zero-shot classifier on 13 out of 26
datasets. TURTLE is trained with CLIP ViT-L/14 and does
not require any supervision. CLIP zero-shot utilizes the same
architecture, but requires the additional text encoder and de-
scription of visual categories.

Figure E2. Unsupervised transfer learning performance is cor-
related with supervised linear probe performance. The per-
formance of TURTLE 2-spaces is strongly correlated with the
average performance of linear probe using CLIP ViT-L/14 and DI-
NOV2 ViT-g/14 (p = 0.88, p = 2.3 x 10™° for two-sided Pearson
correlation coefficient).

22

Let Go of Your Labels with Unsupervised Transfer

F. Results with Scaling Parameters.

We provide the complete results for TURTLE on each dataset for multiple architectures and sizes scaling in the number of
parameters in Table D1. Specifically, we consider 8 CLIP models trained in Radford et al. (2021) with scaling model sizes
of ResNets (RN50, RN101, RN50x4, RN50x16, RNx64) and Vision Transformers (ViT-B/32, ViT-B/16, ViT-L/14). For
each CLIP representation, we train TURTLE 1-space with the aforemention representation spaces, and TURTLE 2-spaces
with DINOv2 ViT-g/14 used as the second representation space.

Figure F1 and Figure F2 show the average performance of TURTLE trained with different CLIP ResNets and CLIP Vision
Transformers, and compare it with the performance of the CLIP zero-shot transfer. As indicated by the plots, the performance
of TURTLE 1-space and TURTLE 2-spaces smoothly improves as the model compute increases. Moreover, although being
fully unsupervised, TURTLE 1-space achieves competitive performance (i.e., with less than 1 point difference) compared to
the zero-shot transfer for RN50, RN101, RN50x4, ViT-B/32, ViT-B/16 and ViT-L/14. Using RN50x16 and RN50x64, the
performance TURTLE 1-space becomes a little bit worse than zero-shot transfer. However, with the additional DINOv2
representations, TURTLE 2-spaces consistently outperforms zero-shot transfer for all the models by a large margin. For
example, TURTLE 2-spaces CLIP ViT-L/14 is on average 4% better than zero-shot transfer. For completeness, Figure F3
and Figure F4 also provide the performance of TURTLE and CLIP zero-shot transfer on each individual dataset.

Overall, the performance of TURTLE follows a similar scaling trend as the zero-shot transfer (Radford et al., 2021).
Furthermore, TURTLE can effectively combine the knowledge of multiple foundation models to further improve the
performance of unsupervised transfer.

Transfer performance on 26 datasets Transfer performance on 26 datasets
68
65.0 66
R 625 °\; 64
>
& 60.0 g 62 -
3 3
v o
1% o
< 57.5 < eo4
[[
o o
e e
S 55.0 s 581
2 E:
52.5 CLIP Zero-shot 564 CLIP Zero-shot
TURTLE 1-space TURTLE 1-space
50.0 TURTLE 2-spaces 54 4 TURTLE 2-spaces
RNS0 RN101 RNSOx4 RNS0x16 RN50x64 ViTB/32 VITB/16 ViT-L/14
Figure F1. Performance of TURTLE and CLIP zero-shot Figure F2. Performance of TURTLE and CLIP zero-shot
averaged on 26 vision datasets using ResNets. TURTLE averaged on 26 vision datasets using Vision Transformers.
2-spaces uses DINOv2 ViT-g/14 as the second representation TURTLE 2-spaces uses DINOv2 ViT-g/14 as the second
space. representation space.

23

Let Go of Your Labels with Unsupervised Transfer

Food101 CIFAR10 CIFAR100 Birdsnap SUN397 StanfordCars
100
90 80 65 70
g8 20 70 60 w
380 80 60 s 60
£ 50
g 75 70 50 55
70 40 40 40
65 &0 30 50
FGVCAircraft DTD OxfordPets Caltech101 Flowers102 MNIST
100
60 90 87.5 90
=30
g 90
i 55 80 85.0 80
g 825
£2 50 70 80 70
g 80.0 .
60
2 45 715 70
50 50
FER2013 100 STL10 EuroSAT RESISC45 GTSRB KITTI Distance
60 90 475
99 40
= 45.0
%50 o 80 80 425
[30
£ 1o o7 60 70 40.0
g % 375 20
30 95 40 60 35.0
o 325 10
Country211 PatchCamelyon UCF101 Kinetics700 CLEVRCounts 60 HatefulMemes
30
70 80 w 26
58
g® 65 75
= 35 24 56
g 20
g 60 70
g 30 22 54
g1s
55 65 2
20 52
10 s0
SsT2 ImageNet ANSO RNIOL RNSOxd RNSOXIGRNSOXG4 RNSO RNIOL RNSOxd RNSOXIGRNSO64 RNSO RNIOL RNSOxd RNSOXIGRNSOX64 RNSO RNI0L RNSOxd RNSOXIGRNSOXGd
70
70

CLIP Zero-shot
60 TURTLE 1-space
TURTLE 2-spaces

Accuracy (%)
o
3

40
RNS0 RN101 RNSOx4 RNSOXIGRNSOx64 RNSO RN1OL RN50x4 RNSOX16RNSOx64

Figure F3. Per dataset performance of TURTLE and CLIP zero-shot using ResNets. TURTLE 2-spaces uses DINOv2 ViT-g/14 as the
second representation space.

Food101 CIFAR10 CIFAR100 Birdsnap SUN397 StanfordCars
00.0 2 68
_ 90 97.5 0 o 66 .
g 95.0
585 70 64
8 925 60
S0 50 62
g 90.0 60 s0
7 87.5 50 40 60
58
FGVCAircraft DTD OxfordPets Caltech101 Flowers102 MNIST
. 575 95 20 100 100
_ 55.0 20 88 90
< e ° 80
530 525 80 86
g 50.0 75 s 80 70
% 475 70 4 60
20 45.0 65 82 70 w0
FER2013 STL10 EuroSAT RESISC45 GTSRB KITTI Distance
55 %0 50
99.5 %0 85 40
g 99.0 80 80 45 35
g 98.5 70 75
540 40 30
g 98.0 60 70
» 97.5 50 65 35 25
30 0
Country211 PatchCamelyon UCF101 Kinetics700 CLEVRCounts HatefulMemes
30 60 80 a5 58
3 58 26
£25 40
> 56 75 56
3
€20 35 24
g 54 70 4
15 2 30 22
10 50 65 25 52
55T2 ImageNet ViT-B/32 ViT-B/16 VIT-L/14 ViT-B/32 VIT-B/16 ViT-L/14 ViT-B/32 ViT-B/16 ViT-L/14 ViT-8/32 ViT-B/16 ViT-L/14
75
_65 70 CLIP Zero-shot
g 65 TURTLE 1-space
860
H 50 TURTLE 2-spaces
g 55
55
50
ViT-B/32 ViT-B/16 ViT-L/14 ViT-B/32 ViT-B/16 ViT-L/14

Figure F4. Per dataset performance of TURTLE and CLIP zero-shot using Vision Transformers. TURTLE 2-spaces uses DINOv2
ViT-g/14 as the second representation space.

24

Let Go of Your Labels with Unsupervised Transfer

G. Imbalanced Dataset and Entropy Regularization

Following Xu et al. (2004); Van Gansbeke et al. (2020); Gadetsky & Brbi¢ (2023), we use entropy regularization (11) to
prevent the task encoder from producing trivial solutions, i.e., assigning all the samples to a single class. By default we
set the regularization strength to v = 10 for all the experiments. Note that the optimal solution of (11) is to produce a
labeling with the equal number of samples for each class. However, some of the datasets are not class balanced. In this
case, a strong entropy regularization might hurt the learning process. To understand the effect of the entropy regularization,
we show the average performance of TURTLE with v € {0, 1, 3,5, 10} separately on the imbalanced datasets (Birdsnap,
FER2013, GTSRB, KITTI, HatefulMemes), and the rest 21 balanced datasets in Figure G1. The results indicate that the
entropy regularization is generally helpful since 7 = 0 might lead to trivial solutions. Furthermore, for the balanced datasets,
TURTLE is robust to the choice of the regularization hyperparameter. While for the imbalanced datasets, a properly chosen
regularization parameter could further improve the performance.

Balanced Datasets Imbalanced Datasets

Accuracy (%)
w
o
L
Accuracy (%)

0 1.0 3.0 5.0 10.0 0 1.0 3.0 5.0 10.0
Regularization Parameter y Regularization Parameter y

Figure G1. Ablation of the entropy regularization. We show the average performance for class imbalanced datasets (Birdsnap, FER2013,
GTSRB, KITTI, HatefulMemes) and class balanced datasets (the rest 21 datasets) for the different entropy regularization strength.

H. TURTLE Trained and Evaluated on Test Split

In previous experiments, we train TURTLE on the training split D;,- and evaluate the clustering accuracy on the test split
D;.. In this section, to study the performance of TURTLE in low data regime, we consider the setting when training and
evaluating TURTLE directly on the test split. Figure H1 compares the performance of TURTLE trained on D;, and TURTLE
trained on D, on the 26 datasets. Both settings are evaluated on the test split. As shown in the plot, TURTLE trained on
D, achieves nearly identical performance as TURTLE trained on D, for 24 out of 26 datasets, except Caltech101 and
Flowers102. We found the discrepancy might be attributed to the fact that the Caltech101 and Flowers102 have balanced
training split but imbalanced test split. Overall, the results suggest that TURTLE does not require a large amount of data to
perform successful unsupervised transfer.

TURTLE trained on
CiFAR10 T209100) penet D,
train

CIFAR100, Drest

Birdsnap, HatefulMemes

SUN397 CLEVRCounts

StanfordCars Kinetics700

UCF101

PatchCamelyon

OxfordPets Country211

Caltech101 KITTI Distance

FER2013 EuroSAT

STL10

Figure HI. TURTLE trained on test split achieves similar performance as TURTLE trained on training split for 24 out 26 of
datasets. Results are both evaluated on the test split. The discrepancy of Caltech101 and Flowers102 is because that they are balanced on
training split but imbalanced on test split.

25

Let Go of Your Labels with Unsupervised Transfer

I. Additional Analysis on Fine-grained Classification

In previous sections, we have evaluated the performance of TURTLE on 26 datasets, including 6 fine-grained classification
datasets: Food101, Flowers102, Birdsnap, StanfordCars, FGVCAircraft and OxfordPets. According to the results from Ta-
ble D1 and Figure 5, TURTLE outperforms CLIP zero-shot transfer on 3 datasets (Flowers102, Birdsnap and FGVCAircraft)
and performs comparably on 2 datasets (Food101 and OxfordPets). The results indicate that TURTLE remains effective for
the task of fine-grained classification.

To further study the dependence between number of classes and the performance of TURTLE, we perform the additional
experiments on 4 datasets from the BREEDS benchmark (Santurkar et al., 2021). These datasets are the subsets of ImageNet
that contain both coarse and fine-grained labels. We run TURTLE for each dataset to infer the coarse and fine grained labels
separately by specifying the ground truth number of classes for each case. The statistics for each dataset and TURTLE’s
performance are provided in Table I1.

We observe that TURTLE performs worse on the fine-grained classification compared to the coarse-grained classification
on LIVING-17. The result is expected since fine-grained classification is considered to be a more difficult task. However,
on ENTITY-13, ENTITY-30 and NONLOVING-26, the performance of the fine-grained classification is better than the
performance of the coarse-grained classification. We hypothesize that this might be due to the high intra-variance of coarse
classes, which was also reported in the previous works on unsupervised image classification (Van Gansbeke et al., 2020). In
conclusion, the results suggest that the performance of TURTLE is not largely affected by the granularity of the dataset, but
rather by the quality of the representations as indicated by Figure 6 and Figure 7.

Table 11. BREEDS benchmark and performance of TURTLE. TURTLE column represents the performance of TURTLE on the given
dataset with coarse or fine-grained taxonomy.

Dataset # Coarse classes # Fine classes Train size Test size TURTLEf
Coarse Fine
ENTITY-13 13 260 334,712 13,000 73.1 85.5
ENTITY-30 30 240 307,828 12,000 79.5 82.4
LIVING-17 17 68 88,400 3,400 96.0 87.0
NONLIVING-26 26 104 132,765 5,200 76.9 78.9

26

