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ABSTRACT

Diffusion models (DMs) have recently emerged as a promising method in image
synthesis. They have surpassed generative adversarial networks (GANs) in both
diversity and quality, and have achieved impressive results in text-to-image and
image-to-image modeling. However, to date, only little attention has been paid
to the detection of DM-generated images, which is critical to prevent adverse im-
pacts on our society. Although prior work has shown that GAN-generated images
can be reliably detected using automated methods, it is unclear whether the same
methods are effective against DMs. In this work, we address this challenge and
take a first look at detecting DM-generated images. We approach the problem
from two different angles: First, we evaluate the performance of state-of-the-art
detectors on a variety of DMs. Second, we analyze DM-generated images in the
frequency domain and study different factors that influence the spectral properties
of these images. Most importantly, we demonstrate that GANs and DMs produce
images with different characteristics, which requires adaptation of existing clas-
sifiers to ensure reliable detection. We believe this work provides the foundation
and starting point for further research to detect DM deepfakes effectively.

1 INTRODUCTION

In the recent past, diffusion models (DMs) have shown a lot of promise as a method for synthesizing
images. Such models provide better (or at least similar) performance compared to generative adver-
sarial networks (GANs) and allow powerful text-to-image models such as DALL-E 2 (Ramesh et al.,
2022), Imagen (Saharia et al., 2022), and Stable Diffusion (Rombach et al., 2022). Advances in im-
age synthesis have resulted in very high-quality images being generated, and humans can hardly
tell if a given picture is an actual or artificially generated image (so-called deepfake) (Nightingale
& Farid, 2022). This progress has many implications in practice and poses a danger to our digital
society: Deepfakes can be used for disinformation campaigns, as such images appear particularly
credible due to their sensory comprehensibility. Disinformation aims to discredit opponents in pub-
lic perception, to create sentiment for or against certain social groups, and thus influence public
opinion. In their effect, deepfakes lead to an erosion of trust in institutions or individuals, support
conspiracy theories, and promote a fundamental political camp formation. Despite the importance of
this topic, there is only a limited amount of research on effective deepfake detection. Previous work
on the detection of GAN-generated images (e.g., Wang et al. (2020), Gragnaniello et al. (2021), and
Mandelli et al. (2022a)) showed promising results, but it remains unclear if any of these methods
can be applied to DM-generated images.

In this paper, we present the first look at detection methods for DM-generated media. We tackle
the problem from two different angles. On the one hand, we investigate whether DM-generated
images can be effectively detected by existing methods that claim to be universal. We study ten
models in total, five GANs and five DMs. We find that existing detection methods suffer from
severe performance degradation when applied on DM-generated images, with the area under the
receiver operating characteristic curve (AUROC) metric dropping by 15.2% on average compared
to GANs. These results hint at a structural difference between synthetic images generated by GANs
and DMs. We show that existing detection methods can be improved by fine-tuning, which makes
detection almost perfect. However, our results also suggest that recognizing DM-generated images
is a more difficult task than recognizing GAN images.

1



Under review as a conference paper at ICLR 2023

On the other hand, we analyze DM-generated images in the frequency domain and compare them
to GAN-generated images. Although DMs do not exhibit strong frequency artifacts compared to
GANs, their spectrum deviates from real images. We hypothesize that discrepancies in spectral
properties are a possible reason for our identified differences. Therefore, we analyze the spectral
properties of DM- and GAN-generated images in detail and find that high frequencies are system-
atically mismatched. Further analysis suggests that too little weight is given to these frequencies
during training due to the choice of the training objective. We believe that our results provide the
foundation for further research on the effective detection of deepfakes generated by DMs.

2 RELATED WORK

Universal Fake Image Detection While in recent years a variety of successful methods to detect
artificially generated images has been proposed (Verdoliva, 2020), generalization to unseen data
remains a challenging task (Cozzolino et al., 2019). Constructing an effective classifier for a specific
generator is considered straightforward, which is why more research effort is put into designing
universal detectors (Xuan et al., 2019; Chai et al., 2020; Wang et al., 2020; Cozzolino et al., 2021;
Gragnaniello et al., 2021; Girish et al., 2021; Mandelli et al., 2022a). This is especially important
in the context of deceptive media, since new generative models emerge on a frequent basis and
manually updating detectors is too slow to stop the propagation of harmful contents.

Frequency-Based Deepfake Detection Zhang et al. (2019) were the first to demonstrate that the
spectrum of GAN-generated images contains visible artifacts in the form of a periodic, grid-like
pattern due to transposed convolution operations. These findings were later reproduced by Wang
et al. (2020) and extended to the discrete cosine transform (DCT) by Frank et al. (2020). Another
characteristic was discovered by Durall et al. (2020), who showed that GANs are unable to correctly
reproduce the spectral distribution of the training data. In particular, generated images contain in-
creased magnitudes at high frequencies. While several works attribute these spectral discrepancies
to transposed convolutions (Zhang et al., 2019; Durall et al., 2020) or, more general, up-sampling
operations (Frank et al., 2020; Chandrasegaran et al., 2021), no consensus on their origin has yet
been reached. Some works explain them by the spectral bias of convolution layers due to linear
dependencies (Dzanic et al., 2020; Khayatkhoei & Elgammal, 2022), while others suggest the dis-
criminator is not able to provide an accurate training signal (Chen et al., 2021; Schwarz et al., 2021).

Detection of DM-Generated Images Despite the massive attention from the scientific community
and beyond, DMs have not yet been studied from the perspective of image forensics. A very specific
use case is considered by Mandelli et al. (2022b), where the authors evaluate methods for detecting
western blot images synthesized by different models, including DDPM (Ho et al., 2020). More
related to our analysis is the work of Wolter et al. (2022), which proposes to detect generated images
based on their wavelet-packet representation, combining features from pixel- and frequency space.
While the focus lies on GAN-generated images, they demonstrate that the images generated by
ADM (Dhariwal & Nichol, 2021) can be detected using their approach. They also report that the
classifier “appears to focus on the highest frequency packet”, which is consistent with our findings.

Frequency Considerations in DMs Both Kingma et al. (2021) and Song et al. (2022b) experiment
with adding Fourier features to improve learning of high-frequency content, the former reporting
it leads to much better likelihoods. Another interesting observation is made by Rissanen et al.
(2022) who analyze the generative process of diffusion models in the frequency domain. They state
that diffusion models have an inductive bias according to which, during the reverse process, higher
frequencies are added to existing lower frequencies.

3 BACKGROUND ON DMS

DMs were first proposed by Sohl-Dickstein et al. (2015) and later advanced by Ho et al. (2020),
who also pointed out the connections between DMs and score-based generative models (Song &
Ermon, 2019; 2020; Song et al., 2022b). Since then, numerous modifications and improvements
have been proposed, leading to higher perceptual quality (Nichol & Dhariwal, 2021; Dhariwal &
Nichol, 2021; Choi et al., 2022; Rombach et al., 2022) and increased sampling speed (Song et al.,
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2022a; Liu et al., 2022; Salimans & Ho, 2022; Xiao et al., 2022). In short, a DM models a data
distribution by gradually disturbing a sample from this distribution and then learning to reverse this
diffusion process. In the diffusion (or forward) process, a sample x0 (an image in most applications)
is repeatedly corrupted by adding Gaussian noise in sequential steps t = 1, . . . , T :

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) , (1)

where βt defines a noise schedule. With αt := 1 − βt and ᾱt :=
∏t

s=1(1− βt), we can directly
create a corrupted sample xt via

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) . (2)

During the denoising (or reverse) process, we aim to sample from q(xt−1|xt) to obtain a clean image
given xT . However, since q(xt−1|xt) is intractable as it depends on the entire underlying data dis-
tribution, it is approximated by a deep neural network. More formally, q(xt−1|xt) is approximated
by

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) , (3)

where mean µθ and covariance Σθ are given by the output of the model (or the latter is set to a
constant as proposed by Ho et al. (2020)). Predicting the mean of the denoised sample µθ(xt, t)
is conceptually equivalent to predicting the noise that should be removed, denoted by ϵθ(xt, t).
Predominantly, the latter approach is implemented (e.g., by Ho et al. (2020); Dhariwal & Nichol
(2021)) such that training a DM boils down to minimizing a (weighted) mean-squared error (MSE)
∥ϵ− ϵθ(xt, t)∥2 between the true and predicted noise.

4 GENERATIVE MODELS UNDER EVALUATION

In contrast to previous work, we evaluate all generative models trained on the same dataset. This
avoids any biases due to the complexity of the dataset when estimating the accuracy of deep fake
detection methods, e.g., a high detection accuracy for a model trained on a complex dataset that
cannot be modeled as well as a simpler dataset. It also provides fair conditions for evaluating a
fine-tuned detector’s ability to generalize to unseen data. In addition, having only a single dataset is
beneficial for frequency analysis. Although natural images have been shown to have similar power
spectra across different domains (Burton & Moorhead, 1987; Field, 1987; 1999; Tolhurst et al.,
1992; Torralba & Oliva, 2003), a model may be able to reproduce the frequencies of one dataset
better than another.

Table 1: Models evaluated in this work. Fréchet
inception distances (FIDs) (Heusel et al., 2017)
on LSUN Bedroom 256×256 are taken from the
original publications and from Dhariwal & Nichol
(2021) in the case of IDDPM. A lower FID corre-
sponds to higher image quality.

Model Class Method Publication FID

GAN

ProGAN Karras et al. (2018) 8.34
StyleGAN Karras et al. (2019) 2.65
ProjectedGAN Sauer et al. (2021) 1.52
Diff-StyleGAN2 Wang et al. (2022) 3.65
Diff-ProjectedGAN Wang et al. (2022) 1.43

DM

DDPM Ho et al. (2020) 6.36
IDDPM Nichol & Dhariwal (2021) 4.24
ADM Dhariwal & Nichol (2021) 1.90
PNDM Liu et al. (2022) 5.68
LDM Rombach et al. (2022) 2.95

We evaluate models trained on LSUN Bed-
room (Yu et al., 2016) due to the availabil-
ity of pre-trained models and/or samples for
many state-of-the-art GANs and DMs. This
dataset also has the advantage that no resizing
operations (besides cropping)1 are required,
which are a potential source of error due to
faulty implementations (Parmar et al., 2022)
or a mismatch between pre-processing for real
and generated images (Chai et al., 2020). To
demonstrate that our findings are not dataset
specific, we show results on additional data in
Appendix D.

An overview of the models under evaluation
is shown in Table 1, and example images are
given in Appendix A. We consider data from
ten models in total, five GANs and five DMs. This includes the seminal models ProGAN and
StyleGAN, as well as the more recent ProjectedGAN. Note that the recently proposed methods,
Diff(usion)-StyleGAN2 and Diff(usion)-ProjectedGAN (the current state of the art on LSUN Bed-
room) use a forward diffusion process to optimize GAN training, but this does not change the GAN
model architecture. From the class of DMs, we consider the original DDPM, its successor IDDPM,

1All images have the smaller dimension equal to 256 pixels.
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and ADM, the latter outperforming several GANs with an FID of 1.90 on LSUN Bedroom. PNDM
optimizes the sampling process by the factor of 20 using pseudo numerical methods, which can be
applied to existing pre-trained DMs. Lastly, LDM uses an adversarially trained autoencoder that
transforms an image from the pixel space to a latent space. Training the DM in this more suitable
latent space reduces the computational complexity and therefore enables training on higher resolu-
tions. The success of this approach is underpinned by the recent publication of Stable Diffusion2, a
powerful and publicly available text-to-image model based on LDM. An interesting detail is that the
autoencoder used to transform images is very similar to a VQGAN (Esser et al., 2021).

All samples have dimensions 256×256 and are either directly downloaded or generated using code
and pre-trained models provided by the original publications. More detailed descriptions are given in
Appendix A. For each model, we collect 50k samples in total from which 39k are used for training,
1k for validation, and 10k for testing and frequency analysis, if not stated otherwise.

5 DETECTION OF DM-GENERATED IMAGES

We now investigate the effectiveness of state-of-the-art fake image detectors on DM-generated im-
ages. First, we analyze the performance of off-the-shelf pre-trained models which are highly capable
of detecting images generated by GANs, and then perform experiments with models fine-tuned on
DM-generated images. We also show example images considered more or less “fake” based on the
detector’s output in Appendix B.5.

In this work, we evaluate three state-of-the-art detection methods by Wang et al. (2020), Grag-
naniello et al. (2021), and Mandelli et al. (2022a). A description of these detectors is provided in
Appendix B.1. All three claim to perform well on unseen data, but it is unclear whether this holds
for DM-generated images as well.

The performance of the analyzed classifiers is estimated in terms of the widely used AUROC. As
pointed out by Cozzolino et al. (2021), however, the AUROC tends to be overly optimistic since it
captures merely the potential of a classifier, but the optimal threshold is usually unknown. There-
fore, we adopt the use of the probability of detection at a fixed false alarm rate (Pd@FAR) as an
additional metric, which is given as the true positive rate at a fixed false positive rate. Intuitively,
this corresponds to picking the y-coordinate of the ROC curve given an x-coordinate. This metric
is a valid choice for realistic scenarios such as large-scale content filtering on social media, where
only a certain amount of false positives is tolerable. We consider FARs of 5% and 1%.

5.1 CAN WE USE STATE-OF-THE-ART DETECTORS FOR DM-GENERATED IMAGES?

Our first analysis aims to answer the question whether DM-generated images are sufficiently similar,
with respect to detectable traces, to those generated by GANs.

Table 2: Detection performance of pre-trained universal detectors. For Wang et al. (2020) and
Gragnaniello et al. (2021), we consider two different variants, respectively. The best score (deter-
mined by the highest Pd@1%) for each generator is highlighted in bold. We also report average
scores per detector and model class in gray.

AUROC / Pd@5% / Pd@1%
Wang et al. (2020) Gragnaniello et al. (2021) Mandelli et al. (2022a)

Blur+JPEG (0.5) Blur+JPEG (0.1) ProGAN StyleGAN2

ProGAN 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 91.2 / 54.6 / 27.5
StyleGAN 98.7 / 93.7 / 81.4 99.0 / 95.5 / 84.4 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 89.6 / 43.6 / 14.7
ProjectedGAN 94.8 / 73.8 / 49.1 90.9 / 61.8 / 34.5 100.0 / 99.9 / 99.3 99.9 / 99.6 / 97.8 59.4 / 8.4 / 2.4
Diff-StyleGAN2 99.9 / 99.6 / 97.9 100.0 / 99.9 / 99.3 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 100.0 / 100.0 / 99.9
Diff-ProjectedGAN 93.8 / 69.5 / 43.3 88.8 / 54.6 / 27.2 99.9 / 99.9 / 99.2 99.8 / 99.6 / 96.6 62.1 / 10.5 / 2.8
Average 97.4 / 87.3 / 74.3 95.7 / 82.4 / 69.1 100.0 / 100.0 / 99.7 99.9 / 99.8 / 98.9 80.4 / 43.4 / 29.5

DDPM 85.2 / 37.8 / 14.2 80.8 / 29.6 / 9.3 96.5 / 79.4 / 39.1 95.1 / 69.5 / 30.7 57.4 / 3.8 / 0.6
IDDPM 81.6 / 30.6 / 10.6 79.9 / 27.6 / 7.8 94.3 / 64.8 / 25.7 92.8 / 58.0 / 21.2 62.9 / 7.0 / 1.3
ADM 68.3 / 13.2 / 3.4 68.8 / 14.1 / 4.0 77.8 / 20.7 / 5.2 70.6 / 13.0 / 2.5 60.5 / 8.2 / 1.8
PNDM 79.0 / 27.5 / 9.2 75.5 / 22.6 / 6.3 91.6 / 52.0 / 16.6 91.5 / 53.9 / 22.2 71.6 / 15.4 / 4.0
LDM 78.7 / 24.7 / 7.4 77.7 / 24.3 / 6.9 96.7 / 79.9 / 42.1 97.0 / 81.8 / 48.9 54.8 / 7.7 / 2.1
Average 78.6 / 26.8 / 9.0 76.6 / 23.7 / 6.8 91.4 / 59.3 / 25.7 89.4 / 55.2 / 25.1 61.4 / 8.4 / 2.0

2https://github.com/CompVis/stable-diffusion
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Using the dataset introduced in Section 4, we analyze the performance of the three state-of-the-
art detectors. We use pre-trained models provided by the authors without any modifications and
compute the evaluation metrics using 10k real and 10k generated images. The results are given in
Table 2. For GAN-generated images, both classifiers provided by Gragnaniello et al. (2021) achieve
almost perfect detection results across all five generators, even w.r.t. the challenging Pd@1% metric.
For images generated by ProjectedGAN and Diff-ProjectedGAN, the variant trained on ProGAN
images performs slightly better. The reduced scores for these two models could in part be explained
by the high image quality indicated by low FIDs (see Table 1). In comparison, the performance of
the classifier provided by Wang et al. (2020) is reduced (except for ProGAN, on which the model
was trained), which confirms the findings of Gragnaniello et al. (2021). Similar to Gragnaniello et al.
(2021), ProjectedGAN and Diff-ProjectedGAN achieve the lowest scores, with Pd@1% dropping
below 50%. Except for Diff-StyleGAN2, Mandelli et al. (2022a) achieves significantly worse results
than its contestants. A possible explanation could be that StyleGAN2 images make up a large portion
of the training data for this classifier.

For images generated by DMs, we observe a sharp deterioration for all detectors, with AUROC
dropping by 15.2% on average in comparison to GANs. The difference becomes even more severe
when looking at the more realistic Pd@FAR metrics. While the best model by Gragnaniello et al.
(2021) (trained on ProGAN images) achieves a Pd@5% of 100.0% and Pd@1% of 99.7% on GAN-
generated images, the scores drop by 40.7% and 74.0% for DMs, respectively. Given a setting where
a low FAR is required, we find that none of the detectors under evaluation are usable. Among the five
DMs, ADM generated the images most difficult to detect, which corresponds to a low FID. However,
images from LDM, which achieves the second lowest FID, can be detected relatively effectively. A
potential reason for this could be the adversarial training procedure of LDM (see Section 4), which
could result in properties similar to those of GAN-generated images.

Overall, we observe that pre-trained universal detectors suffer from a severe performance drop when
applied to DM-generated images (compared to GANs). We conclude that there exists a structural
difference between GAN- and DM-generated images that requires the adaptation of existing methods
or the development of novel methods to ensure the reliable detection of synthesized images. In
Appendix B.4 we also experiment with common image perturbations and show that these have a
stronger effect on DM-generated images.

5.2 CAN WE IMPROVE DETECTION BY FINE-TUNING?

Given the findings presented above, the question remains whether DMs evade detection in principle,
or whether the detection performance can be increased by fine-tuning.3 We select Wang et al. (2020)
as a baseline since the original training code is available4, which guarantees using the same train-
ing procedure. Furthermore, we choose the configuration Blur+JPEG (0.5) as it yields slightly better
scores on average, and use the validation set for adapting the learning rate and performing early stop-
ping. Besides fine-tuning a model on data from each generator, we also consider three aggregated
settings in which we fine-tuned on all images generated by GANs, DMs, and both, respectively.

The results are depicted in Figure 1. A model which is fine-tuned on images from a specific DM
achieves near-perfect scores, with PD@1% ranging from 97.7% for ADM to 100.0% for PNDM and
LDM. To a limited extent, models are also capable of generalizing to data from other DMs, indicat-
ing common, detectable characteristics. Interestingly, detectors fine-tuned on images from DMs are
significantly more successful in detecting GAN-generated images than vice versa. The same holds
for models fine-tuned using images from multiple GANs and DMs, respectively. We hypothesize
that detectors trained solely on GAN-generated images focus mostly on GAN-specific (arguably
more prominent) patterns, while detectors trained on DM-generated images focus on common pat-
terns. This is supported by frequency (see Section 6) and feature space analyses (see Appendix B.3).

In addition, the results demonstrate that training a detector which is capable of correctly classifying
both GAN- and DM-generated images is clearly possible (see rightmost column of Figure 1a). While
this finding is promising, it is unclear whether a similar performance can be achieved in the model-
agnostic setting addressed by Wang et al. (2020).

3In addition, we carry out the same evaluation for detectors trained from scratch, which leads to very similar
results, as shown in Appendix B.2.

4https://github.com/peterwang512/CNNDetection
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Figure 1: Detection performance for fine-tuned detectors. The columns GAN, DM, and All cor-
respond to models fine-tuned on samples from all GANs, DMs, and both, respectively.

6 ANALYSIS OF DM-GENERATED IMAGES IN THE FREQUENCY DOMAIN

The visual quality of synthesized images has reached a level that makes them practically indis-
tinguishable from real images for humans (Nightingale & Farid, 2022). However, in the case of
GANs, the same does not hold when switching to the frequency domain (Zhang et al., 2019). In this
section, we analyze the spectral properties of DM-generated images and compare them to those of
GAN-generated images. We use three frequency transforms that have been used successfully in both
traditional image forensics (Lyu, 2013) and deepfake detection: discrete Fourier transform (DFT),
discrete cosine transform (DCT), and the reduced spectrum, which can be viewed as a 1D repre-
sentation of the DFT. While DFT and DCT visualize frequency artifacts, the reduced spectrum can
be used to identify spectrum discrepancies. The formal definitions of all transforms are provided in
Appendix C.1. Furthermore, we evaluate the influence of different parameters during training and
sampling of DMs and hypothesize on the origin of spectrum discrepancies.

6.1 SPECTRAL PROPERTIES OF DM- VS GAN-GENERATED IMAGES

Figure 2 depicts the average absolute DFT spectrum of 10k images from each GAN and DM in our
dataset.5 Before applying the DFT, images are transformed to grayscale and, following previous
works (Marra et al., 2019; Wang et al., 2020), high-pass filtered by subtracting a median-filtered
version of the image. For all GANs we observe significant artifacts, predominantly in the form
of a regular grid. Taking the reduced spectra in Figure 3a into account we confirm the previously
reported elevated high frequencies (see Section 2). For ProjectedGAN and Diff-ProjectedGAN, this
characteristic is also visible. However, the spectral density does not exceed that of real images.
Diff-StyleGAN2 is an exception as it shows a slight decrease towards the end of the spectrum.

In contrast, the DFT spectra of images generated by DMs (see Figure 2b), except LDM, are signif-
icantly more similar to the real spectrum with almost no visible artifacts. LDM, however, exhibits
a thin grid across its spectrum, as well as the increased amount of high frequencies which is char-
acteristic for GANs (see Figure 3b). As mentioned in Section 4, the architecture of LDM differs
from the remaining DMs as the actual image is generated using an adversarially trained autoen-
coder, which could explain the discrepancies. This supports previous findings which suggest that
the discriminator is responsible for spectrum deviations.

Although the reduced spectra of the remaining DMs do not exhibit the GAN-like rise towards the
end of the spectrum, several DMs deviate stronger from the spectrum of real images than GANs.
Especially for ADM, IDDPM, and DDPM, we observe an underestimation of the spectral density
which becomes stronger towards higher frequencies (relative to the overall spectral density level).
In Section 6.3 we discuss potential causes.

5We also report the DCT spectra of both GANs and DMs in Appendix C.2 which produce similar findings.
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Figure 2: Mean of DFT spectrum from real and generated images. To increase visibility, the
color bar is limited to [10−5, 10−1], with values lying outside this interval being clipped.
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Figure 3: Mean reduced spectrum from real and generated images. The higher end of the
spectrum where GAN-characteristic discrepancies occur is magnified.

6.2 ARE DM-GENERATED IMAGES EASIER TO DETECT IN THE FREQUENCY DOMAIN?

So far we showed that although DMs do not exhibit strong frequency artifacts, their spectrum de-
viates from that of real images. A natural question is therefore whether these discrepancies can be
used to detect DM-generated images more effectively. Following Frank et al. (2020), we perform a
simple logistic regression on each dataset with different transforms: Pixel (no transform), DFT (and
taking the absolute value), and DCT. We use 20k samples for training, 2k for validation, and 20k
for testing, each set equally split between real and fake images. To reduce the number of features,
we transform all images to grayscale and take a center crop with dimensions 64x64. Additionally,
all features are independently standardized to have zero mean and unit variance. We apply L2 regu-
larization and identify the optimal regularization weight by performing a grid search over the range{
10k | k ∈ {−4,−3, . . . , 4}

}
.

The accuracy of all GANs and DMs in our dataset is given in Table 3. We also report the results for
log-scaled DFT and DCT coefficients, as this leads to significant improvements for some generators.
For both GANs and DMs, using information from the frequency domain increases classification
accuracy. On average, the performance gain of the best transform compared to no transform is
5.72% and 10.6%, respectively. Although the gain for DMs is more than double that for GANs, the
overall maximum accuracy is significantly lower (90.9% for GANs and 63.1% for DMs on average).
Therefore, we do not conclude that DMs exhibit stronger discriminative features in the frequency
domain compared to GANs.
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Table 3: Accuracy of logistic regression on pixels and different transforms. Next to each trans-
form column we report the gain compared to the accuracy on pixels.

Pixel DFT log(DFT) DCT log(DCT)

ProGAN 64.8 74.7 +9.9 72.6 +7.8 65.4 +0.6 74.9 +10.1
StyleGAN 91.1 87.4 -3.7 86.2 -4.9 92.6 +1.5 86.4 -4.7
ProjectedGAN 90.0 90.8 +0.8 90.3 +0.3 91.0 +1.0 95.3 +5.3
Diff-StyleGAN2 92.4 80.3 -12.0 80.5 -11.9 93.8 +1.4 87.6 -4.7
Diff-ProjectedGAN 87.4 93.9 +6.5 93.1 +5.7 88.1 +0.6 97.7 +10.3

DDPM 51.7 64.2 +12.6 64.2 +12.5 52.4 +0.7 64.3 +12.6
IDDPM 51.6 62.1 +10.6 61.7 +10.1 51.7 +0.1 61.7 +10.1
ADM 50.1 54.7 +4.6 52.3 +2.3 50.1 +0.0 53.8 +3.7
PNDM 52.5 57.0 +4.5 58.2 +5.7 51.1 -1.4 61.4 +8.9
LDM 56.6 63.7 +7.1 66.1 +9.5 58.5 +1.9 73.0 +16.3
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Figure 4: Evolution of spectral density error throughout the denoising process. The error is
computed relatively to the spectrum of real images. We display the error for (a) all sampling steps
and (b) a close-up of the last 100 steps. The colorbar is clipped at -1 and 1.

6.3 INVESTIGATING THE SOURCE OF SPECTRUM DISCREPANCIES

As explained in Section 2, several recent works attempted to identify the source of spectrum dis-
crepancies in GAN-generated images. In this section, we make an effort to launch a similar line
of work for DMs. For the experiments, we used code and model from ADM (Dhariwal & Nichol,
2021) pre-trained on LSUN Bedroom. Spectra are generated using 512 grayscale images.

Spectrum Evolution During the Denoising Process Our first analysis targets the denoising pro-
cess. We generate samples at different time steps t and compare their average reduced spectrum to
that of 50k real images. The results are shown in Figure 4. We adopt the figure type from Schwarz
et al. (2021) and depict the relative spectral density error S̃err = S̃fake/S̃real − 1, with the color-
bar clipped at -1 and 1. At t = 1000, the image is pure Gaussian noise, which causes the strong
spectrum deviations. Around t = 300, the error starts to decrease, but interestingly it appears to
not continuously improve until t = 0. With regard to high frequencies, we observe an optimum at
approximately t = 10 followed by an increasing underestimation. In Appendix C.3, we additionally
provide the spectral density error between the denoising process and the diffusion process at the cor-
responding step, which further visualizes this behavior. However, at t = 10, the images are easier to
detect and also visually noisier (see Appendix C.3 Figures 16 and 17). Thus, stopping the denoising
process early is not an effective means to make synthetic images less detectable.

0 200 400 600 800 1000
t

10−4

10−2

100

M
SE

Figure 5: Mean and standard
deviation of the mean-squared
error at different steps.

We hypothesize that the underestimation towards higher frequen-
cies is due to a training objective that is suboptimal for captur-
ing high frequency content. As noted by Nichol & Dhariwal
(2021), the objective proposed by Ho et al. (2020), Lsimple =
Et,x0,ϵ[∥ϵ − ϵθ(xt, t)∥2], does not lead to good log-likelihood
values. These depend on high-frequency details synthesized at
the challenging denoising tasks near t = 0 (Kingma et al., 2021).
In contrast, the classical variational lower bound Lvlb forces the
model to focus on the denoising steps towards t = 0. How-
ever, asLvlb is extremely difficult to optimize (see e.g., Nichol &
Dhariwal (2021)) the modified objectiveLhybrid = Lsimple+λLvlb
(with λ = 0.001) is proposed by (Nichol & Dhariwal, 2021) and
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Figure 6: Evolution of spectral density error for different numbers of denoising steps. The error
is computed relatively to the spectrum of real images. The colorbar is clipped at -1 and 1. Note that
the y-axis is not scaled linearly.

also employed by (Dhariwal & Nichol, 2021). And indeed, when looking at the mean-squared error
at different t (see Figure 5), we observe a steep increase near t = 0, suggesting the model struggles
with accurately removing the small perturbations which correspond to high frequencies. We con-
clude that the training objective used in state-of-the-art DMs enables impressive perceptual image
quality (also regarding FID), but struggles to accurately model the high-frequency content of real
images – which in turn can be exploited for detection. We elaborate in Appendix C.5.

Effect of Number of Sampling Steps In a second step, we analyze how varying the number of
sampling steps affects the spectral properties of generated images. While DMs are usually trained
using T = 1000 steps, sampling speed can be increased by reducing the number of steps (Nichol &
Dhariwal, 2021). For ADM on LSUN Bedroom, however, images were sampled using 1000 steps
since this led to much better results (Dhariwal & Nichol, 2021). The authors also evaluate DDIM
(Song et al., 2022a), an alternative sampling method which allows for sampling with fewer steps.

Using the previous experimental settings, we analyze the reduced spectra of images sampled using
different numbers of steps (Figure 6). With only a few steps, the spectral density is too low across
the entire spectrum, resulting in blurry images with little contrast (see Appendix C.4). Performing
more steps leads to lower errors, with DDIM improving faster than normal sampling. This finding
is coherent with previous results, as DDIM achieves better samples at fewer sampling steps (Song
et al., 2022a). In Appendix C.4 we also analyze the detectability with different numbers of sampling
steps. For both sampling methods, images become easier to detect with fewer sampling steps.

7 CONCLUSION

In this work, we make a much-needed first step towards the detection of DM-generated images.
We find that existing detectors, which claim to be universal, fail to effectively recognize images
synthesized by different DMs. This hints at fundamental differences between images generated by
DMs and GANs, one of which we identify as different spectral properties. While DMs produce
little to no frequency artifacts, there appears to be a systematic underestimation of high frequen-
cies. Our hypothesis is that during training, too little weight is attached to these frequencies due
to the choice of the training objective. However, this is an appropriate choice because correctly
reproducing high frequencies is less important to the perceived quality of generated images than
matching lower frequencies. Whether spectral discrepancies can be reduced (e.g., by adding spec-
tral regularization (Durall et al., 2020)) without impairing image quality should be the subject of
future work. Most importantly, more efforts are needed to develop novel detection methods, both
universal and DM-specific. For tackling this task, a sufficiently large number of DM-generated im-
ages is necessary, which poses a challenge due to the slow generation speed compared to GANs. We
therefore urge researchers presenting novel generation methods to publish sample images alongside
pre-trained models, to enable the development and evaluation of detection methods without the need
for immense computational resources. This is especially relevant due to the emergence of powerful
text-to-image models based on DMs like DALL-E 2 (Ramesh et al., 2022), Imagen (Saharia et al.,
2022), and Stable Diffusion (Rombach et al., 2022). We hope that our work can spark further re-
search in this direction and emphasizes the fact that advances in realistic media synthesis should
always be accompanied by considerations regarding deepfake detection methods.
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ETHICS STATEMENT

While generative models have many beneficial applications, deepfakes pose a serious threat to soci-
ety by undermining trust in media and digital communication (e.g., via fake profiles in social media
that are used in misinformation campaigns). This work explores the challenges of deepfake detec-
tion for the novel promising class of diffusion models. We believe that the urge for reliable deepfake
detection – ideally agnostic to the underlying generative model – is amplified by the ever easier use
of generative models (e.g., via text-to-image synthesis). By highlighting the (current) lack of “uni-
versal” detectors, we strongly encourage the community to address this shortcoming, and our results
can serve as a starting point for future work in this direction. While insights from such research
could potentially be used to exacerbate or eventually elude detection, we strongly believe further
insights in this area are much needed in order to sustain identifiability of deepfakes.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide instructions to recreate the dataset in Appendix A and, for
the additional datasets, in Appendix D. All datasets considered in this work are publicly available.
We train/fine-tune the detector proposed by Wang et al. (2020) using the settings provided by the
authors and describe training and validation data in the text (Section 5.2). All tables and figures can
be reproduced using the source code provided in the supplementary materials.
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A DETAILS ON THE DATASET

LSUN Bedroom (Yu et al., 2016) We download and extract the lmbd database files using the
official repository6. The images are center-cropped to 256x256 pixels.

ProGAN (Karras et al., 2018) We download the first 10k samples from the non-curated collection
provided by the authors.7

StyleGAN (Karras et al., 2019) We download the first 10k samples generated with ψ = 0.5 from
the non-curated collection provided by the authors.8

ProjectedGAN (Sauer et al., 2021) We sample 10k images using code and pre-trained models
provided by the authors using the default configuration (--trunc=1.0).9

Diff-StyleGAN2 (Wang et al., 2022) and Diff-ProjectedGAN (Wang et al., 2022) We sample
10k images using code and pre-trained models provided by the authors using the default configura-
tion.10

DDPM (Ho et al., 2020), IDDPM (Nichol & Dhariwal, 2021), and ADM (Dhariwal & Nichol,
2021) We download the samples provided by the authors of ADM11 and extract the first 10k sam-
ples for each generator. For ADM on LSUN, we select the models trained with dropout.

PNDM (Liu et al., 2022) We sample 10k images using code and pre-trained model provided by
the authors.12 We specify --method F-PNDM and --sample speed 20 for LSUN Bedroom
and --sample speed 10 for LSUN Church, as these are the settings leading to the lowest FID
according to Tables 5 and 6 in the original publication.

LDM (Rombach et al., 2022) We sample 10k images using code and pre-trained models provided
by the authors using settings from the corresponding table in the repository.13 For LSUN Church
there is an inconsistency between the repository and the paper, we choose 200 DDIM steps (-c
200) as reported in the paper.

6https://github.com/fyu/lsun
7https://github.com/tkarras/progressive_growing_of_gans
8https://github.com/NVlabs/stylegan
9https://github.com/autonomousvision/projected_gan

10https://github.com/Zhendong-Wang/Diffusion-GAN
11https://github.com/openai/guided-diffusion
12https://github.com/luping-liu/PNDM
13https://github.com/CompVis/latent-diffusion
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Figure 7: Non-curated examples for real LSUN Bedroom, GAN-generated, and DM-generated
images.
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B DETECTION

B.1 DESCRIPTIONS OF DETECTORS

Wang et al. (2020) In this influential work, the authors demonstrate that a standard deep convolu-
tional neural network (CNN) trained on data from a single generator performs surprisingly well on
unseen images. They train a ResNet-50 (He et al., 2016) on 720k images from 20 LSUN (Yu et al.,
2016) categories (not including Bedroom and Church), equally divided into real images and images
generated by ProGAN (Karras et al., 2018). The trained binary classifier is able to distinguish real
from generated images from a variety of generative models and datasets. The authors further show
that extensive data augmentation in the form of random flipping, blurring, and JPEG compression
generally improves generalization. Moreover, the authors provide two pre-trained model configura-
tions, Blur+JPEG (0.1) and Blur+JPEG (0.5), where the value in parentheses denotes the probability
of blurring and JPEG compression, respectively. They achieve an average precision of 92.6% and
90.8%, respectively. The work suggests that CNN-generated images contain common artifacts (or
fingerprints) which make them distinguishable from real images.

Gragnaniello et al. (2021) Building upon the architecture and dataset from Wang et al. (2020),
the authors of this work experiment with different variations to further improve the detection perfor-
mance in real-world scenarios. The most promising variant, no-down, removes downsampling from
the first layer, increasing the average accuracy from 80.71% to 94.42%, at the cost of more trainable
parameters. They also train a model with the same architecture on images generated by StyleGAN2
(Karras et al., 2020) instead of ProGAN, which further improves accuracy to 98.48%.

Mandelli et al. (2022a) Unlike the other two methods, this work uses an ensemble of five orthogo-
nal CNNs to detect fake images not seen during training. All CNNs are based on the EfficientNet-B4
model (Tan & Le, 2019) but are trained on different datasets. Dataset orthogonality refers to images
having different content, different processing (e.g., JPEG compression), or being generated by dif-
ferent GANs. They argue that by having different datasets, each CNN learns to detect different
characteristics of real and generated images, improving the overall performance and generalization
ability. For each CNN, a score is computed for ≈ 200 random patches extracted from the image.
These scores are combined using a novel patch aggregation strategy which assumes that an image
is fake if at least one patch is classified as being fake. Finally, the output score is computed by
averaging the individual scores of all five CNNs. It should be noted that, besides several GANs, the
training dataset also includes samples generated by Song et al. (2022b), a score-based model.

B.2 DETECTION RESULTS FOR CLASSIFIERS TRAINED FROM SCRATCH

We repeat the experiment described in Section 5.2 but train each classifier from scratch instead of
fine-tuning it, the results are shown in Figure 8. Note that here “from scratch” means that we start
from a ResNet-50 model pre-trained on ImageNet, which is exactly how the authors trained their
models (Wang et al., 2020). For most constellations of training and test data, the results are similar
compared to fine-tuning, with a tendency towards worse scores for the models trained from scratch.

B.3 FEATURE SPACE ANALYSIS

The experiments in Section 5.1 demonstrate that current detection methods struggle to reliably iden-
tify DM-generated images while detecting GAN-generated images with near-optimal accuracy. We
thus hypothesize that GAN-generated images exhibit features that are considerably distinct from
those of DM-generated images.

To further investigate this hypothesis we examine the discrepancy of real and fake images in the
feature spaces of the detection methods under consideration. More precisely, we employ Maximum
Mean Discrepancy (MMD; Gretton et al., 2012) to estimate the distance between the distributions
of real and generated images in feature space. We extract the 2048-dimensional features before the
last fully-connected layer of the detectors by Wang et al. (2020) and Gragnaniello et al. (2021). We
employ a Gaussian kernel with σ as the median distance between instances in the combined sample
as suggested in Gretton et al. (2012) and calculate the MMD between the representations of 10k
generated images and 10k real images.
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Figure 8: Detection performance for detectors trained from scratch.
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Figure 9: MMD between feature representations of real and generated images on LSUN Bed-
room for different detectors (pre-trained, fine-tuned and trained from scratch). The features
f(·) correspond to the representation prior to the last fully-connected layer of the respective detec-
tion method. For further information on the detectors see Section 5.2 (fine-tuned) and Appendix B.2
(trained from scratch).
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We consider three sets of detection methods, namely pre-trained, fine-tuned and trained from scratch.

Starting with pre-trained detection methods (top row in Figure 9), we observe that the MMD be-
tween representations of DM-generated images and those of real images are considerably lower in
comparison to GAN-generated images. With the results from Table 2 in mind, we can conclude that
the pre-trained detectors extract features that allow to reliably separate GAN-generated images from
real images, while these features are less informative to discriminate DM-generated images. This
findings support the experiments conducted in Section 5.1.

We repeat the above experiment for fine-tuned and re-trained detectors from Wang et al. (2020)
(middle row and bottom row in Figure 9). We consider the version Blur+JPEG (0.5) and fine-
tune/train on all GAN-generated images, DM-generated images and both (as described in Section 5.2
and Appendix B.2). The results of fine-tuned and re-trained detectors are qualitatively similar: When
training/fine-tuning on generated images from both, DMs and GANs, the MMDs in feature space
are roughly on par for both model sets. This strengthens the finding that reliable detection is feasible
provided the generative model class is known. When fine-tuning/training solely on images from one
model class we observe an imbalance: Detectors fine-tuned or trained on images from DMs are able
to achieve relatively higher MMDs for GAN-generated images than vice versa. This imbalance is
already evident in the experiments in Section 5.2.

The findings give rise to the following hypothesis: GAN- and DM-generated images share some
common patterns. However, detectors trained solely on GAN-generated images focus mostly on
GAN-specific (arguably more prominent) patterns, while detectors trained on DM-generated images
focus on common patterns. The hypothesis is corroborated by the t-SNE visualizations (van der
Maaten & Hinton, 2008) provided in Figure 10.14 The detectors trained on DM-generated images
evidently learn features/representations which are common to both GANs and DMs (right column),
while detectors which saw GAN-generated images during training map GAN- and DM-generated
images to distinct representations (center columns). Moreover, detectors trained solely on GAN-
generated images lead to representations of real and DM-generated images which are not clearly
separated, which fits the reduced performance.
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Figure 10: t-SNE visualization of representations of real and generated images on LSUN Bed-
room for different detectors (pre-trained, fine-tuned and trained from scratch) in two dimen-
sions. The representations/features f(·) correspond to the representation prior to the last fully-
connected layer of the respective detection method and are of dimension 2048. For further informa-
tion on the detectors see Section 5.2 (fine-tuned) and Appendix B.2 (trained from scratch).

14We used the scikit-learn implementation of t-SNE with the default settings, details are given at https:
//scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Table 4: Effect of image perturbations on detection performance. We use the pre-trained detector
by Gragnaniello et al. (2021) trained on ProGAN images and compute metrics from 10k samples.

AUROC / Pd@5% / Pd@1% Clean Blur Crop JPEG Noise

ProGAN 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 99.2 / 95.8 / 82.5
StyleGAN 100.0 / 100.0 / 100.0 99.7 / 98.2 / 94.3 100.0 / 100.0 / 99.9 100.0 / 100.0 / 100.0 94.3 / 67.0 / 40.9
ProjectedGAN 100.0 / 99.9 / 99.3 99.2 / 96.3 / 87.6 99.9 / 99.7 / 98.0 100.0 / 100.0 / 99.6 96.6 / 79.9 / 52.8
Diff-StyleGAN2 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 96.7 / 79.5 / 56.3
Diff-ProjectedGAN 99.9 / 99.9 / 99.2 99.0 / 94.9 / 84.1 99.9 / 99.7 / 97.0 100.0 / 100.0 / 99.4 96.1 / 77.0 / 51.0

DDPM 96.5 / 79.4 / 39.1 78.5 / 23.7 / 8.1 95.5 / 73.2 / 35.2 96.0 / 76.1 / 37.3 85.1 / 34.0 / 11.2
IDDPM 94.3 / 64.8 / 25.7 75.3 / 18.5 / 5.5 93.5 / 62.0 / 24.6 93.5 / 60.7 / 23.4 80.9 / 25.0 / 7.0
ADM 77.8 / 20.7 / 5.2 66.0 / 10.1 / 3.0 78.3 / 21.4 / 5.5 76.8 / 18.7 / 4.4 64.8 / 8.6 / 1.7
PNDM 91.6 / 52.0 / 16.6 86.7 / 38.8 / 14.3 91.1 / 51.9 / 19.7 92.5 / 56.6 / 20.6 81.2 / 27.4 / 9.3
LDM 96.7 / 79.9 / 42.1 87.1 / 42.8 / 17.1 96.8 / 81.8 / 48.9 96.3 / 77.3 / 40.0 82.2 / 28.6 / 8.8

Table 5: Effect of image perturbations on detection performance. We use the detector by Wang
et al. (2020) fine-tuned on all DM-generated images and compute metrics from 10k samples.

AUROC / Pd@5% / Pd@1% Clean Blur Crop JPEG Noise

DDPM 100.0 / 100.0 / 100.0 100.0 / 100.0 / 99.9 100.0 / 100.0 / 99.9 100.0 / 100.0 / 99.7 69.8 / 22.7 / 11.3
IDDPM 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 100.0 / 100.0 / 99.7 70.2 / 22.5 / 11.1
ADM 100.0 / 100.0 / 99.7 99.9 / 99.9 / 99.0 100.0 / 100.0 / 99.5 99.6 / 98.2 / 90.8 70.3 / 23.2 / 10.8
PNDM 100.0 / 100.0 / 100.0 100.0 / 99.9 / 99.8 100.0 / 100.0 / 100.0 100.0 / 100.0 / 99.7 74.8 / 29.2 / 14.6
LDM 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 100.0 / 100.0 / 99.6 71.9 / 25.7 / 12.9

B.4 EFFECT OF IMAGE PERTURBATIONS

In most real-world scenarios, like uploading to social media, images are processed, which is why
several previous works consider common image perturbations when evaluating detectors (Wang
et al., 2020; Hulzebosch et al., 2020; Liu et al., 2020; Frank et al., 2020). We follow the pro-
tocol of Frank et al. (2020) and apply blurring using a Gaussian filter (kernel size sampled from
{3, 5, 7, 9}, cropping with subsequent upsampling (crop factor sampled from U(5, 20)), JPEG com-
pression (quality factor sampled from U(10, 75)), and Gaussian noising (variance sampled from
U(5, 20)). Unlike Frank et al. (2020), we apply each perturbation with a probability of 100% to
study its effect on the detection performance.

Table 4 shows the results for the best-performing detector by Gragnaniello et al. (2021) trained on
ProGAN images. Note that this detection method employs training augmentation using blurring
and JPEG compression. We copy the results on “clean” images from Table 2 as a reference. For
GAN-generated images, blurring, cropping, and compression have only a very small effect on the
detection performance, with the latter even improving the results. We attribute this to the fact that the
detector uses data augmentation during training. While cropping and compression cause an average
decrease in AUROC of 0.34% and 0.36%, respectively, blurring leads to a significant performance
degradation of 12.66%. The addition of noise deteriorates both GAN- and DM-generated images,
with AUROC decreasing by 3.4% and 12.54% on average, respectively. Overall, we observe that
perturbations have a stronger effect on DM-generated images compared to GAN-generated images.
An explanation could be that the pre-trained detector performs significantly worse on DM-generated
images, even without any perturbations. We repeat the experiment using the detector by Wang et al.
(2020) fine-tuned on images from all DMs (see Section 5.2). As the results in Table 5 show, the
effect of blurring, cropping, and JPEG compression is almost negligible. Adding noise, however,
causes a significant performance drop. This could to be related to the fact that the image generation
process of DMs involves noise. However, another potential explanation is that the detector is shown
blurred and compressed images during training but not those with added noise.

B.5 FAKENESS RATING

We evaluate whether DM-generated images exhibit some visual cues used by the detector to distin-
guish them from real images. Inspired by Wang et al. (2020), we rank all images by the model’s
predictions (higher value means “more fake”) and show examples from different percentiles. We
consider two detectors, the best-performing pre-trained detector from Gragnaniello et al. (2021)
trained on ProGAN (Table 11) and the detector from Wang et al. (2020) fine-tuned on all DM-
generated images (Table 12). Details on the fine-tuning process are given in Section 5.2. Using the
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(c) ADM
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(d) PNDM
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(e) LDM

Figure 11: “Fakeness” rating based of LSUN Bedroom on predictions from detector by Grag-
naniello et al. (2021) trained on ProGAN images. Images are ranked by the model’s output, i.e.,
images in the 100th percentile are considered most fake.

detector from Gragnaniello et al. (2021), we make the observation that for most DMs, images which
the model assigns a high “fakeness” score contain many pixels which are purely white or black. On
the other hand, images considered less fake appear to be more colorful. We were able to reproduce
this behavior for other datasets in Figure 13. However, this finding does not hold for the ranking
provided by the fine-tuned detector (see Figure 12), which should provide more accurate results as
its detection performance is significantly higher. Overall, we agree with Wang et al. (2020) that
there is no strong correlation between the model’s predictions and visual quality.
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0th Percentile 25th Percentile 50th Percentile 75th Percentile 100th Percentile

(a) DDPM
0th Percentile 25th Percentile 50th Percentile 75th Percentile 100th Percentile

(b) IDDPM
0th Percentile 25th Percentile 50th Percentile 75th Percentile 100th Percentile

(c) ADM
0th Percentile 25th Percentile 50th Percentile 75th Percentile 100th Percentile

(d) PNDM
0th Percentile 25th Percentile 50th Percentile 75th Percentile 100th Percentile

(e) LDM

Figure 12: “Fakeness” rating of LSUN Bedroom based on predictions from detector by Wang
et al. (2020) fine-tuned on images from all DMs. Images are ranked by the model’s output, i.e.,
images in the 100th percentile are considered most fake.
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0th Percentile 25th Percentile 50th Percentile 75th Percentile 100th Percentile

(a) LDM (FFHQ)
0th Percentile 25th Percentile 50th Percentile 75th Percentile 100th Percentile

(b) ADM’ (FFHQ)
0th Percentile 25th Percentile 50th Percentile 75th Percentile 100th Percentile

(c) ADM (ImageNet)
0th Percentile 25th Percentile 50th Percentile 75th Percentile 100th Percentile

(d) PNDM (LSUN Church)

Figure 13: “Fakeness” rating of DM-generated images based on predictions from detector by
Gragnaniello et al. (2021) trained on ProGAN images. Images are ranked by the model’s output,
i.e., images in the 100th percentile are considered most fake.
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C FREQUENCY ANALYSIS

C.1 FREQUENCY TRANSFORMS

Discrete Fourier Transform (DFT) The DFT maps a discrete signal to the frequency domain by
expressing it as a sum of periodic basis functions. Given a grayscale image I with height H and
width W , the two-dimensional DFT (with normalization term omitted) is defined as

IDFT[k, l] =

H−1∑

x=0

W−1∑

y=0

I[x, y] exp−2πi x·k
H exp−2πi y·l

W , (4)

with k = 0, . . . ,H − 1 and l = 0, . . . ,W − 1. For visualization, the zero-frequency component
is shifted to the center of the spectrum. Therefore, coefficients towards the edges of the spectrum
correspond to higher frequencies.

Discrete Cosine Transform (DCT) The DCT is closely related to the DFT, however it uses real-
valued cosine functions as basis functions. It is used in the JPEG compression standard due to its
high degree of energy compaction (Wallace, 1991), which ensures that a large portion of a signal’s
energy can be represented using only a few DCT coefficients. The type-II DCT, which the term
DCT usually refers to, is given as

IDCT[k, l] =

H−1∑

x=0

W−1∑

y=0

I[x, y] cos
[
π

H

(
x+

1

2

)
kx

]
cos

[
π

W

(
y +

1

2

)
ky

]
, (5)

again omitting the normalization factor. In the resulting spectrum, the low frequencies are located
in the upper left corner, with frequencies increasing along both spatial dimensions.

Reduced Spectrum While the DFT provides a useful visual representation of an image’s spec-
trum, it is less suitable for comparing different spectra quantitatively. Therefore, previous works
use the reduced spectrum15, a one-dimensional representation of the Fourier spectrum (Durall et al.,
2020; Dzanic et al., 2020; Schwarz et al., 2021; Chandrasegaran et al., 2021). It is obtained by
azimuthally averaging over the spectrum in normalized polar coordinates r ∈ [0, 1], θ ∈ [0, 2π)
according to

S̃(r) =
1

2π

∫ 2π

0

S(r, θ)dθ with r =

√
k2 + l2

1
4 (H

2 +W 2)
and θ = atan2(k, l), (6)

with S[k, l] = |IDFT [k, l]|2 being the squared magnitudes of the Fourier coefficients. The maximum
frequency is given by the Nyquist frequency fnyq =

√
k2 + l2 = H/

√
2 for a square image with

H =W .

C.2 DCT SPECTRA

Figure 14 depicts the DCT spectra of both GANs and DMs. Similar to DFT, images generated by
DMs exhibit fewer artifacts, with the exception of LDM.

C.3 SPECTRUM EVOLUTION DURING THE DENOISING PROCESS

Analogous to Figure 4, we show the spectrum error evolution during the denoising process in Fig-
ure 15. Here, however, the error is computed relative to the spectrum of noised images at the
corresponding step during the diffusion process. Similar to the denoising process, the spectra of
the diffusion process are averaged over 512 samples. While the relative error is close to zero for a
long time during the denoising process, the model fails to accurately reproduce higher frequencies
towards t = 0. More precisely, too much high-frequency components are removed, which explains
why the sweet spot does not seem to be at t = 0 but around t = 10 (see Figure 4).

15The definition of the reduced spectrum slightly differs between different existing works, we decide to
follow that of Schwarz et al. (2021).
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One could think that, by stopping the denoising process early, DM-generated images might be harder
to detect. To test this hypothesis, we perform a logistic regression at every 0 ≤ t ≤ 100 to distinguish
real from increasingly denoised generated images. The model is trained using 512 real and 512
generated samples, from which 20% are used for testing. We select the optimal regularization weight
by performing a 5-fold cross-validation over

{
10k | k ∈ {−4,−3, . . . , 4}

}
. Similar to Section 6.2,

we compare the performance on pixels and different transforms. The results in Figure 16 do not
indicate that around t = 10 fake images are less detectable. In Figure 17 it becomes apparent that at
this t the images are noticeably noisier, which probably explains the increased accuracy.
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Figure 14: Mean of DCT spectrum from real and generated images. To increase visibility, the
color bar is limited to [10−6, 100], with values lying outside this interval being clipped.
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Figure 15: Evolution of spectral density error throughout the denoising process. The error is
computed relatively to the corresponding step in the diffusion process. The colorbar is clipped at -1
and 1. If the model was able to perfectly denoise, the difference would be 0 at all t.
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Figure 16: Accuracy of logistic regression during the denoising process. Note that only the last
100 steps of the denoising process are depicted.
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C.4 EFFECT OF NUMBER OF SAMPLING STEPS

We repeat the logistic regression experiment from the previous section for samples generated with
different numbers of timesteps, the results are shown in Figure 18. We also provide example images
in Figure 19. As expected, images become harder to detect with more sampling steps and therefore
higher image quality. For DDIM, the accuracy decreases more quickly, which is likely because it
was found to generate images of higher quality with fewer sampling steps (Song et al., 2022a).

t=0 t=2 t=4 t=6 t=8 t=10

Figure 17: Example images generated by ADM at different t. When zoomed in, the high-
frequency noise towards higher t becomes apparent.
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Figure 18: Accuracy of logistic regression for different numbers of sampling steps. Note that
the y-axis is not scaled linearly.
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(a) Without DDIM
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(b) With DDIM

Figure 19: Example images generated by ADM with different numbers of sampling steps.

C.5 POTENTIAL SOURCE OF THE SPECTRUM DISCREPANCIES

Our analysis in the frequency domain (see Figures 3 and 23) suggests that current state-of-the-art
DMs do not match the high-frequency content well. To further analyze these findings, we build on
insights from the denoising autoencoder (DAE) literature. Roughly speaking, the task DAEs face is
conceptually similar to the task of the noise predictor ϵθ in DMs at a single time step: denoising a
disturbed input at a fixed noise level. Note that while we believe that DMs and DAEs can be concep-
tually related, the concepts are distinct in several ways: DMs use parameter sharing to perform noise
prediction at multiple noise levels to set up the generation as an iterative process. On the other hand,
DAEs make use of a latent space to learn suitable representations for reconstruction, classically at
a fixed noise level. Nevertheless, we are convinced that it may be useful to take these insights into
account.

A handy observation from DAEs relates the level of corruption to the learned feature scales: Denois-
ing an image at small noise levels requires to accurately model fine granular details of the image,
while coarse/large-scale features can still be recovered at high noise levels (see e.g., Vincent et al.
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(2010); Geras & Sutton (2015; 2016)). Transferring this insight to DMs, we observe that the training
objective guides the reconstruction performance across the different noise levels.

Recall that the objective of many prominent DMs can be stated as a weighted sum of mean squared
error terms

L(θ) =

T∑

t=0

w(t)Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥2] (7)

usually with T = 1000. The theoretically derived variational lower bound Lvlb (in the case of
Σ(t) = σ2

t I) corresponds to the weighting scheme

w(t) =
β2
t

2σ2
tαt(1− ᾱt)

(8)

with αt and ᾱt derived from the noise schedule βt (see Section 3). However, Lvlb turns out to be
extremely difficult to optimize in practice (see e.g., Dhariwal & Nichol (2021)), arguably due to
large influence of the challenging denoising tasks near t = 0. To circumvent this issue, Lsimple was
proposed by Ho et al. (2020) which corresponds to w(t) = 1, and turned out to be stable to optimize
and already leads to remarkable perceptual quality. In order to achieve both, perceptual image
quality and high likelihood values, Nichol & Dhariwal (2021) proposed Lhybrid = Lsimple + λLvlb

with λ = 0.001 which increases the influence of low noise levels. The relative importance of
reconstruction at different noise levels for the above discussed objectives is depicted in Figure 20.
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Figure 20: Relative importance of the reconstruction tasks for prominent DMs. We show the
relative influence w̃(t) = w(t)/

∑T
t=0 w(t) for (a) the whole denoising-diffusion process and (b)

a close-up on the lowest noise levels. For Lvlb we depict both, lower and upper bound for the
denoising variance σ2

t (given as σ2
t = βt and σ2

t = β̃t as defined in Ho et al. (2020)). In the case
of Lhybrid, used by IDDPM and ADM, we use σ2

t I for visualization purposes instead of a diagonal
covariance matrix and plot w̃(t) for the range of admissible variances σ2

t . All plots assume the linear
noise schedule βt by Ho et al. (2020).

To put the above discussion in a nutshell, we hypothesize that the ability of a DM to match the real
frequency spectrum is governed by the reconstruction performance at the corresponding noise levels.
Importantly, successful error prediction at low noise scales, i.e., near t = 0, requires to capture the
high-frequency content of an image. We deduce that the relative down-weighting of the influence of
low noise levels when using Lsimple or Lhybrid (compared to the theoretically derived Lvlb which
would account for high likelihoods) results in the observed mismatch of high frequencies.

The mean reduced spectra of various DMs (Figure 3) support this hypothesis: Both Nichol & Dhari-
wal (2021) and Dhariwal & Nichol (2021) train their model with Lhybrid (which incorporates a
relatively higher weight on low noise levels), and are able to reduce the gap to the real spectrum
when compared to the baseline trained with Lsimple (Ho et al., 2020). Clearly, we believe that not
only the weighting scheme w(t) accounts for the resulting spectral properties, but more importantly
the model’s capabilities to successfully predict the low level noise in the first place. Nevertheless,
the weighting scheme acts as a proxy that encourages the model to focus on specific noise levels.

We conclude that the objectives of DMs are well designed to guide the model to high perceptual
quality (or benchmark metrics such as FID), while falling short on providing sufficient information
to accurately model the high frequency content of the target images, which would be better captured
by a likelihood-based objective like Lvlb.
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D RESULTS ON ADDITIONAL DATASETS

To demonstrate the generalization of our findings, we perform classification and frequency analysis
on additional data from ADM, PNDM, and LDM. Note that ADM-G-U refers to the two-stage up-
sampling stack in which images are generated at a resolution of 64x64 and subsequently up-sampled
to 256×256 pixels using a second model (Dhariwal & Nichol, 2021). The generated images are
obtained according to the instructions given in Section A. Due to the relevance of facial images in
the context of deepfakes, we also include two DMs not yet considered, P2 and ADM’(Choi et al.,
2022), trained on FFHQ (Karras et al., 2019). ADM’ is a smaller version of ADM with 93M instead
of more than 500M parameters.16 P2 is similar to ADM’ but features a modified weighting scheme
which improves performance by assigning higher weights to diffusion steps where perceptually rich
contents are learned (Choi et al., 2022). We download checkpoints for both models from the official
repository and sample images according to the authors’ instructions.

Real images from LSUN (Yu et al., 2016), ImageNet (Russakovsky et al., 2015), and FFHQ (Karras
et al., 2019) are downloaded from their official sources. Images from LSUN Cat/Horse, FFHQ, and
ImageNet are resized and cropped to 256×256 pixels by applying the same pre-processing that was
used when preparing the training data for the model they are compared against. All analyses are
performed using 10k real and 10k generated images.

For results on other GANs, we refer to the original publications of the detectors (Wang et al., 2020;
Gragnaniello et al., 2021; Mandelli et al., 2022a).

D.1 PERFORMANCE OF UNIVERSAL DETECTORS

Similar to Table 2, we report AUROC, Pd@5%, and Pd@1% for the additional datasets in Ta-
ble 6. Overall, the results do not invalidate the claim that universal GAN-detectors are incapable of
effectively detecting images generated by DMs. Both PNDM and LDM trained on LSUN Church,
however, are detected significantly better by all classifiers except Mandelli et al. (2022a). This might
be caused by the relatively high FID (compared to the state of the art) both models achieve on this
dataset (8.69 for PNDM, 4.02 for LDM).

Table 6: Detection performance of pre-trained universal detectors on additional datasets. For
Wang et al. (2020) and Gragnaniello et al. (2021) we consider two different variants, respectively.
The best score (determined by the highest Pd@1%) for each generator is highlighted in bold.

.

AUROC / Pd@5% / Pd@1%
Wang et al. (2020) Gragnaniello et al. (2021) Mandelli et al. (2022a)

Blur+JPEG (0.5) Blur+JPEG (0.1) ProGAN StyleGAN2

ADM (LSUN Cat) 58.4 / 8.4 / 2.5 58.1 / 8.5 / 3.3 60.2 / 9.3 / 4.2 51.7 / 5.5 / 1.8 55.6 / 6.0 / 1.3
ADM (LSUN Horse) 55.5 / 6.7 / 1.5 53.4 / 6.0 / 2.2 56.1 / 7.5 / 2.7 50.2 / 4.8 / 1.4 44.2 / 2.4 / 0.5
ADM (ImageNet) 69.1 / 13.9 / 4.1 71.7 / 15.5 / 4.5 72.1 / 13.2 / 3.5 83.9 / 38.5 / 16.6 60.1 / 6.8 / 0.9
ADM-G-U (ImageNet) 67.2 / 11.7 / 3.7 62.3 / 6.2 / 1.2 66.8 / 6.0 / 1.6 78.9 / 26.7 / 10.2 60.0 / 7.6 / 1.0
PNDM (LSUN Church) 76.9 / 25.7 / 10.2 77.6 / 28.4 / 12.0 90.9 / 54.1 / 24.5 99.3 / 96.5 / 85.8 56.4 / 6.9 / 1.9
LDM (LSUN Church) 86.3 / 42.1 / 19.8 82.2 / 33.9 / 14.2 98.8 / 93.7 / 75.5 99.5 / 98.2 / 90.2 58.9 / 5.8 / 1.3
LDM (FFHQ) 69.4 / 14.2 / 3.6 71.0 / 14.8 / 3.6 91.1 / 54.2 / 25.4 67.2 / 10.2 / 2.1 63.0 / 5.6 / 0.6
ADM’ (FFHQ) 77.7 / 24.7 / 8.7 81.4 / 28.2 / 8.8 87.7 / 41.9 / 17.8 89.0 / 45.5 / 17.2 69.8 / 11.1 / 2.0
P2 (FFHQ) 79.5 / 26.4 / 8.9 83.2 / 30.1 / 9.2 89.2 / 40.5 / 11.5 91.1 / 51.9 / 18.9 72.5 / 13.6 / 2.7

D.2 FREQUENCY ANALYSIS

We analyze the DFT (Figure 21), DCT (Figure 22), and reduced spectra (Figure 23) using a similar
process as in Section 6.1. Regarding frequency artifacts, the results are consistent with that from
LSUN Bedroom, LDM exhibits grid-like artifacts while ADM and PNDM do not. The spectra
of ADM on LSUN Cat and LSUN Horse do contain irregular, vertical structures, which we did
not observe for any other model and dataset. However, these are substantially different and not as
pronounced as GAN artifacts. The DFT and DCT of (real and generated) FFHQ images clearly
deviate from the remaining spectra, which we attribute to the homogeneity of the dataset. Note that
LDM and ADM’/P2 were trained on differently processed versions of the real images, which is why
we include the spectra of both variants. While we observe the known artifacts for LDM, ADM’ and
P2 do not contain such patterns.

16https://github.com/jychoi118/P2-weighting#training-your-models
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The reduced spectra have largely the same characteristics as for LSUN Bedroom, with the exception
of ImageNet. Here we observe an overestimation towards higher frequencies, which is the opposite
of what we see for ADM on other datasets. A possible explanation could be that the authors sampled
images from LSUN using 1000 and from ImageNet using only 250 steps. We suppose that the
number of spectral discrepancies is highly training dependent.
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Figure 21: Mean of DFT spectrum from real and generated images from additional datasets.
To increase visibility, the color bar is limited to [10−5, 10−1], with values lying outside this interval
being clipped.
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Figure 22: Mean of DCT spectrum from real and generated images from additional datasets.
To increase visibility, the color bar is limited to [10−6, 100], with values lying outside this interval
being clipped.

30



Under review as a conference paper at ICLR 2023

0 0.5 1.0
f/ fnyq

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Sp
ec

tr
al

D
en

si
ty

10−4

10−3

Real ADM

(a) LSUN Cat

0 0.5 1.0
f/ fnyq

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Sp
ec

tr
al

D
en

si
ty

10−4

10−3

Real ADM

(b) LSUN Horse

0 0.5 1.0
f/ fnyq

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Sp
ec

tr
al

D
en

si
ty

10−4

10−3

Real ADM ADM-G-U

(c) ImageNet

0 0.5 1.0
f/ fnyq

10−5

10−4

10−3

10−2

10−1

100

101

102

103
Sp

ec
tr

al
D

en
si

ty

10−4

10−3

Real PNDM LDM

(d) LSUN Church

0 0.5 1.0
f/ fnyq

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Sp
ec

tr
al

D
en

si
ty

10−4

10−3

Real*
LDM

Real**
ADM’

P2

(e) FFHQ (*: pre-processing according to Rombach et al. (2022), **: pre-processing according to Choi et al.
(2022))

Figure 23: Mean reduced spectrum from real and generated images from additional datasets.
The higher end of the spectrum where GAN-characteristic discrepancies occur is magnified.
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