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Abstract

Large language models (LLMs) can be used to001
generate natural language explanations (NLE)002
that are adapted to different users’ situations.003
However, there is yet to be a quantitative eval-004
uation of the extent of such adaptation. To005
bridge this gap, we collect a benchmarking006
dataset, SITUATION-BASED EXPLANATION.007
This dataset contains 100 explanandums. Each008
explanandum is paired with explanations tar-009
geted at three distinct audience types-such as010
educators, students, and professionals-enabling011
us to assess how well the explanations meet the012
specific informational needs and contexts of013
these diverse groups e.g. students, teachers, and014
parents. For each “explanandum paired with015
an audience” situation, we include a human-016
written explanation. These allow us to compute017
scores that quantify how the LLMs adapt the ex-018
planations to the situations. On an array of pre-019
trained language models with varying sizes, we020
examine three categories of prompting meth-021
ods: rule-based prompting, meta-prompting,022
and in-context learning prompting. We find that023
1) language models can generate prompts that024
result in explanations more precisely aligned025
with the target situations, 2) explicitly model-026
ing an "assistant" persona by prompting "You027
are a helpful assistant..." is not a necessary028
prompt technique for situated NLE tasks, and029
3) the in-context learning prompts only can030
help LLMs learn the demonstration template031
but can’t improve their inference performance.032
SBE and our analysis facilitate future research033
towards generating situated natural language034
explanations.035

1 Introduction036

Recently, LLMs have shown promising abilities to037

reason about complex phenomena and explain them038

in fluent natural languages. The produced natural039

language explanations (NLEs)1 can be highly accu-040

1NLE is also termed “free-text rationales” in literature:
DeYoung et al. (2020); Joshi et al. (2023); Chen et al. (2023),
inter alla. We consider the two terms synonymous.

Figure 1: Different audiences need different explana-
tions.

rate (Narang et al., 2020), informative (Wiegreffe 041

et al., 2022), plausible (Chan et al., 2022; Maraso- 042

vic et al., 2022) and reasonably faithful (Lyu et al., 043

2023). These desirable properties lead to wide 044

potential applications that use LLMs as building 045

blocks for explainer tools. 046

The explainer tools are closely relevant to the 047

users, which make some properties particularly de- 048

sirable, for example, helpful for answering unseen 049

instances (Joshi et al., 2023) and for fact-checking 050

(Si et al., 2024). In this paper, we are particularly 051

interested in situatedness: the explanations of the 052

same phenomena can and should be tailored to 053

the audience. This principle is well-established in 054

the literature of psychology, education, and com- 055

munication (e.g., the Cognitive Load Theory (van 056

Merriënboer and Sweller, 2005)), and is prevalent 057

in writing guides (Purdue; Stephen et al., 2022; 058

Cutts, 2020), even in government’s writing guide- 059

lines (Administration, 2011). 060

Recent work by Zhu et al.’s (2023) explored 061

using pretrained language models for generating 062
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Explanandum Audiences Desired Features Explanations

Educational
technology

can be meaningful

Students
Interested in engaging learning tools
tailored to individual preferences

Educational technology can provide
a personalized and enjoyable learning experience
through interactive resources...

Teachers
Interested in improving efficiency,
streamlining teaching tasks

Educational technology can empower
teachers to automate tasks...

Parents
Interested in seeking for
engaging resources
helping their children with studying

Educational technology can provide
resources that parents can use to
help their children study...

Table 1: An example of a scenario in SBE.

situated NLEs, which are explanations adapted to063

the situations of different users. However, their064

work only involves rule-based adaptation methods,065

and lacks a quantitative evaluation of the extent of066

such adaptation.067

In this paper, we aim to bridge both gaps. We068

introduce a novel benchmarking dataset called069

SITUATION-BASED EXPLANATION (SBE for070

short). This dataset contains 100 explananda (con-071

cepts or phenomena to be explained), each paired072

with three potential audiences. For each unique073

combination of explanandum and audience, we074

provide a human-written explanation, allowing075

us to compute similarity scores and a matching076

score that quantify how well the language mod-077

els adapt the explanations to the target situations.078

Using SBE, we systematically evaluate the per-079

formance of various pretrained language models080

across three categories of prompting methods: rule-081

based prompting, meta-prompting, and in-context082

learning prompting. Through this analysis, we083

uncover the strengths and limitations of different084

prompting techniques in generating situated NLEs.085

Our key contributions are:086

1. We provide SBE, a dataset facilitating system-087

atic study of the situated adaptation effects of088

NLE.089

2. We quantify the effects of several prompting090

techniques for generating situated explana-091

tions with LLMs.092

By introducing SBE and rigorously evaluating093

the performance of various LLMs and prompting094

methods, this work paves the way for future re-095

search towards more effective and situationally ap-096

propriate natural language explanations.097

2 Related Work098

Natural language explanation Natural language099

explanations (NLEs) have been widely studied100

for various high-level reasoning tasks, such as 101

inference (Camburu et al., 2020), commonsense 102

multiple-choice questions (Rajani et al., 2019), 103

question-answering (Aggarwal et al., 2021), and 104

product recommendations (Li et al., 2020). Wiegr- 105

effe and Marasovic (2021) provided a comprehen- 106

sive review of datasets for NLEs, highlighting desir- 107

able properties of NLEs including simplicity (Lom- 108

brozo, 2007), clarity, and informativeness (Clinciu 109

et al., 2021). We consider a different property: the 110

extent of adaptation to the situational contexts of 111

the explanations’ readers. 112

Human-centered explanation Despite the nu- 113

merous methods proposed to make AI more ex- 114

plainable, most focus on mechanistic approaches, 115

whose utilities are subject to increasing concerns 116

that these methods fail to consider the cognitive 117

and contextual needs of users. Multiple researchers 118

have called for greater consideration of human fac- 119

tors when explaining AI (Liao et al., 2022; Boyd- 120

Graber et al., 2022; Yeung et al., 2020; Miller, 121

2019; Ehsan et al., 2024; Goyal et al., 2023). Build- 122

ing upon this line of research, we develop NLE 123

methods that are technically accurate and effec- 124

tively communicate with and meet the needs of 125

human users. Explainable recommendation is also 126

a related research direction, where the personifi- 127

cation of explanation would be beneficial for rec- 128

ommendation systems (Geng et al., 2022a,b). We 129

consider a wide range of scenarios, and our findings 130

can be applied to explainable recommendations. 131

Cultural and societal knowledge This paper is 132

related to the works about the pragmatics of LM- 133

based communication tools. Yerukola et al. (2024) 134

considered the abilities to infer the speakers’ in- 135

tents. Rao et al. (2024) considered the cultural 136

adaptabilities of LLMs. Liu et al. (2024) found 137

that LLMs are less steerable when personified to 138

stances associated with apparently incongruous 139

traits. We focus on daily-life scenarios without the 140
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cross-cultural differences. Our work is also closely141

related to researches that assess the societal intelli-142

gence of LLM-based language generation systems,143

including Wang et al. (2024) which simulated soci-144

etal interactions between LLM-based agents. We145

focus on the situated adaptation of NLE.146

3 Data147

We identify 100 real-world scenarios across a broad148

spectrum of topics. Figure 2 illustrates the distribu-149

tion of categories in SBE. The categories include:150

• Lifestyle: Arts & culture, diaries & daily life,151

fashion & style, fitness & health, food & din-152

ing, other hobbies, sports, travel & adventure,153

youth & student life.154

• Business & Tech: Business & entrepreneurs,155

science & technology.156

• Entertainment: Celebrity & pop culture,157

film, TV & video, gaming, music.158

• Education: Learning & educational.159

• News & Social Concern: News & social con-160

cern.161

For each scenario, we pinpoint a central concept162

to be explained (explanandum) and crafted three163

distinct situations, each representing a potential164

audience with unique perspectives and concerns165

(desired feature). These audiences include food-166

ies interested in exploring new and unique dishes,167

students navigating mental health challenges, and168

social media influencers looking to enhance their169

content engagement strategies.170

To ensure the validity of our benchmarks, we171

systematically develop a set of explanations for172

each scenario. To reflect the diverse needs and173

backgrounds of the specified audiences, explana-174

tions are manually written by our research team.175

We ensure that each explanation not only addresses176

the central concept but also resonates with the spe-177

cific interests and concerns of the audience. This178

approach provides us with a rich dataset of explana-179

tions that are both contextually relevant and varied180

across different domains. Utilizing these carefully181

crafted explanations as a benchmark, we evaluate182

the performance of LLMs in generating situated183

NLEs.184

Figure 2: The distribution of categories in SBE.

4 Methods 185

4.1 Rule-based prompting methods 186

Base prompt 187

Base: {explanandum} because 188

Specify the audience or the desired feature 189

Whereas previous work often limited prompting 190

modifications to either audience or context-specific 191

features, our approach combines both. This dual 192

focus enables a more precise tailoring of explana- 193

tions to the audience’s needs and the contextual 194

nuances of the explanandum: 195

Audience Specification (1A): Following is an
explanation towards {audience}. {explanan-
dum} because
Desired Feature Specification (1D): Follow-
ing is an explanation about {desired feature}.
{explanandum} because
Audience and Feature Specification (1AD):
Following is an explanation towards {audi-
ence}, about {desired feature}. {explanan-
dum} because

196

This innovation, denoted as 1AD, represents an 197

extension beyond traditional single-focus prompts, 198

aiming to enhance the relevance and clarity of the 199

generated explanations. 200

Adopt a persona 201

Do not simulate (2F): Following is an expla-
nation towards {audience}. {explanandum}
because
Simulate the model as a helpful assistant
(2T): You are a helpful assistant explaining to
{audience}. {explanandum} because

202

Elicit the NLE with complete sentences 203
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Just use “because” (3F): Following is an
explanation towards {audience}. {explanan-
dum} because
Use a complete sentence (3T): Following
is an explanation towards {audience}: {ex-
planandum}.

204

By combining these three techniques, we con-205

struct a set of 12 distinct prompts (from 1A2F3F to206

1D2T3T to 1AD2T3T).207

To further enhance the adaptability and effec-208

tiveness of our prompting techniques, we introduce209

a set of new templates that have been empirically210

tested to optimize the models’ performance. These211

templates are designed to integrate seamlessly with212

the refined prompting strategies, ensuring that each213

prompt not only cues the model for content gener-214

ation but also aligns closely with requirements of215

the situated NLE task.216

4.2 Meta prompt217

To harness the capabilities of LLMs in generat-218

ing contextually appropriate prompts, we employ219

a structured approach. This involves framing the220

prompt to explicitly include the intended audience221

and the specific features of interest, directing the222

model to tailor its response accordingly. Here is223

the format we propose for such prompts:224

You are a helpful assistant helping me write a
prompt. I want to write a prompt to generate
an explanation about why {explanandum} to
{audience}, about {desired feature}. Give me
the prompt directly.

225

In our experiment, we tested prompts generated226

by GPT-3.5 on other models. Additionally, we227

evaluated each model’s ability to generate its own228

prompts and then respond to them. This dual ap-229

proach allowed us to not only assess the transfer-230

ability of prompts across different models but also231

evaluate each model’s capacity for self-driven con-232

textual understanding and prompt formulation.233

4.3 In-context Learning Prompt234

In-context learning prompts serve as a power-235

ful tool to enhance a model’s ability to generate236

context-specific explanations. The suggested for-237

mat for in-context learning prompts for audience1238

in one situation is:239

Q: Following is an explanation towards {audi-
ence2}, about {desired feature2}. {explanan-
dum} because
A: {explanation2}
Q: Following is an explanation towards {audi-
ence3}, about {desired feature3}. {explanan-
dum} because
A: {explanation3}
Q: Following is an explanation towards {audi-
ence1}, about {desired feature1}. {explanan-
dum} because
A:

240

The rationale for choosing the "1AD2F3F" tem- 241

plate over others for the in-context learning prompt 242

was guided by specific performance metrics ob- 243

served in our initial testing phase. Specifically, 244

the "1AD2F3F" template showed superior perfor- 245

mance in terms of similarity scores and matching 246

score when compared to other templates. The de- 247

cision to focus on a single template, rather than 248

attempting to replicate all possible templates in 249

our demonstration setting, was based on practical 250

constraints and the desire to optimize the demon- 251

stration’s relevance and efficiency. 252

Overall, we collect 16 prompts and evaluate per- 253

formance of several LLMs on a situated NLE task 254

by each prompt. 255

5 Experiment setup 256

5.1 LLM explainers 257

We use 5 LLMs, including GPT-3.5-turbo (Ouyang 258

et al., 2022), Pythia-2.8B (Biderman et al., 2023), 259

LLaMa2-7B, LLaMa2-13B-chat (Touvron et al., 260

2023), and Yi-34B (AI et al., 2024), to generate 261

situated NLEs. 262

5.2 Evaluation 263

In our experiments, we focus on two key metrics: 264

similarity score and matching score. The similarity 265

score measures the semantic similarity between the 266

generated explanation and the desired explanation 267

for a given situation. Matching score evaluates the 268

overall suitability of the generated explanation to 269

the given situation. 270

Similarity score To measure the similarity be- 271

tween two sentences, we employ a sentence embed- 272

ding model, Sentence-BERT (SBERT) (Reimers 273

and Gurevych, 2019a). Specifically, we use 274

the all-MiniLM-L6-v2 model from the sentence- 275

transformers library (Reimers and Gurevych, 276
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2019b). The similarity between the two sentences277

is then computed as the cosine similarity between278

their embeddings. The score ranges from −1 to279

1, with higher values indicating greater semantic280

similarity between sentences.281

A higher similarity score indicates an LLM-282

generated explanation is more approximate to the283

human-annotated explanation in SBE. However,284

how ought one evaluate whether an LLM-generated285

explanation is suitable for the audience in the situa-286

tion?287

Matching Score Within our evaluative frame-288

work, we adopt a scoring methodology predicated289

on the cross-entropy loss function to quantify the290

congruence between explanations generated by the291

LLM and the target explanations. The formula292 ∑N
c=1 yc log(pc) delineates the computation of loss293

for a multi-class classification task, where N sig-294

nifies the number of classes. Herein, the loss ag-295

gregates the weighted negative logarithms of the296

predicted probabilities pc across classes c, with the297

weighting provided by the actual class indicators298

yc.299

For the purpose of our experiment, we desig-300

nate N = 3 to align with the triad of situational301

contexts within a singular scenario. Let c denote302

the situational index, and j represent the index for303

LLM-generated explanations. As we have 3 ex-304

planations generated by LLMs, j ∈ [1, 3]. Cor-305

responding to each situation c, we associate the306

expert-annotated explanation hc, and for each LLM307

response j, the model-generated explanation ej .308

We calculate the similarity between hc and ej via309

the metric sim(hc, ej), with higher metric values310

indicating increased similarity. These similarity311

metrics are treated as unnormalized log probabili-312

ties (logits), to which we apply a softmax transfor-313

mation for the derivation of probability values:314

pcj =
exp(sim(hc, ej))∑3
c=1 exp(sim(hc, ek))

Subsequently, we impose the cross-entropy loss315

on the probabilities pcj to yield the matching score:316

Matchingj = −
3∑

c=1

yc log(pcj)

In this context, yc is assigned a value of 1 when317

the expert-annotated explanation hc corresponds318

with the LLM-generated explanation ej (i.e., when319

c = j), signifying a perfect match. In contrast, yc320

assumes a value of 0 for non-matching explana- 321

tions. With cross-entropy loss and our 3-situation- 322

designed dataset, Matchingj in the equation quan- 323

titatively evaluate whether the LLM-generated ex- 324

planation matches to the situation. Moreover, the 325

cross-entropy loss Matchingj is minimized when 326

the LLM-generated explanation matches the sit- 327

uation. Compared with the similarity score, the 328

matching score enables a quantitative assessment 329

of the LLM’s explanation adequacy. 330

Ultimately, the similarity score evaluates the de- 331

gree to which explanations generated by the LLM 332

align with human-annotated references, while the 333

matching score quantifies the appropriateness of 334

these explanations in their specific situational con- 335

texts. 336

6 Results 337

Our results demonstrate several key findings regard- 338

ing the efficacy of different prompting techniques 339

in generating situated NLEs. Specific results are 340

provided in the appendix; Figure 5, 6. 341

6.1 How do prompt techniques matter? 342

Figure 3 shows the performance of each prompt 343

techniques. Similarity score and matching score 344

of 1A in the figure is the average score of expla- 345

nations generated by prompt 1A2F3F, 1A2T3F, 346

1A2F3T, 1A2T3T and 7 LLMs(GPT-4-turbo, 347

Gemini-pro, GPT-3.5-turbo, Pythia-2.8B, LLaMa2- 348

7B, LLaMa2-13B-chat, and Yi-34B). 349

Specify the audience or the desired feature 350

Specifying both the audience and the desired fea- 351

ture(1AD) can lead LLMs to generate more suitable 352

explanations comparing with only specify the audi- 353

ence(1A) or only specify the desired feature(1D). 354

The technique specifying both audience and desired 355

feature (1AD) yielded the best results, with an aver- 356

age similarity score of 0.634 and a matching score 357

of 1.021, indicating that providing comprehen- 358

sive contextual information significantly enhances 359

model performance. Comparatively, specifying ei- 360

ther the desire feature (1D) performs slightly better 361

than specifying the desired feature (1A)(average 362

similarity scores of 0.602 and 0.599, respectively, 363

and matching scores of 1.040 and 1.046). This sug- 364

gests that while each element alone provides some 365

contextual grounding, their combination is more 366

potent in guiding the model to generate relevant 367

and precise explanations. Thus, we recommend to 368
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Figure 3: Average similarity and matching scores for all prompt techniques. ’M-GPT’ refers to the use of GPT-3.5-
turbo to generate prompts for situated NLE. ’Meta’ refers to using the response model itself to generate prompts and
respond to those. Note: A decrease in the matching score correlates with an enhancement in model performance on
situated NLE tasks.

specify both the audience and the desired feature369

for a situated explanation.370

Adopt a persona The results show that the do not371

simulate the model as a helpful assistant (2F) ap-372

proach yields a higher similarity score (0.635) com-373

pared to simulating the model as a helpful assistant374

(2T) (0.590), indicating that explanations generated375

without the persona are closer to human-annotated376

explanations. However, the matching score for377

2T (1.034) is slightly better than for 2F (1.038),378

suggesting a marginally better alignment with the379

situational context when a persona is adopted. De-380

spite this, the performance difference in matching381

scores is minimal, indicating that adding "You are382

a helpful assistant" to prompts for situated NLE383

tasks does not significantly aid the model’s infer-384

encing capability. Therefore, employing a persona385

in prompts is optional and may not be necessary386

for effective situated NLE generation.387

Elicit the NLE with complete sentences The388

results highlight that use because (3F) method389

achieves a superior similarity score (0.6361) com-390

pared to use a complete sentence (3T) (0.5880),391

demonstrating that incorporating "because" in392

prompts helps the language model generate expla-393

nations that are significantly closer to those in SBE.394

Although 3T achieves a marginally better matching395

score (1.0289) than 3F (1.0427), this improvement396

is not substantial. Given the clearer advantage in397

similarity scores with 3F, we recommend using "be-398

cause" in prompts for situated NLE tasks to more399

effectively align the generated explanations with400

the human-annotated standards.401

Meta prompt In our exploration of meta 402

prompts, we observed that these did not perform as 403

well as those generated through the 1AD method. 404

A notable issue with meta prompts is their tendency 405

to include additional, often unnecessary specifica- 406

tions that may not align with the situational needs. 407

For example, meta prompts including “Discuss the 408

potential consequences of this problem and the im- 409

portance of addressing it” introduce requirements 410

that might not be relevant for the user. While main- 411

taining fairness in our experimental evaluations, 412

such specifics included in meta prompts led to their 413

underperformance. This suggests that despite the 414

innovative approach of using meta prompts, the 415

traditional 1AD method remains more effective for 416

generating situated natural language explanations 417

aligned with the specific user contexts. 418

In-context learning prompt The performance 419

of in-context learning prompts with regard to simi- 420

larity scores is exemplary, demonstrating a state-of- 421

the-art capability to replicate human-annotated ex- 422

planations. Nonetheless, the performance in match- 423

ing scores suggests that these prompts may not 424

effectively aid the model in comprehending the sit- 425

uational context. This indicates a potential area 426

for further refinement to enhance the model’s situa- 427

tional awareness and its ability to generate contex- 428

tually appropriate responses. 429

6.2 How do different LLMs perform? 430

As Figure 4 shows, the performance varies by 431

LLM. 432

Why are GPT-4 and Gemini-Pro worse than 433

GPT-3.5? Why are GPT-4 and Gemini-Pro con- 434
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Figure 4: Average similarity and matching scores for all LLMs: ’P-2.8’ represents Pythia-2.8B, ’L-7’ stands for
LLaMa-7B, ’L-13’ is LLaMa-13B, and ’Y-34’ indicates Yi-34B. Note: A decrease in the matching score correlates
with an enhancement in model performance on situated NLE tasks.

Similarity Matching
Avg. 0.625 1.042
ICL 0.766 1.031

Table 2: Performance of the in-context learning prompt
technique compared with the average performance on
all prompt techniques.

sidered worse than GPT-3.5 in our evaluation? The435

explanations generated by GPT-4 and Gemini-Pro436

tend to be overly detailed, usually presented in a437

list format with up to seven points. (Appendix;438

Tabel 4, 5) This makes their explanations not only439

too lengthy but also excessively specific. For in-440

stance, the average length of a human-annotated441

explanation is about 29.5 words, while the average442

for GPT-4-generated explanations is 421.9 words,443

and for Gemini-Pro, it’s 198.7 words. In contrast,444

GPT-3.5-generated explanations have an average445

length of 137.6 words. Consequently, the perfor-446

mance of GPT-4 and Gemini-Pro is deemed inferior447

under our evaluation metrics, as their lengthy and448

overly specific outputs do not align well with our449

human-annotated explanations.450

Commercial vs. open-source LLMs In our com-451

parisons, models such as GPT-4, GPT-3.5, and452

Gemini-Pro, which are developed with significant453

commercial backing, consistently outperform their454

open-source counterparts. These commercially-455

developed models excel in generating more suit-456

able, contextually appropriate explanations.457

Variations among open-source LLMs When ex- 458

amining open-source language models, particularly 459

those within the same family or architecture, we 460

observe that the performance differences are not 461

as stark in terms of matching scores. However, in 462

terms of similarity scores, there is a clear hierar- 463

chy: Pythia-2.8B < Yi-34B < LlaMa-7B < LlaMa- 464

13B. Although larger models generally show en- 465

hanced capabilities, suggesting that size contributes 466

to model effectiveness, it is not the only factor in- 467

fluencing performance. Notably, LlaMa-7B and 468

LlaMa-13B outperforms the larger Yi-34B model, 469

indicating that factors beyond mere scale, such as 470

model design, training protocol, or data quality, 471

also play critical roles in determining a model’s 472

effectiveness. One the other hand, LlaMa-13B 473

achieves better performance than LlaMa-13B. This 474

result reinforces the idea that within a consistent 475

architectural and training framework, larger models 476

tend to demonstrate superior capabilities. 477

7 Discussion 478

Variance in Scenario Performance Our analy- 479

sis reveals an interesting pattern in the variance of 480

model outputs across different types of scenarios. 481

Contrary to expectations, we find more variance 482

among model outputs in scenarios related to daily 483

life, which include a wide range of everyday activi- 484

ties and social interactions. This greater variance 485

could be attributed to the inherent complexity and 486

variability of such situations in daily life, which 487

are less standardized and thus more challenging 488

to simulate accurately. By contrast, scenarios in- 489
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volving specialized domains such as technology,490

politics, and health exhibited less variance among491

the outputs from different models. These areas492

often involve more standardized and well-defined493

concepts and terminologies, which are easier for494

models to inference. As a result, language models495

appear to handle these topics with greater consis-496

tency, possibly due to the clearer and more uniform497

contexts provided in such scenarios.498

8 Conclusion499

Based on the task of situated natural language ex-500

planations, this paper introduces SBE, a novel501

benchmarking dataset including audiences with de-502

sired features in specific situations. We use quan-503

titative methods to evaluate different prompts and504

different LLMs and we rigorously evaluate the ef-505

fectiveness of various prompting techniques and506

the performance of diverse large language models507

using quantitative methods. Our findings not only508

demonstrate the strengths and limitations of current509

approaches but also prepare future research to en-510

hance the adaptability and precision of automated511

explanations tailored to distinct user contexts.512

Limitations513

While our study marks a significant advancement in514

the field of situated natural language explanations515

(NLEs) by introducing the SBE and demonstrating516

the adaptability of language models to various con-517

texts, it inherently simplifies the complex reality of518

potential real-life situations. SBE, designed with519

three specific contexts per explanandum, offers a520

quantitative approach to evaluating model perfor-521

mance but does not encompass the near-infinite522

variety of scenarios shaped by diverse audiences523

and their unique needs. Consequently, the results,524

though robust within the defined parameters, may525

not fully capture model effectiveness in more dy-526

namically varied or extensively nuanced real-world527

applications. Future research should focus on ex-528

panding the dataset to cover a broader spectrum529

of situations among different backgrounds and bi-530

ases. Moreover, refining the models to enhance531

their adaptability to the multifaceted nature of real-532

life contexts should be considered.533

Ethics Statement534

In our research, we simulate hypothetical user sit-535

uations to generate tailored explanations, which536

might, on LLM agents, trigger the use of personal537

data if not deployed properly. The implication of 538

deploying similar technology in real-world settings 539

raises significant privacy concerns. Although our 540

study does not entail these risks due to the nature of 541

our data, future LLM agents must consider imple- 542

menting stringent data protection measures. These 543

should include robust anonymization techniques, 544

minimal data retention policies, and adherence to 545

privacy regulations to safeguard individual data 546

rights. Additionally, as LLM-generated explana- 547

tions become more convincing, they could be adver- 548

sarially helpful (Ajwani et al., 2024). Approaches 549

to defend adversarial helpfulness include asking 550

the explainers to present information from multi- 551

ple perspectives, which is relevant to adaptation. 552

Last but not least, it is crucial to clarify that the 553

explanations generated by our models are algorith- 554

mic outputs and do not reflect personal beliefs or 555

empirical truths. 556

References 557

General Services Administration. 2011. Write for your 558
audience. 559

Shourya Aggarwal, Divyanshu Mandowara, Vishwa- 560
jeet Agrawal, Dinesh Khandelwal, Parag Singla, and 561
Dinesh Garg. 2021. Explanations for Common- 562
senseQA: New Dataset and Models. In Proceedings 563
of the 59th Annual Meeting of the Association for 564
Computational Linguistics and the 11th International 565
Joint Conference on Natural Language Processing 566
(Volume 1: Long Papers), pages 3050–3065, Online. 567
Association for Computational Linguistics. 568

01. AI, :, Alex Young, Bei Chen, Chao Li, Chen- 569
gen Huang, Ge Zhang, Guanwei Zhang, Heng Li, 570
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong 571
Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin Yang, 572
Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang, 573
Xiaohui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng 574
Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, 575
Zhenyu Gu, Zhiyuan Liu, and Zonghong Dai. 2024. 576
Yi: Open foundation models by 01.ai. 577

Rohan Ajwani, Shashidhar Reddy Javaji, Frank Rudzicz, 578
and Zining Zhu. 2024. LLM-Generated Black-box 579
Explanations Can Be Adversarially Helpful. 580

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, 581
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo- 582
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai 583
Prashanth, Edward Raff, Aviya Skowron, Lintang 584
Sutawika, and Oskar Van Der Wal. 2023. Pythia: 585
a suite for analyzing large language models across 586
training and scaling. In Proceedings of the 40th Inter- 587
national Conference on Machine Learning, ICML’23. 588
JMLR.org. 589

8

https://www.plainlanguage.gov/guidelines/audience/
https://www.plainlanguage.gov/guidelines/audience/
https://www.plainlanguage.gov/guidelines/audience/
https://doi.org/10.18653/v1/2021.acl-long.238
https://doi.org/10.18653/v1/2021.acl-long.238
https://doi.org/10.18653/v1/2021.acl-long.238
http://arxiv.org/abs/2403.04652
http://arxiv.org/abs/2405.06800
http://arxiv.org/abs/2405.06800
http://arxiv.org/abs/2405.06800


Jordan Boyd-Graber, Samuel Carton, Shi Feng, Q. Vera590
Liao, Tania Lombrozo, Alison Smith-Renner, and591
Chenhao Tan. 2022. Human-centered evaluation of592
explanations. In Proceedings of the 2022 Conference593
of the North American Chapter of the Association for594
Computational Linguistics: Human Language Tech-595
nologies: Tutorial Abstracts, pages 26–32, Seattle,596
United States. Association for Computational Lin-597
guistics.598

Oana-Maria Camburu, Brendan Shillingford, Pasquale599
Minervini, Thomas Lukasiewicz, and Phil Blunsom.600
2020. Make up your mind! adversarial generation601
of inconsistent natural language explanations. In602
Proceedings of the 58th Annual Meeting of the Asso-603
ciation for Computational Linguistics, pages 4157–604
4165, Online. Association for Computational Lin-605
guistics.606

Aaron Chan, Shaoliang Nie, Liang Tan, Xiaochang607
Peng, Hamed Firooz, Maziar Sanjabi, and Xiang608
Ren. 2022. Frame: Evaluating rationale-label consis-609
tency metrics for free-text rationales. arXiv preprint610
arXiv:2207.00779.611

Hanjie Chen, Faeze Brahman, Xiang Ren, Yangfeng Ji,612
Yejin Choi, and Swabha Swayamdipta. 2023. REV:613
Information-theoretic evaluation of free-text ratio-614
nales. In Proceedings of the 61st Annual Meeting of615
the Association for Computational Linguistics (Vol-616
ume 1: Long Papers), pages 2007–2030, Toronto,617
Canada. Association for Computational Linguistics.618

Miruna-Adriana Clinciu, Arash Eshghi, and Helen619
Hastie. 2021. A study of automatic metrics for the620
evaluation of natural language explanations. In Pro-621
ceedings of the 16th Conference of the European622
Chapter of the Association for Computational Lin-623
guistics: Main Volume, pages 2376–2387, Online.624
Association for Computational Linguistics.625

Martin Cutts. 2020. Oxford guide to plain English.626
Oxford University Press, USA.627

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,628
Eric Lehman, Caiming Xiong, Richard Socher, and629
Byron C. Wallace. 2020. ERASER: A benchmark to630
evaluate rationalized NLP models. In Proceedings631
of the 58th Annual Meeting of the Association for632
Computational Linguistics, pages 4443–4458, Online.633
Association for Computational Linguistics.634

Upol Ehsan, Samir Passi, Q. Vera Liao, Larry Chan,635
I.-Hsiang Lee, Michael Muller, and Mark O. Riedl.636
2024. The Who in XAI: How AI Background Shapes637
Perceptions of AI Explanations. In Proceedings of638
the CHI Conference on Human Factors in Computing639
Systems, pages 1–32.640

Shijie Geng, Zuohui Fu, Yingqiang Ge, Lei Li, Gerard641
de Melo, and Yongfeng Zhang. 2022a. Improving642
Personalized Explanation Generation through Visu-643
alization. In Proceedings of the 60th Annual Meet-644
ing of the Association for Computational Linguistics645
(Volume 1: Long Papers), pages 244–255, Dublin,646
Ireland. Association for Computational Linguistics.647

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, 648
and Yongfeng Zhang. 2022b. Recommendation as 649
language processing (rlp): A unified pretrain, person- 650
alized prompt & predict paradigm (p5). In Proceed- 651
ings of the 16th ACM Conference on Recommender 652
Systems, pages 299–315. 653

Navita Goyal, Eleftheria Briakou, Amanda Liu, Con- 654
nor Baumler, Claire Bonial, Jeffrey Micher, Clare 655
Voss, Marine Carpuat, and Hal Daumé III. 2023. 656
What Else Do I Need to Know? The Effect of Back- 657
ground Information on Users’ Reliance on QA Sys- 658
tems. In Proceedings of the 2023 Conference on 659
Empirical Methods in Natural Language Processing, 660
pages 3313–3330, Singapore. Association for Com- 661
putational Linguistics. 662

Brihi Joshi, Ziyi Liu, Sahana Ramnath, Aaron Chan, 663
Zhewei Tong, Shaoliang Nie, Qifan Wang, Yejin 664
Choi, and Xiang Ren. 2023. Are machine rationales 665
(not) useful to humans? measuring and improving 666
human utility of free-text rationales. In Proceedings 667
of the 61st Annual Meeting of the Association for 668
Computational Linguistics (Volume 1: Long Papers), 669
pages 7103–7128, Toronto, Canada. Association for 670
Computational Linguistics. 671

Lei Li, Yongfeng Zhang, and Li Chen. 2020. Gener- 672
ate neural template explanations for recommendation. 673
In Proceedings of the 29th ACM International Con- 674
ference on Information & Knowledge Management, 675
CIKM ’20, page 755–764, New York, NY, USA. As- 676
sociation for Computing Machinery. 677

Q. Vera Liao, Yunfeng Zhang, Ronny Luss, Finale 678
Doshi-Velez, and Amit Dhurandhar. 2022. Connect- 679
ing algorithmic research and usage contexts: A per- 680
spective of contextualized evaluation for explainable 681
ai. Proceedings of the AAAI Conference on Human 682
Computation and Crowdsourcing, 10(1):147–159. 683

Andy Liu, Mona Diab, and Daniel Fried. 2024. Evalu- 684
ating large language model biases in persona-steered 685
generation. In Proceedings of the 2024 Annual Con- 686
ference of the Association for Computational Linguis- 687
tics. 688

Tania Lombrozo. 2007. Simplicity and probability in 689
causal explanation. Cognitive Psychology, 55(3):232– 690
257. 691

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, 692
Delip Rao, Eric Wong, Marianna Apidianaki, and 693
Chris Callison-Burch. 2023. Faithful chain-of- 694
thought reasoning. In Proceedings of the 13th In- 695
ternational Joint Conference on Natural Language 696
Processing and the 3rd Conference of the Asia-Pacific 697
Chapter of the Association for Computational Lin- 698
guistics (Volume 1: Long Papers), pages 305–329, 699
Nusa Dua, Bali. Association for Computational Lin- 700
guistics. 701

Ana Marasovic, Iz Beltagy, Doug Downey, and Matthew 702
Peters. 2022. Few-shot self-rationalization with nat- 703
ural language prompts. In Findings of the Associa- 704
tion for Computational Linguistics: NAACL 2022, 705

9

https://doi.org/10.18653/v1/2022.naacl-tutorials.4
https://doi.org/10.18653/v1/2022.naacl-tutorials.4
https://doi.org/10.18653/v1/2022.naacl-tutorials.4
https://doi.org/10.18653/v1/2020.acl-main.382
https://doi.org/10.18653/v1/2020.acl-main.382
https://doi.org/10.18653/v1/2020.acl-main.382
https://doi.org/10.18653/v1/2023.acl-long.112
https://doi.org/10.18653/v1/2023.acl-long.112
https://doi.org/10.18653/v1/2023.acl-long.112
https://doi.org/10.18653/v1/2023.acl-long.112
https://doi.org/10.18653/v1/2023.acl-long.112
https://doi.org/10.18653/v1/2021.eacl-main.202
https://doi.org/10.18653/v1/2021.eacl-main.202
https://doi.org/10.18653/v1/2021.eacl-main.202
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
http://arxiv.org/abs/2107.13509
http://arxiv.org/abs/2107.13509
http://arxiv.org/abs/2107.13509
https://aclanthology.org/2022.acl-long.20
https://aclanthology.org/2022.acl-long.20
https://aclanthology.org/2022.acl-long.20
https://aclanthology.org/2022.acl-long.20
https://aclanthology.org/2022.acl-long.20
https://aclanthology.org/2023.emnlp-main.201
https://aclanthology.org/2023.emnlp-main.201
https://aclanthology.org/2023.emnlp-main.201
https://aclanthology.org/2023.emnlp-main.201
https://aclanthology.org/2023.emnlp-main.201
https://doi.org/10.18653/v1/2023.acl-long.392
https://doi.org/10.18653/v1/2023.acl-long.392
https://doi.org/10.18653/v1/2023.acl-long.392
https://doi.org/10.18653/v1/2023.acl-long.392
https://doi.org/10.18653/v1/2023.acl-long.392
https://doi.org/10.1145/3340531.3411992
https://doi.org/10.1145/3340531.3411992
https://doi.org/10.1145/3340531.3411992
https://doi.org/10.1609/hcomp.v10i1.21995
https://doi.org/10.1609/hcomp.v10i1.21995
https://doi.org/10.1609/hcomp.v10i1.21995
https://doi.org/10.1609/hcomp.v10i1.21995
https://doi.org/10.1609/hcomp.v10i1.21995
https://doi.org/10.1609/hcomp.v10i1.21995
https://doi.org/10.1609/hcomp.v10i1.21995
http://arxiv.org/abs/2405.20253
http://arxiv.org/abs/2405.20253
http://arxiv.org/abs/2405.20253
http://arxiv.org/abs/2405.20253
http://arxiv.org/abs/2405.20253
https://doi.org/https://doi.org/10.1016/j.cogpsych.2006.09.006
https://doi.org/https://doi.org/10.1016/j.cogpsych.2006.09.006
https://doi.org/https://doi.org/10.1016/j.cogpsych.2006.09.006
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2022.findings-naacl.31
https://doi.org/10.18653/v1/2022.findings-naacl.31
https://doi.org/10.18653/v1/2022.findings-naacl.31


pages 410–424, Seattle, United States. Association706
for Computational Linguistics.707

Tim Miller. 2019. Explanation in artificial intelligence:708
Insights from the social sciences. Artificial Intelli-709
gence, 267:1–38.710

Sharan Narang, Colin Raffel, Katherine Lee, Adam711
Roberts, Noah Fiedel, and Karishma Malkan. 2020.712
Wt5?! training text-to-text models to explain their713
predictions. arXiv preprint arXiv:2004.14546.714

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,715
Carroll Wainwright, Pamela Mishkin, Chong Zhang,716
Sandhini Agarwal, Katarina Slama, Alex Ray, John717
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,718
Maddie Simens, Amanda Askell, Peter Welinder,719
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.720
Training language models to follow instructions with721
human feedback. In Advances in Neural Information722
Processing Systems, volume 35, pages 27730–27744.723
Curran Associates, Inc.724

Online Writing Lab Purdue. Tone, Mood, and Audience725
- Purdue OWL® - Purdue University.726

Nazneen Fatema Rajani, Bryan McCann, Caiming727
Xiong, and Richard Socher. 2019. Explain your-728
self! leveraging language models for commonsense729
reasoning. In Proceedings of the 57th Annual Meet-730
ing of the Association for Computational Linguistics,731
pages 4932–4942, Florence, Italy. Association for732
Computational Linguistics.733

Abhinav Rao, Akhila Yerukola, Vishwa Shah, Katharina734
Reinecke, and Maarten Sap. 2024. Normad: A bench-735
mark for measuring the cultural adaptability of large736
language models. arXiv preprint arXiv:2404.12464.737

Nils Reimers and Iryna Gurevych. 2019a. Sentence-738
BERT: Sentence embeddings using Siamese BERT-739
networks. In Proceedings of the 2019 Conference on740
Empirical Methods in Natural Language Processing741
and the 9th International Joint Conference on Natu-742
ral Language Processing (EMNLP-IJCNLP), pages743
3982–3992, Hong Kong, China. Association for Com-744
putational Linguistics.745

Nils Reimers and Iryna Gurevych. 2019b. Sentence-746
bert: Sentence embeddings using siamese bert-747
networks. In Proceedings of the 2019 Conference on748
Empirical Methods in Natural Language Processing.749
Association for Computational Linguistics.750

Chenglei Si, Navita Goyal, Sherry Tongshuang Wu,751
Chen Zhao, Shi Feng, Hal Daumé III, and Jordan752
Boyd-Graber. 2024. Large language models help hu-753
mans verify truthfulness–except when they are con-754
vincingly wrong. NAACL.755

Reid Stephen, Kate Kiefer, Dawn Kowalski, and Andrea756
Bennett. 2022. Guide: Adapting to Your Audience.757

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-758
bert, Amjad Almahairi, Yasmine Babaei, Nikolay759
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti760

Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 761
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 762
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 763
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 764
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 765
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 766
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 767
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 768
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 769
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 770
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 771
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 772
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 773
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 774
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 775
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 776
Melanie Kambadur, Sharan Narang, Aurelien Ro- 777
driguez, Robert Stojnic, Sergey Edunov, and Thomas 778
Scialom. 2023. Llama 2: Open foundation and fine- 779
tuned chat models. 780

Jeroen J. G. van Merriënboer and John Sweller. 2005. 781
Cognitive Load Theory and Complex Learning: Re- 782
cent Developments and Future Directions. Educ Psy- 783
chol Rev, 17(2):147–177. 784

Ruiyi Wang, Haofei Yu, Wenxin Zhang, Zhengyang Qi, 785
Maarten Sap, Graham Neubig, Yonatan Bisk, and 786
Hao Zhu. 2024. Sotopia-π: Interactive learning of 787
socially intelligent language agents. arXiv preprint 788
arXiv:2403.08715. 789

Sarah Wiegreffe, Jack Hessel, Swabha Swayamdipta, 790
Mark Riedl, and Yejin Choi. 2022. Reframing 791
human-AI collaboration for generating free-text ex- 792
planations. In Proceedings of the 2022 Conference 793
of the North American Chapter of the Association 794
for Computational Linguistics: Human Language 795
Technologies, pages 632–658, Seattle, United States. 796
Association for Computational Linguistics. 797

Sarah Wiegreffe and Ana Marasovic. 2021. Teach me to 798
explain: A review of datasets for explainable natural 799
language processing. In Proceedings of the Neural 800
Information Processing Systems Track on Datasets 801
and Benchmarks, volume 1. 802

Akhila Yerukola, Saujas Vaduguru, Daniel Fried, and 803
Maarten Sap. 2024. Is the pope catholic? yes, the 804
pope is catholic. generative evaluation of intent reso- 805
lution in llms. arXiv preprint arXiv:2405.08760. 806

Arnold YS Yeung, Shalmali Joshi, Joseph Jay Williams, 807
and Frank Rudzicz. 2020. Sequential explanations 808
with mental model-based policies. 809

Zining Zhu, Haoming Jiang, Jingfeng Yang, Sreyashi 810
Nag, Chao Zhang, Huang Jie, Yifan Gao, Frank Rudz- 811
icz, and Bing Yin. 2023. Situated Natural Languages 812
Explanations. In ACL NLRSE Workshop. 813

A All Prompt templates, Table 3 814

B Case Study, Table4, 5 815

C Details of Scores, Figure 5, 6 816

10

https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://owl.purdue.edu/owl/general_writing/writing_style/diction/tone_mood_audience.html
https://owl.purdue.edu/owl/general_writing/writing_style/diction/tone_mood_audience.html
https://owl.purdue.edu/owl/general_writing/writing_style/diction/tone_mood_audience.html
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://writing.colostate.edu/guides/guide.cfm?guideid=19
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.1007/s10648-005-3951-0
https://doi.org/10.1007/s10648-005-3951-0
https://doi.org/10.1007/s10648-005-3951-0
https://doi.org/10.18653/v1/2022.naacl-main.47
https://doi.org/10.18653/v1/2022.naacl-main.47
https://doi.org/10.18653/v1/2022.naacl-main.47
https://doi.org/10.18653/v1/2022.naacl-main.47
https://doi.org/10.18653/v1/2022.naacl-main.47
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper.pdf
http://arxiv.org/abs/2007.09028
http://arxiv.org/abs/2007.09028
http://arxiv.org/abs/2007.09028
https://arxiv.org/abs/2308.14115
https://arxiv.org/abs/2308.14115
https://arxiv.org/abs/2308.14115


Prompt Method Prompt Content
Base {explanandum} because
1A2F3F Following is an explanation towards {audience}. {explanandum} because
1A2F3T Following is an explanation towards {audience}: {explanandum}.
1A2T3F You are a helpful assistant explaining to {audience}. {explanandum} because
1A2T3T You are a helpful assistant explaining to {audience}. {explanandum}.
1D2F3F Following is an explanation about {reason}. {explanandum} because
1D2F3T Following is an explanation about {reason}. {explanandum}.
1D2T3F You are a helpful assistant explaining about {desired feature}. {explanandum} because
1D2T3T You are a helpful assistant explaining about {desired feature}. {explanandum}.
1AD2F3F Following is an explanation towards {audience}, about {desired feature}. {explanandum} because
1AD2F3T Following is an explanation towards {audience}, about {desired feature}. {explanandum}
1AD2T3F You are a helpful assistant explaining to {audience}, about {desired feature}. {explanandum} because
1AD2T3T You are a helpful assistant explaining to {audience}, about {desired feature}. {explanandum}
Meta prompt You are a helpful assistant helping me write a prompt.

I want to write a prompt to generate an explanation about why {explanandum} to {audience}, about {desired feature}.
Give me the prompt directly.

ICL prompt "For audience_1:
Q: Following is an explanation towards {audience2}, about {desired feature2}. {explanandum} because
A: {explanation2}
Q: Following is an explanation towards {audience3}, about {desired feature3}. {explanandum} because
A: {explanation3}
Q: Following is an explanation towards {audience1}, about {desired feature1}. {explanandum} because
A:"

Table 3: All prompt templates used in the paper.

User
instruction

Following is an explanation towards students, about engaging and adaptive learning tools tailored to individual
preferences. Educational technology can be meaningful because

GPT-4
generated
explanation

Engaging and adaptive learning tools tailored to individual preferences are meaningful in educational technology
because they help create personalized learning experiences that meet the unique needs and strengths of each
student. Here are several reasons why these tools are particularly effective:

• Personalization: Adaptive learning technologies can adjust the content, pace, and difficulty based on
individual learning preferences and performance. This means students can learn in a way that is best suited
to their own style and pace, which can help to foster deeper understanding and retention of knowledge.

• Increased Engagement: Engaging learning tools are designed to capture and maintain students’ interest
through interactive elements such as games, quizzes, and interactive simulations. When students are
engaged, they are more likely to invest time and effort in their learning, which can lead to better outcomes.

• Accessibility and Inclusivity: Adaptive learning tools can also provide support for learners with diverse
needs, including those with disabilities. For example, text can be converted to speech for students with
visual impairments, or lessons can be structured in different ways to cater to various learning disabilities.
This inclusivity ensures all students have an equal opportunity to learn and succeed.

• Immediate Feedback: These tools often provide immediate feedback, which is crucial for learning.
Students can understand what they’re doing right and where they need improvement. This immediate
response helps them to adjust their strategies and efforts in real time, promoting a more efficient learning
process.

• Data-driven Insights: Adaptive tools often collect data on student performance, which can be analyzed
to provide insights into learning habits, difficulties, and progression. This information can be invaluable
for teachers and educators to further tailor learning experiences, provide targeted support, and even refine
curriculum and instructional strategies.

• Scalability: Technology enables these personalized learning experiences to be scaled across large numbers
of students without the same increase in resources that would be necessary if done manually by educators.
This is particularly valuable in under-resourced or rural areas.

• Skill Preparation: Modern educational tools prepare students for the technological world they will enter
into after their education. By using tech-based tools in their learning process, students become proficient
in digital literacy, a critical skill for almost all career paths in the modern workforce.

Table 4: An explanation generated by GPT-4.
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User
instruction

Following is an explanation towards students, about engaging and adaptive learning tools tailored to individual
preferences. Educational technology can be meaningful because

Gemini-Pro
generated
explanation

Engaging and Adaptive Learning Tools Tailored to Individual Preferences
Educational technology can be transformative when it provides students with personalized learning experiences
tailored to their unique needs and preferences. By using engaging and adaptive tools, educators can create
environments where students can thrive and achieve their full potential.
Engaging Tools:

• Interactive Simulations and Games: These provide immersive experiences that allow students to explore
complex concepts in a fun and interactive way.

• Virtual Reality (VR) Environments: VR headsets transport students to virtual worlds, allowing them to
experience real-life scenarios and conduct experiments in a safe and controlled environment.

• Social Collaboration Tools: Platforms that allow students to connect with peers, ask questions, and
engage in group projects foster collaboration and enhance learning.

Adaptive Tools:

• Adaptive Learning Systems: These adjust course content and assessments to match the individual
student’s learning pace, skill level, and learning style.

• Intelligent Tutoring Systems (ITS): ITSs provide personalized guidance and feedback to students, helping
them identify areas for improvement and build on their strengths.

• AI-Powered Language Tools: These tools assist students with writing and reading, providing real-time
feedback on grammar, vocabulary, and comprehension.

Tailored to Individual Preferences:
These tools can be tailored to cater to different learning preferences:

• Visual Learners: Simulations, VR environments, and interactive videos engage visual learners.

• Auditory Learners: Audio-based lessons, podcasts, and recorded lectures cater to auditory learners.

• Kinesthetic Learners: Hands-on activities, simulations, and collaborative projects provide opportunities
for kinesthetic learners.

Meaningfulness of Educational Technology:
By providing students with engaging and adaptive learning tools tailored to their individual preferences, educa-
tional technology can make learning:

• Personalized: Content and assessments are tailored to meet the specific needs of each student.

• Motivating: Interactive and engaging tools keep students interested and motivated to learn.

• Effective: Adaptive systems track student progress and provide personalized feedback to enhance learning
outcomes.

• Equitable: Technology provides all students with equal access to high-quality learning experiences,
regardless of their background or learning style.

Table 5: An explanation generated by Gemini-Pro.
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Figure 5: Similarity score heatmap.
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Figure 6: Matching score heatmap.
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