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Abstract

With the widespread use of LLMs, preserving001
privacy in user prompts has become crucial,002
as prompts risk exposing privacy and sensitive003
data to the cloud LLMs. Conventional tech-004
niques like homomorphic encryption, secure005
multi-party computation, and federated learn-006
ing face challenges due to heavy computational007
overhead and user participation demands, lim-008
iting their applicability in LLM scenarios. In009
this paper, we propose PromptObfus, a novel010
method for desensitizing LLM prompts. The011
core idea of PromptObfus is "anti-adversarial"012
learning, which perturbs privacy words in the013
prompt to obscure sensitive information while014
retaining the stability of model predictions.015
Specifically, PromptObfus frames prompt de-016
sensitization as a masked language modeling017
task, replacing privacy-sensitive terms with a018
[MASK] token. A desensitization model is uti-019
lized to generate candidate replacements for020
each masked position. These candidates are021
subsequently selected based on gradient feed-022
back from a surrogate model, ensuring minimal023
disruption to task output. We demonstrate the024
effectiveness of our approach on three NLP025
tasks. Results show that PromptObfus effec-026
tively prevents privacy inference from remote027
LLMs while preserving task utility. Our code028
is publicly available at https://anonymous.029
4open.science/r/PromptObfus-BF36/.030

1 Introduction031

The widespread adoption of large language models032

(LLMs) such as ChatGPT in various NLP tasks033

(Hong et al., 2024; Carlini et al., 2019) has raised034

significant concerns regarding their inherent pri-035

vacy risks. Due to the substantial computational036

resources required for local deployment, users of-037

ten rely on cloud APIs provided by model vendors,038

which introduces potential vulnerabilities. Specifi-039

cally, user-submitted prompts, the primary medium040

of interaction with LLMs, may inadvertently ex-041

Perform sentiment analysis on the
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John was thrilled when he received
the call from 555-1234, confirming
his appointment at the downtown
clinic.

Original Prompt

Cloud LLM

This person feels
happy

Answer
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following statement:
John He was thrilled when he
received the call from 555-12349988,
confirming his appointment at the
downtown clinic school.
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Figure 1: Illustration of prompt desensitization.

pose sensitive information, posing serious privacy 042

threats. 043

Prompts often contain personally identifiable in- 044

formation (PII), including names, addresses, and 045

occupational details, as illustrated in Figure 1. 046

Without proper safeguards during processing, these 047

sensitive data become vulnerable to malicious ex- 048

ploitation, leading to serious privacy breaches 049

(Hong et al., 2024). Thus, developing robust pri- 050

vacy protection mechanisms for LLM prompts has 051

become an urgent research priority. 052

Conventional privacy-preserving techniques, 053

such as Homomorphic Encryption (HE) (Gentry, 054

2009), Secure Multi-Party Computation (MPC) 055

(Yao, 1982), and Federated Learning (FL) (McMa- 056

han et al., 2017), exhibit significant limitations 057

when applied to prompts for LLMs, particularly 058

in black-box settings where access to the model’s 059

internal architecture or training data is restricted. 060

These methods often fail to simultaneously address 061

the competing requirements of real-time perfor- 062

mance, computational efficiency, and robust pri- 063

vacy protection. 064

Text obfuscation has emerged as a prevalent ap- 065

proach to safeguarding sensitive information in 066

prompts (Miranda et al., 2025). For instance, tech- 067

niques include injecting noise into word embed- 068
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dings based on differential privacy to perturb sen-069

sitive data (Yue et al., 2021; Gao et al., 2024),070

clustering word vectors to render representations071

of sensitive terms indistinguishable (Zhou et al.,072

2023), and training models for data anonymiza-073

tion by detecting and removing PII entities (Chen074

et al., 2023; Frikha et al., 2025). However, these075

methods often struggle to achieve an optimal trade-076

off between privacy preservation and task utility077

(Zhang et al., 2024). Furthermore, approaches that078

rely on model training typically necessitate expert-079

annotated datasets, which are challenging to pro-080

cure in practical applications.081

In this paper, we propose PromptObfus, a082

portable and task-flexible method for desensitiza-083

tion of LLM prompts. Inspired by the work on gen-084

erating adversarial examples (Alzantot et al., 2018),085

we introduce the concept of anti-adversariality,086

which aims to obscure sensitive words in prompts087

while preserving the integrity of model predictions.088

PromptObfus achieves desensitization by replacing089

words with semantically distinct yet task-consistent090

alternatives, thereby ensuring robust privacy pro-091

tection without compromising the original func-092

tionality of the prompts. PromptObfus operates093

through the deployment of two small local models:094

a desensitization model, which replaces sensitive095

words with privacy-preserving alternatives, and a096

surrogate model, which emulates the task execu-097

tion of the remote LLM to guide prompt selection.098

The pipeline consists of three critical steps: gener-099

ating desensitized alternatives for privacy-sensitive100

words, assessing the task utility of the LLM, and101

selecting replacements that minimize performance102

degradation.103

We evaluate PromptObfus on three NLP tasks:104

sentiment analysis, topic classification, and ques-105

tion answering. The results demonstrate that our106

approach establishes new state-of-the-art privacy107

protection, achieving a 62.70% reduction in im-108

plicit privacy inference attack success rates com-109

pared to existing high-accuracy baselines, while110

completely eliminating explicit inference attacks.111

Notably, our approach simultaneously preserves112

competitive task utility, yielding accuracy scores113

of 86.67%, 85.25%, and 96.0%, respectively.114

Our contribution can be summarized as follows:115

• We introduce the novel concept of anti-116

adversariality, a pioneering approach for de-117

sensitizing LLM prompts that ensures robust118

privacy protection without compromising task119

utility. 120

• We propose a new privacy-preserving word 121

replacement algorithm, which integrates 122

masked word prediction with LLM gradient 123

surrogation to achieve optimal desensitization. 124

• We conduct extensive evaluations of our 125

method across multiple NLP tasks, demon- 126

strating its effectiveness in preserving privacy 127

while preserving task utility. 128

2 Related Work 129

Privacy Protection for LLMs. Despite their 130

widespread utility, LLMs raise critical privacy con- 131

cerns (Mireshghallah et al., 2024). Current research 132

addresses these through: (1) model protection via 133

federated learning (Hu et al., 2024; Liu et al., 2025) 134

and homomorphic encryption (Hao et al., 2022); (2) 135

prompt security using encryption (Lin et al., 2024) 136

and noise-based obfuscation (Zhou et al., 2023; 137

Gao et al., 2024); and (3) PII detection/removal 138

techniques (Chen et al., 2023; Sun et al., 2024; 139

Chowdhury et al., 2025). Hybrid input strategies 140

mixing real and synthetic data further enhance pri- 141

vacy (Utpala et al., 2023). 142

Automatic Prompt Engineering. Automatic 143

prompt generation leverages AI to produce privacy- 144

preserving prompts, offering superior performance 145

compared to manual approaches (Zhou et al., 2022). 146

Notable frameworks include APE (Yang et al., 147

2024), which iteratively refines prompts by select- 148

ing and resampling candidate prompts; APO (Zhou 149

et al., 2022), employing gradient-inspired feedback 150

optimization; and OPRO (Pryzant et al., 2023), 151

utilizing LLMs as meta-optimizers for prompt im- 152

provement. 153

Text Adversary Generation. Adversarial training 154

is a technique aimed at improving model robust- 155

ness against malicious or deceptive inputs, widely 156

applied in domains such as computer vision, NLP, 157

and speech recognition. In this approach, models 158

are systematically exposed to adversarial examples 159

(Goodfellow et al., 2014), which are inputs subtly 160

modified to induce significant changes in model 161

outputs. Genetic algorithms are employed to gen- 162

erate semantically equivalent adversarial samples 163

(Alzantot et al., 2018), selecting synonyms that 164

maximize the likelihood of the target label. More 165

recently, LLMs are utilized to produce adversarial 166

samples (Wang et al., 2023). 167

In contrast to existing approaches, we propose 168
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Figure 2: Overview of PromptObfus.

an anti-adversarial method for the desensitization169

of LLM prompts, which ensures that model outputs170

remain consistent while rendering sensitive content171

imperceptible to human interpretation.172

3 Approach173

Inspired by the principles of adversarial example174

generation (Alzantot et al., 2018), we conceptual-175

ize our approach as an anti-adversarial framework,176

wherein the objective is to obfuscate sensitive in-177

formation while preserving the original behavior178

and predictive performance of the model.179

3.1 Problem Statement180

Consider an LLM Φ(y|x) with parameters Φ and a181

downstream task (e.g., question answering) charac-182

terized by a parallel dataset T = {(x(i), y(i))}Ni=1,183

where x and y represent input prompt and target184

output, respectively. We formulate the following185

privacy-preserving transformation problem: Given186

a set of privacy attributes P = [p1, . . . , pm] and187

an input x = {x1, . . . , xn}, our goal is to derive a188

desensitized prompt x′ = {x′1, . . . , x′n} that elimi-189

nates all P -attributes while preserving task utility.190

Formally:191

min
x′=M(x|λ,k)

∥s(Φ(x′), y)− s(Φ(x), y)∥

s.t. x′i /∈ P ∀x′i ∈ x′
(1)192

Here, M(x|λ, k) denotes a desensitization map-193

ping function, where λ controls the candidate re-194

placement set size for each sensitive term, and k195

modulates the confusion ratio. The task-specific196

metric s : Y × Y → R (e.g., BLEU for QA) evalu-197

ates utility preservation.198

3.2 Overview 199

Our approach is designed to optimize the desensiti- 200

zation function M(x|λ, k) to preserve LLM output 201

fidelity while eliminating privacy risks. Figure 2 202

illustrates the overall architecture of PromptObfus. 203

The pipeline consists of three steps: (1) detecting 204

privacy attributes and generating candidate replace- 205

ments using a dedicated desensitization model; (2) 206

assessing utility preservation through a surrogate 207

model by comparing with the original prompt’s 208

performance; and (3) performing gradient-based 209

optimization to select the most suitable replace- 210

ments from candidates, ultimately producing the 211

final privacy-preserving prompt. 212

3.3 Predicting Candidate Desensitive Words 213

For each privacy-sensitive word in an input prompt, 214

PromptObfus generates a set of candidate replace- 215

ments through desensitization. This process can be 216

formalized as a Masked Language Model (MLM) 217

task, where privacy-sensitive words are substituted 218

with a mask token. The desensitization model is uti- 219

lized to predict precisely λ candidate desensitized 220

replacements for each masked position. By leverag- 221

ing pre-trained semantic representations, the model 222

ensures all candidate replacements maintain con- 223

textual appropriateness relative to the surrounding 224

text. This approach preserves textual coherence and 225

prompt functionality while effectively concealing 226

sensitive information through semantically valid 227

substitutions. 228

We utilize spaCy’s named entity recognition 229

(NER) model1 to detect explicit privacy attributes 230

like person names, locations, and organizations. 231

All identified privacy-sensitive words are uniformly 232

1https://spacy.io/models/en/#en_core_web_trf
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and wanted to share it with his mom in LA.
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Figure 3: Illustration of predicting candidate desensitive
words.

replaced with MASK tokens. Beyond explicit at-233

tributes, we address potential implicit privacy risks234

through contextual analysis. Specifically, we mask235

rare words identified by their TF-IDF scores (Vats236

et al., 2024; Sparck Jones, 1988), as these terms237

are statistically more likely to contain identifiable238

information. The top k highest-scoring terms are239

selected for masking.240

Next, a pre-trained language model, referred to241

as the desensitization model, is utilized to generate242

potential replacement candidates for each masked243

token, as shown in Figure 3. This model can em-244

ploy any pre-trained language architecture with245

MLM capability, such as RoBERTa.246

To mitigate the risk of privacy leakage through247

synonyms or near-synonyms, the desensitized word248

set is further refined by assessing semantic simi-249

larity. For each candidate word wi, we calculate250

its Euclidean distance to the original words xoriginal251

using word embeddings:252

d(xoriginal, wi) = ∥ ⃗xoriginal − w⃗i∥ (2)253

where ⃗xoriginal and w⃗i represent the word vectors of254

the original and desensitized words, respectively,255

and ∥ · ∥ denotes the Euclidean norm.256

A distance threshold θdist filters the desensi-257

tized word set. Words with Euclidean distance258

d(xoriginal, wi) ≤ θdist are removed for semantic259

similarity. The filtered set is defined as:260

Wfiltered = {wi ∈W | d(xoriginal, wi) > θdist}
(3)261

where Wfiltered denotes the refined candidate set262

after exclusion.263

3.4 Assessing Task Utility 264

To preserve task utility, we design a gradient-based 265

selection criterion for desensitized words. Gradient 266

magnitudes serve as indicators of input sensitivity: 267

larger values suggest substantial semantic distor- 268

tion from word replacement, while smaller values 269

imply better semantic preservation with minimal 270

output perturbation. 271

Since direct gradient acquisition from remote 272

LLMs is infeasible, PromptObfus employs a 273

smaller white-box surrogate modelMsurrogate to 274

approximate the target LLM’s behavior. This com- 275

putationally efficient alternative enables both task 276

evaluation and gradient computation while main- 277

taining manageable resource requirements. Promp- 278

tObfus supports two types of surrogate models: 279

1) Task-specific model: When adequate task- 280

specific data D = {(x, y)} exists, a lightweight 281

fine-tuned model provides precise, task-aware gra- 282

dient estimates for prompt desensitization. 283

2) General model: For data-scarce scenarios, a 284

moderately-sized pre-trained language model (still 285

substantially smaller than target LLMs) serves as 286

the surrogate. This variant produces less task- 287

specific but more generalizable gradient approx- 288

imations. 289

3.5 Gradient Filtering 290

PromptObfus utilizes gradient magnitudes from the 291

surrogate modelMsurrogate to assess desensitized 292

candidates in Wfiltered, selecting the word corre- 293

sponding to the minimal gradient value. 294

For each candidate word w ∈Wfiltered, Promp- 295

tObfus generates a modified prompt x′ and com- 296

putes its output gradient. Formally, the gradient 297

magnitude is calculated as: 298

∆i(w) =

∥∥∥∥∂L(y,Msurrogate(x
′[i← w]))

∂x′

∥∥∥∥ (4) 299

where i indicates the target word position, ∆i(w) 300

captures the gradient sensitivity, and L represents 301

the task loss function. Through iterative evaluation, 302

the optimal replacement w∗ is selected via: 303

w∗ = arg min
w∈Wfiltered

∆i(w) (5) 304

Finally, PromptObfus substitutes the privacy- 305

sensitive word at position i with the optimal re- 306

placement w∗, iterating this procedure across all 307

masked positions. This sequential filling approach 308

selects each replacement by considering both local 309
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contextual constraints and global semantic coher-310

ence from prior substitutions, thereby preserving311

task utility while preserving text semantics.312

4 Experiments Setup313

We evaluate the effectiveness of PromptObfus314

across two critical dimensions, emphasizing its ca-315

pacity to maintain robust privacy protection while316

preserving task utility. To demonstrate its practi-317

cal utility, we apply PromptObfus to three NLP318

tasks: sentiment analysis, topic classification, and319

question answering. These tasks represent diverse320

real-world applications and provide a comprehen-321

sive assessment of the method’s applicability.322

To evaluate PromptObfus’s privacy protection323

capabilities, we simulate adversarial attacks to as-324

sess whether sensitive information can be extracted325

from desensitized prompts. We consider three326

attack strategies, including two text reconstruc-327

tion methods and one privacy inference method:328

Embedding Inference (EI), Mask Token Inference329

(MTI), and PII Inference. EI (Qu et al., 2021) mea-330

sures the semantic similarity between each word331

representation and a publicly available word em-332

bedding matrix, predicting sensitive content based333

on the nearest neighbors. MTI (Yue et al., 2021)334

masks tokens in desensitized prompts and assesses335

the attacker’s success in reconstructing the original336

text. PII Inference (Plant et al., 2021) examines337

textual patterns to deduce private user attributes.338

4.1 Baselines339

We compare PromptObfus against six state-of-the-340

art privacy-preserving methods and the original341

unprotected text. 1) Random Perturbation, which342

randomly substitutes a portion of tokens in the text343

with arbitrary words. 2) Presidio2, an automated344

tool for detecting and redacting sensitive informa-345

tion including names, locations, and other person-346

ally identifiable information. 3) SANTEXT (Yue347

et al., 2021), a differential privacy approach that de-348

termines word replacement probabilities based on349

Euclidean distances in embedding space. 4) SAN-350

TEXT+ (Yue et al., 2021), an improved variant of351

SANTEXT that incorporates word frequency in-352

formation to optimize replacement probabilities.353

5) DP Prompt (Utpala et al., 2023), a method354

that employs LLMs to paraphrase original prompts355

while preserving privacy. 6) PromptCrypt (Lin356

2https://microsoft.github.io/presidio/

Dataset Split Number of Samples

SST-2
Train 67,349

Validation 872
Test 1,821

AG News
Train 120,000

Validation 7,600
Test 7,600

PersonalPortrait Test 400

Table 1: Statistics of the datasets.

et al., 2024), which transforms original prompts 357

into emoji sequences using large models. 358

4.2 Evaluation Metrics 359

Privacy Protection Metrics. We measure the po- 360

tential leakage of private information to third-party 361

attackers through quantitative evaluation. Two key 362

metrics are adopted to assess privacy protection per- 363

formance: TopK accuracy and success rate. TopK 364

Accuracy (Zhou et al., 2023) evaluates token-level 365

privacy by computing the proportion of correctly 366

inferred words among the top k predictions gener- 367

ated by third-party attackers. Success Rate (Plant 368

et al., 2021) measures the exposure risk of person- 369

ally identifiable information by determining the 370

percentage of successfully extracted PII entities rel- 371

ative to the total identifiable information present. 372

Task Utility Metrics. To assess PromptObfus’s 373

capability in preserving task utility, we measure 374

the model’s accuracy when processing desensitized 375

prompts. Our evaluation employs two standard met- 376

rics: accuracy and answer quality score. Accuracy 377

quantifies the proportion of correct predictions rela- 378

tive to the total number of test instances, applicable 379

to both classification and question answering tasks. 380

Answer Quality Score evaluates the overall quality 381

of responses, considering factors including correct- 382

ness, relevance, completeness, and readability. For 383

automated assessment, we employ GPT-4o-mini 384

as an evaluator, with the complete scoring rubric 385

provided in Appendix A.2. 386

4.3 Datasets 387

Our evaluation employs two established benchmark 388

datasets: SST-2 (Socher et al., 2013) for sentiment 389

analysis and AG News (Zhang et al., 2015) for 390

topic classification. Since existing QA datasets typ- 391

ically contain anonymized or desensitized content 392

and are therefore unsuitable for privacy evaluation, 393

we develop PersonalPortrait, a specialized dataset 394
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Approach Acc.↑ MTI Top1↓ EI Top1↓ PI Success Rate↓ Avg. Ranking↓

Origin 87.50 31.37 – – –

Random 83.75 (4) 17.10 (2) 83.78 (7) 97.50 (9) 5.50
Presidio 83.25 (6) 23.28 (5) 71.53 (6) 0.00 (1) 4.50
SANTEXT 61.50 (8) 21.43 (3) 62.10 (5) 41.75 (7) 5.75
SANTEXT+ 55.25 (9) 11.04 (1) 49.09 (1) 34.25 (6) 4.25
DP-Prompt 85.00 (2) – – 96.25 (8) 5.00
PromptCrypt 72.00 (7) – – 13.50 (5) 6.00

PromptObfus (k=0.1) 85.25 (1) 24.68 (7) 61.86 (4) 0.00 (1) 3.25
PromptObfus (k=0.2) 84.50 (3) 23.31 (6) 55.82 (3) 0.00 (1) 3.25
PromptObfus (k=0.3) 83.75 (4) 22.89 (4) 49.65 (2) 0.00 (1) 2.75

Table 2: Performance of privacy protection and task utility with detailed rankings on the AG News sentiment
analysis task. In the PI Attack, the AG News dataset does not explicitly label privacy attributes. Therefore, the
attack assumes that named entities (e.g., person names, locations) represent explicit privacy attributes and targets
these for evaluation. The individual rankings are indicated in ( ).

comprising 400 sensitive psychological counseling395

dialogues. These patient narratives are generated396

using GPT-4 and subsequently validated through397

rigorous manual review by two domain experts398

to ensure both authenticity and privacy relevance.399

Complete dataset statistics are presented in Table400

1, while the detailed construction process is docu-401

mented in Appendix A.1.402

4.4 Implementation Details403

We implement PromptObfus by utilizing three404

open-source language models: RoBERTa-base3 as405

the core desensitization model, BART-large4 as406

the task-specific surrogate model for classification407

tasks, and GPT-Neo-1.3B5 as the general surrogate408

model for question answering tasks, selected based409

on dataset size considerations.410

To ensure a fair comparison, we maintain a con-411

sistent obfuscation ratio across all word-level pro-412

tection baselines and PromptObfus. As DP Prompt413

and PromptCrypt operate at the prompt level rather414

than the word level, they are evaluated solely us-415

ing PI Attack rather than MTI or EI Attack. All416

experiments employ the original parameter con-417

figurations from their respective publications, with418

GPT-4o-mini implemented as the remote LLM. Fur-419

ther details on hyperparameter configurations are420

provided in Appendix A.3.421

5 Results and Analysis422

5.1 Overall Performance423

Table 2 presents the experimental results on the AG424

News dataset (further details for other datasets are425

3https://huggingface.co/FacebookAI/roberta-base
4https://huggingface.co/facebook/bart-large
5https://huggingface.co/EleutherAI/gpt-neo-1.3B

provided in Appendix A.4). PromptObfus (k = 426

0.3) demonstrates superior performance with an 427

average ranking of 2.75, surpassing all baseline 428

methods. 429

Privacy Protection. The PI attack attains a 430

0.00% success rate against PromptObfus-generated 431

prompts, confirming complete privacy preservation. 432

Comparative methods (SANTEXT+, DP Prompt, 433

PromptCrypt) exhibit significantly higher vulner- 434

ability, as they modify linguistic structures rather 435

than implementing targeted PII protection. For EI 436

Attack, PromptObfus (k = 0.3) achieves a 49.65% 437

success rate, outperforming all baselines except 438

SANTEXT+. 439

Task Utility Preservation. PromptObfus main- 440

tains 85.25% classification accuracy at k = 0.1, 441

representing only a 2.57% decrease from the orig- 442

inal text. This performance exceeds that of other 443

word-level protection techniques, such as Presidio 444

(83.25%) and SANTEXT+ (55.25%). 445

These results collectively indicate that PromptO- 446

bfus successfully achieves robust privacy protec- 447

tion against remote LLM attacks while preserving 448

the original model’s task performance, establish- 449

ing an optimal privacy-utility tradeoff among all 450

evaluated methods. 451

5.2 Ablation Studies 452

Impact of Surrogate Model. We investigate the 453

impact of architectures and scales of the surro- 454

gate model across three model types: encoder-only 455

(RoBERTa), decoder-only (GPT2), and encoder- 456

decoder (BART) architectures. The evaluation 457

spans three model sizes: base (∼130M parameters, 458

e.g., RoBERTa-base), medium (∼350M parame- 459

ters, e.g., RoBERTa-large, BART-large, GPT-2- 460
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Approach Acc.↑ MTI Top1↓ EI Top1↓

Original Data 87.20 48.86 –

GPT2-base 84.00 42.34 81.80
Roberta-base 84.80 42.66 81.71
BART-base 86.40 42.47 81.73
GPT2-medium 84.53 43.99 81.75
Roberta-large 85.87 42.51 81.71
BART-large 86.67 42.94 81.72
Llama-2-7B 84.80 42.47 81.75
ChatGLM3-6B 84.53 42.94 81.72

Table 3: Impact of surrogate model variations on obfus-
cation effectiveness in sentiment analysis.

Approach (k=0.1) Acc.↑ MTI Top1↓ EI Top1↓

PromptObfus 85.25 24.68 61.86

Random masking 84.25 24.33 63.98

Table 4: Performance of privacy protection and task
utility on the AGNews topic classification task evaluated
under random masking and PromptObfus.

medium), and large (Llama-2-7B, ChatGLM3-6B).461

Limited by computational resources, we employ462

full-parameter fine-tuning for small and medium463

models, while utilizing Low-Rank Adaptation464

(LoRA) for large models.465

The experimental results for sentiment analy-466

sis are presented in Table 3, with corresponding467

question answering results provided in Appendix468

A.5. We observe that privacy protection efficacy469

remains unaffected by either the architecture or470

scale of the surrogate model. Medium-scale mod-471

els demonstrate superior performance compared472

to their larger counterparts, as the task complex-473

ity does not warrant additional model capacity,474

and LoRA may limit fine-tuning effectiveness.475

Encoder-decoder architectures achieve optimal per-476

formance by effectively integrating the encoder’s477

classification capabilities with the decoder’s align-478

ment to remote model requirements.479

Impact of Masking Strategy. We examine the480

effectiveness of different masking strategies in pre-481

venting implicit privacy leakage. Our compari-482

son focuses on two approaches: random masking,483

where tokens are selected uniformly at random,484

and PromptObfus, a TF-IDF-based method that tar-485

gets the least frequent tokens. Experimental results486

on the AGNews dataset reveal that PromptObfus487

achieves superior performance in both privacy pro-488

tection and utility preservation compared to random489

Approach (k=0.1) Acc.↑ MTI Top1↓ EI Top1↓

PromptObfus 85.25 24.68 61.86

Top-1 Selection 84.75 35.06 79.50
Random Selection 83.75 25.14 66.52
<MASK> 83.25 27.55 63.96

Table 5: Performance of privacy protection and task
utility on the AGNews topic classification task evaluated
under different strategies for selecting the candidate
desensitized words.

Figure 4: Elapsed time increases linearly with the num-
ber of processed tokens across different methods.

masking, as detailed in Table 4. 490

Impact of Gradient Filtering. We evaluate four 491

candidate selection strategies for word desensiti- 492

zation: (1) PromptObfus’s default gradient-based 493

strategy, which minimizes downstream task im- 494

pact by selecting tokens with smallest output gra- 495

dient magnitudes; (2) top-1 prediction based on 496

model confidence; (3) random selection from can- 497

didates; and (4) direct ‘<MASK>‘ token insertion 498

as a baseline. We set the number of candidate 499

desensitized words (λ) to 10. The experimental re- 500

sults on the AGNews dataset are shown in Table 5, 501

demonstrating that PromptObfus’s gradient-based 502

approach achieves an optimal balance between pri- 503

vacy preservation and task utility. 504

Additionally, a detailed examination of hyperpa- 505

rameters k and λ is presented in Appendix A.6. 506

5.3 Time Efficiency Evaluation 507

We evaluate PromptObfus’s computational effi- 508

ciency on an NVIDIA RTX 3090 GPU with CUDA 509

v12.4. All comparative methods are executed un- 510

der identical configurations to ensure fair compar- 511

ison. The results are presented in Figure 4. Our 512

method achieves an optimal balance between com- 513

putational efficiency and privacy preservation. No- 514

tably, the system exhibits a processing rate of 100 515

tokens in 2.58 seconds, demonstrating practical 516

runtime performance for real-world applications. 517
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Original Text: I’m a 39 -year-old driver in Toronto , and I often feel like my emotions are all over the place...

Random: abuser a 39 -year-old driver in Toronto , moha palmery often feel like my emotions are all over
shady place...

Presidio: I’m a <DATE> driver in <GPE>, and I often feel like my emotions are all over the place...
SANTEXT: jagger rehashed a hardy - year - old driver in women , and obscure often feel like my emotions

are all over the place...
SANTEXT+: jagger rehashed a fidel 15 year 3 old driver in motion , and esoteric seldom feel like my emotions

are all putting the however...
DP-Prompt: I’m a 39 -year-old driver in Toronto , and my emotions can be unpredictable...

PromptCrypt: 39 ...

PromptObfus (k=0.1): I’m a commercial driver of two and I often feel like my emotions are all over the place...
PromptObfus (k=0.2): I’m a commercial assistant in LA and I often feel like my emotions flow all over the world...
PromptObfus (k=0.3): I’m one professional assistant in general and I often feel like my emotions are hovering throughout...

Table 6: A case of desensitized prompts generated by various methods for question answering.

Model GPT-4o-mini GLM-4-plus Meta AI

GPT2 84.53 91.2 91
ChatGLM3-6B 84.53 91.0 89

Llama2-7B 84.80 90.8 90

BART 86.67 91.4 91

Table 7: Classification accuracy of local-remote model
combinations on the sentiment analysis (SST) task.
Columns denote remote models, while rows denote lo-
cal models.

5.4 Transferability518

We further explore the transferability of trained519

surrogate models across different platform combi-520

nations. Experiments evaluate local-remote model521

pairings from three providers: OpenAI, Meta, and522

Zhipu. Experimental results, presented in Table523

7, indicate that cross-platform model combina-524

tions maintain comparable obfuscation effective-525

ness, showing strong transferability across vendors.526

For additional validation, we test BART-large, the527

best-performing independent model from previous528

experiments, with all three remote models. The529

results consistently show BART-large’s superior530

performance in every configuration.531

5.5 Case Study532

Table 6 illustrates an example of desensitized533

prompts generated by various methods for question-534

answering. The original text contains identifiable535

sensitive information including age ("39-year-old"),536

occupation ("driver"), and location ("Toronto").537

PromptObfus successfully replaces explicit private538

attributes (age, location) with de-identified terms,539

ensuring robust privacy protection. At k = 0.2540

and k = 0.3, the obfuscation intensity increases,541

and implicit privacy details, such as occupation 542

("driver"), are substituted with more ambiguous 543

terms like "assistant" while preserving semantic 544

coherence and readability. 545

In contrast, the Random method fails to accu- 546

rately identify and modify sensitive information, 547

leading to the leakage of all privacy-related terms 548

and a lack of textual coherence. Presidio is limited 549

to handling predefined temporal and geographic 550

patterns, offering insufficient flexibility and failing 551

to protect occupation-related privacy. Meanwhile, 552

SANTEXT and SANTEXT+ introduce excessive 553

noise, rendering the sentences overly disordered 554

and degrading task utility. DP-Prompt results in 555

privacy leakage, while PromptCrypt, despite pro- 556

tecting privacy, employs overly simplistic and ab- 557

stract symbols, causing significant performance 558

degradation. 559

6 Conclusion 560

In this paper, we introduces PromptObfus, a novel 561

method for privacy-preserving prompt desensiti- 562

zation in LLMs. Its core idea is anti-adversarial 563

learning, which simultaneously preserves model 564

output fidelity while preventing human interpreta- 565

tion of sensitive content. PromptObfus achieves 566

this by replacing sensitive words in user prompts 567

with semantically distant yet task-consistent alter- 568

natives, minimizing impact on task utility. Evalua- 569

tions across three NLP tasks demonstrate PromptO- 570

bfus’s effectiveness in safeguarding privacy against 571

cloud-based LLM attacks while maintaining origi- 572

nal task utility levels. The results establish Promp- 573

tObfus’s superior privacy-utility balance compared 574

to existing baseline methods. 575
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Limitations576

We have identified two limitations of PromptObfus:577

Partial coverage of implicit privacy attributes:578

Our approach identifies potential privacy-related579

terms through TF-IDF scoring, which effectively580

reduces but does not fully eliminate privacy leak-581

age. This limitation stems from incomplete detec-582

tion of all sensitive attributes. Future improvements583

should develop more sophisticated privacy attribute584

detection mechanisms.585

General model constraints: The reliance on586

general-purpose models, necessitated by limited587

annotated QA datasets, results in suboptimal per-588

formance compared to task-specific models. Inves-589

tigating few-shot learning approaches (Brown et al.,590

2020) could address this data scarcity challenge in591

future work.592
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A Appendix794

A.1 PersonalPortrait Construction795

Inspired by the D4 dataset (Yao et al., 2022) and796

the PersonalReddit dataset (Staab et al., 2023),797

which synthesize text from personal profiles, we798

develop authentic patient profiles incorporating de-799

mographic characteristics (gender, occupation, lo-800

cation) and psychiatric conditions to simulate clin-801

ical counseling dialogues. The QA task focuses802

on mental health diagnosis, where models must803

identify specific disorders (e.g., depression, anx-804

iety) through symptom analysis (e.g., insomnia,805

persistent sadness, anxious thoughts) present in the806

counseling transcripts.807

The dataset synthesis involves three key stages:808

1. Profile generation: Diverse patient profiles are809

created by randomly sampling demographic810

attributes (age, gender, location, occupation)811

and psychiatric conditions from predefined812

clinical categories.813

2. Text generation: GPT-4 synthesizes clinically814

coherent self-reports based on generated pro-815

files, capturing authentic symptom presenta-816

tions and personal histories (see Appendix A.2817

for generation templates).818

3. Clinical validation: Generated texts undergo819

expert review to verify diagnostic accuracy,820

symptom plausibility, and therapeutic appro-821

priateness.822

Each entry in the PersonalPortrait dataset con-823

tains:824

• Clinical Narrative: A first-person account825

simulating psychological counseling sessions,826

documenting symptom presentation, behav-827

ioral patterns, and psychosocial experiences828

related to mental health conditions.829

• Age: Integer values uniformly distributed be-830

tween 18 and 65 years.831

• Location: Randomly sampled from 20 prede-832

fined English-speaking geographical regions.833

• Gender: Binary classification (male/female)834

with equal probability.835

• Occupation: Profession randomly selected836

from a standardized list of 20 common oc-837

cupations.838

• Clinical Diagnosis: Mental health disorder839

randomly assigned from 10 prevalent psychi-840

atric conditions following DSM-5 classifica-841

tion criteria.842

A.2 Prompt Templates 843

We present the core prompt templates utilized in 844

our study, where TEXT indicates the desensitized 845

prompt, ORIGINAL TEXT corresponds to the un- 846

protected original prompt, and ANSWER signifies 847

the LLM-generated response. Attributes such as 848

AGE and GENDER are randomly sampled from 849

predefined categories. 850

Prompt for Generating Samples for PersonalPortrait

System Prompt:
You are a patient and are seeing a
psychiatrist.

User Prompt:
Describe to a psychiatrist in the
typical voice of a <<<AGE>>>-year-old
<<<GENDER>>> <<<OCCUPATION>>>
with sympthons of <<<DISORDER>>>
in <<<LOCATION>>>. The self-report
MUST reflect the patient’s LOCATION and
OCCUPATION.100 words or less.

851

Prompt for Sentiment Analysis Task

System Prompt:
Classify the sentiment of each sentence
in <<<SENTENCE>>> as ’Positive’
or ’Negative’. Give the sentiment
classifications without any other preamble
text.

###EXAMPLE SENTENCE
Highly recommend this company for travel
plans involving rail.
EXAMPLE OUTPUT
Positive###

User Prompt:
<<<TEXT>>>

852

Prompt for Topic Classification Task

System Prompt:
Classify the topic of each news article
in <<<NEWS>>> as ’World’, ’Sports’,
’Business’, or ’Sci/Tech’. Give the topic
classification without any other preamble
text.

###EXAMPLE NEWS
Dollar Briefly Hits 4-Wk Low Vs Euro LONDON
(Reuters) - The dollar dipped to a four-week
low against the euro on Monday before rising
slightly on profit-taking, but steep oil
prices and weak U.S. data continued to fan
worries about the health of the world’s
largest economy.
EXAMPLE OUTPUT
Business###

User Prompt:
<<<TEXT>>>

853
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Prompt for Question Answering Task

System Prompt:
You are an experienced psychologist.
Your task is to listen to the patient’s
self-description and a most likely mental
health diagnosis based on their symptoms.

User Prompt:
<<<TEXT>>>
Diagnosis:

854

Prompt for Scoring Answer Quality

System Prompt:
You are an experienced psychologist with
expertise in mental health diagnoses. Your
task is to assess the quality of a diagnosis
based on the patient’s self-description.
You will evaluate the diagnosis on four
dimensions, each on a scale from 1 to
5, where 1 indicates poor performance and
5 indicates excellent performance. After
evaluating all four dimensions, please
also provide an overall score (1 to 5)
that reflects your holistic judgment of
the diagnosis quality.Please consider the
following criteria:
Correctness – How clinically accurate is
the diagnosis in light of the symptoms
described?
Relevance – How well does the diagnosis
relate to and reflect the patient’s specific
symptoms?
Completeness – Does the diagnosis address
all key aspects of the patient’s
self-report without overlooking significant
information?
Readability – Is the diagnosis
clearly written, well-structured, and
understandable?

User Prompt:
The patient has provided the following
self-description. The diagnosis made by the
doctor is as follows: TEXT:<<<ORIGINAL
TEXT>>> Diagnosis:<<<ANSWER>>> Please
provide a score from 1 to 5 for each
of the following dimensions: Correctness,
Relevance, Completeness, Readability. Then,
based on the four criteria above, provide
an Overall Score (1 to 5) that reflects your
general assessment of the diagnosis.

855

A.3 Hyperparameter Setting856

The model training configurations are specified in857

Tables 8 and 9. For Llama-2-7B and ChatGLM3-858

6B, we implement Low-Rank Adaptation (LoRA),859

whereas other models undergo standard full-860

parameter fine-tuning. Optimization is performed861

using Adam with standard parameters: β1 = 0.9,862

β2 = 0.999, and ϵ = 1 × 10−8. All model usage863

strictly adheres to respective licensing agreements.864

The experiments are conducted on an Ubuntu865

Dataset Model lr bs epoch

SST-2

Roberta-base 2e-5 32 4
Roberta-large 3e-5 32 4
BART-base 2e-5 32 4
BART-large 3e-5 32 4
GPT2-base 3e-5 32 4
GPT2-medium 3e-5 32 4
Llama-2-7B 2e-4 16 2
ChatGLM3-6B 2e-4 16 2

AG News BART-large 3e-5 32 5

Table 8: Hyperparameters setting for model training.

Dataset Model alpha dropout r

SST-2 Llama-2-7B 16 0.1 64
ChatGLM3-6B 16 0.1 64

Table 9: LoRA hyperparameters setting for model train-
ing.

23.10 server with vCUDA 12.4, utilizing an Nvidia 866

GeForce RTX 3090 GPU. 867

A.4 Results on Other Datasets 868

Tables 10 and 11 present the results on the senti- 869

ment analysis and question answering tasks, respec- 870

tively. We can observe that PromptObfus consis- 871

tently achieves an optimal trade-off between pri- 872

vacy protection and task utility, exhibiting superior 873

performance compared to baseline methods. This 874

performance advantage aligns with the observa- 875

tions from the sentiment analysis task. 876

Privacy Protection. PromptObfus exhibits supe- 877

rior privacy preservation across both evaluation 878

tasks. For instance, the question answering assess- 879

ment examines two privacy attributes: Location (ex- 880

plicitly stated information) and Occupation (implic- 881

itly derived sensitive data). In the PI Inference of 882

Location, PromptObfus achieves an attack success 883

rate of 0.00%, indicating complete privacy protec- 884

tion. In the PI Inference of Occupation, PromptOb- 885

fus achieves the second-lowest attack success rate 886

at 17.25%, trailing only PromptCrypt (11.00%). 887

Compared against high-accuracy baselines exceed- 888

ing 90% accuracy, PromptObfus attains a 62.70% 889

decrease in implicit privacy inference attack suc- 890

cess rates. 891

Task Utility Preservation. In the sentiment anal- 892

ysis task, PromptObfus maintains strong utility 893

preservation, achieving 86.67% accuracy at k = 894

0.1, comparable to baseline methods (87.20%) 895

12



Approach Acc.↑ MTI Top1↓ EI Top1↓ PI Success Rate↓ Avg. Ranking↓

Origin 87.20 48.86 – – –

Random 69.87 (7) 35.91 (3) 90.47 (7) 83.47 (8) 6.25
Presidio 84.80 (5) 44.63 (7) 90.45 (6) 0.00 (1) 4.75
SANTEXT 49.25 (9) 20.15 (1) 73.67 (2) 92.53 (9) 5.25
SANTEXT+ 58.93 (8) 23.40 (2) 76.93 (4) 75.47 (7) 5.25
DP-Prompt 86.30 (4) – – 72.53 (6) 5.00
PromptCrypt 89.86 (1) – – 54.67 (5) 3.00

PromptObfus (k=0.1) 86.67 (2) 42.94 (6) 81.72 (5) 0.00 (1) 3.50
PromptObfus (k=0.2) 86.40 (3) 41.48 (5) 74.67 (3) 0.00 (1) 3.00
PromptObfus (k=0.3) 83.20 (6) 39.68 (4) 67.15 (1) 0.00 (1) 3.00

Table 10: Performance of privacy protection and task utility with detailed rankings on the SST-2 sentiment analysis
task. The individual rankings are indicated in ( ).

Approach Acc.↑ Quality Score↑ MTI Top1↓ EI Top1↓ PI(Loc.)↓ PI(Occ.)↓ Avg. Ranking↓

Origin 96.9 3.86 46.43 – 94.75 60.25 –

Random 90.0 (8) 3.34 (6) 32.67 (1) 90.00 (6) 81.50 (8) 46.25 (5) 5.67
Presidio 96.9 (1) 3.56 (4) 44.16 (5) 96.62 (7) 0.00 (1) 55.00 (8) 4.33
SANTEXT 91.0 (6) 3.27 (8) 55.75 (6) 78.56 (4) 0.00 (1) 47.00 (6) 5.17
SANTEXT+ 91.3 (5) 3.33 (7) 55.75 (6) 61.62 (1) 0.00 (1) 48.25 (7) 4.50
DP-Prompt 95.0 (3) 3.62 (2) – – 89.25 (9) 55.25 (9) 5.75
PromptCrypt 49.5 (9) 2.89 (9) – – 16.25 (7) 11.00 (1) 6.50

PromptObfus (k=0.1) 96.0 (2) 3.63 (1) 42.30 (4) 86.45 (5) 0.00 (1) 45.75 (4) 2.83
PromptObfus (k=0.2) 93.0 (4) 3.61 (3) 38.81 (3) 77.02 (3) 0.00 (1) 37.75 (3) 2.83
PromptObfus (k=0.3) 90.5 (7) 3.46 (5) 36.57 (2) 68.10 (2) 0.00 (1) 17.25 (2) 3.16

Table 11: Performance of privacy protection and task utility with detailed rankings on the PersonalPortrait text QA
task. The individual rankings are indicated in ( ).

with only 0.61% performance degradation. While896

PromptCrypt (89.86%) shows marginally better897

results on this simpler task with limited label898

space, its emoji-based encryption proves partic-899

ularly suited for such low-complexity scenarios.900

In the question answering task, PromptObfus901

achieves 96.0% accuracy, closely matching the902

original text’s performance (96.9%) with merely903

0.93% degradation, ranking second only to Pre-904

sidio. This performance can be attributed to the905

task’s primary dependence on contextual emotional906

inference rather than explicit PII extraction. No-907

tably, PromptObfus obtains the highest answer908

quality score (3.63), demonstrating superior re-909

sponse fluency, completeness, and accuracy com-910

pared to alternative methods.911

PromptCrypt shows limited effectiveness in pre-912

serving QA task utility. While its encryption-based913

approach successfully disrupts contextual struc-914

tures to enhance implicit privacy protection, the915

consequent loss of semantic information signifi-916

cantly impairs its ability to handle tasks requiring917

nuanced text analysis.918

A.5 Impact of Surrogate Model on Other 919

Tasks 920

Table 12 summarizes the results examining surro- 921

gate model effects on question answering perfor- 922

mance. As privacy protection effectiveness is previ- 923

ously established to be invariant to surrogate model 924

choice in sentiment analysis, the current evalua- 925

tion specifically assesses task utility preservation. 926

The investigation utilizes general-purpose surro- 927

gate models spanning three architectures of com- 928

parable scale (RoBERTa-large, BART-large, and 929

GPT2-medium) alongside a progressively scaled 930

GPT series (GPT2-base, GPT2-medium, and GPT- 931

Neo-1.3B). 932

The results indicate GPT-Neo-1.3B delivers op- 933

timal performance, achieving 96.0% question an- 934

swering accuracy and the maximal answer quality 935

score. Architectural comparisons reveal GPT2’s su- 936

perior performance over other medium-scale mod- 937

els, confirming the efficacy of decoder-only archi- 938

tectures for generative language tasks. Scaling 939

analysis demonstrates monotonic improvement in 940

question answering accuracy with increasing model 941

size, attributable to larger models’ enhanced pre- 942
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Model Accuracy Utility Score

GPT2-base 93.3 3.55
GPT2-medium 93.8 3.57
GPTNeo-1.3B 96.0 3.63
RoBERTa-large 93.0 3.53
BART-large 92.8 3.55

Table 12: Influence of surrogate model variations on
obfuscation effectiveness in question answering.

(a) Classification accuracy.

(b) MTI attack. (c) EI attack.

Figure 5: Impact of hyperparameters k and λ.

trained knowledge representation and superior task943

execution capacity, particularly beneficial for com-944

plex textual question answering scenarios.945

A.6 Impact of Hyperparameters946

We perform ablation studies on the hyperparame-947

ters k and λ, using BART-large as the surrogate948

model on the SST dataset. The parameter k is var-949

ied from 0.1 to 0.5 in increments of 0.1, while λ950

ranges from 5 to 20 in increments of 5. The results951

are illustrated in Figure 5.952

Regarding privacy protection performance, the953

Attack Top1 metric decreases monotonically with954

increasing k, demonstrating improved privacy955

preservation at higher obfuscation levels. For MTI956

Attack, larger λ values lead to reduced Top1 scores,957

with the most substantial enhancement occurring958

between λ = 5 and λ = 10. This improvement959

stems from more diverse contextual information960

generating varied MTI predictions. The EI Attack961

Top1 depends exclusively on k, as this attack ana- 962

lyzes perturbed words independently of their con- 963

textual surroundings. 964

Concerning task utility preservation, classifica- 965

tion accuracy exhibits a gradual decline as k in- 966

creases, with the most pronounced performance 967

degradation observed between k = 0.4 and k = 968

0.5. When k exceeds 0.3, the system becomes 969

sensitive to λ variations, where higher values ad- 970

versely affect performance due to excessive word 971

substitutions compromising semantic integrity and 972

contextual coherence. 973

Our analysis reveals a fundamental trade-off be- 974

tween privacy protection and task utility with re- 975

spect to parameters k and λ. While increasing ei- 976

ther parameter improves privacy preservation, this 977

comes at the expense of reduced performance. The 978

optimal operating regime occurs when k ≤ 0.4 and 979

λ ∈ [10, 20), achieving an effective balance be- 980

tween these competing objectives. Based on these 981

findings, we establish λ = 10 as the default config- 982

uration. 983
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