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Abstract

With the widespread use of LLMs, preserving
privacy in user prompts has become crucial,
as prompts risk exposing privacy and sensitive
data to the cloud LLMs. Conventional tech-
niques like homomorphic encryption, secure
multi-party computation, and federated learn-
ing face challenges due to heavy computational
overhead and user participation demands, lim-
iting their applicability in LLM scenarios. In
this paper, we propose PromptObfus, a novel
method for desensitizing LLM prompts. The
core idea of PromptObfus is "anti-adversarial"
learning, which perturbs privacy words in the
prompt to obscure sensitive information while
retaining the stability of model predictions.
Specifically, PromptObfus frames prompt de-
sensitization as a masked language modeling
task, replacing privacy-sensitive terms with a
[MASK] token. A desensitization model is uti-
lized to generate candidate replacements for
each masked position. These candidates are
subsequently selected based on gradient feed-
back from a surrogate model, ensuring minimal
disruption to task output. We demonstrate the
effectiveness of our approach on three NLP
tasks. Results show that PromptObfus effec-
tively prevents privacy inference from remote
LLMs while preserving task utility. Our code
is publicly available at https://anonymous.
4open.science/r/PromptObfus-BF36/.

1 Introduction

The widespread adoption of large language models
(LLMs) such as ChatGPT in various NLP tasks
(Hong et al., 2024; Carlini et al., 2019) has raised
significant concerns regarding their inherent pri-
vacy risks. Due to the substantial computational
resources required for local deployment, users of-
ten rely on cloud APIs provided by model vendors,
which introduces potential vulnerabilities. Specifi-
cally, user-submitted prompts, the primary medium
of interaction with LLMs, may inadvertently ex-
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Figure 1: Ilustration of prompt desensitization.

pose sensitive information, posing serious privacy
threats.

Prompts often contain personally identifiable in-
formation (PII), including names, addresses, and
occupational details, as illustrated in Figure 1.
Without proper safeguards during processing, these
sensitive data become vulnerable to malicious ex-
ploitation, leading to serious privacy breaches
(Hong et al., 2024). Thus, developing robust pri-
vacy protection mechanisms for LLM prompts has
become an urgent research priority.

Conventional privacy-preserving techniques,
such as Homomorphic Encryption (HE) (Gentry,
2009), Secure Multi-Party Computation (MPC)
(Yao, 1982), and Federated Learning (FL) (McMa-
han et al., 2017), exhibit significant limitations
when applied to prompts for LLMs, particularly
in black-box settings where access to the model’s
internal architecture or training data is restricted.
These methods often fail to simultaneously address
the competing requirements of real-time perfor-
mance, computational efficiency, and robust pri-
vacy protection.

Text obfuscation has emerged as a prevalent ap-
proach to safeguarding sensitive information in
prompts (Miranda et al., 2025). For instance, tech-
niques include injecting noise into word embed-
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dings based on differential privacy to perturb sen-
sitive data (Yue et al., 2021; Gao et al., 2024),
clustering word vectors to render representations
of sensitive terms indistinguishable (Zhou et al.,
2023), and training models for data anonymiza-
tion by detecting and removing PII entities (Chen
et al., 2023; Frikha et al., 2025). However, these
methods often struggle to achieve an optimal trade-
off between privacy preservation and task utility
(Zhang et al., 2024). Furthermore, approaches that
rely on model training typically necessitate expert-
annotated datasets, which are challenging to pro-
cure in practical applications.

In this paper, we propose PromptObfus, a
portable and task-flexible method for desensitiza-
tion of LLM prompts. Inspired by the work on gen-
erating adversarial examples (Alzantot et al., 2018),
we introduce the concept of anti-adversariality,
which aims to obscure sensitive words in prompts
while preserving the integrity of model predictions.
PromptObfus achieves desensitization by replacing
words with semantically distinct yet task-consistent
alternatives, thereby ensuring robust privacy pro-
tection without compromising the original func-
tionality of the prompts. PromptObfus operates
through the deployment of two small local models:
a desensitization model, which replaces sensitive
words with privacy-preserving alternatives, and a
surrogate model, which emulates the task execu-
tion of the remote LLM to guide prompt selection.
The pipeline consists of three critical steps: gener-
ating desensitized alternatives for privacy-sensitive
words, assessing the task utility of the LLM, and
selecting replacements that minimize performance
degradation.

We evaluate PromptObfus on three NLP tasks:
sentiment analysis, topic classification, and ques-
tion answering. The results demonstrate that our
approach establishes new state-of-the-art privacy
protection, achieving a 62.70% reduction in im-
plicit privacy inference attack success rates com-
pared to existing high-accuracy baselines, while
completely eliminating explicit inference attacks.
Notably, our approach simultaneously preserves
competitive task utility, yielding accuracy scores
of 86.67%, 85.25%, and 96.0%, respectively.

Our contribution can be summarized as follows:

* We introduce the novel concept of anti-
adversariality, a pioneering approach for de-
sensitizing LLM prompts that ensures robust
privacy protection without compromising task

utility.

* We propose a new privacy-preserving word
replacement algorithm, which integrates
masked word prediction with LLM gradient
surrogation to achieve optimal desensitization.

* We conduct extensive evaluations of our
method across multiple NLP tasks, demon-
strating its effectiveness in preserving privacy
while preserving task utility.

2 Related Work

Privacy Protection for LLMs. Despite their
widespread utility, LLMs raise critical privacy con-
cerns (Mireshghallah et al., 2024). Current research
addresses these through: (1) model protection via
federated learning (Hu et al., 2024; Liu et al., 2025)
and homomorphic encryption (Hao et al., 2022); (2)
prompt security using encryption (Lin et al., 2024)
and noise-based obfuscation (Zhou et al., 2023;
Gao et al., 2024); and (3) PII detection/removal
techniques (Chen et al., 2023; Sun et al., 2024;
Chowdhury et al., 2025). Hybrid input strategies
mixing real and synthetic data further enhance pri-
vacy (Utpala et al., 2023).

Automatic Prompt Engineering. Automatic
prompt generation leverages Al to produce privacy-
preserving prompts, offering superior performance
compared to manual approaches (Zhou et al., 2022).
Notable frameworks include APE (Yang et al.,
2024), which iteratively refines prompts by select-
ing and resampling candidate prompts; APO (Zhou
et al., 2022), employing gradient-inspired feedback
optimization; and OPRO (Pryzant et al., 2023),
utilizing LLMs as meta-optimizers for prompt im-
provement.

Text Adversary Generation. Adversarial training
is a technique aimed at improving model robust-
ness against malicious or deceptive inputs, widely
applied in domains such as computer vision, NLP,
and speech recognition. In this approach, models
are systematically exposed to adversarial examples
(Goodfellow et al., 2014), which are inputs subtly
modified to induce significant changes in model
outputs. Genetic algorithms are employed to gen-
erate semantically equivalent adversarial samples
(Alzantot et al., 2018), selecting synonyms that
maximize the likelihood of the target label. More
recently, LLLMs are utilized to produce adversarial
samples (Wang et al., 2023).

In contrast to existing approaches, we propose
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Figure 2: Overview of PromptObfus.

an anti-adversarial method for the desensitization
of LLM prompts, which ensures that model outputs
remain consistent while rendering sensitive content
imperceptible to human interpretation.

3 Approach

Inspired by the principles of adversarial example
generation (Alzantot et al., 2018), we conceptual-
ize our approach as an anti-adversarial framework,
wherein the objective is to obfuscate sensitive in-
formation while preserving the original behavior
and predictive performance of the model.

3.1 Problem Statement

Consider an LLM ®(y|z) with parameters ® and a
downstream task (e.g., question answering) charac-
terized by a parallel dataset 7 = {(:c(i) , y(i))}fil,
where z and y represent input prompt and target
output, respectively. We formulate the following
privacy-preserving transformation problem: Given
a set of privacy attributes P = [p1,. .., pmn] and
an input x = {x1,...,x,}, our goal is to derive a
desensitized prompt z’ = {z], ..., 2} } that elimi-
nates all P-attributes while preserving task utility.
Formally:

min

@/=M (x| A k) Is(®(@),5) = s(®(z), )l

st. x, ¢ P Vi, e
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Here, M (z|)\, k) denotes a desensitization map-
ping function, where A controls the candidate re-
placement set size for each sensitive term, and k
modulates the confusion ratio. The task-specific
metric s : Y X Y — R (e.g., BLEU for QA) evalu-
ates utility preservation.

3.2 Overview

Our approach is designed to optimize the desensiti-
zation function M (x|, k) to preserve LLM output
fidelity while eliminating privacy risks. Figure 2
illustrates the overall architecture of PromptObfus.
The pipeline consists of three steps: (1) detecting
privacy attributes and generating candidate replace-
ments using a dedicated desensitization model; (2)
assessing utility preservation through a surrogate
model by comparing with the original prompt’s
performance; and (3) performing gradient-based
optimization to select the most suitable replace-
ments from candidates, ultimately producing the
final privacy-preserving prompt.

3.3 Predicting Candidate Desensitive Words

For each privacy-sensitive word in an input prompt,
PromptObfus generates a set of candidate replace-
ments through desensitization. This process can be
formalized as a Masked Language Model (MLM)
task, where privacy-sensitive words are substituted
with a mask token. The desensitization model is uti-
lized to predict precisely A candidate desensitized
replacements for each masked position. By leverag-
ing pre-trained semantic representations, the model
ensures all candidate replacements maintain con-
textual appropriateness relative to the surrounding
text. This approach preserves textual coherence and
prompt functionality while effectively concealing
sensitive information through semantically valid
substitutions.

We utilize spaCy’s named entity recognition
(NER) model' to detect explicit privacy attributes
like person names, locations, and organizations.
All identified privacy-sensitive words are uniformly

"https: //spacy.io/models/en/#en_core_web_trf
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replaced with MASK tokens. Beyond explicit at-
tributes, we address potential implicit privacy risks
through contextual analysis. Specifically, we mask
rare words identified by their TF-IDF scores (Vats
et al., 2024; Sparck Jones, 1988), as these terms
are statistically more likely to contain identifiable
information. The top k highest-scoring terms are
selected for masking.

Next, a pre-trained language model, referred to
as the desensitization model, is utilized to generate
potential replacement candidates for each masked
token, as shown in Figure 3. This model can em-
ploy any pre-trained language architecture with
MLM capability, such as RoBERTa.

To mitigate the risk of privacy leakage through
synonyms or near-synonyms, the desensitized word
set is further refined by assessing semantic simi-
larity. For each candidate word w;, we calculate
its Euclidean distance to the original words Zoriginal
using word embeddings:

d(xoriginah wi) = ||$oréinal - 1171” (2)

where Zoriginal and w; represent the word vectors of
the original and desensitized words, respectively,
and || - || denotes the Euclidean norm.

A distance threshold 6y filters the desensi-
tized word set. Words with Euclidean distance
d(Toriginal, wi) < Ogist are removed for semantic
similarity. The filtered set is defined as:

Whiltered = {wi eWw | d(xoriginalv wi) > gdist}
(3)
where Whereq denotes the refined candidate set
after exclusion.

3.4 Assessing Task Utility

To preserve task utility, we design a gradient-based
selection criterion for desensitized words. Gradient
magnitudes serve as indicators of input sensitivity:
larger values suggest substantial semantic distor-
tion from word replacement, while smaller values
imply better semantic preservation with minimal
output perturbation.

Since direct gradient acquisition from remote
LLMs is infeasible, PromptObfus employs a
smaller white-box surrogate model M gyrogate tO
approximate the target LLM’s behavior. This com-
putationally efficient alternative enables both task
evaluation and gradient computation while main-
taining manageable resource requirements. Promp-
tObfus supports two types of surrogate models:

1) Task-specific model: When adequate task-
specific data D = {(x,y)} exists, a lightweight
fine-tuned model provides precise, task-aware gra-
dient estimates for prompt desensitization.

2) General model: For data-scarce scenarios, a
moderately-sized pre-trained language model (still
substantially smaller than target LLMs) serves as
the surrogate. This variant produces less task-
specific but more generalizable gradient approx-
imations.

3.5 Gradient Filtering

PromptObfus utilizes gradient magnitudes from the
surrogate model M gy;rogate 10 assess desensitized
candidates in Wjsereq, selecting the word corre-
sponding to the minimal gradient value.

For each candidate word w € W ;jtereq, Promp-
tObfus generates a modified prompt 2’ and com-
putes its output gradient. Formally, the gradient
magnitude is calculated as:

(9E(y7 Msurrogate(xl[i — w]))
ox'

sco-| E

where 7 indicates the target word position, A;(w)
captures the gradient sensitivity, and £ represents
the task loss function. Through iterative evaluation,
the optimal replacement w* is selected via:

*

w* =arg min

wEWfiltered

Ai(w) 5)

Finally, PromptObfus substitutes the privacy-
sensitive word at position ¢ with the optimal re-
placement w*, iterating this procedure across all
masked positions. This sequential filling approach
selects each replacement by considering both local



contextual constraints and global semantic coher-
ence from prior substitutions, thereby preserving
task utility while preserving text semantics.

4 Experiments Setup

We evaluate the effectiveness of PromptObfus
across two critical dimensions, emphasizing its ca-
pacity to maintain robust privacy protection while
preserving task utility. To demonstrate its practi-
cal utility, we apply PromptObfus to three NLP
tasks: sentiment analysis, topic classification, and
question answering. These tasks represent diverse
real-world applications and provide a comprehen-
sive assessment of the method’s applicability.

To evaluate PromptObfus’s privacy protection
capabilities, we simulate adversarial attacks to as-
sess whether sensitive information can be extracted
from desensitized prompts. We consider three
attack strategies, including two text reconstruc-
tion methods and one privacy inference method:
Embedding Inference (EI), Mask Token Inference
(MTY), and PII Inference. EI (Qu et al., 2021) mea-
sures the semantic similarity between each word
representation and a publicly available word em-
bedding matrix, predicting sensitive content based
on the nearest neighbors. MTI (Yue et al., 2021)
masks tokens in desensitized prompts and assesses
the attacker’s success in reconstructing the original
text. PII Inference (Plant et al., 2021) examines
textual patterns to deduce private user attributes.

4.1 Baselines

We compare PromptObfus against six state-of-the-
art privacy-preserving methods and the original
unprotected text. 1) Random Perturbation, which
randomly substitutes a portion of tokens in the text
with arbitrary words. 2) Presidio®, an automated
tool for detecting and redacting sensitive informa-
tion including names, locations, and other person-
ally identifiable information. 3) SANTEXT (Yue
etal., 2021), a differential privacy approach that de-
termines word replacement probabilities based on
Euclidean distances in embedding space. 4) SAN-
TEXT+ (Yue et al., 2021), an improved variant of
SANTEXT that incorporates word frequency in-
formation to optimize replacement probabilities.
5) DP Prompt (Utpala et al., 2023), a method
that employs LLMs to paraphrase original prompts
while preserving privacy. 6) PromptCrypt (Lin

Zhttps://microsoft.github.io/presidio/

Dataset Split Number of Samples
Train 67,349
SST-2 Validation 872
Test 1,821
Train 120,000
AG News Validation 7,600
Test 7,600
PersonalPortrait ‘ Test 400

Table 1: Statistics of the datasets.

et al., 2024), which transforms original prompts
into emoji sequences using large models.

4.2 Evaluation Metrics

Privacy Protection Metrics. We measure the po-
tential leakage of private information to third-party
attackers through quantitative evaluation. Two key
metrics are adopted to assess privacy protection per-
formance: TopK accuracy and success rate. TopK
Accuracy (Zhou et al., 2023) evaluates token-level
privacy by computing the proportion of correctly
inferred words among the top k predictions gener-
ated by third-party attackers. Success Rate (Plant
et al., 2021) measures the exposure risk of person-
ally identifiable information by determining the
percentage of successfully extracted PII entities rel-
ative to the total identifiable information present.

Task Utility Metrics. To assess PromptObfus’s
capability in preserving task utility, we measure
the model’s accuracy when processing desensitized
prompts. Our evaluation employs two standard met-
rics: accuracy and answer quality score. Accuracy
quantifies the proportion of correct predictions rela-
tive to the total number of test instances, applicable
to both classification and question answering tasks.
Answer Quality Score evaluates the overall quality
of responses, considering factors including correct-
ness, relevance, completeness, and readability. For
automated assessment, we employ GPT-4o0-mini
as an evaluator, with the complete scoring rubric
provided in Appendix A.2.

4.3 Datasets

Our evaluation employs two established benchmark
datasets: SST-2 (Socher et al., 2013) for sentiment
analysis and AG News (Zhang et al., 2015) for
topic classification. Since existing QA datasets typ-
ically contain anonymized or desensitized content
and are therefore unsuitable for privacy evaluation,
we develop PersonalPortrait, a specialized dataset



Approach Acc.T MTI Topl] EITopl| PISuccess Rate] Avg. Ranking]
Origin 87.50 31.37 - - -
Random 83.75 (4) 17.10 (2) 83.78 (7) 97.50 (9) 5.50
Presidio 83.25 (6) 23.28 (5) 71.53 (6) 0.00 (1) 4.50
SANTEXT 61.50(8) 2143(3)  62.10(5) 41.75 (7) 575
SANTEXT+ 55.25(9) 11.04 (1) 49.09 (1) 34.25 (6) 4.25
DP-Prompt 85.00 (2) - - 96.25 (8) 5.00
PromptCrypt 72.00 (7) - - 13.50 (5) 6.00
PromptObfus (k=0.1)  85.25 (1) 24.68 (7) 61.86 (4) 0.00 (1) 3.25
PromptObfus (k=0.2) 84.50 (3) 23.31 (6) 55.82(3) 0.00 (1) 3.25
PromptObfus (k=0.3)  83.75 (4) 22.89 (4) 49.65 (2) 0.00 (1) 2.75

Table 2: Performance of privacy protection and task utility with detailed rankings on the AG News sentiment
analysis task. In the PI Attack, the AG News dataset does not explicitly label privacy attributes. Therefore, the
attack assumes that named entities (e.g., person names, locations) represent explicit privacy attributes and targets
these for evaluation. The individual rankings are indicated in ( ).

comprising 400 sensitive psychological counseling
dialogues. These patient narratives are generated
using GPT-4 and subsequently validated through
rigorous manual review by two domain experts
to ensure both authenticity and privacy relevance.
Complete dataset statistics are presented in Table
1, while the detailed construction process is docu-
mented in Appendix A.1.

4.4 Implementation Details

We implement PromptObfus by utilizing three
open-source language models: RoBERTa-base? as
the core desensitization model, BART-large* as
the task-specific surrogate model for classification
tasks, and GPT-Neo-1.3B? as the general surrogate
model for question answering tasks, selected based
on dataset size considerations.

To ensure a fair comparison, we maintain a con-
sistent obfuscation ratio across all word-level pro-
tection baselines and PromptObfus. As DP Prompt
and PromptCrypt operate at the prompt level rather
than the word level, they are evaluated solely us-
ing PI Attack rather than MTT or EI Attack. All
experiments employ the original parameter con-
figurations from their respective publications, with
GPT-40-mini implemented as the remote LLLM. Fur-
ther details on hyperparameter configurations are
provided in Appendix A.3.

5 Results and Analysis

5.1 Overall Performance

Table 2 presents the experimental results on the AG
News dataset (further details for other datasets are
*https://huggingface.co/FacebookAl/roberta-base

*https://huggingface.co/facebook/bart-large
>https://huggingface.co/EleutherAl/gpt-neo-1.3B

provided in Appendix A.4). PromptObfus (k =
0.3) demonstrates superior performance with an
average ranking of 2.75, surpassing all baseline
methods.

Privacy Protection. The PI attack attains a
0.00% success rate against PromptObfus-generated
prompts, confirming complete privacy preservation.
Comparative methods (SANTEXT+, DP Prompt,
PromptCrypt) exhibit significantly higher vulner-
ability, as they modify linguistic structures rather
than implementing targeted PII protection. For EI
Attack, PromptObfus (k = 0.3) achieves a 49.65%
success rate, outperforming all baselines except
SANTEXT+.

Task Utility Preservation. PromptObfus main-
tains 85.25% classification accuracy at k£ = 0.1,
representing only a 2.57% decrease from the orig-
inal text. This performance exceeds that of other
word-level protection techniques, such as Presidio
(83.25%) and SANTEXT+ (55.25%).

These results collectively indicate that PromptO-
bfus successfully achieves robust privacy protec-
tion against remote LLM attacks while preserving
the original model’s task performance, establish-
ing an optimal privacy-utility tradeoff among all
evaluated methods.

5.2 Ablation Studies

Impact of Surrogate Model. We investigate the
impact of architectures and scales of the surro-
gate model across three model types: encoder-only
(RoBERTa), decoder-only (GPT2), and encoder-
decoder (BART) architectures. The evaluation
spans three model sizes: base (~130M parameters,
e.g., RoBERTa-base), medium (~350M parame-
ters, e.g., RoBERTa-large, BART-large, GPT-2-



Approach Acc.t MTITopl] EITopl|

Original Data 87.20 48.86 -

GPT2-base 84.00 42.34 81.80
Roberta-base 84.80 42.66 81.71
BART-base 86.40 42.47 81.73
GPT2-medium  84.53 43.99 81.75
Roberta-large 85.87 42.51 81.71
BART-large 86.67 42.94 81.72
Llama-2-7B 84.80 42.47 81.75
ChatGLM3-6B  84.53 42.94 81.72

Table 3: Impact of surrogate model variations on obfus-
cation effectiveness in sentiment analysis.

Approach (k=0.1) Acc.f MTITopl| EI Topl|
85.25 24.68 61.86
84.25 24.33 63.98

PromptObfus

Random masking

Table 4: Performance of privacy protection and task
utility on the AGNews topic classification task evaluated
under random masking and PromptObfus.

medium), and large (Llama-2-7B, ChatGLM3-6B).
Limited by computational resources, we employ
full-parameter fine-tuning for small and medium
models, while utilizing Low-Rank Adaptation
(LoRA) for large models.

The experimental results for sentiment analy-
sis are presented in Table 3, with corresponding
question answering results provided in Appendix
A.5. We observe that privacy protection efficacy
remains unaffected by either the architecture or
scale of the surrogate model. Medium-scale mod-
els demonstrate superior performance compared
to their larger counterparts, as the task complex-
ity does not warrant additional model capacity,
and LoRA may limit fine-tuning effectiveness.
Encoder-decoder architectures achieve optimal per-
formance by effectively integrating the encoder’s
classification capabilities with the decoder’s align-
ment to remote model requirements.

Impact of Masking Strategy. We examine the
effectiveness of different masking strategies in pre-
venting implicit privacy leakage. Our compari-
son focuses on two approaches: random masking,
where tokens are selected uniformly at random,
and PromptObfus, a TF-IDF-based method that tar-
gets the least frequent tokens. Experimental results
on the AGNews dataset reveal that PromptObfus
achieves superior performance in both privacy pro-
tection and utility preservation compared to random

Approach (k=0.1) Acc.f MTI Topl| EI Topl,|

PromptObfus 85.25 24.68 61.86
Top-1 Selection 84.75 35.06 79.50
Random Selection  83.75 25.14 66.52
<MASK> 83.25 27.55 63.96

Table 5: Performance of privacy protection and task
utility on the AGNews topic classification task evaluated
under different strategies for selecting the candidate
desensitized words.

—&— PromptObfus
150 1-—@— Presidio

—8— SANTEXT
125 4 -%- SANTEXTPLUS
DP-Prompt
100 | —— PromptCrypt

50 4

Elapsed Time (seconds)
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Processed Tokens

Figure 4: Elapsed time increases linearly with the num-
ber of processed tokens across different methods.

masking, as detailed in Table 4.

Impact of Gradient Filtering. We evaluate four
candidate selection strategies for word desensiti-
zation: (1) PromptObfus’s default gradient-based
strategy, which minimizes downstream task im-
pact by selecting tokens with smallest output gra-
dient magnitudes; (2) top-1 prediction based on
model confidence; (3) random selection from can-
didates; and (4) direct ‘<MASK>* token insertion
as a baseline. We set the number of candidate
desensitized words () to 10. The experimental re-
sults on the AGNews dataset are shown in Table 5,
demonstrating that PromptObfus’s gradient-based
approach achieves an optimal balance between pri-
vacy preservation and task utility.

Additionally, a detailed examination of hyperpa-
rameters k£ and A is presented in Appendix A.6.

5.3 Time Efficiency Evaluation

We evaluate PromptObfus’s computational effi-
ciency on an NVIDIA RTX 3090 GPU with CUDA
v12.4. All comparative methods are executed un-
der identical configurations to ensure fair compar-
ison. The results are presented in Figure 4. Our
method achieves an optimal balance between com-
putational efficiency and privacy preservation. No-
tably, the system exhibits a processing rate of 100
tokens in 2.58 seconds, demonstrating practical
runtime performance for real-world applications.



Original Text:

I'ma 39 -year-old driver in Toronto , and I often feel like my emotions are all over the place...

abuser a 39 -year-old driver in Toronto , moha palmery often feel like my emotions are all over

I’'m a <DATE> driver in <GPE>, and I often feel like my emotions are all over the place...
jagger rehashed a hardy - year - old driver in women , and obscure often feel like my emotions

jagger rehashed a fidel 15 year 3 old driver in motion , and esoteric seldom feel like my emotions

I'ma 39 -year-old driver in Toronto , and my emotions can be unpredictable...

Random:
shady place...
Presidio:
SANTEXT:
are all over the place...
SANTEXT+:
are all putting the however...
DP-Prompt:
PromptCrypt: e, @D -89 >0,

PromptObfus (k=0.1):
PromptObfus (k=0.2):
PromptObfus (k=0.3):

I’'m a commercial driver of two and I often feel like my emotions are all over the place...
I’m a commercial assistant in LA and I often feel like my emotions flow all over the world...
I’'m one professional assistant in general and I often feel like my emotions are hovering throughout...

Table 6: A case of desensitized prompts generated by various methods for question answering.

Model GPT-40-mini GLM-4-plus Meta Al
GPT2 84.53 91.2 91
ChatGLM3-6B 84.53 91.0 89
Llama2-7B 84.80 90.8 90
BART 86.67 914 91

Table 7: Classification accuracy of local-remote model
combinations on the sentiment analysis (SST) task.
Columns denote remote models, while rows denote lo-
cal models.

5.4 Transferability

We further explore the transferability of trained
surrogate models across different platform combi-
nations. Experiments evaluate local-remote model
pairings from three providers: OpenAl, Meta, and
Zhipu. Experimental results, presented in Table
7, indicate that cross-platform model combina-
tions maintain comparable obfuscation effective-
ness, showing strong transferability across vendors.
For additional validation, we test BART-large, the
best-performing independent model from previous
experiments, with all three remote models. The
results consistently show BART-large’s superior
performance in every configuration.

5.5 Case Study

Table 6 illustrates an example of desensitized
prompts generated by various methods for question-
answering. The original text contains identifiable
sensitive information including age ("39-year-old"),
occupation ("driver"), and location ("Toronto").
PromptObfus successfully replaces explicit private
attributes (age, location) with de-identified terms,
ensuring robust privacy protection. At k = 0.2
and k£ = 0.3, the obfuscation intensity increases,

and implicit privacy details, such as occupation
("driver"), are substituted with more ambiguous
terms like "assistant" while preserving semantic
coherence and readability.

In contrast, the Random method fails to accu-
rately identify and modify sensitive information,
leading to the leakage of all privacy-related terms
and a lack of textual coherence. Presidio is limited
to handling predefined temporal and geographic
patterns, offering insufficient flexibility and failing
to protect occupation-related privacy. Meanwhile,
SANTEXT and SANTEXT+ introduce excessive
noise, rendering the sentences overly disordered
and degrading task utility. DP-Prompt results in
privacy leakage, while PromptCrypt, despite pro-
tecting privacy, employs overly simplistic and ab-
stract symbols, causing significant performance
degradation.

6 Conclusion

In this paper, we introduces PromptObfus, a novel
method for privacy-preserving prompt desensiti-
zation in LLMs. Its core idea is anti-adversarial
learning, which simultaneously preserves model
output fidelity while preventing human interpreta-
tion of sensitive content. PromptObfus achieves
this by replacing sensitive words in user prompts
with semantically distant yet task-consistent alter-
natives, minimizing impact on task utility. Evalua-
tions across three NLP tasks demonstrate PromptO-
bfus’s effectiveness in safeguarding privacy against
cloud-based LLM attacks while maintaining origi-
nal task utility levels. The results establish Promp-
tObfus’s superior privacy-utility balance compared
to existing baseline methods.



Limitations

We have identified two limitations of PromptObfus:

Partial coverage of implicit privacy attributes:
Our approach identifies potential privacy-related
terms through TF-IDF scoring, which effectively
reduces but does not fully eliminate privacy leak-
age. This limitation stems from incomplete detec-
tion of all sensitive attributes. Future improvements
should develop more sophisticated privacy attribute
detection mechanisms.

General model constraints: The reliance on
general-purpose models, necessitated by limited
annotated QA datasets, results in suboptimal per-
formance compared to task-specific models. Inves-
tigating few-shot learning approaches (Brown et al.,
2020) could address this data scarcity challenge in
future work.
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A Appendix

A.1 PersonalPortrait Construction

Inspired by the D4 dataset (Yao et al., 2022) and
the PersonalReddit dataset (Staab et al., 2023),
which synthesize text from personal profiles, we
develop authentic patient profiles incorporating de-
mographic characteristics (gender, occupation, lo-
cation) and psychiatric conditions to simulate clin-
ical counseling dialogues. The QA task focuses
on mental health diagnosis, where models must
identify specific disorders (e.g., depression, anx-
iety) through symptom analysis (e.g., insomnia,
persistent sadness, anxious thoughts) present in the
counseling transcripts.
The dataset synthesis involves three key stages:
1. Profile generation: Diverse patient profiles are
created by randomly sampling demographic
attributes (age, gender, location, occupation)
and psychiatric conditions from predefined
clinical categories.

2. Text generation: GPT-4 synthesizes clinically
coherent self-reports based on generated pro-
files, capturing authentic symptom presenta-
tions and personal histories (see Appendix A.2
for generation templates).

Clinical validation: Generated texts undergo
expert review to verify diagnostic accuracy,
symptom plausibility, and therapeutic appro-
priateness.

Each entry in the PersonalPortrait dataset con-
tains:

* Clinical Narrative: A first-person account
simulating psychological counseling sessions,
documenting symptom presentation, behav-
ioral patterns, and psychosocial experiences
related to mental health conditions.

Age: Integer values uniformly distributed be-
tween 18 and 65 years.

Location: Randomly sampled from 20 prede-
fined English-speaking geographical regions.

Gender: Binary classification (male/female)
with equal probability.

Occupation: Profession randomly selected
from a standardized list of 20 common oc-
cupations.

Clinical Diagnosis: Mental health disorder
randomly assigned from 10 prevalent psychi-
atric conditions following DSM-5 classifica-
tion criteria.
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A.2 Prompt Templates

We present the core prompt templates utilized in
our study, where TEXT indicates the desensitized
prompt, ORIGINAL TEXT corresponds to the un-
protected original prompt, and ANSWER signifies
the LLM-generated response. Attributes such as
AGE and GENDER are randomly sampled from
predefined categories.

Prompt for Generating Samples for PersonalPortrait

System Prompt:

You are a patient and are seeing a
psychiatrist.

User Prompt:

Describe to a psychiatrist in the
typical voice of a <<<AGE>>>-year-old
< <<GENDER>>> << <OCCUPATION>>>
with  sympthons of  <<<DISORDER>>>
in <<<LOCATION>>>. The self-report

MUST reflect the patient’s LOCATION and
OCCUPATION. 100 words or less.

Prompt for Sentiment Analysis Task

System Prompt:
Classify the sentiment of each sentence

in < < <SENTENCE>>> as "Positive’
or ’Negative’. Give the sentiment
classifications without any other preamble
text.

###EXAMPLE SENTENCE

Highly recommend this company for travel
plans involving rail.

EXAMPLE OUTPUT

Positive#i##

User Prompt:
<K LTEXT>>>

Prompt for Topic Classification Task

System Prompt:

Classify the topic of each news article
in <<<NEWS>>> as ’World’, ’Sports’,
’Business’, or ’Sci/Tech’. Give the topic
classification without any other preamble
text.

#H#H#EXAMPLE NEWS

Dollar Briefly Hits 4-Wk Low Vs Euro LONDON
(Reuters) - The dollar dipped to a four-week
low against the euro on Monday before rising
slightly on profit-taking, but steep oil
prices and weak U.S. data continued to fan
worries about the health of the world’s
largest economy.

EXAMPLE OUTPUT

Business#i##

User Prompt:
<K LTEXT>>>




Prompt for Question Answering Task

System Prompt:

You are an experienced psychologist.
Your task is to listen to the patient’s
self-description and a most likely mental
health diagnosis based on their symptoms.

User Prompt:
<K LTEXT>>>
Diagnosis:

Prompt for Scoring Answer Quality

System Prompt:

You are an experienced psychologist with
expertise in mental health diagnoses. Your
task is to assess the quality of a diagnosis
based on the patient’s self-description.
You will evaluate the diagnosis on four
dimensions, each on a scale from 1 to
5, where 1 indicates poor performance and

5 indicates excellent performance. After
evaluating all four dimensions, please
also provide an overall score (1 to 5)

that reflects your holistic judgment of
the diagnosis quality.Please consider the
following criteria:

Correctness - How clinically accurate is
the diagnosis in 1light of the symptoms

described?

Relevance - How well does the diagnosis
relate to and reflect the patient’s specific
symptoms?

Completeness — Does the diagnosis address
all key aspects of the patient’s
self-report without overlooking significant
information?

Readability - Is the diagnosis
clearly written, well-structured, and
understandable?

User Prompt:

The patient has provided the following
self-description. The diagnosis made by the
doctor is as follows: TEXT:<<<ORIGINAL
TEXT>>> Diagnosis: <<<ANSWER>>> Please
provide a score from 1 to 5 for each
of the following dimensions: Correctness,
Relevance, Completeness, Readability. Then,
based on the four criteria above, provide
an Overall Score (1 to 5) that reflects your
general assessment of the diagnosis.

A.3 Hyperparameter Setting

The model training configurations are specified in
Tables 8 and 9. For Llama-2-7B and ChatGLM3-
6B, we implement Low-Rank Adaptation (LoRA),
whereas other models undergo standard full-
parameter fine-tuning. Optimization is performed
using Adam with standard parameters: 5; = 0.9,
Ba = 0.999, and € = 1 x 1078, All model usage
strictly adheres to respective licensing agreements.

The experiments are conducted on an Ubuntu
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Dataset | Model ‘ Ir ‘ bs ‘ epoch
Roberta-base 2e-5 | 32 4
Roberta-large | 3e-5 | 32 4
BART-base 2e-5 | 32 4
BART-large 3e-5 | 32 4

SST2 - GPTabase 35|32 4
GPT2-medium | 3e-5 | 32 4
Llama-2-7B 2e-4 | 16 2
ChatGLM3-6B | 2e-4 | 16 2

AG News | BART-large | 3e-5 [ 32| 5

Table 8: Hyperparameters setting for model training.

Dataset ‘ Model

‘ Llama-2-7B
| ChatGLM3-6B |

‘ alpha ‘ dropout ‘ r

16 | 01 |64
16 | 01 [o4

SST-2

Table 9: LoRA hyperparameters setting for model train-
ing.

23.10 server with vCUDA 12.4, utilizing an Nvidia
GeForce RTX 3090 GPU.

A.4 Results on Other Datasets

Tables 10 and 11 present the results on the senti-
ment analysis and question answering tasks, respec-
tively. We can observe that PromptObfus consis-
tently achieves an optimal trade-off between pri-
vacy protection and task utility, exhibiting superior
performance compared to baseline methods. This
performance advantage aligns with the observa-
tions from the sentiment analysis task.

Privacy Protection. PromptObfus exhibits supe-
rior privacy preservation across both evaluation
tasks. For instance, the question answering assess-
ment examines two privacy attributes: Location (ex-
plicitly stated information) and Occupation (implic-
itly derived sensitive data). In the PI Inference of
Location, PromptObfus achieves an attack success
rate of 0.00%, indicating complete privacy protec-
tion. In the PI Inference of Occupation, PromptOb-
fus achieves the second-lowest attack success rate
at 17.25%, trailing only PromptCrypt (11.00%).
Compared against high-accuracy baselines exceed-
ing 90% accuracy, PromptObfus attains a 62.70%
decrease in implicit privacy inference attack suc-
cess rates.

Task Utility Preservation. In the sentiment anal-
ysis task, PromptObfus maintains strong utility
preservation, achieving 86.67% accuracy at k =
0.1, comparable to baseline methods (87.20%)



Approach Acc.T MTI Topl] EITopl| PISuccess Rate] Avg. Ranking]
Origin 87.20 48.86 - - -
Random 69.87(7) 3591 (3)  90.47 (7) 83.47 (8) 6.25
Presidio 84.80 (5) 44.63 (7) 90.45 (6) 0.00 (1) 4.75
SANTEXT 4925(9)  2015(1)  73.67(2) 92.53 (9) 5.25
SANTEXT+ 58.93 (8) 23.40 (2) 76.93 (4) 7547 (7) 5.25
DP-Prompt 86.30 (4) - - 72.53 (6) 5.00
PromptCrypt 89.86 (1) - - 54.67 (5) 3.00
PromptObfus (k=0.1) 86.67 (2) 42.94 (6) 81.72 (5) 0.00 (1) 3.50
PromptObfus (k=0.2) 86.40 (3) 41.48 (5) 74.67 (3) 0.00 (1) 3.00
PromptObfus (k=0.3)  83.20 (6) 39.68 (4) 67.15 (1) 0.00 (1) 3.00

Table 10: Performance of privacy protection and task utility with detailed rankings on the SST-2 sentiment analysis

task. The individual rankings are indicated in ().

Approach Acc.T  Quality Scoret MTI Topl, EITopl|, PI(Loc.)] PI(Occ.)l Avg. Ranking|
Origin 96.9 3.86 46.43 - 94.75 60.25 -
Random 90.0 (8) 3.34 (6) 32.67 (1) 90.00 (6) 81.50(8) 46.25(5) 5.67
Presidio 96.9 (1) 3.56 (4) 44.16 (5) 96.62 (7) 0.00 (1) 55.00 (8) 4.33
SANTEXT 91.0 (6) 3.27 (8) 55.75 (6) 78.56 (4) 0.00 (1) 47.00 (6) 5.17
SANTEXT+ 91.3(5) 3.33(7) 55.75 (6) 61.62 (1) 0.00 (1) 48.25 (7) 4.50
DP-Prompt 95.0 (3) 3.62(2) - - 89.25(9) 5525(9) 5.75
PromptCrypt 49.5(9) 2.89(9) - - 16.25(7)  11.00 (1) 6.50
PromptObfus (k=0.1)  96.0 (2) 3.63(1) 42.30 (4) 86.45 (5) 0.00 (1) 45.75 (4) 2.83
PromptObfus (k=0.2)  93.0 (4) 3.61 (3) 38.81 (3) 77.02 (3) 0.00 (1) 37.75 (3) 2.83
PromptObfus (k=0.3) 90.5 (7) 3.46 (5) 36.57 (2) 68.10 (2) 0.00 (1) 17.25(2) 3.16

Table 11: Performance of privacy protection and task utility with detailed rankings on the PersonalPortrait text QA

task. The individual rankings are indicated in ().

with only 0.61% performance degradation. While
PromptCrypt (89.86%) shows marginally better
results on this simpler task with limited label
space, its emoji-based encryption proves partic-
ularly suited for such low-complexity scenarios.

In the question answering task, PromptObfus
achieves 96.0% accuracy, closely matching the
original text’s performance (96.9%) with merely
0.93% degradation, ranking second only to Pre-
sidio. This performance can be attributed to the
task’s primary dependence on contextual emotional
inference rather than explicit PII extraction. No-
tably, PromptObfus obtains the highest answer
quality score (3.63), demonstrating superior re-
sponse fluency, completeness, and accuracy com-
pared to alternative methods.

PromptCrypt shows limited effectiveness in pre-
serving QA task utility. While its encryption-based
approach successfully disrupts contextual struc-
tures to enhance implicit privacy protection, the
consequent loss of semantic information signifi-
cantly impairs its ability to handle tasks requiring
nuanced text analysis.

A.5 TImpact of Surrogate Model on Other
Tasks

Table 12 summarizes the results examining surro-
gate model effects on question answering perfor-
mance. As privacy protection effectiveness is previ-
ously established to be invariant to surrogate model
choice in sentiment analysis, the current evalua-
tion specifically assesses task utility preservation.
The investigation utilizes general-purpose surro-
gate models spanning three architectures of com-
parable scale (RoBERTa-large, BART-large, and
GPT2-medium) alongside a progressively scaled
GPT series (GPT2-base, GPT2-medium, and GPT-
Neo-1.3B).

The results indicate GPT-Neo-1.3B delivers op-
timal performance, achieving 96.0% question an-
swering accuracy and the maximal answer quality
score. Architectural comparisons reveal GPT2’s su-
perior performance over other medium-scale mod-
els, confirming the efficacy of decoder-only archi-
tectures for generative language tasks. Scaling
analysis demonstrates monotonic improvement in
question answering accuracy with increasing model
size, attributable to larger models’ enhanced pre-
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Model Accuracy Utility Score
GPT2-base 93.3 3.55
GPT2-medium 93.8 3.57
GPTNeo-1.3B 96.0 3.63
RoBERTa-large 93.0 3.53
BART-large 92.8 3.55

Table 12: Influence of surrogate model variations on
obfuscation effectiveness in question answering.
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Figure 5: Impact of hyperparameters k and \.

trained knowledge representation and superior task
execution capacity, particularly beneficial for com-
plex textual question answering scenarios.

A.6 Impact of Hyperparameters

We perform ablation studies on the hyperparame-
ters k£ and )\, using BART-large as the surrogate
model on the SST dataset. The parameter k is var-
ied from 0.1 to 0.5 in increments of 0.1, while \
ranges from 5 to 20 in increments of 5. The results
are illustrated in Figure 5.

Regarding privacy protection performance, the
Attack Topl metric decreases monotonically with
increasing k, demonstrating improved privacy
preservation at higher obfuscation levels. For MTI
Attack, larger X values lead to reduced Top1 scores,
with the most substantial enhancement occurring
between A = 5 and A = 10. This improvement
stems from more diverse contextual information
generating varied MTI predictions. The EI Attack

Top1 depends exclusively on k, as this attack ana-
lyzes perturbed words independently of their con-
textual surroundings.

Concerning task utility preservation, classifica-
tion accuracy exhibits a gradual decline as & in-
creases, with the most pronounced performance
degradation observed between k = 0.4 and k£ =
0.5. When k exceeds 0.3, the system becomes
sensitive to A variations, where higher values ad-
versely affect performance due to excessive word
substitutions compromising semantic integrity and
contextual coherence.

Our analysis reveals a fundamental trade-off be-
tween privacy protection and task utility with re-
spect to parameters k and A\. While increasing ei-
ther parameter improves privacy preservation, this
comes at the expense of reduced performance. The
optimal operating regime occurs when k& < 0.4 and
A € [10,20), achieving an effective balance be-
tween these competing objectives. Based on these
findings, we establish A = 10 as the default config-
uration.
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