Unified Multimodal Interleaved Document Representation for Retrieval

Anonymous ACL submission

Abstract

Information Retrieval (IR) methods aim to iden-
tify documents relevant to a query, which have
been widely applied in various natural language
tasks. However, existing approaches typically
consider only the textual content within docu-
ments, overlooking the fact that documents can
contain multiple modalities, including images
and tables. Also, they often segment each long
document into multiple discrete passages for
embedding, which prevents them from captur-
ing the overall document context and interac-
tions between paragraphs. To address these two
challenges, we propose a method that holisti-
cally embeds documents interleaved with mul-
tiple modalities by leveraging the capability of
recent vision-language models that enable the
processing and integration of text, images, and
tables into a unified format and representation.
Moreover, to mitigate the information loss from
segmenting documents into passages, instead
of representing and retrieving passages individ-
ually, we further merge the representations of
segmented passages into one single document
representation, while we additionally introduce
a reranking strategy to decouple and identify
the relevant passage within the document if nec-
essary. Then, through extensive experiments
on diverse IR scenarios considering both the
textual and multimodal queries, we show that
our approach substantially outperforms rele-
vant baselines, thanks to the consideration of
the multimodal information within documents.

1 Introduction

Information Retrieval (IR) is the task of fetch-
ing relevant documents from a large corpus in re-
sponse to an input query, which plays a critical
role in various real-world applications including
web search engines and question-answering sys-
tems (Shah et al., 2019; Lewis et al., 2020; Guu
et al., 2020). Over the years, IR methods have
evolved significantly, with approaches broadly cat-
egorized into sparse and dense retrieval paradigms.

Specifically, sparse retrieval methods (Robertson
et al., 1994; Jones, 2004) focus on lexical overlap
between queries and documents; meanwhile, dense
retrieval methods (Karpukhin et al., 2020; Xiong
et al., 2021) utilize neural embeddings to represent
queries and documents in a continuous vector space.
Note that, recently, dense retrieval methods have
gained more popularity over sparse methods due
to their capability to capture semantic nuances and
context beyond simple keyword matching, leading
to multiple successes with improved performance.

Despite their huge successes, existing (dense) re-
trieval methods face a couple of severe challenges.
First, they primarily rely on the textual data for
document embedding and retrieval, overlooking
the fact that modern documents often contain mul-
timodal content, such as images and tables (beyond
the plain text), which can carry critical information
that may be essential for accurately understanding
and retrieving the relevant documents. To be spe-
cific, a diagram within a medical article can more
effectively represent the structure of a molecule or
the progression of a disease, offering more clarity
that would be difficult to achieve with text alone,
and omitting such multimodal content can lead to
an incomplete understanding (and potentially in-
accurate retrieval) of the documents. Also, the
segmentation of long documents into discrete pas-
sages, which is commonly employed by existing
retrieval models to handle the length limitation for
embeddings, may prevent models from capturing
the full context and the intricate relationships be-
tween different parts of the document, ultimately
leading to suboptimal retrieval performance. It is
worthwhile noting that, concurrent to our work,
while there has been recent work that screen cap-
tures the document and then embed its screenshots
(to consider different modalities in a unified for-
mat) (Faysse et al., 2024; Ma et al., 2024), not only
its content (such as paragraphs, images, and tables)
can be fragmented into different sub-images, lead-
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Figure 1: Comparison of different IR approaches. (a): Conventional methods use a small portion of the text within the document
for its representation. (b): Recent methods use first-page screenshot images to represent the document. (c¢): Our approach
leverages the full contextual information within documents interleaved with multiple modalities by considering them in their

original format, and is further capable of pinpointing relevant sections for the query.

ing to the loss of contextual coherence across the
entire document, but also the visual representation
of text may hinder the model’s ability to capture
the semantic relationships present in the original
textual data, while increasing the image resolution
leads to the concern on the memory requirements.

In this work, we introduce a novel approach to
holistically represent documents for IR, which ad-
dresses the aforementioned challenges by repre-
senting and retrieving the documents interleaved
with multiple modalities in a unified manner (See
Figure 1). Specifically, our method revolves around
the recent advance of Vision-Language Models
(VLMs), which enable the processing and integra-
tion of multimodal content (such as text, images,
and tables) directly into a single token sequence,
thereby preserving the context and relationships be-
tween various parts of the document, unlike the pre-
vious approaches that rely on the fragmented visual
representations. Also, in cases where the number
of tokens in a document is large and exceeds the
capacity of a single context window of VLMs, we
propose a strategy to segment the document into
passages, each represented within the token limit,
and combine these passage embeddings into a uni-
fied document representation. This strategy differs
from existing IR approaches that independently rep-
resent and retrieve at the passage level, potentially
losing the overall document context. Lastly, to ac-
curately identify only the relevant sections within
the retrieved lengthy document, we introduce a
reranking mechanism that is trained to pinpoint the
passage most pertinent to the query (among all the
other passages within the document), allowing for
both the coarse-grained document-level matching
and fine-grained passage-level retrieval. We refer

to our overall framework as Interleaved Document
Information Retrieval System (IDentlfy).

We experimentally validate the effectiveness of
IDentlfy on four benchmark datasets, considering
both the text-only and multimodal queries. On a
battery of tests conducted, we observe that our ap-
proach substantially outperforms relevant baselines
that consider only the uni-modality for document
representations, thanks to the consideration of mul-
timodal content. Further, we find that the strategy
to represent the whole document with its single rep-
resentation (by merging embeddings of its splits)
is superior to the approach of individually repre-
senting them for document retrieval, but also per-
forming reranking over the sections of the retrieved
document is superior to the approach of directly re-
trieving those sections, which confirm the efficacy
of the proposed retrieval and reranking pipeline for
document and passage retrieval, respectively.

2 Related Work

Information Retrieval Information Retrieval
(IR) involves finding documents relevant to a query,
which plays a crucial role in applications such as
search and question-answering (Zhu et al., 2023;
Gao et al., 2023; Ram et al., 2023; Shi et al., 2024,
Jeong et al., 2024a). Earlier IR approaches mea-
sured the similarity between queries and documents
based on their lexical term matching, such as BM25
and TF-IDF (Robertson et al., 1994; Jones, 2004).
Yet, these methods often struggled to capture the
semantic nuances beyond surface-level term over-
laps. To overcome this, along with advancements
in language models (Devlin et al., 2019; Liu et al.,
2019), there have been dense retrieval approaches
that embed both the queries and documents into a



shared dense vector space (Karpukhin et al., 2020;
Xiong et al., 2021), enabling the calculation of se-
mantic similarity between them more effectively by
capturing the deeper contextual information. Yet,
previous studies have mainly focused on enhanc-
ing the textual representations of queries and doc-
uments, while overlooking the multimodal nature
of documents beyond text, which can potentially
provide richer context and aid in more accurate
retrieval (Liu et al., 2021; Jeong et al., 2024b).

Multimodal Information Retrieval Recent stud-
ies in IR have expanded the focus from purely text-
based retrieval models to those that consider other
modalities, such as images (Radford et al., 2021;
Xiao et al., 2024), tables (Herzig et al., 2021; Chen
et al., 2024) and graphs (Back et al., 2023); how-
ever, the majority of these approaches (Zhou et al.,
2024; Long et al., 2024; Lerner et al., 2024; Nowak
et al., 2024; Caffagni et al., 2024) have primarily
explored how to process the multimodal gueries,
meanwhile, they often overlook the equally im-
portant multimodal characteristics of the docu-
ments being retrieved. In efforts to handle diverse
multimodal elements within documents, there are
concurrent studies that have proposed to capture
screenshots of documents, such as PDFs (Faysse
et al., 2024; Cho et al., 2024) or Wikipedia web
pages (Ma et al., 2024), and subsequently encod-
ing them through vision models (Ding et al., 2024).
However, these methods are not only limited by
factors, such as image resolution and computa-
tional memory, constraining their application to
documents longer than a single page', but also fall
short by treating the diverse modalities within a
document as a single visual entity, leading to sub-
optimal document representations that may fail to
effectively capture the nuanced interdependence
between text and images. Also, while there are con-
current studies (Jiang et al., 2024b; Lin et al., 2024)
that consider images and text as retrieval targets,
they primarily focus on representing image-text
pairs and their retrieval, rather than addressing the
holistic representation of documents that include
multiple images and another modality (tables). Fi-
nally, all the aforementioned work does not address
the issue of splitting documents into smaller frag-
ments (passages or sub-images), which may disrupt
the holistic contextual view of the entire document.

"For instance, Ma et al. (2024) requires processing 9.8k
image tokens just to process a single-page document, and it

results in 2TB of storage for handling the entire Wikipedia
corpus, which may not be practical.

Vision-Language Models Recently developed
Vision-Language Models (VLMs) have emerged
as a powerful tool for jointly processing visual and
textual data, which combine the image understand-
ing capabilities of visual encoders (Radford et al.,
2021; Zhai et al., 2023) with the advanced reason-
ing abilities of language models (OpenAl, 2022,
2023a). These models have achieved remarkable
performance across diverse vision-language (VL)
tasks (such as image captioning and visual question
answering) (Dai et al., 2023; OpenAl, 2023b), with
the substantially limited attention on their applica-
tions to IR. We note that the latest developments
in this field have particularly focused on enabling
VLMs to handle interleaved, multimodal content,
which involves a mixed sequence of images and
text (Zhang et al., 2023; Li et al., 2024b). In partic-
ular, LLaVA-NeXT-Interleave (Li et al., 2024b) in-
troduces a fine-tuning approach that specifically en-
hances the VLMs’ capacity to understand complex
interleavings of multiple images and text within
a single context. Drawing inspiration from these
advances, we propose to harness the capabilities of
VLMs to create unified embeddings for documents
interleaved with text and images (as well as tables).

3 Method

We present IDentlfy to holistically represent docu-
ments interleaved with multimodal elements.

3.1 Preliminaries

We begin with preliminaries, formally explaining
information retrieval and vision-language models.

Information Retrieval IR is formally defined as
the task of identifying a set of relevant documents
{di,ds,...,d;} C D from a large corpus D,
given an input query q. Here, each query q and doc-
ument d are represented as a sequence of tokens:
q9=1q1,9,..,q9,)andd = [dy,da,...,dy], and
traditional IR approaches typically consider these
tokens as purely textual elements. However, we
propose to extend this assumption to have the to-
kens of both the textual and visual content, to cap-
ture the multimodal nature of many real-world doc-
uments. Then, this new extension raises important
questions of how can both the textual and visual
content be represented within a unified token frame-
work, and how can these multimodal tokens be
seamlessly integrated and encoded for document
representations. To answer them, we harness the
power of recent vision-language models below.
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Figure 2: Overview of the proposed IDentlfy. (a): In our document retriever, a query encoder represents a query (purple), and
sections are encoded with a section encoder whose embeddings averaged to form a document representation (blue). Contrastive
learning loss (red) is used for training the document retriever. (b): Reranker scores query-section relevance with the concatenation
of the query and section, trained using Binary Cross-Entropy loss.

Vision-Language Models We now turn to de-
scribing Vision-Language Models (VLMs), which
are designed to jointly encode the textual and visual
information in a unified token framework. These
models are generally comprised of two main com-
ponents: a visual encoder and a language model,
interconnected through a projection layer. Specif-
ically, given the document that may contain inter-
leaved modalities (e.g., text and images), the visual
encoder extracts high-level visual features from
(multiple) images embedded within the document,
mapping them into a latent space. Then, these vi-
sual features are transformed into a sequence of
visual tokens via the projection layer, represented
as follows: V € RV*demv  where V' denotes the vi-
sual token length and depp, is the token dimension
size. Similarly, for the textual content embedded
within the document, the language model uses a
word embedding layer to convert the input text
into a sequence of tokens, as follows: L € RL¥dems
where L denotes the token length of text.

In this work, we also propose to account for ta-
bles that are an integral modality for holistically
representing the full content of documents. How-
ever, in contrast to text and images that have dedi-
cated processing layers within the VLM architec-
tures, tables do not have a specific representation
layer. Nevertheless, we argue that recent VLMs are
pre-trained on diverse web data, and subsequently
they are implicitly learned to handle the table struc-
tures formatted in HTML. Consequently, we treat
HTML-format table data as a linearized sequence
of HTML words, applying the same word embed-
ding layer as is used for plain text. To be formal,
this process converts the table content into table

tokens, as follows: T'€ R7®mb_where T is the to-
ken length of the table. Lastly, once extracted, the
visual tokens, text tokens, and table tokens are con-
catenated (to form a unified token sequence) and
then passed through the remaining layers of VLMs,
to capture both uni- and cross-modal relationships
across different modalities, ultimately enabling the
comprehensive understanding of the documents.

3.2 Retriever

We now explain how we design a retriever specifi-
cally tailored for multimodal interleaved document
retrieval. In particular, our approach leverages a
VLM capable of processing text, images, and ta-
bles within a single document. Further, following
the standard practice of existing retrieval architec-
tures (Karpukhin et al., 2020; Xiong et al., 2021),
we use a dual-encoder structure, which consists of
a query encoder and a section encoder, both are
based on the VLM, illustrated in Figure 2 (a).

Specifically, thanks to the use of the VLM, our
query encoder can take either purely textual queries
g = L or multimodal queries consisting of text
and corresponding visual elements g=[Vq, Lq].
Also, to obtain the final query representation, we
introduce a learnable token called ‘End of Query’,
[EoQ]€ R%m>, This token is appended to the end
of the sequence of query tokens g, and the final
concatenated tokens [q, [EoQ]] are then passed
through the query encoder. Then, the model output
corresponding to [EoQ] is used as the final query
representation, as follows: Zq € R%mb,

For documents, we first represent each docu-
ment d as a sequence of sections d = [s;]5_, (with
a total of S' sections), where each section s; is de-
rived by dividing the document according to its



subtitles. s; can contain a combination of text to-
kens Lg;, visual tokens from embedded images
Vy;, and table tokens Tg;, denoted as follows:
s; = [Vg,, Lg,, Tg,]. Then, to obtain a section-
level representation, similar to the query represen-
tation, we introduce a learnable token, called ‘End
of Section’: [EoS]€ R%m, which is similarly ap-
pended at the end of each section. We then forward
concatenated tokens [s;, [EoS]] to the section en-
coder, and, after that, the output corresponding to
[EoS] is used to form the section representation, as
follows: Zg, € R%m. Additionally, the overall doc-
ument representation is obtained by averaging the
representations of all sections within the document,
defined as follows: Zp = %Zle Zg,.

The remaining step to discuss here is how to
train those two query and section encoders for IR.
Recall that the goal of the retriever is to assess a
relevance score between the query and the docu-
ment. To achieve this goal, we use a contrastive
learning loss based upon the query and document
representations, whose objective is to assign higher
similarity scores to relevant documents (positive
samples) and lower scores to irrelevant ones (nega-
tive samples) for the query, formulated as follows:

B
1 ¢ (Zq,,Zp,)
Lretriever = —— lo - - )
o= 2 g(zf:m(z@,zm)

=1

a'b
b)=exp (o). 1
¢(ab) eXp<|a|||lo||> o

where B is the batch size during the training phase.
Here, by minimizing Letriever, the retriever learns
to optimize the similarity between queries and their
relevant documents, enabling the retrieval of the
most pertinent documents (among all) for the given
input query during inference.

3.3 Reranker
To enable fine-grained retrieval within documents
beyond the retrieval of documents themselves, we
introduce a section-level reranking mechanism that
identifies the section most relevant to the query. In
particular, once the document is retrieved, the ob-
jective of the reranker fR is to pinpoint the specific
sections within the document that best match the
query. We also note that this reranker is similarly
operationalized with the VLM along with a binary
classifier on top of it, which directly measures the
relevance of each query-section pair (Figure 2 (b)).
Formally, for a retrieved document, we take each
of its sections s; with a learnable token for section

embedding [EoS] attached to the end and concate-
nate it with query g , forming the input sequence of
[g, s;, [E0oS]]. The concatenated tokens are then
processed through the reranker, and its output corre-
sponding to [EoS] captures the relevance between
the query and section, which is further subsequently
passed to a binary classifier consisting of a linear
layer followed by a Sigmoid function. Through
this, the classifier outputs a probability score indi-
cating the likelihood of the section being relevant to
the query, i.e., a score close to one denotes a high
relevance (positive section), meanwhile, a score
near zero indicates irrelevance (negative section).

To train this reranker, we use the binary cross-
entropy loss, formulated as follow:

B S
k2 1 .
£reranker:Z Zﬁg (y.smw fR ([q7 Si,j])) ’

i=1 j=1
C(y,9)=—[ylogg+(1-y)log(1-9)], (@)

where S; is the number of sections in the i-th docu-
ment, ys, ; is the label for the j-th section of the i-
th document s; ; (with its value of one if relevant to
the query g, otherwise zero), $; ; = [s; ;, [EoS]],
and B is the batch size during training. Also, dur-
ing training, the sections not labeled as relevant to
the query are considered negative samples. Then,
by minimizing L eranker, the reranker learns to pre-
dict section relevance for any query, thus refining
our overall retrieval process by allowing the re-
trieval of not just whole documents but also their
most relevant sections, for multiple use cases of IR.

4 Experiments

4.1 Experimental Setups
Datasets We evaluate [Dentlfy on four bench-
mark datasets designed for multimodal IR tasks
that require understanding of both the textual and
visual cues within queries and documents, as fol-
lows: Encyclopedic-VQA ( , )
is a large-scale benchmark for multimodal Visual
Question Answering (VQA) with queries linked to
specific Wikipedia sections and includes both text-
only and multimodal queries; InfoSeek ( ,
) is a knowledge-intensive VQA dataset with
multimodal questions generated from Wikidata
triples that include diverse entities such as land-
marks, animals, and food; VIQuAE ( ,
) involves both text-based and multimodal
queries about human entities, linked to annotated
Wikipedia sections, making it ideal for evaluating



Table 1: Results with different document formats for retrieval.

Format R@1 R@10 R@100 MRR@10
Entity 3.1 15.5 39.7 6.1
Summary 134 413 66.5 21.6
Text-document 12.5 37.8 68.7 19.8

+ Single-image 164 454 77.1 25.3

+ Interleaved (Ours) 20.5  50.0 78.0 294

Table 2: Results with different section retrieval strategies.
Document (Ours) performs document retrieval and section
reranking, whereas Passage performs section retrieval and
reranking. * denotes the model without reranking.

Granularity R@1 R@10 R@20 MRR@10
Passage* 39 16.9 22.0 7.5
Passage 28.6 364 37.8 31.2
Document (Ours) 35.1 50.8 53.6 40.3

Table 3: Performance on document retrievals. (a): Results of document retrieval for multimodal queries on InfoSeek and
ViQuAE. (b): Results of document retrieval for textual queries on Encyclopedic-VQA (Enc-VQA) and ViQuAE.

(a) Document Retrieval with Multimodal Queries

(b) Document Retrieval with Textual Queries

Format Dataset R@1 R@10 R@100 MRR@10 Format Dataset R@1 R@10 R@100 MRR@10
Text-document | oo\ 68 236 525 11.2 Text-document o, 627 763 87.4 67.0
+ Interleaved nfoseek 102 304 57.3 15.7 + Interleaved ne- 654  76.8 87.8 69.0
Text-document . 13.5 40.4 67.4 20.9 Text-document . 55.8 71.5 83.0 60.9
+Interleaved  VQUAE 175 460 694 26.3 +Interleaved  VIQUAE 565 933 830 61.6

section retrieval; Open-WikiTable ( ,
) extends WikiSQL ( , ) and
WikiTableQuestions ( , ), tar-
geting open-domain table QA by identifying doc-
uments or sections containing relevant tables. We
provide more details on datasets in Appendix A.

Baselines We compare our approach against di-
verse baselines that capture different document rep-
resentations. First, the Entity and Summary base-
lines retrieve documents based on their titles and
summary sections, respectively, leveraging high-
level textual cues. Also, the Text-document re-
triever baseline utilizes the full textual content of
documents for retrieval. We further include the
Single-image baseline that additionally leverages
the first image of each document. IDentIfy is our
model that holistically represents multimodal con-
tent (text, images, and tables) within documents.

Evaluation Metrics To evaluate our approach,
we use standard metrics: Recall @K (R @K) mea-
sures whether the relevant document or section ap-
pears within the top-K results; MRR@K measures
how early the first relevant item is ranked (within
top-K) by averaging its inverse rank across queries.

Implementation Details We use LLaVA-NeXT-
Interleave ( , ) of 0.5B parameters as
the basis VLM for both the retriever and reranker.
During training, documents are represented using
randomly selected four sections, while in inference,
we consider all sections within each document. For
section-level retrieval, all sections within the top
25 retrieved documents are reranked. Experiments
are conducted on a single H100 GPU.

4.2 Experimental Results and Analyses
Main Results We report retrieval performance on
the Encyclopedic-VQA dataset in Table 1, where

queries include both text and images. We observe
that IDentlfy achieves the best performance, im-
proving R@1 scores by 53.0%, 64.0%, and 25.0%
over Summary, Text-document, and Single-image
retrieval baselines, respectively, with similar trends
observed for other metrics. These results demon-
strate the effectiveness of integrating multimodal
content holistically into a unified representation.
To further illustrate the advantages of our approach,
we provide case studies in Appendix C.

We further examine the impact of our document
retrieval and section reranking pipeline. In Table 2,
the passage retriever represents individual sections
as separate retrieval units, whereas the document
retriever (ours) aggregates multiple section repre-
sentations into a single representation. Then, we
perform reranking over the retrieved sections or the
sections from the retrieved documents, and then
report the results in Table 2 (where * denotes the
model without reranking). From this, we observe
that the passage retriever without reranking (Pas-
sage*) achieves suboptimal retrieval performance,
highlighting the challenge in pinpointing the most
relevant section within a document using traditional
retrieval methods. In contrast, when the reranker is
used alongside the document retriever, the perfor-
mance significantly surpasses that of the passage
retrieval. These results confirm the importance of
leveraging holistic context from multiple, interre-
lated sections within documents.

Interleaved format enhances document retrieval
across modalities. We further expand our exper-
iments to two additional datasets, InfoSeek and
ViQuAE, and report document retrieval results. As
shown in Table 3, our model consistently outper-
forms the Text-document baseline for both multi-
modal and text-only queries. We attribute these



Table 4: Performance on section reranking. (a): Results of section reranking for multimodal queries on Encyclopedic-VQA
(Enc-VQA) and ViQuAE. (b): Results of section reranking for textual queries on Enc-VQA and ViQuAE. For fair comparison
between different methods, the reranking target (i.e., candidate sections from retrieved documents) are the same across them.

(a) Section Reranking with Multimodal Queries

(b) Section Reranking with Textual Queries

Format Dataset R@1 R@10 R@20 MRR@10 Format Dataset R@1 R@10 R@20 MRR@10
Text-document 40.7 52.8 55.5 44.8 Text-document 68.1 79.4 80.2 72.3
+Interleaved  EPVQA o4 536 557 463 +Interleaved  ENVQA 607 801 80.6 73.6
Text-document . 12.6 31.7 37.7 18.2 Text-document . 27.8 50.2 57.7 35.0
+Interleaved  VIQUAE 174 31 392 17.5 +Interleaved  VIQUAE 599 509 598 36.7

Table 5: Retrieval results for tables, where Zero-shot denotes a model trained on Encyclopedic-VQA but not on the target
dataset. Finetuned refers to additional training of the model on the target dataset. (a): Results for tabular document retrieval
on Open-WikiTable (OWT). (b): Textual and tablular section retrieval results on VIQuUAE and OWT datasets, respectively. (c):
Reranker accuracy of a classification task that identifies the section containing the query-associated table given a gold document.

(a) Document Retrieval for Tables

(b) Section Retrieval for Tables

Model R@1 R@10 R@100 MRR@10  pnfode]  Modality Dataset R@1 R@10 R@20 MRR@10
Zero-shot 294 58.0 86.0 38.1 3 P e
Finetuned 55.8 84.1 93.5 66.1 Z.ero—shot Text VIQUAE 20.3 9.0 57. 28.9
(c) Tabular Classiﬁcation Finetuned 29.9 50.9 59.8 36.7
- i - R 20. 294 .
Model Random Zero-shot Finetuned Z.ero shot Table OWT 5.9 0.5 9.1
Acc@1 11.9 93 56.5 Finetuned 8.4 36.7 52.8 15.2

gains to the integration of multimodal content, al-
lowing the VLM to capture richer alignments and
leverage pre-existing knowledge for more effective
document representation ( , ).

Interleaved format is also beneficial in section
retrieval. Similarly, we evaluate section retrieval
performance on Encyclopedic-VQA and ViQuAE
datasets, for both multimodal and textual queries.
As shown in Table 4, our model outperforms the
Text-document baseline in most cases. However,
the performance gains over the baseline are smaller
compared to the document retrieval setup. This is
likely because section reranking focuses on evaluat-
ing the relationship between a single section and a
query (rather than leveraging the holistic context of
the entire document), and individual sections may
lack the diverse multimodal information necessary
for fully capturing the intent of queries.

Retrieving tables interleaved within documents
is challenging. We explore the retrieval task for
tabular data, aiming to identify documents or sec-
tions containing query-relevant tables, and compare
models trained on Encyclopedic-VQA (Zero-shot)
with those additionally trained on Open-WikiTable
(Finetuned). As shown in Table 5 (a), the Fine-
tuned retriever outperforms the Zero-shot retriever
on retrieving documents containing query-relevant
tables. However, more fine-grained section rerank-
ing results (identifying sections containing query-
relevant tables) in Table 5 (b) may reveal a notable
modality-specific challenge: the performance of
Zero-shot and Finetuned rerankers is considerably
lower on table retrieval compared to their perfor-

mance on text retrieval, despite both the text and
tables being represented with word tokens. To bet-
ter understand this, we design a classification task,
where rerankers are tasked with identifying the cor-
rect section containing the target table within the
golden document. Then, as shown in Table 5 (c¢),
the Zero-shot reranker performs comparably to ran-
dom selection, while the Finetuned reranker shows
modest improvements. These findings highlight the
intrinsic challenge of tabular retrieval, suggesting
the need for table-specific modules to more holisti-
cally represent multimodal interleaved documents.

More sections enhance document retrieval per-
formance but raise computational costs. To see
how the number of sections used for representing
each document impacts performance, we evaluate
document retrieval on the InfoSeek dataset by vary-
ing the sections per document during training. As
shown in Figure 3, incorporating more sections
improves MRR @10 from 7.5 to 15.7 due to lever-
aging richer multimodal and contextual informa-
tion. However, this comes at the cost of increased
computational requirements, as processing more
sections raises GPU memory consumption.

Sections from the same document act as effec-
tive negatives to enhance reranker performance.
In training the reranker, we investigate whether
considering sections from the same document as
negative examples (called In-document) is effective
than other strategies, such as Top-K negatives (top-
K retrieved sections based on their similarity with
the input query) and In-batch negatives (positive
sections from other samples in the same batch). As



Figure 3: Trade-off between performance (MRR@10) Table 6: Comparison of negative sample selection strategies for reranker

and training cost (GPU Memory) for retrieval.

training: Top-K (top-k retrieved sections), In-batch (sections from other
samples in the batch), and In-document (sections in the same document).

16 =8= MRR@10 'S _
[ GPU Mem. (GB) reom@
8" /110/ - Oi Negative R@1 R@20 MRR@10
7.5 [}
£ ¢ 507 oo Top-K 38.1 55.3 444
4 508 In-batch 39.5 55.4 45.0
0 a0 In-document (Ours) 424 55.7 46.3
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Table 7: Comparison of different training objectives for the reranker: Contrastive considers sections as retrieval units and uses
the one for document retriever training; Document + BCE concatenates the query with multiple sections from the same document
and uses the BCL loss; Section + BCE trains the reranker by concatenating the query with each section individually.

(a) Section Retrieval for Multimodal Queries

(b) Section Retrieval for Textual Queries

Train Loss R@1 R@10 R®@20 MRR@10 Train Loss R@1 R@10 R@20 MRR@10
Contrastive 3.6 15.0 21.3 6.5 Contrastive 13.6 37.7 45.1 20.6
Document + BCE 13.6 29.6 329 24.1 Document + BCE 23.8 43.4 47.2 39.1
Section + BCE (Ours)  42.4 53.6 55.7 46.3 Section + BCE (Ours)  69.7 80.1 80.6 73.6

shown in Table 6, we observe that the In-document
approach achieves superior performance especially
on R@1, demonstrating its ability to effectively
identify the most pertinent section among highly
similar sections within the same document, i.e., its
training objective can encourage the reranker to
focus on fine-grained distinctions between closely
related sections (within the same document).

BCE loss is the most effective to train the sec-
tion reranker. In our reranker design, we use a
binary cross-entropy (BCE) loss by concatenating
the query with each document section individually
(Section + BCE), allowing the model to directly as-
sess query-section relevance. As an alternative, we
also explore a contrastive loss (Contrastive), which
models section reranking similarly to document re-
trieval but uses sections as the retrieval units, and a
variant of BCE loss (Document + BCE), where the
query is concatenated with multiple sections (both
positive and negative) from the same document.
As shown in Table 7, the Section + BCE reranker
outperforms both alternatives. Specifically, con-
trastive loss performs the worst, suggesting that
direct concatenation of query and section provides
clearer relevance signals, consistent with conven-
tional reranking approaches. Moreover, while Doc-
ument + BCE leverages inter-section context, its
performance might be hindered by training con-
straints as the model processes fewer sections dur-
ing training (Jiang et al., 2024a; Lee et al., 2024),
and addressing it would be interesting future work.

Our Approach is Robust with Different Base
Models. To ensure the effectiveness of our ap-
proach across VLMs, we evalulate its performance
with another VLM, LLaVA-OneVision (L1 et al.,

Table 8: Results with another base model (LLaVA-OneVision)
for document retrieval (with different document formats).

Format R@1 R@10 R@100 MRR@10
Entity 2.3 10.3 29.7 43
Summary 7.6 24.7 55.7 12.0
Text-document 7.0 24.1 50.4 11.7
+ Single-image 9.3 314 61.9 154
+ Interleaved (Ours) 12.1 36.1 62.5 18.2

2024a), with 0.5 billion paramters, in addition to
LLaVA-NeXT-Interleave (Li et al., 2024b) used in
our main experiments. Results in Table 8 show that
ours continues to outperform baselines, achieving a
notable 30.1% gain in R@1 over the best baseline.

5 Conclusion

In this paper, we introduced IDentlfy, a novel IR
framework designed to address the limitations of
conventional methods that rely on textual content of
documents and their segmented passages. Specif-
ically, our approach sits on top of recent VLMs,
which enables integration and representation of di-
verse multimodal content (including text, images,
and tables) into a unified document representation.
Also, unlike previous strategies that segment doc-
uments at the passage level, our method merges
these segments to maintain the document’s struc-
tural coherence, while further introducing a rerank-
ing strategy for precise identification of relevant
sections. Extensive experiments across various IR
datasets demonstrated that IDentIfy consistently
outperforms existing baselines, confirming that the
interleaved multimodal representation significantly
enhances the quality of the document retrieval. We
believe IDentlfy represents a crucial step toward
more comprehensive and contextually aware IR
systems, capable of handling the increasing multi-
modality of modern information sources.



Limitations

Due to the limitations of a single H100 GPU, we
represent documents by selecting a limited number
of sections and averaging their corresponding em-
beddings. While this reduces the computational
demands, our findings suggest that capturing a
broader document context leads to improved re-
trieval performance. Hence, leveraging the long
context window of LVLMs could further enhance
document retrieval by capturing more comprehen-
sive information from the full document. More-
over, our reranker design follows the conventional
approach of concatenating the input query with in-
dividual sections. However, we believe that provid-
ing the reranker with all the sections together would
allow the model to better leverage the contextual
information from the entire interleaved document,
potentially resulting in improved performance. In
order to fully leverage the interleaved format in the
IR system, addressing the issues by reducing the
GPU load when processing interleaved documents
would greatly boost overall IR performance. We
leave these explorations for future work.

Ethics Statement

In this work, we use a publicly available retrieval
corpus for information retrieval tasks. However, the
retrieval corpus may contain private, harmful, or
biased content. Such undesirable features could un-
intentionally be reflected in the behavior of retriev-
ers and rerankers trained on this data, potentially
leading to ethical concerns during real-world de-
ployment. However, current information retrieval
techniques, including ours, do not address the re-
trieval of undesirable content. We recognize the
critical need for safeguards to mitigate this issue.
This is essential to ensure that information retrieval
systems are reliable, fair, and safe for deployment.
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A Details of Experimental Setups

Dataset configuration Table 9 summarizes the
key properties of the datasets used in our experi-
ment, including query modality, target item, entity
domain, number of entities, and whether a section
ID is provided to indicate the section containing
the answer. Additionally, we provide the number of
samples in the training, evaluation, and test splits,
as well as the size of the corpus. We provide a
more detailed explanation of the datasets below.

* Encyclopedic-VQA ( , ) is
a large-scale visual question-answering (VQA)
benchmark dataset, widely used for measur-
ing the performance of multimodal IR models.
Each query is linked to a specific section of a
Wikipedia document (containing an answer for
it) and is manually annotated by humans. Also,
this dataset offers both text-only and multimodal
queries. In addition to this, the queries are re-
lated to fine-grained properties of species and
landmarks. Our experiments focus on the single-
hop category where questions can be answered
in a single retrieval step.

¢ InfoSeek ( , ) is a dataset designed
for knowledge-intensive VQA, covering a wide
range of entities (such as landmarks, animals, and
food). Questions are generated by filling human-
written templates with knowledge triples (subject,
relation, object) available from Wikidata, which
involve only the multimodal queries. As the test
dataset is not available, we use the validation
set as our test set, and split the training set into
training and validation subsets with a 9:1 ratio.

* ViQuAE ( , ) is a dataset focused
about human entities. It provides both textual and
multimodal queries, with each query linked to
a specific section of a Wikipedia document that
contains an answer annotated by humans, which
makes it an ideal benchmark for section retrieval.

* Open-WikiTable ( , ) is an ex-
tension of WikiSQL ( , ) and
WikiTableQuestions ( , ),

designed for open-domain table question answer-
ing that requires retrieval of the most relevant ta-
ble from a broader corpus. For our experiments,
we adapt the WikiTableQuestions subset of Open-
WikiTable, aiming at identifying the document
or document section containing the target table.
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Dataset pre-processing In our study, we lever-
age interleaved multimodal content from Wikipedia
documents. However, existing corpora associated
with IR datasets often lack this content, typically
only including the first few words of each docu-
ment. Therefore, we download the HTML file of
each Wikipedia document for corpus augmentation.

If the dataset provides Wikipedia URLs for its
corpus, we use them to download the HTML files.
Alternatively, if only entity names are provided, we
generate Wikipedia URLs using those names. If a
Wikipedia URL is deprecated, we remove the cor-
responding document from the corpus along with
any associated queries. From the HTML files, we
extract text, image URLs, and tables. We then split
the contents by subtitles in the document where
each chunk corresponds to a section. For the im-
ages, we use the image URLs to download the
corresponding images, removing any invalid URLs.
This process produces a dictionary that organizes
text, images, and tables by section.

Since downloading contents for all documents
across datasets is time- and memory-intensive, we
preprocess subsets of each corpus, including docu-
ments relevant to queries in the training, evaluation,
and test splits, along with unrelated documents.

Implementation Details To take advantage of
larger batch sizes (while reducing GPU memory
usage), we apply LoRA ( , ). Also,
to further optimize the GPU usage, we scale each
image down to half of its original height and width
and then combine four scaled-down images into
a single composite image. All experiments are
conducted using a single H100 GPU.

B Additional Experimental Results

Data Requirements for Models We analyze the
effect of different dataset sizes for training on re-
triever and reranker performance. To achieve this,
we randomly prune samples in the Encyclopedic-
VQA dataset at various ratios and report the perfor-
mance of models trained on these subsets. In Fig-
ure 4 (a), we observe that too many samples can
degrade retrieval performance. Also, retrieval of
textual queries requires fewer samples to reach its
optimal performance compared to multimodal re-
trieval. Similarly, in Figure 4 (b), section retrieval
for multimodal queries requires 10% of the dataset
to achieve 80% of the full-dataset performance,
while section retrieval for textual queries needs
only 5%. These observations suggest that addi-



Table 9: Information retrieval datasets summary.

Dataset Query Modality ~ Target Domain Entities  SectionID  Train Eval Test Corpus size
Encyclopedic-VQA  Text, Text-Image Text Species, Landmarks 17k o 177« 2.2k 3.8k 100k
InfoSeek Text-Image Text Diverse 11k X 209k 23k 74k 500k
ViQuAE Text, Text-Image Text Human 1k o 1.2k 1.2k 1.2k 100k
Open-WikiTable Text Table Table - o 33k 04k 04k 1.8k
Multimodal Retrieval Multimodal Re-rank
o o. o o
= 29.0 = 40.0 o
® — / \ ® ./
E 27.0 — —_— E 20.0 /
»
25.0 1% 5% 10% 20% 50% 100% 0.0 1% 5% 10% 20% 50% 100%
Dataset ratio Dataset ratio
Textual Retrieval Textual Re-rank
S78.0 —— o . .
— o = 60.0 o
€73.0( ¢ . £30.0
= a0 T, | = 0.0L_*
7 1% 5% 10% 20% 50% 100% 1% 5% 10% 20% 50% 100%

Dataset ratio

(a) Retriever performance

Dataset ratio

(b) Reranker performance

Figure 4: Retrieval performance with different dataset sizes for training. (a): When training a retriever, large datasets rather
deteriorate the retrieval performance as it may be overfitted, resulting in low generalization. (b): On the other hand, a larger

dataset size is beneficial to training a re-ranker.

tional modalities increase the need for more data.
This accounts for the inferior performance of the
interleaved format in the ViQuAE experiments (Ta-
ble 4 (a)). The ViIQuAE dataset, at only 2.2% of
the size of Encyclopedic-VQA, may be small for
the reranker to effectively learn multimodal query-
section alignments. We also observe that section
retrieval is more challenging, with more samples
improving the reranker’s performance. This ex-
plains why the ViQuAE reranker has much lower
section retrieval scores compared to the one trained
on the Encyclopedic-VQA (Table 4 (b)). Given
the challenge of obtaining large query-section pair
samples, exploring more effective reranker training
pipelines is necessary.

C Case Studies of Document Retrieval

We conduct case studies to demonstrate the ad-
vantages of our approach in document retrieval
with textual and multimodal queries. In Figure 5
and Figure 6, we illustrate the instances where
our approach, which leverages interleaved mul-
timodal contents (e.g., images, tables, and text)
within documents, retrieved correct documents for
given queries, while the conventional one, which
represents documents using only textual data, re-
trieved documents that appeared to be relevant but
were not actually related to the queries.

In Figure 5, a textual query asks for the name
of the park located on the north shore of Foster
Reservoir. The conventional approach retrieved a

document containing unrelated information about
a different reservoir. While this document includes
terms such as "Peak District National Park" and
"North America farm," which make the document
superficially relevant, it fails to answer the query.
In contrast, our approach identified the document
containing the correct answer to the given query.

The advantages of integrating multimodal con-
tent into document representation become more
apparent in document retrieval with multimodal
queries, as shown in Figure 6. For a query con-
sisting of an image of a town hall in Hanover and
a textual question about its designer, both our ap-
proach and the conventional one retrieved docu-
ments about town halls in Germany. However,
our approach pinpointed the exact document about
the town hall in Hanover, indicating that Hermann
Eggert designed the building. The conventional
method retrieved a document about a town hall
in Munich, which is somewhat related but not an
exact match to the query image or question.

These cases underscore the benefits of leverag-
ing multimodal content in information retrieval.
Integrating interleaved multimodal elements, our
approach aligns more effectively with the input
query, resulting in more accurate and fine-grained
retrieval. This superiority is supported by Xu et al.
(2024), which highlights that models perform better
when prompted with rich multimodal information,
enabling them to capture alignments across modali-
ties and enhance the representation of given inputs.
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Q: What is the name of the park on the north shore of foster reservoir?

Foster Reservoir
Article Talk
From Wikipedia, the free encyclopedia

Foster Reservoir is a reservoir created by Foster Dam on the South Santiam River in

Foster Reservoir

the city of Foster, Oregon, United States. The reservoir is approximately 5.6 km

(3.5 mi) long and covers approximately 494 ha (1,220 acres) when full. Primary use of
the reservoir is recreation in the summer and flood control in the winter and
spring.!"!

Recreation e

Lewis Creek Park is a 40-acre (16 ha) recreation
area located on the north shore of the reservoir.
The park includes a roped-off swim beach, picnic
areas, barbecues, paved trails, lake accessibility for
shoreline fishing and boat moorage. The park is
operated by the Linn County Parks Department.2

&8

A pedestrian bridge crosses
Lewis Creek at Lewis Creek Park
along Foster Reservoir's north
shore.

Sunnyside Campground is a 98-acre (40 ha) park
located on the eastern edge of Foster Reservoir.
The park has 165 campsites including 132

campsites with electrical/water hook-ups, a dump

station and restroom/shower facilities. A large day use area includes a playground, a | Location Foster Oregor, Linn Cownty)
sand volleyball court and lake shore access with picnic tables. There is also a large Oregon, United States
pond stocked with trout. The park, which is operated by the Linn County Parks Coordinates (g 44.41667°N 122.66806°W
Department, also offers a boat ramp and boat moorage.”! Type Reservoir

Basin countries United States
Boat ramps are also located at Gedney Creek Park on the north side of the reservoir
and at Calkins Park on the southeast edge of the reservoir.*!

5.6 km (3.5 mi)""!
494 ha (1,220 acres)!"]

Max. length

Surface area

Water sports (edit)

Foster Reservoir is a popular destination for a variety of water sports including boating, water
skiing and jet skiing. The reservoir has also become a popular location for triathlons and water
polo tournaments.?!

Fishing (eat)
Water skiing near the

northwest edge of Foster
Reservoir

Foster Reservair is stocked with over 40,000 rainbow trout annually. The reservoir also has
kokanee salmon and bass. There are numerous locations for shoreline fishing in addition to
boat angling."!

Development eat)

Edgewater, a destination resort development, is located on the southwest edge of Foster

Reservoir. Edgewater includes a 49-space RV park, lake-view townhomes and a marina. The
marina offers slip rentals by the season, month and week, as well as a variety of recreational
boat rentals.®!

Numerous other private and public campgrounds are located nearby.

]

The Edgewater Marina is
located on the southwest edge
of Foster Reservoir.

See also (et

o Green Peter Reservoir
o List of lakes in Oregon
References (ea)

1.4 @b €2ys Army Corps of Engineers - Foster Dam and Reservoir” 2. US Army Corps of Engineers.
Portland District. Retrieved 2012-10-06.

Parks & Recreation" 2. Linn County Parks &

wis Creek County Park — Linn Count
Recreation. Retrieved 2012-10-06.

3. A “Sunnyside County Park — Linn County Parks & Recreation’ . Linn County Parks & Recreation.
Retrieved 2012-10-06.

4. A "Listing of Boat Ramps & Bodies of Water - Linn County Parks and Recreation” €. Linn County
Parks & Recreation. Retrieved 2012-10-06.

5. A “Oregon Department of Fish and Wildlife - Foster and Green Peter Reservoirs" . Oregon
Department of Fish and Wildlife. Archived from the original 2 on 2013-01-09. Retrieved
2012-10-06.

6. A "Edgewater RV Resort and Marina" €. Edgewater RV Resort and Marina. Retrieved 2012-10-06.

Aerial view of Foster and
Green Peter lakes (reservoirs)
reflecting the late-afternoon sun

Wikimedia Commons has
media related to Foster
Reservoir.
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Read Edit View history Tools v

Coordinates: @ 44.41667°N 122.66806°W

Langsett Reservoir A Add languages v

Article  Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia Coordinates: @ 5329'47'N 1°4110°W

Langsett Reservoir is in Yorkshire, England, near the villages of Langsett and Upper :
Midhope, on the edge of the Peak District National Park. The reservoir was Eangsett Resenvein
constructed between 1898 and 1904, and is now managed by Yorkshire Water. Fed
by the Little Don or Porter River, it is around a mile long, and supplies water for
Sheffield and Barnsley via the Langsett Treatment Works.

Construction and statistics (eat

Construction of the reservoir began in 1898, the logistics of getting the workforce
and materials to Langsett caused great difficulty as most of them came up from

Seen from Hingcliff Common to the west

Sheffield. This involved a journey over four different stretches of railway line, the first
leg was from Sheffield Midland Station to Deepcar, this was followed by a joumey to
Stocksbridge on the Samuel Fox and Company private line. From the Samuel Fox
steelworks a new one mile long line was built to reach the Underbank Reservoir to

X

up with the Water Authority track up to Langsett Reservoir "

The reservoir is 125 acres (51 ha) in area with a depth of 97 feet (30 m) and has a
holding capacity of 1,408 million gallons, making it the largest of the water supply

reservoirs in the immediate Sheffield district. The catchment area is the Langsett Location South Yorkshire

Moors to the west and this covers an area of 5203 acres (2,106 ha). The Coordinates  (y 53°29°47°N 1°41'10°W

eembankment is 1,156 feet (352 m) long with a height of 117 feet (36 m) from the Type reservoir
bottom of the old river bed. The embankment is 720 feet (220 m) wide at the Primary Little Don River
bottom tapering to 36 feet (11 m) at the top and contains 900,000 cubic yards of inflows

Catchment 5,203 acres (2,106 ha)

infill in the puddle wall and concrete trench, making it one of the largest earth
embankments in Great Britain."] The minor road (Midhope Cliff Lane) which runs area

across the embankment is thought to be the longest single carriageway of any Easacontres iU ivedon
51 ha (130 acres)

reservoir in Great Britain. The embankment road has a sharp bend in it as it joins the | Surface area

AB16 main road, this was a last minute change in construction plans, as keeping it | Max. depth 97 ft (30 m)
straight would have meant the demolition of the Waggon and Horses public house. | Water volume 1,408,000000 imp gal
(640 x10° L;

The reservoir was completed in 1904 when Alderman TR. Gainsford closed the valve

1691 x 10° US gal)

in the Langsett tower and the reservoir started to fill up, he was then presented with
a golden key by the engineer William Watts.("

Local depopulation was used in the early part of the twentieth century to improve
the water purity, and six farms were abandoned these included Brookhouse farm
and North America farm, the last farmer left around 1907. The ruins of North

America remain to the south-west of the reservoir even though it was used for

Asingeit
target practice during the Second World War!?) In 1962 conifers were planted W

tidhope
around the reservoir as shown on the map, with the aim of providing a habitat for Moors
many species of indigenous wildlife. This plantation is called Langsett Woods. In

recent years the woods have been restructured with most of the coniferous trees Green shading shows conifer plantation;

being felled and being replaced by oak and birch trees in an effort to create a new | "4 star indicates North America Farm
upland oak woodland. In 2007 a pond was created near Brookhouse Bridge at the
western end of the reservoir to help dragonflies, frogs, newts and toads establish
new colonies. %! The Pennine peaks of Pike Lowe (478 m) and Hingcliff Common
(358 m) lie to the south and south-west of the reservoir, respectively. The area is
used for sheep farming and grouse shooting, and it is popular with walkers
mountain bikers and birdwatchers with treecreepers, great spotted woodpeckers
and red grouse to be seen in the vicinity.>)

Langsett water treatment works (edit;

Ruins of North America Farm, with
The present day Langsett water treatment works were built to replace the older Langsett Reservoir behind

works at Midhope and Langsett reservoirs. The older works used sand filter beds to

treat the water, although the water was safe to drink, the sand filters had never been able to remove the brown colouration
caused by rainwater falling on the surrounding peat moorland. After much complaining from consumers, it was decided in 1980
to build a completely new treatment works. South Yorkshire Water Authority gave permission in December 1981 to build the
works in an old quarry adjacent to the reservoir wall. Worked started in 1983 with water from the new works going into the
supply system in July 1986. The works clarify the water by the addition of chemicals before the filtration stage to bring it up to

the latest EU standards. The works can produce 60,000 cubic metres (60 million litres) of water per day.""/5!

In 2017 a £20 million scheme was announced by Yorkshire Water to upgrade the treatment works to further improve the
discolouration and remove deposits from the raw water collected from the moors around the reservoir. The work began in
September 2017 and will take three years to complete.!

Recreation redi;

The Peak District Boundary Walk runs along the north side of the reservoir and across the dam.”

References (e

1.~ @b ¢d istory Of Langsett”, Jack Branston, (1986) Gives details of construction and reservoir statistics.
2
3.
4
S.
6. A Yorkshire Water ' Details improvement to treatment works started in 2017.

7. A McCloy, Andrew (2017). Peak District Boundary Walk: 190 Miles Around the Edge of the National Park. Friends of the Peak District.

ISBN 978-1909461536.

A Information boards at reservoir give details of farms.
A Information boards at reservoir give details of wildlife and woodland.
A “Langsett Reservoir Walk" . Walks in Yorkshire. Retrieved 1 December 2017.

A @b peak District Education® Archived 1 September 2010 at the Wayback Machine Gives details of reservoir and treatment works.

External links

o Yorkshire Watert2 ~ Langsett Reservoir

edit]

Wikimedia Commons has
media related to
Langsett Reservoir.

®

veTeE Reservoirs in Yorkshire [hide]
Angram - Beaver Dyke - Chelker - Cod Beck - Embsay - Fewston - Gouthwaite - Grimwith - Leighton -
North Yorkshire  Lindley Wood - Roundhill - Scaling Dam - Scar House - Swinsty - Thornton Steward - Thruscross - |EE—<m

Upper Barden - Winterburn

Agden - Broomhead - Dale Dike - Damflask - Howden - Langsett - More Hall - Redmires - Rivelin -

R <tvne - Utey - Winscar

(b) Text-only Document Retrieval

Figure 5: Retrieved documents across different document formats for document retrieval with a given textual query. (a): A
document retrieved when represented leveraging interleaved multimodal contents within documents (ours). (b): A document

retrieved when using only textual format
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Q: Who designed this building?

New Town Hall (Hanover) %7 12 languages v

Article  Talk ry Tools v

Read Edit Vie

From Wikipedia, the free encyclopedia

Coordinates: G 52.3672

The New Town Hall (German: Neues Rathaus) is a town hall in Hanover, Germany. It
opened on 20 June 1913 after construction lasting 12 years.!"l A magnificent, castle-
like building of the era of Wilhelm I1 in eclectic style at the southern edge of the

New Town Hall
Neues Rathaus
-

inner city just outside the historic city centre of Hanover, the building is embedded
within the 10-hectare (25-acre) Maschpark. (91

History (est

Costing 10 million marks, the New Town Hall was erected on 6,026 beech piles by
architects Hermann Eggert and Gustav Halmhuber. 2! “Ten million marks, Your
Majesty — and all paid for in cash”, the City Director, Heinrich Tramm, [d¢ 4] jg
claimed to have announced when the New Town Hall was opened in the presence of
Emperor Wilhelm Ii. In honour of Tramm the public space in front of the building
was named Trammplatz (it Tramm Plaza’) until 23 September 2024, when it was
renamed to Platz der Menschenrechte (it Human Rights Plaza) because Tramm is

recognized as a pioneer of National Socialism.™ ]

Upon opening, the New Town Hall replaced the Wangenheim Palace as the main

Whinada? | O

seat of administration, which had moved from the Old Town Hall into the e i

Wangenheim Palace in 1863. As of 2022, the New Town Hall is still the residence of | pgdras Platz der

the Mayor and CEO, the head of the municipal administration. ('] Menschenrechte 1

Damaged during bombing raids on the inner city of Hanover in World War 115 the | o o Y Hanover

German state of Lower Saxony was preclaimed in 1946 in the 38-metre-high (125 ft) Country oLy
Coordinates @ 52367249°N

hall of the New Town Hall"

9737355°E 4

There are four city models of Hanover in the ground floor of the New Town Hall.'l :t';'::;"“i"" (1001123 Ve log0
They vividly portray the development of the city.
Opened 1913; 111 years ago

. Height 97.73 m (3206 f)
Dome with elevator ;e Technical details
The dome of the New Town Hall, with its observation platform, s 87.73 metres Flou Sas E00IEy G2 000630
(3206 ft) high ) The dome's lft is unique in the world in that its arched course Design and construction

. Architect(s) Hermann Eggert

follows the parabolic shape of the dome.")! It is often incorrectly described as a
sloping lift up the dome and compared with the lifts in the Eiffel Tower, which

Gustav Halmhuber

actually travel diagonally only, without changing their angle of inclination. The lift climbs the 50-metre (160 ft) shaft at an angle
of up to 17° to the gallery of the dome, where the Harz mountain range can be seen when visibility is good. In the process, the
lift moves 10 metres (33 ft) horizontally. During the trip, the two weight-bearing cables wind up on three double rolls in the wall
of the shaft.

The cage of the lft erected in 1913 travelled on steam-bent oak tracks.
Because of the weather, this lift was not usable in the colder half of the year.
A spiral staircase leads from the lft exit to the observation level. In 2005,
over 90,000 people visited the tower of the New Town Hall. A new lift was
installed in winter of 2007-08. The last trip of the old lft took place with
Lord Mayor Stephan Weil on 4 November 2007. On that weekend,

1200 guests took the last opportunity to ride in the old ift.

Gallery (et

Town hall dome showing  plan of the elevator route
the elevator route (in in the dome
red)

Hanover's New Town Hall at Aerial view

night

Interior

General references (<1

steinweg, Wolfgang [in German] (1988). Das Rathaus in Hannover: von der Kaiserzeit bis in die Gegenwart [The Town Hall in
Hanover: from the Imperial £ra to the Present Day) (in German). Hanover: Schliiter. ISBN 3-87706-287-3. OCLC 18487850 &,
Schinkel, Andreas (16 September 2024). "Brockelnde Kuppel, teure Aufziige: So kaputt ist das Neue Rathaus Hannover

A 30 languages v

New Town Hall (Munich)

Article  Talk

From Wikipedia, the free encyclopedia

Read Edit View history Tools v

Coordinstes: @, 48''15'N 1134 32°E

The New Town Hall (German: Neues Rathaus) is a town hall that forms the
northern part of Marienplatz in Munich, Bavaria, Germany. It hosts the city
government including the city council, offices of the mayors and a small portion of
the administration. In 1874 the municipality had left the Old Town Hall for its new
domicile.

New Town Hall
Neues Rathaus

History (ear

Inception and construction it

H
The decision to construct a new building came due to the lack of space in the Old New Town Hall as seen from the Marienpla

Town Hall and the adjoining, so-called "Lesser Town Hall" on Petersbergl (destroyed side

in 1944, ot reconstructed). In memory of the bourgeois high season during the SCHONFEDVORSTAD 1 o

{
Gothic period, the choice fell upon a neo-Gothic design, which allowed to
implement an independent architectural accent in contrast to the buildings of the

royal family. e

Muffich
The north side of the Marienplatz was chosen as
svoRsTaDY

the building site, where the house of the eRren
sUolchen

Landstinde still stood which had been erected FRIEONOF e &

by the Bavarian Duke throughout the Middle

16 Opensieen

General information

Ages as a sort of representation of the opposing | fype Town hall
Landstande. The first section of the building in | Apchitectural style  Gothic Reviva
the eastern part of the Marienplatz, on the Location Munich, Germany

The New Town Hall as it
looked until the extension of
1898-1905

corner of Dienerstrasse, was the rasults of an
idea competition won by Georg Hauberrisser and carried out between 1867 and 1874. When
it became clear that this new building would not be able to accommodate the entire
administration, the city began purchasing all the properties on the Dienerstrasse,
Landschafttrasse and Weinstrasse adjacent to the Town Hall started in 1887. From 1889 to 1892, the section on the corner of
Dienerstrasse and Landschaftstrasse was constructed.

In 1897, the Magistrate and municipal council decided to extend the buildings on the Marianplatz as well as the Weinstrasse and
Landschaftstrasse to create a four-sided complex. For this, the entire area between the Marienplatz and Landschaftstrasse was
used and on the other side, between Weinstrasse and Dienerstrasse. In 1898, the work for the extension began with the tower
(Rathausturm), also under architect Georg von Hauberrisser. In December 1905, the shell of the third building section was
finished with the setting of the keystone on the Rathausturm. For the architectural design of the Munich Rathausturm,
Hauberrisser was clearly inspired by Brussels' Town Hall, whose 96-meter Brabantine Gothic tower was built by Jan van
Ruysbroeck in the years 1449 to 1455.") By the end of 1906, the offices were handed over. The fagade area in the Marienplatz
was then 98.5 meters long, of which 48 meters belong to the first construction section.”?] Examples that were used for the design
were the Tewn Hall in Brussels and the City Hall in Vienna,

20th century-present (it

The minimal damages to the New Town Hall that occurred during the air raids on Munich 1944, were rebuilt after the war. The
portion constructed at the Marienplatz received an additional floor, which were hidden behind the nec-Gothic balustrade so that
the building's image was preserved. The fagade on the Landschaftstrasse was very simply restored. At the end of the 19905, the
New Town Hall was rebuilt and reconstructed identically, including the neo-Gothic ornaments, which crown the roof

Dimensions and location (e

The building covers an area of 9159 m2 having 400 rooms. The 100 meters long main facade towards the Marienplatz is richly
decorated. It shows the Guelph Duke Henry the Lion, and almost the entire line of the Wittelsbach dynasty in Bavaria and is the
largest princely cycle in a German town hall. The central monument in the center of the main facade between the two phases at
Marienplatz above the guard house, is an equestrian statue of Prince Regent Luitpold. The bay of the tower contains statues of
the first four Bavarian kings.

The main facade is placed toward the square, while the back side is adjacent to a small park (Marienhof). The basement is
almost completely occupied by a large restaurant called Ratskeller. On the ground floor, some rooms are rented for small

businesses. Also located in the ground floor is the major official tourist information.

The first floor hosts a big bakony towards the Marienplatz which is used for large festivals such as football championships or for
concerts during the Weihnachtsmarkt. Its main tower has a height of 85 m and is available for visitors with an elevator. On the
top thrones the Munchner Kindl. The Rathaus-Glockenspiel, performed by an apparatus daily at 11am, 12pm and 5pm, is a
tourist attraction.

Detail of the front
fagade above the
main entrance

Brussels' Town Hall  Relief of Munich's  The New Town Hall's The location of the
was used as an partner cities in the  southern front New Town Hall
architectural example ~entrance hall of the directly at

for Munich's New  New Town Hall Marienplatz

Town Hall!"

Description :<di)

hi

[Crumbling dome, expensive elevators: This is how broken the New Town Hall in Hanover is]. he (
German). Archived? from the original on 16 September 2024. Retrieved 16 September 2024

(a) Interleaved Multimodal Document Retrieval

| design 1zt

Conference Rooms - Hallways - Staircase

(b) Text-only Document Retrieval

Figure 6: Retrieved documents across different document formats for document retrieval with a given multimodal query. (a): A
document retrieved when represented leveraging interleaved multimodal contents within documents (ours). (b): A document

retrieved when using only textual format
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