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Abstract

Information Retrieval (IR) methods aim to iden-001
tify documents relevant to a query, which have002
been widely applied in various natural language003
tasks. However, existing approaches typically004
consider only the textual content within docu-005
ments, overlooking the fact that documents can006
contain multiple modalities, including images007
and tables. Also, they often segment each long008
document into multiple discrete passages for009
embedding, which prevents them from captur-010
ing the overall document context and interac-011
tions between paragraphs. To address these two012
challenges, we propose a method that holisti-013
cally embeds documents interleaved with mul-014
tiple modalities by leveraging the capability of015
recent vision-language models that enable the016
processing and integration of text, images, and017
tables into a unified format and representation.018
Moreover, to mitigate the information loss from019
segmenting documents into passages, instead020
of representing and retrieving passages individ-021
ually, we further merge the representations of022
segmented passages into one single document023
representation, while we additionally introduce024
a reranking strategy to decouple and identify025
the relevant passage within the document if nec-026
essary. Then, through extensive experiments027
on diverse IR scenarios considering both the028
textual and multimodal queries, we show that029
our approach substantially outperforms rele-030
vant baselines, thanks to the consideration of031
the multimodal information within documents.032

1 Introduction033

Information Retrieval (IR) is the task of fetch-034

ing relevant documents from a large corpus in re-035

sponse to an input query, which plays a critical036

role in various real-world applications including037

web search engines and question-answering sys-038

tems (Shah et al., 2019; Lewis et al., 2020; Guu039

et al., 2020). Over the years, IR methods have040

evolved significantly, with approaches broadly cat-041

egorized into sparse and dense retrieval paradigms.042

Specifically, sparse retrieval methods (Robertson 043

et al., 1994; Jones, 2004) focus on lexical overlap 044

between queries and documents; meanwhile, dense 045

retrieval methods (Karpukhin et al., 2020; Xiong 046

et al., 2021) utilize neural embeddings to represent 047

queries and documents in a continuous vector space. 048

Note that, recently, dense retrieval methods have 049

gained more popularity over sparse methods due 050

to their capability to capture semantic nuances and 051

context beyond simple keyword matching, leading 052

to multiple successes with improved performance. 053

Despite their huge successes, existing (dense) re- 054

trieval methods face a couple of severe challenges. 055

First, they primarily rely on the textual data for 056

document embedding and retrieval, overlooking 057

the fact that modern documents often contain mul- 058

timodal content, such as images and tables (beyond 059

the plain text), which can carry critical information 060

that may be essential for accurately understanding 061

and retrieving the relevant documents. To be spe- 062

cific, a diagram within a medical article can more 063

effectively represent the structure of a molecule or 064

the progression of a disease, offering more clarity 065

that would be difficult to achieve with text alone, 066

and omitting such multimodal content can lead to 067

an incomplete understanding (and potentially in- 068

accurate retrieval) of the documents. Also, the 069

segmentation of long documents into discrete pas- 070

sages, which is commonly employed by existing 071

retrieval models to handle the length limitation for 072

embeddings, may prevent models from capturing 073

the full context and the intricate relationships be- 074

tween different parts of the document, ultimately 075

leading to suboptimal retrieval performance. It is 076

worthwhile noting that, concurrent to our work, 077

while there has been recent work that screen cap- 078

tures the document and then embed its screenshots 079

(to consider different modalities in a unified for- 080

mat) (Faysse et al., 2024; Ma et al., 2024), not only 081

its content (such as paragraphs, images, and tables) 082

can be fragmented into different sub-images, lead- 083
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Figure 1: Comparison of different IR approaches. (a): Conventional methods use a small portion of the text within the document
for its representation. (b): Recent methods use first-page screenshot images to represent the document. (c): Our approach
leverages the full contextual information within documents interleaved with multiple modalities by considering them in their
original format, and is further capable of pinpointing relevant sections for the query.

ing to the loss of contextual coherence across the084

entire document, but also the visual representation085

of text may hinder the model’s ability to capture086

the semantic relationships present in the original087

textual data, while increasing the image resolution088

leads to the concern on the memory requirements.089

In this work, we introduce a novel approach to090

holistically represent documents for IR, which ad-091

dresses the aforementioned challenges by repre-092

senting and retrieving the documents interleaved093

with multiple modalities in a unified manner (See094

Figure 1). Specifically, our method revolves around095

the recent advance of Vision-Language Models096

(VLMs), which enable the processing and integra-097

tion of multimodal content (such as text, images,098

and tables) directly into a single token sequence,099

thereby preserving the context and relationships be-100

tween various parts of the document, unlike the pre-101

vious approaches that rely on the fragmented visual102

representations. Also, in cases where the number103

of tokens in a document is large and exceeds the104

capacity of a single context window of VLMs, we105

propose a strategy to segment the document into106

passages, each represented within the token limit,107

and combine these passage embeddings into a uni-108

fied document representation. This strategy differs109

from existing IR approaches that independently rep-110

resent and retrieve at the passage level, potentially111

losing the overall document context. Lastly, to ac-112

curately identify only the relevant sections within113

the retrieved lengthy document, we introduce a114

reranking mechanism that is trained to pinpoint the115

passage most pertinent to the query (among all the116

other passages within the document), allowing for117

both the coarse-grained document-level matching118

and fine-grained passage-level retrieval. We refer119

to our overall framework as Interleaved Document 120

Information Retrieval System (IDentIfy). 121

We experimentally validate the effectiveness of 122

IDentIfy on four benchmark datasets, considering 123

both the text-only and multimodal queries. On a 124

battery of tests conducted, we observe that our ap- 125

proach substantially outperforms relevant baselines 126

that consider only the uni-modality for document 127

representations, thanks to the consideration of mul- 128

timodal content. Further, we find that the strategy 129

to represent the whole document with its single rep- 130

resentation (by merging embeddings of its splits) 131

is superior to the approach of individually repre- 132

senting them for document retrieval, but also per- 133

forming reranking over the sections of the retrieved 134

document is superior to the approach of directly re- 135

trieving those sections, which confirm the efficacy 136

of the proposed retrieval and reranking pipeline for 137

document and passage retrieval, respectively. 138

2 Related Work 139

Information Retrieval Information Retrieval 140

(IR) involves finding documents relevant to a query, 141

which plays a crucial role in applications such as 142

search and question-answering (Zhu et al., 2023; 143

Gao et al., 2023; Ram et al., 2023; Shi et al., 2024; 144

Jeong et al., 2024a). Earlier IR approaches mea- 145

sured the similarity between queries and documents 146

based on their lexical term matching, such as BM25 147

and TF-IDF (Robertson et al., 1994; Jones, 2004). 148

Yet, these methods often struggled to capture the 149

semantic nuances beyond surface-level term over- 150

laps. To overcome this, along with advancements 151

in language models (Devlin et al., 2019; Liu et al., 152

2019), there have been dense retrieval approaches 153

that embed both the queries and documents into a 154
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shared dense vector space (Karpukhin et al., 2020;155

Xiong et al., 2021), enabling the calculation of se-156

mantic similarity between them more effectively by157

capturing the deeper contextual information. Yet,158

previous studies have mainly focused on enhanc-159

ing the textual representations of queries and doc-160

uments, while overlooking the multimodal nature161

of documents beyond text, which can potentially162

provide richer context and aid in more accurate163

retrieval (Liu et al., 2021; Jeong et al., 2024b).164

Multimodal Information Retrieval Recent stud-165

ies in IR have expanded the focus from purely text-166

based retrieval models to those that consider other167

modalities, such as images (Radford et al., 2021;168

Xiao et al., 2024), tables (Herzig et al., 2021; Chen169

et al., 2024) and graphs (Baek et al., 2023); how-170

ever, the majority of these approaches (Zhou et al.,171

2024; Long et al., 2024; Lerner et al., 2024; Nowak172

et al., 2024; Caffagni et al., 2024) have primarily173

explored how to process the multimodal queries,174

meanwhile, they often overlook the equally im-175

portant multimodal characteristics of the docu-176

ments being retrieved. In efforts to handle diverse177

multimodal elements within documents, there are178

concurrent studies that have proposed to capture179

screenshots of documents, such as PDFs (Faysse180

et al., 2024; Cho et al., 2024) or Wikipedia web181

pages (Ma et al., 2024), and subsequently encod-182

ing them through vision models (Ding et al., 2024).183

However, these methods are not only limited by184

factors, such as image resolution and computa-185

tional memory, constraining their application to186

documents longer than a single page1, but also fall187

short by treating the diverse modalities within a188

document as a single visual entity, leading to sub-189

optimal document representations that may fail to190

effectively capture the nuanced interdependence191

between text and images. Also, while there are con-192

current studies (Jiang et al., 2024b; Lin et al., 2024)193

that consider images and text as retrieval targets,194

they primarily focus on representing image-text195

pairs and their retrieval, rather than addressing the196

holistic representation of documents that include197

multiple images and another modality (tables). Fi-198

nally, all the aforementioned work does not address199

the issue of splitting documents into smaller frag-200

ments (passages or sub-images), which may disrupt201

the holistic contextual view of the entire document.202

1For instance, Ma et al. (2024) requires processing 9.8k
image tokens just to process a single-page document, and it
results in 2TB of storage for handling the entire Wikipedia
corpus, which may not be practical.

Vision-Language Models Recently developed 203

Vision-Language Models (VLMs) have emerged 204

as a powerful tool for jointly processing visual and 205

textual data, which combine the image understand- 206

ing capabilities of visual encoders (Radford et al., 207

2021; Zhai et al., 2023) with the advanced reason- 208

ing abilities of language models (OpenAI, 2022, 209

2023a). These models have achieved remarkable 210

performance across diverse vision-language (VL) 211

tasks (such as image captioning and visual question 212

answering) (Dai et al., 2023; OpenAI, 2023b), with 213

the substantially limited attention on their applica- 214

tions to IR. We note that the latest developments 215

in this field have particularly focused on enabling 216

VLMs to handle interleaved, multimodal content, 217

which involves a mixed sequence of images and 218

text (Zhang et al., 2023; Li et al., 2024b). In partic- 219

ular, LLaVA-NeXT-Interleave (Li et al., 2024b) in- 220

troduces a fine-tuning approach that specifically en- 221

hances the VLMs’ capacity to understand complex 222

interleavings of multiple images and text within 223

a single context. Drawing inspiration from these 224

advances, we propose to harness the capabilities of 225

VLMs to create unified embeddings for documents 226

interleaved with text and images (as well as tables). 227

3 Method 228

We present IDentIfy to holistically represent docu- 229

ments interleaved with multimodal elements. 230

3.1 Preliminaries 231

We begin with preliminaries, formally explaining 232

information retrieval and vision-language models. 233

Information Retrieval IR is formally defined as 234

the task of identifying a set of relevant documents 235

{d1,d2, . . . ,dk} ⊆ D from a large corpus D, 236

given an input query q. Here, each query q and doc- 237

ument d are represented as a sequence of tokens: 238

q = [q1, q2, . . . , qn] and d = [d1, d2, . . . , dm], and 239

traditional IR approaches typically consider these 240

tokens as purely textual elements. However, we 241

propose to extend this assumption to have the to- 242

kens of both the textual and visual content, to cap- 243

ture the multimodal nature of many real-world doc- 244

uments. Then, this new extension raises important 245

questions of how can both the textual and visual 246

content be represented within a unified token frame- 247

work, and how can these multimodal tokens be 248

seamlessly integrated and encoded for document 249

representations. To answer them, we harness the 250

power of recent vision-language models below. 251
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Figure 2: Overview of the proposed IDentIfy. (a): In our document retriever, a query encoder represents a query (purple), and
sections are encoded with a section encoder whose embeddings averaged to form a document representation (blue). Contrastive
learning loss (red) is used for training the document retriever. (b): Reranker scores query-section relevance with the concatenation
of the query and section, trained using Binary Cross-Entropy loss.

Vision-Language Models We now turn to de-252

scribing Vision-Language Models (VLMs), which253

are designed to jointly encode the textual and visual254

information in a unified token framework. These255

models are generally comprised of two main com-256

ponents: a visual encoder and a language model,257

interconnected through a projection layer. Specif-258

ically, given the document that may contain inter-259

leaved modalities (e.g., text and images), the visual260

encoder extracts high-level visual features from261

(multiple) images embedded within the document,262

mapping them into a latent space. Then, these vi-263

sual features are transformed into a sequence of264

visual tokens via the projection layer, represented265

as follows: V∈RV×demb , where V denotes the vi-266

sual token length and demb is the token dimension267

size. Similarly, for the textual content embedded268

within the document, the language model uses a269

word embedding layer to convert the input text270

into a sequence of tokens, as follows: L∈RL×demb ,271

where L denotes the token length of text.272

In this work, we also propose to account for ta-273

bles that are an integral modality for holistically274

representing the full content of documents. How-275

ever, in contrast to text and images that have dedi-276

cated processing layers within the VLM architec-277

tures, tables do not have a specific representation278

layer. Nevertheless, we argue that recent VLMs are279

pre-trained on diverse web data, and subsequently280

they are implicitly learned to handle the table struc-281

tures formatted in HTML. Consequently, we treat282

HTML-format table data as a linearized sequence283

of HTML words, applying the same word embed-284

ding layer as is used for plain text. To be formal,285

this process converts the table content into table286

tokens, as follows: T∈ RT×demb , where T is the to- 287

ken length of the table. Lastly, once extracted, the 288

visual tokens, text tokens, and table tokens are con- 289

catenated (to form a unified token sequence) and 290

then passed through the remaining layers of VLMs, 291

to capture both uni- and cross-modal relationships 292

across different modalities, ultimately enabling the 293

comprehensive understanding of the documents. 294

3.2 Retriever 295

We now explain how we design a retriever specifi- 296

cally tailored for multimodal interleaved document 297

retrieval. In particular, our approach leverages a 298

VLM capable of processing text, images, and ta- 299

bles within a single document. Further, following 300

the standard practice of existing retrieval architec- 301

tures (Karpukhin et al., 2020; Xiong et al., 2021), 302

we use a dual-encoder structure, which consists of 303

a query encoder and a section encoder, both are 304

based on the VLM, illustrated in Figure 2 (a). 305

Specifically, thanks to the use of the VLM, our 306

query encoder can take either purely textual queries 307

q = LQ or multimodal queries consisting of text 308

and corresponding visual elements q=[VQ, LQ]. 309

Also, to obtain the final query representation, we 310

introduce a learnable token called ‘End of Query’, 311

[EoQ]∈Rdemb . This token is appended to the end 312

of the sequence of query tokens q, and the final 313

concatenated tokens [q, [EoQ]] are then passed 314

through the query encoder. Then, the model output 315

corresponding to [EoQ] is used as the final query 316

representation, as follows: ZQ∈Rdemb . 317

For documents, we first represent each docu- 318

ment d as a sequence of sections d=[si]
S
i=1 (with 319

a total of S sections), where each section si is de- 320

rived by dividing the document according to its 321
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subtitles. si can contain a combination of text to-322

kens LSi, visual tokens from embedded images323

VSi, and table tokens TSi, denoted as follows:324

si = [VSi , LSi , TSi ]. Then, to obtain a section-325

level representation, similar to the query represen-326

tation, we introduce a learnable token, called ‘End327

of Section’: [EoS]∈Rdemb , which is similarly ap-328

pended at the end of each section. We then forward329

concatenated tokens [si, [EoS]] to the section en-330

coder, and, after that, the output corresponding to331

[EoS] is used to form the section representation, as332

follows: ZSi ∈Rdemb . Additionally, the overall doc-333

ument representation is obtained by averaging the334

representations of all sections within the document,335

defined as follows: ZD= 1
S

∑S
i=1 ZSi .336

The remaining step to discuss here is how to337

train those two query and section encoders for IR.338

Recall that the goal of the retriever is to assess a339

relevance score between the query and the docu-340

ment. To achieve this goal, we use a contrastive341

learning loss based upon the query and document342

representations, whose objective is to assign higher343

similarity scores to relevant documents (positive344

samples) and lower scores to irrelevant ones (nega-345

tive samples) for the query, formulated as follows:346

Lretriever=− 1

B

B∑
i=1

log

(
ϕ (ZQi ,ZDi)∑B

j=1 ϕ
(
ZQi ,ZDj

)) ,347

ϕ (a, b)=exp

(
a⊤b

∥a∥∥b∥

)
, (1)348

where B is the batch size during the training phase.349

Here, by minimizing Lretriever, the retriever learns350

to optimize the similarity between queries and their351

relevant documents, enabling the retrieval of the352

most pertinent documents (among all) for the given353

input query during inference.354

3.3 Reranker355

To enable fine-grained retrieval within documents356

beyond the retrieval of documents themselves, we357

introduce a section-level reranking mechanism that358

identifies the section most relevant to the query. In359

particular, once the document is retrieved, the ob-360

jective of the reranker fR is to pinpoint the specific361

sections within the document that best match the362

query. We also note that this reranker is similarly363

operationalized with the VLM along with a binary364

classifier on top of it, which directly measures the365

relevance of each query-section pair (Figure 2 (b)).366

Formally, for a retrieved document, we take each367

of its sections si with a learnable token for section368

embedding [EoS] attached to the end and concate- 369

nate it with query q , forming the input sequence of 370

[q, si, [EoS]]. The concatenated tokens are then 371

processed through the reranker, and its output corre- 372

sponding to [EoS] captures the relevance between 373

the query and section, which is further subsequently 374

passed to a binary classifier consisting of a linear 375

layer followed by a Sigmoid function. Through 376

this, the classifier outputs a probability score indi- 377

cating the likelihood of the section being relevant to 378

the query, i.e., a score close to one denotes a high 379

relevance (positive section), meanwhile, a score 380

near zero indicates irrelevance (negative section). 381

To train this reranker, we use the binary cross- 382

entropy loss, formulated as follow: 383

Lreranker=

B∑
i=1

Si∑
j=1

1

BSi
ℓ
(
ysi,j , fR ([q, ŝi,j ])

)
, 384

ℓ (y,ŷ)=− [y log ŷ+(1−y) log(1−ŷ)] , (2) 385

where Si is the number of sections in the i-th docu- 386

ment, ysi,j is the label for the j-th section of the i- 387

th document si,j (with its value of one if relevant to 388

the query q, otherwise zero), ŝi,j = [si,j , [EoS]], 389

and B is the batch size during training. Also, dur- 390

ing training, the sections not labeled as relevant to 391

the query are considered negative samples. Then, 392

by minimizing Lreranker, the reranker learns to pre- 393

dict section relevance for any query, thus refining 394

our overall retrieval process by allowing the re- 395

trieval of not just whole documents but also their 396

most relevant sections, for multiple use cases of IR. 397

4 Experiments 398

4.1 Experimental Setups 399

Datasets We evaluate IDentIfy on four bench- 400

mark datasets designed for multimodal IR tasks 401

that require understanding of both the textual and 402

visual cues within queries and documents, as fol- 403

lows: Encyclopedic-VQA (Mensink et al., 2023) 404

is a large-scale benchmark for multimodal Visual 405

Question Answering (VQA) with queries linked to 406

specific Wikipedia sections and includes both text- 407

only and multimodal queries; InfoSeek (Chen et al., 408

2023) is a knowledge-intensive VQA dataset with 409

multimodal questions generated from Wikidata 410

triples that include diverse entities such as land- 411

marks, animals, and food; ViQuAE (Lerner et al., 412

2022) involves both text-based and multimodal 413

queries about human entities, linked to annotated 414

Wikipedia sections, making it ideal for evaluating 415
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Table 1: Results with different document formats for retrieval.

Format R@1 R@10 R@100 MRR@10

Entity 3.1 15.5 39.7 6.1
Summary 13.4 41.3 66.5 21.6
Text-document 12.5 37.8 68.7 19.8
+ Single-image 16.4 45.4 77.1 25.3
+ Interleaved (Ours) 20.5 50.0 78.0 29.4

Table 2: Results with different section retrieval strategies.
Document (Ours) performs document retrieval and section
reranking, whereas Passage performs section retrieval and
reranking. * denotes the model without reranking.

Granularity R@1 R@10 R@20 MRR@10

Passage* 3.9 16.9 22.0 7.5
Passage 28.6 36.4 37.8 31.2
Document (Ours) 35.1 50.8 53.6 40.3

Table 3: Performance on document retrievals. (a): Results of document retrieval for multimodal queries on InfoSeek and
ViQuAE. (b): Results of document retrieval for textual queries on Encyclopedic-VQA (Enc-VQA) and ViQuAE.

(a) Document Retrieval with Multimodal Queries
Format Dataset R@1 R@10 R@100 MRR@10

Text-document InfoSeek 6.8 23.6 52.5 11.2
+ Interleaved 10.2 30.4 57.3 15.7

Text-document ViQuAE 13.5 40.4 67.4 20.9
+ Interleaved 17.5 46.0 69.4 26.3

(b) Document Retrieval with Textual Queries
Format Dataset R@1 R@10 R@100 MRR@10

Text-document Enc-VQA 62.7 76.3 87.4 67.0
+ Interleaved 65.4 76.8 87.8 69.0

Text-document ViQuAE 55.8 71.5 83.0 60.9
+ Interleaved 56.5 72.2 83.0 61.6

section retrieval; Open-WikiTable (Kweon et al.,416

2023) extends WikiSQL (Zhong et al., 2017) and417

WikiTableQuestions (Pasupat and Liang, 2015), tar-418

geting open-domain table QA by identifying doc-419

uments or sections containing relevant tables. We420

provide more details on datasets in Appendix A.421

Baselines We compare our approach against di-422

verse baselines that capture different document rep-423

resentations. First, the Entity and Summary base-424

lines retrieve documents based on their titles and425

summary sections, respectively, leveraging high-426

level textual cues. Also, the Text-document re-427

triever baseline utilizes the full textual content of428

documents for retrieval. We further include the429

Single-image baseline that additionally leverages430

the first image of each document. IDentIfy is our431

model that holistically represents multimodal con-432

tent (text, images, and tables) within documents.433

Evaluation Metrics To evaluate our approach,434

we use standard metrics: Recall@K (R@K) mea-435

sures whether the relevant document or section ap-436

pears within the top-K results; MRR@K measures437

how early the first relevant item is ranked (within438

top-K) by averaging its inverse rank across queries.439

Implementation Details We use LLaVA-NeXT-440

Interleave (Li et al., 2024b) of 0.5B parameters as441

the basis VLM for both the retriever and reranker.442

During training, documents are represented using443

randomly selected four sections, while in inference,444

we consider all sections within each document. For445

section-level retrieval, all sections within the top446

25 retrieved documents are reranked. Experiments447

are conducted on a single H100 GPU.448

4.2 Experimental Results and Analyses449

Main Results We report retrieval performance on450

the Encyclopedic-VQA dataset in Table 1, where451

queries include both text and images. We observe 452

that IDentIfy achieves the best performance, im- 453

proving R@1 scores by 53.0%, 64.0%, and 25.0% 454

over Summary, Text-document, and Single-image 455

retrieval baselines, respectively, with similar trends 456

observed for other metrics. These results demon- 457

strate the effectiveness of integrating multimodal 458

content holistically into a unified representation. 459

To further illustrate the advantages of our approach, 460

we provide case studies in Appendix C. 461

We further examine the impact of our document 462

retrieval and section reranking pipeline. In Table 2, 463

the passage retriever represents individual sections 464

as separate retrieval units, whereas the document 465

retriever (ours) aggregates multiple section repre- 466

sentations into a single representation. Then, we 467

perform reranking over the retrieved sections or the 468

sections from the retrieved documents, and then 469

report the results in Table 2 (where * denotes the 470

model without reranking). From this, we observe 471

that the passage retriever without reranking (Pas- 472

sage*) achieves suboptimal retrieval performance, 473

highlighting the challenge in pinpointing the most 474

relevant section within a document using traditional 475

retrieval methods. In contrast, when the reranker is 476

used alongside the document retriever, the perfor- 477

mance significantly surpasses that of the passage 478

retrieval. These results confirm the importance of 479

leveraging holistic context from multiple, interre- 480

lated sections within documents. 481

Interleaved format enhances document retrieval 482

across modalities. We further expand our exper- 483

iments to two additional datasets, InfoSeek and 484

ViQuAE, and report document retrieval results. As 485

shown in Table 3, our model consistently outper- 486

forms the Text-document baseline for both multi- 487

modal and text-only queries. We attribute these 488
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Table 4: Performance on section reranking. (a): Results of section reranking for multimodal queries on Encyclopedic-VQA
(Enc-VQA) and ViQuAE. (b): Results of section reranking for textual queries on Enc-VQA and ViQuAE. For fair comparison
between different methods, the reranking target (i.e., candidate sections from retrieved documents) are the same across them.

(a) Section Reranking with Multimodal Queries

Format Dataset R@1 R@10 R@20 MRR@10

Text-document Enc-VQA 40.7 52.8 55.5 44.8
+ Interleaved 42.4 53.6 55.7 46.3

Text-document ViQuAE 12.6 31.7 37.7 18.2
+ Interleaved 11.4 32.1 39.2 17.5

(b) Section Reranking with Textual Queries

Format Dataset R@1 R@10 R@20 MRR@10

Text-document Enc-VQA 68.1 79.4 80.2 72.3
+ Interleaved 69.7 80.1 80.6 73.6

Text-document ViQuAE 27.8 50.2 57.7 35.0
+ Interleaved 29.9 50.9 59.8 36.7

Table 5: Retrieval results for tables, where Zero-shot denotes a model trained on Encyclopedic-VQA but not on the target
dataset. Finetuned refers to additional training of the model on the target dataset. (a): Results for tabular document retrieval
on Open-WikiTable (OWT). (b): Textual and tablular section retrieval results on ViQuAE and OWT datasets, respectively. (c):
Reranker accuracy of a classification task that identifies the section containing the query-associated table given a gold document.

(a) Document Retrieval for Tables
Model R@1 R@10 R@100 MRR@10
Zero-shot 29.4 58.0 86.0 38.1
Finetuned 55.8 84.1 93.5 66.1

(c) Tabular Classification
Model Random Zero-shot Finetuned

Acc@1 11.9 9.3 56.5

(b) Section Retrieval for Tables

Model Modality Dataset R@1 R@10 R@20 MRR@10

Zero-shot
Text ViQuAE

20.3 49.0 57.7 28.9
Finetuned 29.9 50.9 59.8 36.7

Zero-shot
Table OWT

5.9 20.5 29.4 9.1
Finetuned 8.4 36.7 52.8 15.2

gains to the integration of multimodal content, al-489

lowing the VLM to capture richer alignments and490

leverage pre-existing knowledge for more effective491

document representation (Xu et al., 2024).492

Interleaved format is also beneficial in section493

retrieval. Similarly, we evaluate section retrieval494

performance on Encyclopedic-VQA and ViQuAE495

datasets, for both multimodal and textual queries.496

As shown in Table 4, our model outperforms the497

Text-document baseline in most cases. However,498

the performance gains over the baseline are smaller499

compared to the document retrieval setup. This is500

likely because section reranking focuses on evaluat-501

ing the relationship between a single section and a502

query (rather than leveraging the holistic context of503

the entire document), and individual sections may504

lack the diverse multimodal information necessary505

for fully capturing the intent of queries.506

Retrieving tables interleaved within documents507

is challenging. We explore the retrieval task for508

tabular data, aiming to identify documents or sec-509

tions containing query-relevant tables, and compare510

models trained on Encyclopedic-VQA (Zero-shot)511

with those additionally trained on Open-WikiTable512

(Finetuned). As shown in Table 5 (a), the Fine-513

tuned retriever outperforms the Zero-shot retriever514

on retrieving documents containing query-relevant515

tables. However, more fine-grained section rerank-516

ing results (identifying sections containing query-517

relevant tables) in Table 5 (b) may reveal a notable518

modality-specific challenge: the performance of519

Zero-shot and Finetuned rerankers is considerably520

lower on table retrieval compared to their perfor-521

mance on text retrieval, despite both the text and 522

tables being represented with word tokens. To bet- 523

ter understand this, we design a classification task, 524

where rerankers are tasked with identifying the cor- 525

rect section containing the target table within the 526

golden document. Then, as shown in Table 5 (c), 527

the Zero-shot reranker performs comparably to ran- 528

dom selection, while the Finetuned reranker shows 529

modest improvements. These findings highlight the 530

intrinsic challenge of tabular retrieval, suggesting 531

the need for table-specific modules to more holisti- 532

cally represent multimodal interleaved documents. 533

More sections enhance document retrieval per- 534

formance but raise computational costs. To see 535

how the number of sections used for representing 536

each document impacts performance, we evaluate 537

document retrieval on the InfoSeek dataset by vary- 538

ing the sections per document during training. As 539

shown in Figure 3, incorporating more sections 540

improves MRR@10 from 7.5 to 15.7 due to lever- 541

aging richer multimodal and contextual informa- 542

tion. However, this comes at the cost of increased 543

computational requirements, as processing more 544

sections raises GPU memory consumption. 545

Sections from the same document act as effec- 546

tive negatives to enhance reranker performance. 547

In training the reranker, we investigate whether 548

considering sections from the same document as 549

negative examples (called In-document) is effective 550

than other strategies, such as Top-K negatives (top- 551

K retrieved sections based on their similarity with 552

the input query) and In-batch negatives (positive 553

sections from other samples in the same batch). As 554
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Figure 3: Trade-off between performance (MRR@10)
and training cost (GPU Memory) for retrieval.
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Table 6: Comparison of negative sample selection strategies for reranker
training: Top-K (top-k retrieved sections), In-batch (sections from other
samples in the batch), and In-document (sections in the same document).

Negative R@1 R@20 MRR@10

Top-K 38.1 55.3 44.4
In-batch 39.5 55.4 45.0
In-document (Ours) 42.4 55.7 46.3

Table 7: Comparison of different training objectives for the reranker: Contrastive considers sections as retrieval units and uses
the one for document retriever training; Document + BCE concatenates the query with multiple sections from the same document
and uses the BCL loss; Section + BCE trains the reranker by concatenating the query with each section individually.

(a) Section Retrieval for Multimodal Queries

Train Loss R@1 R@10 R@20 MRR@10

Contrastive 3.6 15.0 21.3 6.5
Document + BCE 13.6 29.6 32.9 24.1
Section + BCE (Ours) 42.4 53.6 55.7 46.3

(b) Section Retrieval for Textual Queries

Train Loss R@1 R@10 R@20 MRR@10

Contrastive 13.6 37.7 45.1 20.6
Document + BCE 23.8 43.4 47.2 39.1
Section + BCE (Ours) 69.7 80.1 80.6 73.6

shown in Table 6, we observe that the In-document555

approach achieves superior performance especially556

on R@1, demonstrating its ability to effectively557

identify the most pertinent section among highly558

similar sections within the same document, i.e., its559

training objective can encourage the reranker to560

focus on fine-grained distinctions between closely561

related sections (within the same document).562

BCE loss is the most effective to train the sec-563

tion reranker. In our reranker design, we use a564

binary cross-entropy (BCE) loss by concatenating565

the query with each document section individually566

(Section + BCE), allowing the model to directly as-567

sess query-section relevance. As an alternative, we568

also explore a contrastive loss (Contrastive), which569

models section reranking similarly to document re-570

trieval but uses sections as the retrieval units, and a571

variant of BCE loss (Document + BCE), where the572

query is concatenated with multiple sections (both573

positive and negative) from the same document.574

As shown in Table 7, the Section + BCE reranker575

outperforms both alternatives. Specifically, con-576

trastive loss performs the worst, suggesting that577

direct concatenation of query and section provides578

clearer relevance signals, consistent with conven-579

tional reranking approaches. Moreover, while Doc-580

ument + BCE leverages inter-section context, its581

performance might be hindered by training con-582

straints as the model processes fewer sections dur-583

ing training (Jiang et al., 2024a; Lee et al., 2024),584

and addressing it would be interesting future work.585

Our Approach is Robust with Different Base586

Models. To ensure the effectiveness of our ap-587

proach across VLMs, we evalulate its performance588

with another VLM, LLaVA-OneVision (Li et al.,589

Table 8: Results with another base model (LLaVA-OneVision)
for document retrieval (with different document formats).

Format R@1 R@10 R@100 MRR@10

Entity 2.3 10.3 29.7 4.3
Summary 7.6 24.7 55.7 12.0
Text-document 7.0 24.1 50.4 11.7
+ Single-image 9.3 31.4 61.9 15.4
+ Interleaved (Ours) 12.1 36.1 62.5 18.2

2024a), with 0.5 billion paramters, in addition to 590

LLaVA-NeXT-Interleave (Li et al., 2024b) used in 591

our main experiments. Results in Table 8 show that 592

ours continues to outperform baselines, achieving a 593

notable 30.1% gain in R@1 over the best baseline. 594

595

5 Conclusion 596

In this paper, we introduced IDentIfy, a novel IR 597

framework designed to address the limitations of 598

conventional methods that rely on textual content of 599

documents and their segmented passages. Specif- 600

ically, our approach sits on top of recent VLMs, 601

which enables integration and representation of di- 602

verse multimodal content (including text, images, 603

and tables) into a unified document representation. 604

Also, unlike previous strategies that segment doc- 605

uments at the passage level, our method merges 606

these segments to maintain the document’s struc- 607

tural coherence, while further introducing a rerank- 608

ing strategy for precise identification of relevant 609

sections. Extensive experiments across various IR 610

datasets demonstrated that IDentIfy consistently 611

outperforms existing baselines, confirming that the 612

interleaved multimodal representation significantly 613

enhances the quality of the document retrieval. We 614

believe IDentIfy represents a crucial step toward 615

more comprehensive and contextually aware IR 616

systems, capable of handling the increasing multi- 617

modality of modern information sources. 618
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Limitations619

Due to the limitations of a single H100 GPU, we620

represent documents by selecting a limited number621

of sections and averaging their corresponding em-622

beddings. While this reduces the computational623

demands, our findings suggest that capturing a624

broader document context leads to improved re-625

trieval performance. Hence, leveraging the long626

context window of LVLMs could further enhance627

document retrieval by capturing more comprehen-628

sive information from the full document. More-629

over, our reranker design follows the conventional630

approach of concatenating the input query with in-631

dividual sections. However, we believe that provid-632

ing the reranker with all the sections together would633

allow the model to better leverage the contextual634

information from the entire interleaved document,635

potentially resulting in improved performance. In636

order to fully leverage the interleaved format in the637

IR system, addressing the issues by reducing the638

GPU load when processing interleaved documents639

would greatly boost overall IR performance. We640

leave these explorations for future work.641

Ethics Statement642

In this work, we use a publicly available retrieval643

corpus for information retrieval tasks. However, the644

retrieval corpus may contain private, harmful, or645

biased content. Such undesirable features could un-646

intentionally be reflected in the behavior of retriev-647

ers and rerankers trained on this data, potentially648

leading to ethical concerns during real-world de-649

ployment. However, current information retrieval650

techniques, including ours, do not address the re-651

trieval of undesirable content. We recognize the652

critical need for safeguards to mitigate this issue.653

This is essential to ensure that information retrieval654

systems are reliable, fair, and safe for deployment.655
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A Details of Experimental Setups912

Dataset configuration Table 9 summarizes the913

key properties of the datasets used in our experi-914

ment, including query modality, target item, entity915

domain, number of entities, and whether a section916

ID is provided to indicate the section containing917

the answer. Additionally, we provide the number of918

samples in the training, evaluation, and test splits,919

as well as the size of the corpus. We provide a920

more detailed explanation of the datasets below.921

• Encyclopedic-VQA (Mensink et al., 2023) is922

a large-scale visual question-answering (VQA)923

benchmark dataset, widely used for measur-924

ing the performance of multimodal IR models.925

Each query is linked to a specific section of a926

Wikipedia document (containing an answer for927

it) and is manually annotated by humans. Also,928

this dataset offers both text-only and multimodal929

queries. In addition to this, the queries are re-930

lated to fine-grained properties of species and931

landmarks. Our experiments focus on the single-932

hop category where questions can be answered933

in a single retrieval step.934

• InfoSeek (Chen et al., 2023) is a dataset designed935

for knowledge-intensive VQA, covering a wide936

range of entities (such as landmarks, animals, and937

food). Questions are generated by filling human-938

written templates with knowledge triples (subject,939

relation, object) available from Wikidata, which940

involve only the multimodal queries. As the test941

dataset is not available, we use the validation942

set as our test set, and split the training set into943

training and validation subsets with a 9:1 ratio.944

• ViQuAE (Lerner et al., 2022) is a dataset focused945

about human entities. It provides both textual and946

multimodal queries, with each query linked to947

a specific section of a Wikipedia document that948

contains an answer annotated by humans, which949

makes it an ideal benchmark for section retrieval.950

• Open-WikiTable (Kweon et al., 2023) is an ex-951

tension of WikiSQL (Zhong et al., 2017) and952

WikiTableQuestions (Pasupat and Liang, 2015),953

designed for open-domain table question answer-954

ing that requires retrieval of the most relevant ta-955

ble from a broader corpus. For our experiments,956

we adapt the WikiTableQuestions subset of Open-957

WikiTable, aiming at identifying the document958

or document section containing the target table.959

Dataset pre-processing In our study, we lever- 960

age interleaved multimodal content from Wikipedia 961

documents. However, existing corpora associated 962

with IR datasets often lack this content, typically 963

only including the first few words of each docu- 964

ment. Therefore, we download the HTML file of 965

each Wikipedia document for corpus augmentation. 966

If the dataset provides Wikipedia URLs for its 967

corpus, we use them to download the HTML files. 968

Alternatively, if only entity names are provided, we 969

generate Wikipedia URLs using those names. If a 970

Wikipedia URL is deprecated, we remove the cor- 971

responding document from the corpus along with 972

any associated queries. From the HTML files, we 973

extract text, image URLs, and tables. We then split 974

the contents by subtitles in the document where 975

each chunk corresponds to a section. For the im- 976

ages, we use the image URLs to download the 977

corresponding images, removing any invalid URLs. 978

This process produces a dictionary that organizes 979

text, images, and tables by section. 980

Since downloading contents for all documents 981

across datasets is time- and memory-intensive, we 982

preprocess subsets of each corpus, including docu- 983

ments relevant to queries in the training, evaluation, 984

and test splits, along with unrelated documents. 985

Implementation Details To take advantage of 986

larger batch sizes (while reducing GPU memory 987

usage), we apply LoRA (Hu et al., 2022). Also, 988

to further optimize the GPU usage, we scale each 989

image down to half of its original height and width 990

and then combine four scaled-down images into 991

a single composite image. All experiments are 992

conducted using a single H100 GPU. 993

B Additional Experimental Results 994

Data Requirements for Models We analyze the 995

effect of different dataset sizes for training on re- 996

triever and reranker performance. To achieve this, 997

we randomly prune samples in the Encyclopedic- 998

VQA dataset at various ratios and report the perfor- 999

mance of models trained on these subsets. In Fig- 1000

ure 4 (a), we observe that too many samples can 1001

degrade retrieval performance. Also, retrieval of 1002

textual queries requires fewer samples to reach its 1003

optimal performance compared to multimodal re- 1004

trieval. Similarly, in Figure 4 (b), section retrieval 1005

for multimodal queries requires 10% of the dataset 1006

to achieve 80% of the full-dataset performance, 1007

while section retrieval for textual queries needs 1008

only 5%. These observations suggest that addi- 1009
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Table 9: Information retrieval datasets summary.

Dataset Query Modality Target Domain Entities Section ID Train Eval Test Corpus size

Encyclopedic-VQA Text, Text-Image Text Species, Landmarks 17k ◦ 177k 2.2k 3.8k 100k
InfoSeek Text-Image Text Diverse 11k × 209k 23k 74k 500k
ViQuAE Text, Text-Image Text Human 1k ◦ 1.2k 1.2k 1.2k 100k
Open-WikiTable Text Table Table - ◦ 3.3k 0.4k 0.4k 1.8k
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(a) Retriever performance
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(b) Reranker performance

Figure 4: Retrieval performance with different dataset sizes for training. (a): When training a retriever, large datasets rather
deteriorate the retrieval performance as it may be overfitted, resulting in low generalization. (b): On the other hand, a larger
dataset size is beneficial to training a re-ranker.

tional modalities increase the need for more data.1010

This accounts for the inferior performance of the1011

interleaved format in the ViQuAE experiments (Ta-1012

ble 4 (a)). The ViQuAE dataset, at only 2.2% of1013

the size of Encyclopedic-VQA, may be small for1014

the reranker to effectively learn multimodal query-1015

section alignments. We also observe that section1016

retrieval is more challenging, with more samples1017

improving the reranker’s performance. This ex-1018

plains why the ViQuAE reranker has much lower1019

section retrieval scores compared to the one trained1020

on the Encyclopedic-VQA (Table 4 (b)). Given1021

the challenge of obtaining large query-section pair1022

samples, exploring more effective reranker training1023

pipelines is necessary.1024

C Case Studies of Document Retrieval1025

We conduct case studies to demonstrate the ad-1026

vantages of our approach in document retrieval1027

with textual and multimodal queries. In Figure 51028

and Figure 6, we illustrate the instances where1029

our approach, which leverages interleaved mul-1030

timodal contents (e.g., images, tables, and text)1031

within documents, retrieved correct documents for1032

given queries, while the conventional one, which1033

represents documents using only textual data, re-1034

trieved documents that appeared to be relevant but1035

were not actually related to the queries.1036

In Figure 5, a textual query asks for the name1037

of the park located on the north shore of Foster1038

Reservoir. The conventional approach retrieved a1039

document containing unrelated information about 1040

a different reservoir. While this document includes 1041

terms such as "Peak District National Park" and 1042

"North America farm," which make the document 1043

superficially relevant, it fails to answer the query. 1044

In contrast, our approach identified the document 1045

containing the correct answer to the given query. 1046

The advantages of integrating multimodal con- 1047

tent into document representation become more 1048

apparent in document retrieval with multimodal 1049

queries, as shown in Figure 6. For a query con- 1050

sisting of an image of a town hall in Hanover and 1051

a textual question about its designer, both our ap- 1052

proach and the conventional one retrieved docu- 1053

ments about town halls in Germany. However, 1054

our approach pinpointed the exact document about 1055

the town hall in Hanover, indicating that Hermann 1056

Eggert designed the building. The conventional 1057

method retrieved a document about a town hall 1058

in Munich, which is somewhat related but not an 1059

exact match to the query image or question. 1060

These cases underscore the benefits of leverag- 1061

ing multimodal content in information retrieval. 1062

Integrating interleaved multimodal elements, our 1063

approach aligns more effectively with the input 1064

query, resulting in more accurate and fine-grained 1065

retrieval. This superiority is supported by Xu et al. 1066

(2024), which highlights that models perform better 1067

when prompted with rich multimodal information, 1068

enabling them to capture alignments across modali- 1069

ties and enhance the representation of given inputs. 1070
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Q: What is the name of the park on the north shore of foster reservoir?

(a) Interleaved Multimodal Document Retrieval (b) Text-only Document Retrieval
Figure 5: Retrieved documents across different document formats for document retrieval with a given textual query. (a): A
document retrieved when represented leveraging interleaved multimodal contents within documents (ours). (b): A document
retrieved when using only textual format
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Q: Who designed this building?

(a) Interleaved Multimodal Document Retrieval (b) Text-only Document Retrieval
Figure 6: Retrieved documents across different document formats for document retrieval with a given multimodal query. (a): A
document retrieved when represented leveraging interleaved multimodal contents within documents (ours). (b): A document
retrieved when using only textual format

15


	Introduction
	Related Work
	Method
	Preliminaries
	Retriever
	Reranker

	Experiments
	Experimental Setups
	Experimental Results and Analyses

	Conclusion
	Details of Experimental Setups 
	Additional Experimental Results
	Case Studies of Document Retrieval

