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ABSTRACT
This paper describes our entry to the GENEA (Generation and
Evaluation of Non-verbal Behaviour for Embodied Agents) chal-
lenge 2022. The challenge aims to further the scientific knowledge
using a large-scale, joint subjective evaluation of many gesture
generation systems. We present two models to the challenge. A
Bi-Directional LSTM for the full-body tier and a BDLSTM multi-
decoder to produce body-section specific experts. We develop a
loss function using both rotations and positions for training our
models. We also introduce PASE+ features to the task of pose predic-
tion, along with FastText word embeddings. Our models performed
competitively regarding human likeness, and our multiple decoder
system performed in the top two submissions for appropriateness
of gesture.

CCS CONCEPTS
• Computing methodologies→ Intelligent agents; Animation.
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1 INTRODUCTION & RELATEDWORK
We participate in the 2022 GENEA challenge, submitting two sys-
tems. A Long Short-Term Memory (LSTM) baseline system was
submitted to the full-body tier. An architecture with independent
decoders for defined areas of the body was submitted to the upper-
body tier. Each of these models are trained on the provided GENEA
data [18] making use of the pre-trained PASE+ [13] speech audio en-
coder and pre-trained FastText [11] word encoder for multi-modal
representations. Each system uses both audio and word embeddings
to predict a sequence of 6D rotation [19] values for each body joint
producing appropriate gesture animation.
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There are many data-driven gesture generation techniques. Habi-
bie et al. [6] utilise a Generative Adversarial Network (GAN) to
model body, hand and face motion from audio. The generator in
this model encodes audio speech using a 1D-convolutional neural
network (CNN) and uses multiple decoders to predict motion. Pang
et al. [12] also trained a GAN using an autoregressive generator.
Word meaning and semantics have also been incorporated into
gesture generation models using text-based features [9, 17]. Style
control of synthesised motion was introduced by Alexanderson et
al. with a flow-based model [1]. Taylor et al. also used a flow-based
model, conditioned on speaking or listening [15].

Due to their strength in modelling sequential data, many speech-
to-motion deep learning techniques are built upon bi-directional
LSTMs [4, 7, 14]. LSTM-based models are a commonly used baseline
in pose generation work [1, 8, 15]. We also train a bi-directional
LSTM as our baseline model. Inspired by the multiple decoders
used in Habibie et al. [6], we present a model that uses LSTMs to
encode audio and text features and multiple LSTM-based decoders
that model specific areas of the body. We divide the full body into
4 sections; head, upper body (including arms), hands and legs. We
focus on extracting the most performance from a simple, easily
accessible model and training procedure, and show novelty by
using PASE+ [13] speech embeddings in conjunction with FastText
[2] word embeddings, position and rotation in the loss function,
and LSTM-based multi-head decoders for body parts.

Video examples and code can be found in the supplement at
github.com/UEA-digital-human-group/GENEA22.

2 DATA PROCESSING
Our models used the supplied GENEA data [18] derived from the
Talking With Hands dataset [10]. This data consists of high-quality
30fps mocap data in Biovision Hierarchical (BVH) format, with
corresponding speech audio and text transcripts. Talking With
Hands recorded dyadic conversations, however, the mocap and
audio are separated by each speaker and in this challenge, treated
independently. We use pre-trained models to encode the audio and
text transcripts to descriptive feature vectors, suitable for gesture
generation.

2.1 Motion Representation
A 3D pose is commonly represented by rotations and positions, in
this work we utilise both representations but only predict rotations.
We convert rotations to the 6D rotation representation presented by
Zhou et al. [19]. These rotation representations have gained traction
in 3D pose estimation recently [5, 16] due to Zhou et al. [19] finding
these are more suitable for learning applications. Rotations can then
be converted to 3D keypoint positions in world space.

As we are working with the BVH file format, there are two types
of offset to consider. Global joint offsets and per-frame joint offsets.
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In BVH format it is common to have a joint offset for each joint that
represents each bone length. A per-frame joint offset is typically
only present in the joint that represents world position, in the case
of Talking With Hands format, the body-world joint. However,
Talking With Hands is different in this regard as each joint has a
per-frame offset too, possibly to account for bone-stretching in the
data capture.

Talking With Hands contains multimodal data of multiple speak-
ers and therefore different physical attributes. For each speaker
identity, we observed a small difference in bone lengths between
BVH files corresponding to the same speaker. This is likely due to
the recording setup, however, the differences were minimal. For
playback and BVH submission, we chose a single random BVH file
for each speaker from the training dataset and used these values
across all outputs for the respective speaker.

Regarding the per-frame offsets found in the TalkingWith Hands
dataset, we observed the variance in these values to be low. Through
visual inspection of the ground truth data, we observed that remov-
ing or keeping these values static throughout all frames did not
impact visual performance. While our local playback of predicted
motion was fine with the removed offsets, to ensure our BVH for-
mat was correctly formatted for the challenge, we added a static
offset to each frame. This static offset was chosen from the same
random BVH file per speaker as the joint offsets, but only the first
frame offset was used and repeated across all frames in each BVH
file. By keeping the bone lengths and per-frame offsets static, we
believe this should allow the model to focus on representing the
motion characteristics, rather than physical attributes.

2.2 Audio Representation
The most suitable audio representation for speech-motion synthe-
sis is an open research question. One of the most common audio
speech representations chosen in previous work is Mel Frequency
Cepstral Coefficients (MFCCs) [1, 6, 15]. While this has provided
impressive results, there is scope for more descriptive features.
Through empirical evidence, we found that the problem-agnostic
speech encoder (PASE+) [13] outperformed MFCCs. PASE+ ade-
quately encodes an audio waveform to represent features required
for 12 regression tasks. These 12 tasks include estimating MFCCs,
FBANKs and other speech-related information including prosody
and speech content. Therefore, MFCCs are implicitly encoded in
these features as well as other useful speech-related features. PASE+
features are extracted before training. The PASE+ model expects
audio waveforms to be sampled at 16KHz. Therefore the audio was
downsampled using a band-sinc filtering method from 44.1KHz to
16KHz. We use the released, pre-trained PASE+ model to extract
an audio feature embedding of size 768.

2.3 Text Representation
As a means to provide explicit word-based context to gesture, we
include a text embedding to the model. We use the FastText word
embedding described by Bojanowski et al. [2] using the pre-trained
model released by Mikolov et al. [11]. This word embedding has
been used in multi-modal gesture generation before [17] suggesting
it is known to produce effective word embeddings for gesture gen-
eration. We extract each word embedding at a size of 300 per word

and its respective time frame within the context of the audio wave-
form. For each frame of motion, we include the word embedding of
the word being spoken at the time of the frame. If no word is spoken
at a given frame then a vector of zero values is passed. When a
word is spoken across multiple frames, the vector is repeated for
the appropriate number of frames.

3 METHOD
We introduce two models to the challenge. An LSTM-based baseline
system to represent a reasonable performing, simple but effective
method. This method was submitted to the full-body challenge. A
second model involves the use of an LSTM encoder, followed by
body-section-specific decoders. The encoder aims to represent the
motion so that the decoders can each be specialists in predicting
their respective body sections. This method was submitted to the
upper-body challenge.

3.1 Data Presentation
Speaker identity is provided as a unique ID which we pass to an
embedding layer. This layer contains a lookup table that stores a
fixed vector embedding representative of the speaker. The layer
contains trainable weights which means vector representations
of speakers that move similarly should be close in vector space.
This embedding acts as a style conditioning variable and produces
motion that closely represents the style of the speaker ID provided.
For this dataset, as there are only 17 different speaker identities, we
found that the small embedding size of 2 is adequate to represent
the different speaker styles.

We pre-process the speech audio and text transcripts as described
in Section 2 before training. For both PASE+ and FastText models,
these weights are frozen and not updated during training. Each data
modality is then concatenated to a flat vector of size 1070 ready to
be passed through the rest of the network.

3.2 LSTM Baseline
We first train a Bi-Directional LSTM baseline system. Figure 1 gives
an end-to-end overview of the model. This model consists of 4 bi-
directional layers, each with 1024 hidden units and a 40% dropout
followed by a ReLU non-linearity layer and a fully connected layer.
The output from the fully connected layer estimates the 6D rotations
of each joint and the global position of the body-world joint.

3.3 Part-Specific Decoders
We provide a second architecture with part-specific expert decoders.
An end-to-end view of this model is shown in Figure 2. Each de-
coder is responsible for a subset of joints representing the head,
upper body (including arms), legs and hands. The encoder consists
of 4 bi-directional layers, each with 768 hidden units and a 40%
dropout followed by a ReLU non-linearity layer. This follows a
similar architecture as our baseline and provides a good encoding
of motion from our input. Each body section is predicted using a
different decoder that each follows the same architecture. A de-
coder in the architecture consists of 2 bi-directional layers, each
with 768 hidden units and a 40% dropout followed by a ReLU non-
linearity layer and a fully connected layer. The output from each
fully connected layer is the 6D rotations of representative joints.
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Figure 1: Outline of our model used for full body speech-to-motion prediction. Our model takes as input speech audio, text
transcript and a speaker encoding. Outputs are the joint rotation values. We use a pre-trained model for the audio and text
inputs. Red box defines frozen weights.
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Figure 2: Outline of the part-specific decoder model used for speech-to-motion prediction. Red box defines frozen weights

The decoder responsible for the legs also predicts the body-world
position as the leg movement should have the greatest impact on
the global position of the speaker.

3.4 Training Procedure
We trained each model using the same procedure. The loss function
containsmultiple terms andweights.While we learn the 6D rotation
values, we also include positions when computing the loss. We
include an 𝐿2 loss on the rotations, positions, acceleration and
velocity of movement. By adding these terms, we qualitatively
observed the motion became smoother and expanded the range of
motion performed when compared to a rotation loss alone. Our
final loss 𝐿𝑐 is computed as:

𝐿𝑝 = 𝜆𝑝𝐿2 (𝑦𝑝 , 𝑦𝑝 )
𝐿𝑣 = 𝐿2 (𝑓 ′ (𝑦𝑝 ), 𝑓 ′ (𝑦𝑝 ))
𝐿𝑎 = 𝐿2 (𝑓 ′′ (𝑦𝑝 ), 𝑓 ′′ (𝑦𝑝 ))
𝐿𝑟 = 𝜆𝑟𝐿2 (𝑦𝑟 , 𝑦𝑟 )
𝐿𝑜 = 𝜆𝑜𝐿2 (𝑦𝑜 , 𝑦𝑜 )
𝐿𝑐 = 𝐿𝑝 + 𝐿𝑣 + 𝐿𝑎 + 𝐿𝑟 + 𝐿𝑜

(1)

where 𝑦𝑟 and 𝑦𝑟 are ground truth and predicted 6D rotations re-
spectively, 𝑦𝑝 and 𝑦𝑝 are the world positions derived from the 6D
rotations and 𝑦𝑜 and 𝑦𝑜 are the global offsets for the root joint.
𝑓 ′ and 𝑓 ′′ are the first and second derivatives respectively. 𝐿𝑝 is

representative of positional distance, 𝐿𝑣 similarity in velocity, 𝐿𝑎
similarity in acceleration, 𝐿𝑟 is the similarity in 6D rotations and
𝐿𝑜 is how close the root offset is. 𝜆𝑝 is the weighting of positions,
𝜆𝑟 is the weighting of rotations and 𝜆𝑜 is the weighting of offsets.
These weights are applied to bring all terms into the same order
of magnitude and increase the importance of some terms. 𝐿2 rep-
resents the Mean Squared Error between the two sets of data. We
used a small parameter search to find the optimal term weights. We
observed that setting 𝜆𝑝 = 0.1, 𝜆𝑜 = 0.01 and 𝜆𝑟 = 20 produce the
best motion.

The Adam optimiser is used during training with a learning rate
of 0.0001 and a batch size of 256. Where hand motion is absent from
the dataset, the hand motion is excluded during the loss calculation.
This encourages the model to learn effective finger movements and
avoid learning a static hand position. To balance training time and
data samples, we split the motion into 30-frame chunks with the
corresponding audio with a 25-frame overlap. Each model predicts
a 30-frame sequence of motion, one frame at a time. We only train
on the training data and leave out the validation data for model
selection purposes. For the LSTM baseline, we train for 300 epochs
and the part-specific decoder, 240 epochs determined by observed
motion quality.
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4 OBSERVATIONS
We observed two key issues. Rotations were sometimes predicted
to unnatural values, particularly in the shoulders and arms. We also
found that foot contact and natural leg movement was not always
guaranteed.

4.1 Unconstrained Rotation
Although we found the inclusion of positions in our loss function
to be beneficial, it introduced the issue of extreme rotations. If no
weighting is applied to 𝐿𝑝 in Equation 1, this term dominates the
loss and therefore caused unnatural rotations to be formed. This
can be compared to solving inverse kinematics in that there are
many solutions to form a particular pose position. We found that
the model tended to produce impossible rotations, for example,
rotations exceed a typical value range for a particular joint. Despite
these physically impossible rotations, absolute positions of end-
effectors relative to the over-rotated joint in world space appeared
to be accurate.

Introducing a weight to constrain the positional influence allows
a balance of valid rotation values and positive position influence.
Despite the weight inclusion, there are still some issues regarding
unnatural rotations. When viewing rendered sequences, we some-
times observed unnatural poses being formed. Figure 3a shows an
example of a pose where the right shoulder has a rotation value
outside of the typical range and caused an unnatural pose. We typi-
cally observed this issue would remain for several frames before
recovering itself to return to a well-formed pose. Figure 3b shows a
recovered pose of from the same sequence as Figure 3a. This issue is
common in both proposed models, albeit slightly more prominent
in the LSTM baseline. The motion predicted during these phases of
over-rotation is still appropriate and gesturing still appears to be as
correct to the speech as in other phases. We believe this could cause
a negative effect when evaluating the human likeness of the pre-
dicted motion. However, we expect the appropriateness of gesture
to be less affected.

4.2 Foot Contact
Our baseline LSTM model achieved some level of plausible leg
movement and foot contact. However, we found our part-specific
decodermodel struggled to predict valid legmotion and foot contact.
While some sequences of leg motion were realistic and appropriate,
we often found the predicted leg motion involved large errors of
foot contact where both feet are far from the ground.

Figure 4 shows an example of both legs raised unnaturally. While
our results show that the part-specific decoders produce better arm,
head and hand movement, this leg motion is very distracting and
largely negates the good motion from the rest of the body. With
this in mind, we chose to submit these model predictions only to
the upper-body tier of the challenge. While the LSTM baseline
predictions are submitted to the full-body tier.

5 RESULTS
Each model was evaluated in the user study in their respective
tiers. The LSTM baseline is entered into the full-body tier with the
ID FSG and the part-specific decoder model is entered into the

(a) Effect of the shoulder joint exceeding its typical range.

(b) Recovered pose

Figure 3: An example of a sequence where a joint rotation
exceeds a typical range of motion. In this case, the shoulder
joint produces a rotation value which pushes the right arm
back into an unnatural position. These unnatural poses typ-
ically resolve themselves after a while and we also show a
pose from the same sequence once the rotation has recovered
back to a normal range.

upper-body tier with the ID USM. Table 1 provides results of the
user-study from the main challenge paper [18].

5.1 Human-likeness
Both proposed models performed in the middle of the pack com-
pared to all other submissions. This weakness of both models is
likely due to the over-rotation issues described in Section 4.1.

While we can’t compare the results of each model directly, we
can compare each performance with their respective ground truth
ratings. Although the upper-body median is only 3 higher, it is
interesting to compare this against the median of the ground truth.
The median rating of the LSTM baseline in the full-body study is 32
points lower than the ground truth. However, a lower median value
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Figure 4: Failure case for the part-specific decoder model
incorrectly predicting leg motion. This shows a pose where
both legs are visibly raised from the ground in an unnatural
position for the legs.

of the upper-body ground truth means that the gap between the
part-specific decoder model and ground truth is 22. This suggests
the part-specific decoder model may produce motion that is closer
in human-likeness to the ground truth than the LSTM baseline.

Challenge organisers also included their baseline systems in the
challenge. These use the IDs FBT/UBT for text-only baselines and
UBA for the audio-only baselines. Figure 5 shows that in both
challenge tiers our models are significantly better than all of the
baselines.

5.2 Appropriateness
Where our models performed well was in the appropriateness of
gesture to speech. Figure 6 visualises the distribution in responses
from the appropriateness study. The full-body model remained in
the middle of the pack, but can still be considered significantly more
appropriate than random chance as the confidence interval does
not overlap with the 0.5 value of random chance.

While we cannot draw a statistical significance against any other
submissions, the fact that the upper-body submission went from
the middle of the pack in human likeness to gaining the second
highest appropriateness score in the submissions is promising.

It is difficult to derive the reason for this performance gain from
the user study alone. However, we can speculate based on our visual
observation. We observed gestures produced from this model would
start at the expected time in relation to speech and the gesture
intensity appeared to be an expected value too, particularly in the
arm motion. The timing of beat gestures can be related to prosodic
characteristics of speech [3]. We believe the observed accurate
timing and intensity may come from the use of PASE+ features
adequately encoding many speech features including prosody. As
the arm-specific decoder only has to focus on predicting arms, we
believe this decoder can more effectively use these features.

...over condition x, in terms of full body human-likeness

S
ig
n
ifi
ca
n
t
p
re
fe
re
n
ce

fo
r
co
n
d
it
io
n
y
..
.

FSA FNA FSC FSI FSF FSG FSH FSD FSB FBT

FSA

FNA

FSC

FSI

FSF

FSG

FSH

FSD

FSB

FBT

(a) Full-body study

...over condition x, in terms of upper body human-likeness

S
ig
n
ifi
ca
n
t
p
re
fe
re
n
ce

fo
r
co
n
d
it
io
n
y
..
.

USQ UNA USJ USO USN USK USM UBT UBA USP USL

USQ

UNA

USJ

USO

USN

USK

USM

UBT

UBA

USP

USL

(b) Upper-body study

Figure 5: Figure frommain challenge paper [18]. Significance
of pairwise differences between conditions. White means the
condition listed on the 𝑦-axis rated significantly above the
condition on the 𝑥-axis, black means the opposite (𝑦 rated
below 𝑥), and grey means no statistically significant differ-
ence at the level 𝛼 = 0.05 after Holm-Bonferroni correction.

6 DISCUSSION
We have introduced two models to the challenge. While we are
happy with their performance, there are still many things to con-
sider going forward. A limiting factor in our predicted full-body
motion is leg movement, particularly with the multiple decoder
model. We believe this may be due to a weak correlation between
speech and leg motion. Gestures are rarely made by legs alone and
instead, the leg motion likely depends on the motion of the rest of
the body. There appears to be a disparity between the leg movement
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Human-likeness Appropriateness
Number of responses Percent matched

ID Median Mean Match. Equal Mismatch. (splitting ties)

FNA 70 ∈ [69, 71] 66.7 ± 1.2 590 138 163 74.0 ∈ [70.9, 76.9]
FBT 27.5 ∈ [25, 30] 30.5 ± 1.4 278 362 250 51.6 ∈ [48.2, 55.0]
FSA 71 ∈ [70, 73] 68.1 ± 1.4 393 216 269 57.1 ∈ [53.7, 60.4]
FSB 30 ∈ [28, 31] 32.5 ± 1.5 397 163 330 53.8 ∈ [50.4, 57.1]
FSC 53 ∈ [51, 55] 52.3 ± 1.4 347 237 295 53.0 ∈ [49.5, 56.3]
FSD 34 ∈ [32, 36] 35.1 ± 1.4 329 256 302 51.5 ∈ [48.1, 54.9]
FSF 38 ∈ [35, 40] 38.3 ± 1.6 388 130 359 51.7 ∈ [48.2, 55.1]
FSG 38 ∈ [35, 40] 38.6 ± 1.6 406 184 319 54.8 ∈ [51.4, 58.1]
FSH 36 ∈ [33, 38] 36.6 ± 1.4 445 166 262 60.5 ∈ [57.1, 63.8]
FSI 46 ∈ [45, 48] 46.2 ± 1.3 403 178 312 55.1 ∈ [51.7, 58.4]

(a) Full Body Results

Human-likeness Appropriateness
Number of responses Percent matched

ID Median Mean Match. Equal Mismatch. (splitting ties)

UNA 63 ∈ [61, 65] 59.9 ± 1.3 691 107 189 75.4 ∈ [72.5, 78.1]
UBA 33 ∈ [31, 34] 34.6 ± 1.4 424 264 303 56.1 ∈ [52.9, 59.3]
UBT 36 ∈ [34, 39] 37.0 ± 1.4 341 367 287 52.7 ∈ [49.5, 55.9]
USJ 53 ∈ [52, 55] 53.6 ± 1.3 461 164 365 54.8 ∈ [51.6, 58.0]
USK 41 ∈ [40, 44] 41.5 ± 1.4 454 185 353 55.1 ∈ [51.9, 58.3]
USL 22 ∈ [20, 25] 27.2 ± 1.3 282 548 159 56.2 ∈ [53.0, 59.4]
USM 41 ∈ [40, 42] 41.9 ± 1.4 503 175 328 58.7 ∈ [55.5, 61.8]
USN 44 ∈ [41, 45] 44.2 ± 1.4 443 190 352 54.6 ∈ [51.4, 57.8]
USO 48 ∈ [47, 50] 47.3 ± 1.4 439 209 335 55.3 ∈ [52.1, 58.5]
USP 29.5 ∈ [28, 31] 32.4 ± 1.4 440 180 376 53.2 ∈ [50.0, 56.4]
USQ 69 ∈ [68, 70] 67.5 ± 1.2 504 182 310 59.7 ∈ [56.6, 62.9]

(b) Upper Body Results

Table 1: Table of results from main challenge paper [18]. Summary statistics of user-study ratings from all user studies,
with confidence intervals at the level 𝛼 = 0.05. “Percent matched” identifies how often participants preferred matched over
mismatched motion in terms of appropriateness. Our model results are highlighted in pink . For Median, Mean, Match and
Percent Matched columns, higher is better. For Mismatch, lower is better and for Equal, lower is preferable.

and the rest of the body. Unfortunately without an entry for both
models in both tiers, it is not possible to draw exact comparisons
and improvements from one model to the other. We qualitatively
observed evidence that the addition of independent decoders for
separate parts of the body appears to work well and has been shown
to work effectively in Habibie et al. [6]. Motion in the fingers, arms
and head appear to improve over the LSTM baseline. Therefore it
may be worth exploring separating the body into different sections
in future. Decoding the legs with the core body may help with the
disparity in leg movement.

Both models had lower scores for human likeness. We believe
this is due to the occasional extreme rotation described in Sec-
tion 4.1. In future work, it may be useful to include constraints
on joints. For example, setting hard limits on how far a joint can
rotate. These could either be learned from data or hand-crafted
limits on a per-joint, per-speaker basis. Time and resources are
limited. These models contain a large number of hyper-parameters
that have a large impact on performance, particularly regarding

the weights defined in Equation 1. While we did perform a small
parameter search, more performance could likely be gained from a
more extensive parameter search.

7 CONCLUSION
We have presented our entries to the GENEA challenge 2022. We
submitted an LSTM baseline to the full-body tier and a body-part-
specific decoder architecture to the upper-body tier. Each of these
models utilise the provided GENEA data and the pre-trained PASE+
[13] speech audio encoder and pre-trained FastText [11] word en-
coder. Each model performed reasonably in the middle of the pack
of all submissions in the human likeness evaluation. The LSTM
baseline performed in the middle of the pack in the appropriate-
ness evaluation however, the part-specific decoder produced the
second highest submission median score in the upper-body tier. We
have discussed the weaknesses and strengths of these models and
provided a discussion for future work.
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(b) Upper-body study

Figure 6: Figure from main challenge paper [18]. Bar plots
visualising the response distribution in the appropriateness
studies. The blue bar (bottom) represents responses where
subjects preferred the matched motion, the light grey bar
(middle) represents tied (“They are equal”) responses, and
the red bar (top) represents responses preferringmismatched
motion, with the height of each bar being proportional to
the fraction of responses in each category. The black hori-
zontal line bisecting the light grey bar shows the proportion
of matched responses after splitting ties, each with a 0.05
confidence interval. The dashed black line indicates chance-
level performance. Conditions are ordered by descending
preference for matched after splitting ties.
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