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Abstract

Graph neural networks (Gnns) drive several real-world applications including drug-
discovery, recommendation engines, and chip designing. Unfortunately, Gnns are a black-box
since they do not allow human-intelligible explanations of their predictions. Counterfactual
reasoning is an effort to overcome this limitation. Specifically, the objective is to minimally
perturb the input graph to a Gnn, so that its prediction changes. While several algo-
rithms have been proposed towards counterfactual explanations of Gnns, majority suffer
from three key limitations: (1) they only consider perturbations in the form of deletions of
existing edges, (2) they perform an inefficient exploration of the combinatorial search space,
(3) the counterfactual explanation model is transductive in nature, i.e., they do not gener-
alize to unseen data. In this work, we propose an inductive algorithm called InduCE, that
overcomes these limitations. Through extensive experiments on graph datasets, we show
that incorporating edge additions, and modelling marginal effect of perturbations aid in
generating better counterfactuals among available recourse. Furthermore, inductive mod-
eling enables InduCE to directly predict counterfactual perturbations without requiring
instance-specific training. This leads to significant computational speed-up over baselines
and allows counterfactual analyses for Gnns at scale.

1 Introduction and Related Work

The applications of Graph Neural Networks (Gnns) have percolated beyond the academic community. Gnns
have been used for drug discovery Stokes et al. (2020), designing chips Mirhoseini et al. (2020), and recom-
mendation engines Ying et al. (2018). Despite significant success in prediction accuracy, Gnns, like other
deep learning based models, lack the ability to explain why a particular prediction was made. Explainability
of a prediction model is important towards making it trust-worthy. In addition, it sheds light on potential
flaws and generates insights on how to further refine a model.

Existing Works: At a high level, Gnn explainers can be classified into the two groups of instance-level Ying
et al. (2019); Luo et al. (2020); Shan et al. (2021); Yuan et al. (2021); Huang et al. (2022); Yuan et al. (2022);
Lucic et al. (2022); Tan et al. (2022); Lin et al. (2021); Bajaj et al. (2021); Abrate & Bonchi (2021); Wellawatte
et al. (2022) or model-level explanations Yuan et al. (2020). Consistent with their nomenclature, instance-
level explainers explain a specific input graph, whereas model-level explainers provide a high-level explanation
in understanding general behaviour of the Gnn model trained over a set of graphs. Recent research has also
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Figure 1: The figure illustrates the graph representations of two molecules. A node is classified as red if it
represents an unsaturated carbon atom, meaning the valency of the atom is not saturated by covalent bonds
with hydrogen atoms. Otherwise, the node is classified as green. In the counterfactual task of converting
an unsaturated carbon atom to a saturated one, we need to add two hydrogen bonds, as indicated by the
green edges in Ethane. Counterfactual reasoners that only consider edge deletions would be able to explain
saturated carbon atoms with counterfactuals, but not vice versa.

Method Explainability Paradigm Modeling Marginal Impact Additions Deletions Inductive # explainers required

GNNExplainerYing et al. (2019) Factual ✗ ✗ ✓ ✗ N
PGExplainerLuo et al. (2020) Factual ✗ ✗ ✓ ✓ 1
GEMLin et al. (2021) Factual ✗ ✗ ✓ ✓ 1
CF-GNNExplainerLucic et al. (2022) Counterfactual ✗ ✗ ✓ ✗ N
CF2Tan et al. (2022) Counterfactual + Factual ✗ ✗ ✓ ✗ N
RC-explainerBajaj et al. (2021) Counterfactual + Factual ✗ ✗ ✓ ✓ 1
ClearMa et al. (2022) Counterfactual ✗ ✓ ✓ ✓ 1
InduCE (Ours) Counterfactual ✓ ✓ ✓ ✓ 1

Table 1: Comparison on properties of common perturbation-based GNN explainers. The last
column shows the number of required explainers for a graph with N nodes.

focused on global concept-based Xuanyuan et al. (2023); Azzolin et al. (2023) explainers that provide both
model and instance-level explanations. Instance-level methods can broadly be grouped into two categories:
factual reasoning Ying et al. (2019); Luo et al. (2020); Shan et al. (2021); Yuan et al. (2021); Huang
et al. (2022); Yuan et al. (2022) and counterfactual reasoning Lucic et al. (2022); Tan et al. (2022); Bajaj
et al. (2021); Abrate & Bonchi (2021); Wellawatte et al. (2022). Given the input graph and a Gnn, factual
reasoners seek to identify the smallest sub-graph that is sufficient to make the same prediction as on the entire
input graph. Counterfactual reasoners, on the other hand, seek to identify the smallest perturbation on the
input data that changes the Gnn’s prediction. Perturbations correspond to removal and addition of edges.

Compared to factual reasoning, counterfactual reasoners have the additional advantage of providing a means
for recourse Voigt & Von dem Bussche (2017). For example, in drug discovery Jiang et al. (2020); Xiong et al.
(2021), mutagenicity is an adverse property of a molecule that hampers its potential to become a drug Kazius
et al. (2005). While factual explainers can attribute the subgraph causing mutagenecity, counterfactual
reasoners can identify this subgraph along with the changes that would make the molecule non-mutagenic. In
this work, we study counterfactual reasoning over Gnns. To illustrate our problem, let us consider the input
graph shown in Fig. 1. Here, each node belongs to the green class if it is part of the motif (subgraph) shown
on the right. Otherwise, it belongs to the yellow class. The dotted edge on node A does not exist, for now.
At this stage, if we ask the counterfactual reasoner to change the label of node A, the best answer would be to
add the dotted edge. Similarly, for node B, one possible answer would be to delete the edge marked with ⊗.

Table 1 presents a structured summary of the instance-level counterfactual explainers. In this work, we
innovate on the following key directions that lead to improved explanations and efficiency (§ 4).

• Modeling Marginal Probabilities in the Perturbations Space: Identifying the minimal set of per-
turbations that induces a change in graph predictions inherently involves a combinatorial problem. Hence,
it is important for the learning methodology to model the marginal influence exerted by individual per-
turbations on the remaining perturbations. Existing algorithms have largely disregarded this vital aspect.
Notably, Cf2 Tan et al. (2022), CF-GnnExplainer Lucic et al. (2022) and RCExplainer adopt an
approach centered on learning a binary mask representing the joint distribution over the feasible perturba-
tions. Clear uses Graph-VAE Simonovsky & Komodakis (2018) to generate a counterfactual graph, thus
learning only the joint distribution by optimizing a modified counterfactual loss Ma et al. (2022) over the
generated graph. In contrast, InduCE introduces an innovative reinforcement learning-based strategy,

2



Published in Transactions on Machine Learning Research (05/2024)

Figure 2: (a) A sample graph that highlights the merits of marginal edits over one-shot edits. (b) A wheel
motif (c) Class labels of each node (d) Ground truth rules for each class where 0 and 1 mean presence and
absence of the property, respectively. The node colors represent the node labels.

wherein we focus on quantifying the marginal effect of an individual perturbation within the context of
a given set of other perturbations. This perspective facilitates the exploration of the combinatorial space
at a more nuanced level, resulting in demonstrably enhanced outcomes, as substantiated in § 4.
Fig. 2 presents an example showcasing the merits of marginal edits over one shot. Consider the sample
graph under binary node classification where node v1, belonging to class 1 is the target node. Assume that
in the underlying data, a node belongs to class 1 if it is attached to either a green node or at the center of a
wheel motif or both (see the class label function in Fig. 2). Otherwise, a node belongs to class 0. Provided
the trained Gnn has learned this logic, a counterfactual explanation on v1 would detach the green node
from v1 and remove any one of the wheel’s spokes (edges between the target and the ring). Now, let us
look at the counterfactual generation for the target node under one-shot and marginal settings:
One-shot: Explainers that learn a mask for all the edges in parallel will assign an importance value I1
to the edge ⟨v1, v2⟩ between the target and the green node, and importance I2 to all the spokes (⟨v1, v3⟩,
⟨v1, v4⟩, ⟨v1, v5⟩, ⟨v1, v6⟩, ⟨v1, v7⟩) since all of them have an identical contribution to the target node’s
predicted class. Since one-shot explainers employ independent selection on each edge for deletion, it
either selects all spokes for deletion or none. Thus, when a counter-factual explanation is found, it leads
to six edge deletions to get the counterfactual when only two edits should suffice.
Marginal: A marginal explainer’s first episode will be identical. The edge ⟨v1, v2⟩ will have importance
I1, and all the spokes will be assigned importance I2. Now, based on these values, the marginal explainer
will either pick the ⟨v1, v2⟩ edge or one of the spoke edges. Let us consider both cases:
1. ⟨v1, v2⟩ is deleted in the first episode. In the next episode, the importance values will be recomputed

and all the spokes will, once again, receive the same importance. Now, one of them will be chosen and
deleted. At the end of this episode, the explainer will identify that the resultant graph has crossed
the decision boundary, and there is no need to proceed and thereby finding an explanation of size 2.

2. One of the spokes with importance I2 is chosen and deleted first. In the next episode, the importance
scores will be recomputed for all the edges. The remaining spokes will be assigned identical importance
values again, however, it will be a significantly lower value since deleting a spoke no longer has an
effect on the Gnn’s prediction. This is because the marginal explainer will see that removing more
spokes has a lower reward than removing the green node’s edge. Hence, the explainer will remove the
green node’s edge. Following this, the explainer will identify that the resultant graph has crossed the
decision boundary, and the process will terminate.

In either case, the marginal explainer will return a counterfactual graph with only two edge deletions,
which is closer (in this case identical) to the ground truth compared to one-shot’s six edits, showing its
superior quality.

• Ability to add edges: In counterfactual reasoning, the task is to identify the minimal change in graph
such that the label changes.This objective is different from factual explanations where the goal is to
identify the substructure responsible for a prediction. Indeed, in a factual explainer, edge additions do
not have a role since we need to reason within the scope of the structural components within the input
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graph being explained. However, in counter-factual reasoning, there is no natural reason to remain
constrained to deletions only. Several existing techniques do not consider addition of edges (or nodes);
they only consider edge removals. This limitation compromises the search space consisting of possible
“changes” on the input graph. Fig. 1 illustrates this limitation with a concrete example. Specifically,
an unsaturated hydrocarbon can be converted to a saturated hydrocarbon only through addition of
edges.Saturated hydrocarbons are significantly less reactive (and therefore a more stable fuel) than
unsaturated hydrocarbons, leading to vastly different properties. Now, consider the counterfactual task
of identifying the minimal change in an unsaturated carbon to obtain a saturated hydrocarbon. This
task requires adding (saturating) C-H edges to the unsaturated carbon atoms (highlighted in red color).
However, existing counterfactual reasoners, with the exception of Clear Ma et al. (2022), lack the
capability to add edges. We address this gap in our proposed method.

• Inductive modeling: Several of the existing counterfactual explainers are transductive in nature (See
Table 1), i.e., they cannot generate counterfactuals on unseen nodes. As an example, if the model is trained
to generate counterfactuals on node v of graph G, it cannot be used to generate counterfactuals on another
node u of G. Consequently, these transductive models need to be retrained on each node of an input graph.
In contrast, an inductive model learns parameters from a train set of nodes, which in turn can be used to
predict counterfactual on unseen nodes. In addition, an inductive model is robust to changes in the input
graph due to external factors such as new friend connections in a social network, citations in a citation
network, etc. Cf2 and CF-GnnExplainer cannot be used in an inductive setting for the following reason.
These explainers initialize a parameter space based on the number of nodes in the input graph, resulting
in an n × n weight matrix. Subsequently, this matrix is transformed into a binary n × n mask matrix,
which is element-wise multiplied with the original graph’s adjacency matrix to denote edge deletion (with
0s in the mask indicating deletion). As a consequence, the model’s parameters are contingent upon the
graph’s node count, making it infeasible to apply on unseen graphs of varying sizes in an inductive setting.

Contributions: In this work, we develop InduCE (Inductive Counter-factual Explanations), that
addresses the above limitations of existing counterfactual reasoners. We propose InduCE to addresses
these challenges and make the following contributions:
• Novel formulation: We formulate the novel problem of model-agnostic, inductive counterfactual rea-

soning over Gnns for node classification. It is worth noting that both inductive modeling and the ability
to add edges introduce non-trivial challenges. In inductive modeling, we need to learn parameters that
embodies general rules to be used for predicting counterfactuals. In the transductive approach, since
parameters are learned for each specific node, there is no generalization component. Edge additions in-
troduce a significant scalability challenge as the number of possible additions grows quadratically to the
number of nodes in the graph. In contrast, the number of edge deletions is O(|E|), where E is the set of
edges in the graph. (§ 2).

• Algorithm: Identifying the smallest number of edge additions or removals that alter the prediction is a
combinatorial optimization problem. We prove that computing the optimal solution to the problem is NP-
hard (§ 2). As a heuristic, we learn to solve this combinatorial optimization problem through reinforcement
learning powered by policy gradients Williams (1992) (§ 3). Instead of learning the joint distribution over
perturbations, the proposed approach sequentially selects the optimal set of perturbations by modeling
their marginal effect.

• Empirical validation: We show that InduCE outperforms state-of-the-art algorithms in metrics
relevant to counterfactual reasoning. We further analyze the generated counterfactuals and provide
compelling evidence that enabling edge additions and modelling the marginal effect of perturbations
impart superior performance. Finally, we also showcase the computation gains obtained due to embracing
the inductive paradigm instead of transductive modelling (§ 4).

2 Problem Formulation

We use the notation G = (V, E) to denote a graph with node set V and edge set E . We assume each node
vi ∈ V is characterized by a feature vector xi ∈ Rd. Furthermore, l(v) : v → C is a function mapping each
node v to its true class label drawn from a set C. We assume there exists a Gnn Φ that has been trained
on G. Given an input node vi ∈ V, we assume Φ(G, v, c) outputs a probability distribution over class labels
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c ∈ C. The predicted class label is therefore the class with the highest probability, which we denote as
LΦ(G, v) = arg maxc∈C{Φ(G, v, c)}.

Problem 1 (Counterfactual Reasoning on Gnns) Given input graph G = (V, E), a target node v ∈ V,
a Gnn model Φ, and an optional set of node pairs Vc = {(vi, vj) | vi, vj ∈ V} between which edges may
be perturbed, find the closest graph G∗ by minimizing the number of perturbations, such that LΦ(G∗, v) ̸=
LΦ(G, v) and all perturbed edges are among pairs in Vc.

In a real world, we may not have control over all perturbations. Vc allows us to specify that. If Vc ⊆ E , we
restrict to only deletions. On the other hand, if Vc ∩ E = ∅, we only allow additions.

In our problem, we enforce two restrictions on the counterfactual reasoner. First, it should be model-agnostic,
i.e., only the output of Φ is visible to us, but not its parameters. Second, the reasoner should be inductive,
which means we should learn a predictive model Π, that can predict the counterfactual graph G∗ given the
inputs G, Gnn Φ, and target node v.

Theorem 1 (NP-hardness) Counterfactual reasoning for Gnns, i.e., Prob. 1, is NP-hard.

Proof. To prove NP-hardness of the problem we reduce it from the classical set cover problem.

Definition 1 (Set Cover Feige (1998)) Given a collection of subsets S = {S1, · · · , Sm} from a universe
of items U = {u1, · · · , un} identify the smallest collection of subsets A∗ ⊆ S covering the set U , i.e.,

A∗ = arg min
|A|,A⊆S

⋃
∀Si∈A

Si = U (1)

We show that given any instance of a set cover problem ⟨S, U⟩, it can be mapped to Prob. 1. Specifically,
we construct a graph G = (V, E), where V = N ∪ S ∪ U . Here, N is an arbitrary set of nodes. In addition,
we have a node corresponding to each set S ∈ S and each item u ∈ U . There is an edge between two nodes
vi, vj ∈ V if vi corresponds to some set S ∈ S, vj corresponds to item u ∈ U , and u ∈ S. There are no edges
among nodes in N . The Gnn Φ predicts the label of any node v ∈ N as 1 if all nodes from U are reachable
from v, otherwise 0. Furthermore, let the set of allowed perturbations be Vc = {(vi, vj) | vi ∈ N, vj ∈ S}.
Given any v ∈ N , with LΦ(G, v) = 0, the counterfactual reasoner therefore needs to identify the minimum
number of edges to add so that all nodes from U are reachable from v through some nodes in S.

With this construction, only edge additions are allowed. Now it is easy to see that the smallest edge set
changing the label of v corresponds to connecting v to nodes in A∗, where A∗ is the solution for the set cover
problem. □

Owing to NP-hardness, it is not feasible to identify the closest counterfactual graph in polynomial time.
Hence, we aim to design effective heuristics. 1

3 InduCE

Our goal is to learn an inductive counterfactual reasoning model Π, and thus, the proposed algorithm is
broken into two phases: training and inference. During training, we learn the parameters of the model Π
and during inference, we predict the counterfactual graph using Π. Theorem 1 prohibits us from supervised
learning since generating training data of ground-truth counterfactuals is NP-hard. Hence, we use reinforce-
ment learning. Through discounted rewards, reinforcement learning allows us to model the combinatorial
relationships Khalil et al. (2017) in the perturbation space.

3.1 Learning Π as an MDP

Given graph G, we randomly select a subset of vertices from V to train Π. Given a target node v, the task of
Π is to iteratively delete or add edges such that with each perturbation the likelihood of Φ(Gt, v) ̸= Φ(G, v)
changes maximally. Here, Gt = (V, Et) denotes graph G after t perturbations starting with G0 = G. We

1We note that the proof should not be confused with the NP-hardness proof in Huang et al. (2023), which shows that global
counterfactual summarization is NP-hard.
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(Eq. 13)

Figure 3: Pipeline of the policy learning in InduCE. δ indicates the maximum number of perturbations.

model this task of iterative perturbations as a markov decision process (MDP). Specifically, the state
captures a latent representation of the graph indicative of how it would react to a perturbation. An action
corresponds to an edge addition or deletion by Π. Finally, the reward is a function of the number of
perturbations, which we want to minimize, and the probability of Φ(Gt, v) changing following the next action
(edge addition or deletion), a value that we want to maximize. We next formalize each of these notions.

State: Intuitively, the state should characterize how likely the class label of the target node v would change
following a given action. Towards that end, we observe that a Gnn of ℓ layers aggregates information from
the ℓ-hop neighborhood of v. Nodes outside this neighborhood do not impact the prediction of a Gnn.
Motivated by this design of Gnns, the state in our problem is the set of node representations in the h-hop
neighborhood of the target node v, where ideally h ≥ ℓ. Specifically, at time t, the state is:

St
v =

{
xt

u | u ∈ N h
v

}
, where (2)

N h
v = {u ∈ V | sp(v, u) ≤ h} (3)

Here, sp(v, u) denotes the length of the shortest path from v to u in the original graph G = (V, E).

The representations of nodes, i.e., xt
u, are constructed using a combination of semantic, topological, and

statistical features.

• Original node Features: It is common to encounter graphs where nodes are annotated with features or
labels (recall the definition of xi in § 2). We retain these features.

• Degree Centrality: The higher the degree of a node, the more information it receives from its neighbors.
Thus, when an edge is added or deleted from the target node to a high-degree node, it may have
significant impact on the representation of the target. Based on this observation, we use the degree of a
node as a part its representation.

• Entropy: The entropy of a node at time t is defined as et
u = −

∑
∀c∈C pc log pc, where pc = Φ (Gt, v, c).

The entropy quantifies the uncertainty of the Gnn Φ on a given node. We hypothesize that if the Φ
is highly certain (i.e., low entropy) about the class label of some node u, then any perturbation on u
is unlikely to make it change. Similarly, the opposite is true on nodes with high entropy. Due to this
information content of entropy, we use it as one of the features in xt

u.
• Class label: Finally, we include the predicted class label of a node, i.e., LΦ(Gt, u) in the form of one-hot

encodings of dimension C.

The final representation of node u and time t is therefore the concatenation of the above features, i.e.,

xt
u = xi ∥ degreet

u ∥ et
u ∥
(
one-hot

(
LΦ
(
Gt, u

)))
(4)

Here, ∥ represents the concatenation operator.

Actions: The action space consists of all possible edge deletions in the h-hop neighborhood of target node
v and additions of edges from v to other non-attached nodes in its h-hop neighborhood. Formally, the sets
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are defined as follows:

Et
v,del =

{
e = (ui, uj) ∈ Et | ui, uj ∈ N h

v

}
(5)

Et
v,add =

{
e = (v, uj) ̸∈ Et | uj ∈ N h

v

}
(6)

The action space is the perturbation set:

Pt = Et
v,del ∪ Et

v,add (7)

Reward: Our objective is to change the predicted label of target node v with the minimum number of
perturbations in N h

v in order to find the counterfactual. To capture these intricacies, we formulate the reward
of an action a as a combination of the prediction accuracy of Gnn Φ and the number of perturbations made
so far.

Rt
v(a) = 1

Lt+1
v,pred + β × d(G, Gt)

, where (8)

Lt
v,pred =

∑
∀c∈C

1l(v)=c log
(
Φ
(
Gt, v, c

))
, d(G, Gt)= t + 1 (9)

In simple terms, Lt+1
v,pred is the log-likelihood of the data predicted by Φ in Gt+1 on v. Gt+1 is the created upon

perturbing Gt with action a. β is a hyper-parameter that regulates how much weight is given to log-likelihood
of the data vs. the perturbation count. d is the distance function, which in our case is simply the number
of edge edits made to G at time step t.

State Transitions: At time t, the action corresponds to selecting a perturbation a ∈ Pt (Recall Eq. 7)
from pt

a,v ∼ Π (a | St
v). We will discuss the computation of pt

a,v in § 3.2.

3.2 Neural Architecture for Policy Training

To learn pt
a,v, we we take the representations in St

v, and pass them through a neural network comprising of a
K-layered Graph Attention Network (Gat) (Veličković et al., 2018), an MLP, and a final softmax layer. The
Gat learns a d-dimensional representation a ∈ Rd for each perturbation a ∈ Pt

v. a is then passed through an
Multi-layered Perceptron (MLP) to embed them into a scalar representing their value, which is finally passed
over a softmax layer to learn a distribution over Pt

v. The entire network is trained end-to-end. We next
detail each of these components.

Gat: Let ∀u ∈ N h
v , h0

u = xt
u (Recall Eq.4). In each layer k ∈ [1, K], we perform the following transformation:

hk
u = σ

 ∑
∀u′∈N 1

u∪{u}

αk
u,u′Wkhk−1

u′

 (10)

σ is an activation function, αk
u,u′ are learnable, layer-specific attention weights, and Wk ∈ Rdk−1×dk is a

learnable, layer-specific weight matrix where dk is the hyper-parameter denoting the representation dimension
in hidden layer k. In our implementation, we use LeakyReLU with negative slope 0.01 as the activation
function. The attention weights are learned through an MLP followed by a softmax layer. Specifically,

ek
u,u′ = MLP(hk−1

u ∥ hk−1
u′ ), where ek

u,u′ ∈ R,

αk
u,u′ =

exp
(
ek

u,u′

)
∑

û∈N 1
u∪{u}

exp
(

ek
u,û

)
After K layers, the Gat outputs the final representation Xu = hK

u for each node u in v’s neighborhood.
Semantically, given the initial state representation xt

u, the Gat enriches them further by merging with
topological information. Finally, the representation of an action a ∈ Pt

v is set to a = Xu ||Xv || t(u, v),
where:

t(u, v) =
{

0, a ∈ Et
v,del (Recall Eq. 5)

1, a ∈ Et
v,add (Recall Eq. 6)

(11)

7



Published in Transactions on Machine Learning Research (05/2024)

MLP and SoftMax layers: The value of a is sa = MLP(a), where sa ∈ R. Finally, we get a distribution
over all actions in Pt

v as:

pt
a,v = Π(a | St

v) = exp(sa)∑
∀a′∈Pt

v
exp(sa′) (12)

3.3 Policy Loss Computation

We iteratively sample an action as per Eq. 12 till either the label changes or we exceed the maximum number
of perturbations (which is a hyper-parameter). This iterative selection generates a trajectory of perturbations
Tv = {a1, · · · , am}. We use the standard loss for policy gradients on Tv Williams (1992). More specifically,
we minimize the following loss function:

J (Π) = − 1
Vtr

 ∑
∀v∈Vtr

|Tv|∑
t=0

log pt
a,vRt

v(at) + ηEnt(Pt
v)

 (13)

Here, Vtr ⊆ V is the subset of nodes on which the RL policy is being trained. Ent(Pt
v) is the entropy of the

current probability distribution over the action space.

Ent(Pt
v) = −

∑
∀a∈Pt

v

pt
a,v log(pt

a,v) (14)

By adding the entropy to the loss, we encourage the RL agent to explore when there is high uncertainty. η is a
hyper-parameter balancing the explore-exploit trade-off. For simplicity of exposition, we omit the discussion
on discounted rewards in Eq. 13. Discounted rewards better capture the combinatorial relationship in the
perturbation space. Refer to App. B for details.

3.4 Training and Inference

Fig. 3 presents the training pipeline. Starting from the original graph, we compute the state representation
at each iteration t. The state is passed to the neural network to compute a distribution over the perturbation
space. A perturbation is sampled from this distribution and the graph is accordingly modified. The Gnn
ϕ is then applied on the modified graph. If the label changes or the number of perturbation exceeds the
maximum limit, we update the policy parameters. Otherwise, we update the state and continue building
the perturbation trajectory in the same manner. The pseudocode of the training pipeline is provided in
Alg.2 (Refer to App. A).

Inductive inference: In InduCE, each edit involves either adding or deleting an edge. The embedding
of such an edge (or action) is formed by concatenating the embeddings of its connected nodes. These
node embeddings are learned through a Gat operating on the current graph state. Since Gat is inherently
inductive—meaning their parameter set is invariant to changes in graph size — Induce inherits this property.
This is demonstrated in Eq. 10, where the parameter set dimension is bounded by Wk ∈ Rdk−1×dk . Here,
dk signifies the hidden dimension in layer k and is independent of the graph size. In essence, the embedding
of an action (such as edge addition or deletion) is influenced by the local ℓ-hop neighborhood surrounding
the two nodes involved in the edit. Consequently, even when presented with an unseen graph, as long as the
training data contains similar distributions of neighborhood topologies, the predictive accuracy of InduCE
remains robust.

Alg. 1 presents the pseudocode of the inference pipeline. We iteratively make forward passes till the label
changes or we exceed the budget. The forward pass is identical to the training phase with the only exception
being we deterministically choose the perturbation with the highest likelihood instead of sampling.

Transductive Inference: This phase proceeds identical to the training phase with the only exception that
we learn a target node specific policy instead of one that generalizes across all nodes.

3.5 Complexity of InduCE

Train-Phase: Training the policy network involves four key steps, i.e., compute the state, forward pass
through the policy network, sample and take action, and compute the marginal reward of the action. Among
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Algorithm 1 Test pipeline of InduCE.
Input: Graph G, Gnn Φ, target node v, maximum perturbation budget δ
Output: Counterfactual explanations CF

1: CF = ϕ
2: Π←parameters of pre-trained policy
3: t← 0
4: while LΦ(G0, v) = LΦ(Gt, v) & t < δ do
5: compute St

v
6: a∗ ← arg maxa∈Pt Π(St

v ,Pt)
7: Gt+1

v ← perturb Gt
v with edge a∗

8: t← t + 1
9: if LΦ(G0, v) ̸= LΦ(Gt, v) then

10: CF = CF ∪ {a∗}
11: Return CF

the above, state computation and performing the action take O(1) time. Time taken by a forward pass
through the policy network involves a combination of computing node embeddings using Gat and computing
a score for each action in the action space Pt through the MLP. Forward pass through the Gat takes
O(K(|V|hihd + |E|hd)) (Veličković et al., 2018) where K, hi and hd are the number of Gat layers, input and
hidden dimensions respectively. Action score computation using MLP takes O(|Pt|hm(hd + (J − 2)hm + 1))),
J and hm are number of MLP layers and hidden dimensions. Computing the reward function involves taking
a forward pass through a GCN which takes O(L|E|hihd|C|) time, here L and |C| are the number of layers
and number of classes respectively. The above steps are repeated for M episodes for each node in training
set Vtr until a maximum of δ time steps. Combining the above costs, treating J , K, L, hi, hd, hm and |C|
as fixed constants which have small values, and with the knowledge that |Pt| = O(|V| + |E|) (refer Eq. 7),
the complexity with respect to the input parameters reduces to O(|Vtr|Mδ(|V| + |E|)).

Test-Phase: The test phase involves state computation, forward pass through the policy network, and
performing the action with highest probability for a maximum of δ time-steps for every node in the test
set Vtest. Therefore following the discussion in the training phase, the time complexity of test phase is
O(|V|test|δ(|V| + |E|)).

4 Experiments

In this section, we benchmark InduCE against established baselines. The anonymized code base and datasets
used in our evaluation are submitted with supplementary material. The hardware and software platform
details are provided in App. D.

4.1 Datasets
Tree-Cycles Tree-Grid BA-Shapes Amazon ogbn-arxiv

# Classes 2 2 4 6 40
# Nodes 871 1231 700 397 169,343
# Edges 1950 3410 4100 2700 1,166,243
Motif size (# nodes) 6 9 5 NA NA
Motif size (# edges) 6 12 6 NA NA
# Nodes from motifs 360 720 400 NA NA
Avg node degree 2.23 2.77 5.86 15.90 6.89

Table 2: The statistics of the benchmark datasets.

Benchmark Datasets: We use the same three benchmark graph datasets used in Tan et al. (2022); Lin
et al. (2021); Lucic et al. (2022). Statistics of these datasets are listed in Table 2. Each dataset has an
undirected base graph with pre-defined motifs attached to random nodes of the base graph, and randomly
added additional edges to the overall graph. The class label of a node indicates whether it is part of a node
or not. Further details on the datasets are provided in App. D.1.

Real Dataset: We additionally use real-world datasets from the Amazon-photos co-purchase net-
work Shchur et al. (2018) and ogbn-arxiv Wang et al. (2020). In the Amazon dataset, each node corresponds
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Method Tree-Cycles Tree-Grid BA-Shapes
Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%)↑

Random 0 3.18 ±2.32 67.08 0 8.32 ±4.95 73.44 0 283.97 ±272.76 15.57
CF-GnnEx 49.0 1.05 ±0.23 100 10 1.37 ±0.58 92.24 37.0 1.31 ±0.55 95.83
Cf 2 76.38 4.18 ±1.89 67.68 98.45 5.5 ±1.5 44.64 23.68 4.10 ±1.64 70.54
InduCE
(trans.)

0 1.01 ±0.12 98.61 0 1.02 ±0.12 97.67 0 1.30 ±0.90 95.31

CF-GnnEx ++ 100 NULL NULL 100 NULL NULL 38.16 6315.44 ±9916.50 17.36
Cf 2 ++ 13.89 28.34 ±7.56 19.24 28.68 12.90 ±7.71 27.44 100 NULL NULL
InduCE
(trans.)−−

0 1.40 ±1.49 81.94 0 1.24 ±0.43 92.64 6.6 1.42 ±1.49 83.22

Table 3: Results for transductive methods: Lower fidelity, smaller size, and higher accuracy are desired.
“NULL” denotes that the method could not produce a counterfactual. The best results are in bold. Tr., Fid.,
Acc. denote transductive, fidelity and accuracy, respectively. The best result in each category is highlighted
in bold. The second best in each category is underlined.

to a product, edges correspond to products that are frequently co-purchased, node features encode bag-of-
words from product reviews and the node class label indicates the product category. The ogbn-arxiv dataset
is a citation network. The nodes are all computer science arXiv papers indexed by MAG Wang et al. (2020).
Each directed edge represents that one paper cites another. The features are word embeddings of the title
and the abstract computed by the skip-gram model Mikolov et al. (2013). The labels are subject areas. Since
the class labels in these datasets are not based on presence or absence of motifs, the corresponding cells in
Table 2 are marked as “NA”.

4.2 Baselines

We benchmark InduCE against the state-of-the-art baselines of (1) CF-GnnExplainer Lucic et al. (2022),
(2) Cf2 Tan et al. (2022), (3) RCExplainer Bajaj et al. (2021) and (4) Clear Ma et al. (2022). In
addition, we also compare against the state-of-the-art factual explainers (5) PGExplainer Luo et al.
(2020) and (6) Gem (Lin et al., 2021) to show that when factual explainers are used for counter-factual
reasoning by removing the factual explanation (subgraph) from the input graph, they are not effective. This
is consistent with prior reported literature Lucic et al. (2022); Tan et al. (2022); Lin et al. (2021). Finally,
we also compare against (5) Random perturbations. While Cf2 and CF-GnnExplainer are transductive,
RCexplainer, Clear, Gem and PGExplainer are inductive. The codebase of all algorithms, except
RCexplainer (Refer App. J) have been obtained from the respective authors. We provide the hyper-
parameter settings for all the baselines in the App D.2. A detailed analysis of how the hyper-parameters
affect the performance of InduCE is provided in App. K.

4.3 Performance Measures

To quantify performance, we use the standard measures from the literature Lucic et al. (2022).

• Fidelity: Fidelity is the percentage of nodes whose labels do not change when the edges produced by the
explainer (algorithm) are perturbed. Lower fidelity is better. Furthermore, it may be argued that fidelity
is the most important metric among the three measures.

• Size: Explanation size is the number of edges perturbed for a given node. Lower size is better.
• Accuracy: Accuracy is the percentage of explanations that are correct. As standard in Cf2,CF-

GnnExplainer, and Gem, this translates to the percentage of edges in the counterfactual that belong
to the motif. Since nodes have a non-zero class label only if they belong to a motif, the explanation
for nodes should be edges in the motif itself. Note that accuracy is computable only on the benchmark
datasets since they include ground-truth explanations.

• Sparsity: Sparsity is inversely related to size. We present the definition and results in App. E due to
space constraints.

Other settings: Details of experimental settings, the black-box Gnn, training and inference are in App. D.3.
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Method Tree-Cycles Tree-Grid BA-Shapes
Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%)↑

PGExplainer 34.72 6 76.85 41.09 6 66.93 6.58 6 89.25
Gem 95 6 88.97 97 6 94.57 17 6 98.44
RCExplainer 98.61 1.0 ±0.0 70.73 100 NULL NULL NA NA NA
Clear 56.94 47.92 ±21.84 86.17 0 184.16 ±34.29 96.34 DNS DNS DNS
InduCE (ind.) 0 2.31 ±1.44 96.57 0 4.67 ±2.91 91.05 2.6 4.37 ±3.53 64.40

InduCE (ind.)
– –

36.3 1.67 +- 0.90 90.32 16.3 6.38 ±3.74 86.31 40.8 3.37 ±3.04 56.08

Table 4: Results for inductive methods. The best result in each category is highlighted in bold. The
second best in each category is underlined. “DNS" denotes that the method did not scale “NA” means not
applicable as RCExplainer code did not extend to multi-class setting.

4.4 Quantitative Results

Transductive methods: Table 3 presents the results (for now, we will focus on the first four rows).
Our method InduCE in the transductive setting outperforms all the baselines almost in all settings. For
Tree-Cycles and BA-Shapes, CF-GnnExplainer is producing better accuracy. However, we note that its
fidelity is much worse, indicating it fails to find an explanation more frequently. While CF-GnnExplainer
consistently achieves the lowest size among the baselines, its fidelity is much worse. This indicates that
CF-GnnExplainer is able to solve only the easy cases and hence the low size is deceptive as it did not
solve the difficult ones.

Inductive methods: Table 4 shows that InduCE is superior to Gem and PGExplainer in most cases.
The fidelity scores produced by Gem and PGExplainer are much higher (worse). This indicates, in most
of the cases, Gem and PGExplainer are unable to find a counterfactual example. Also the explanation
size is fixed in Gem and PGExplainer since they work with fixed budgets. Clear performs worst in terms
of average explanation size. This defeats the purpose of counterfactual explanations since the perturbations
should be minimal so that the instance just crosses the decision boundary. This is necessary to make the
explanations human-intelligible as well. It has non-zero fidelity as it significantly perturbs the target nodes’
local neighbourhoods, hence leading to a change in the predicted labels. The high accuracy is possibly due
to a large number of edge additions but is meaningless in the face of a significantly large counterfactual
size. Moreover, it does not scale for the dense datasets, BA-Shapes. Conclusively, generative modelling
used by Clear, leads to complex explanations owing to large edits in the graph structure. Thus, modelling
the marginal impact of perturbations through policy gradients is an effective approach. RCExplainer did
not extend to multi-class setting. It has high fidelity, low size and accuracy, indicating that it only finds
counterfactuals for easy cases.

Transductive vs Inductive: We further compare the inductive version (Table 4) of our method, InduCE
with the transductive baselines (Table 3). While the transductive methods have a clear advantage of re-
training the model instance wise, the results produced by InduCE-inductive are comparable. As noted
earlier, although CF-GnnExplainer achieves better size than InduCE-inductive, its fidelity is much worse
indicating that the low size is a manifestation of not being able to explain the hard cases that InduCE is
able to explain. Moreover, in addition to the ability to generalize to unseen nodes, inductive modeling also
imparts a dramatic speed-up in generating explanations (see Table 6a).

Impact of motif topology: The complexity of the motif topology, along with the inherent difficulty of the
prediction task, significantly influences the prediction accuracy of the Gnn being explained and hence also
affects the explainer. Specifically, when the Gnn’s predictions are poor due to the complexity of the task,
there may be inherent uncertainty in the model functionality. This uncertainty can pose challenges for the
explainer, as it must contend with ambiguity and variability in the model being explained when proposing
counterfactual explanations. The explainer may struggle to provide confident and reliable explanations in
the face of such uncertainty, leading to potentially inconsistent or unreliable results.

Furthermore, the larger the size of the motif, the more is the expected size of the explanation to make a
non-motif node part of a motif. This trend is visible in Table 4, where the explanation size of Induce is
largest for Tree-grid dataset, where the motif consists of 9 edges.
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Finally, the shape also plays a role. The expressivity of a message-passing Gnn is bounded by 1-WL tests Xu
et al. (2019). If the Gnn cannot distinguish between two shapes, this ambiguity will be passed on to the
explainer as well.

Additional experiments: App. F contains experiments on the impact of (1) heuristic features and (2)
the choice of Gnn architectures. Experiments on counterfactual size vs accuracy trade-off are in App. H.
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Figure 4: The distributions of the edit size and their internal composition of edge additions and deletions
by InduCE on the Tree-Cycles dataset.

4.5 Impact of Edge Additions

We seek answers to two key questions: (1) How much does the performance of InduCE deteriorate if we
restrict edge additions? (2) If we empower the baselines also with additions, do they match up to InduCE?
To answer the first question, we study the performance of InduCE in the setting where only edge deletions
are allowed. The rows corresponding to InduCE (transductive)−− and InduCE (inductive)−− in Tables 3
and 4 present these results. It is evident that the deletion-only version produces inferior results for both the
transductive and inductive versions. In Fig. 4, we further study the frequency distribution of edge additions
and deletions in the counter-factual explanations produced by InduCE in Tree-Cycles dataset (results on
other datasets are in App. G). We observe that additions dominate the perturbations, and thereby, further
establishing its importance, which InduCE unleashes. To address the second question, we empower CF-
GnnExplainer and Cf2 with edge additions, denoted as CF-GnnExplainer ++ and Cf2 ++ respectively.
2 Both Cf2 and CF-GnnExplainer use a mask-based strategy. A mask is a learnable binary matrix of
the same dimension as the ℓ-hop neighborhood of the target node. By taking an element-wise product of
the mask with the adjacency matrix, one obtains the edges to be deleted. When empowered with additions,
the mask itself becomes the new adjacency matrix. Surprisingly, the performance of CF-GnnExplainer
drops, while for Cf2, we see improvement in fidelity in two out of three datasets. Further investigation into
this performance reveals that edge additions significantly increase the search space of possible perturbations
(See Table I in Appendix). A mask-based strategy is a single-shot learnable paradigm that does not examine
the marginal effect of each perturbation. When the perturbation space increases, it overwhelms the learning
procedure. In contrast, InduCE uses reinforcement learning where a trajectory of perturbations is selected
based on their marginal gains. This allows better modeling of the combinatorial nature of counterfactual
reasoning. Overall, the above experiments reveal that both additions, as well as an algorithm equipped to
model large combinatorial spaces, are required to perform well.

4.6 Impact of Modeling Marginal Impact

InduCE adopts an auto-regressive framework where the selection of edits depends on previously selected
edits. This design is adopted since, as established in Theorem 1, counterfactual reasoning is a combinatorial
problem. What happens if we ignore modeling the marginal impact of edits? We investigate this aspect

2Gem is not extendible to additions (See App. D.2 for details), PGExplainer does not incorporate perturbations with the
intent of changing the label since it is a factual explainer.
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Figure 5: (a) Fidelity comparison of InduCE with single-shot prediction on the BA-Shapes dataset. In
single-shot prediction, we select the k edits with highest predicted reward directly. Recall that lower fidelity
is better. (b) Evolution of the entropy of the score distribution over perturbation space against the number of
iterations (explanation size). (c) Evolution of the top-5 highest scoring edits against the number of iterations
(explanation size).

in Fig. 5a. As visible, InduCE achieves significantly lower fidelity than its single-shot counterpart, thus
emphasizing the importance of modeling the marginal impact of edits. In single-shot prediction, we directly
add the top-k edits with the highest expected reward based on the original graph state. This contrasts with
the auto-regressive pipeline where a single edit with the highest expected reward is first added to the original
graph, and then all available edits are re-prioritized based on their expected rewards on the edited graph.
To ensure a fair comparison, k in the single-shot approach is set to the number of edits made by InduCE
until the node label changes.

We next analyze the evolution of the entropy of the perturbation space in Fig. 5b. We note a decrease in
entropy indicating consolidation of perturbation preference till a certain number of iterations, beyond which,
it starts to increase again. This trend is not entirely surprising, since a higher number of iterations indicates
that InduCE has failed to change the label of the target node despite a significant number of edits, and
such cases correspond to higher amount of uncertainty

How does the ranking of the edits based on their expected rewards change over iterations? Fig. 5c analyzes
this question. Specifically, we compute the top-k highest ranked edits at each timestep t, starting from t = 0,
and compute its Jaccard similarity to the top-k list at t + 1. Note that since we select the highest ranked
edit in each timestep, and therefore this edit cannot be present in the next timestep, the maximum Jaccard
similarity between the lists at two consecutive time steps is (k − 1)/(k + 1). In Fig. 5c, we note that the
Jaccard similarity is consistently lower than this upper bound, indicating that the ranking list is evolving
over time. k is set to 5 in this analysis. Connecting back to Fig. 5a, this further highlights the need for
modelling perturbations marginally instead of single-shot.

4.7 Quantitative Results on Real Datasets

Method Amazon ogbn-arxiv
Fid.(%) ↓ Size ↓ Fid.(%) ↓ Size ↓

CF-GnnEx 100 NULL DNS DNS
Cf2 60 13.7 +- 16.98 DNS DNS
InduCE (trans.) 53.50 4.72 ± 4.38 0 1.00 ± 0.00

Table 5: Results for transductive methods on the real-world dataset. “NULL” denotes that the method
could not produce a counterfactual. “DNS” denotes that the method could not produce a counterfactual as
it did not scale. Refer to App. I that details reasons on why these baselines failed to scale.

In Tables 5a and 5b, we present the results of InduCE and other baselines on the real-world datasets.
Consistent with the performance on benchmark datasets, InduCE continues to outperform all the baselines
almost in both transductive and inductive settings. We note that most of the baselines failed to produce
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Method Amazon ogbn-arxiv
Fid.(%) ↓ Size ↓ Fid.(%) ↓ Size ↓

PGExplainer 100 NULL 95.50 4
Gem 100 NULL DNS DNS
Clear DNS DNS DNS DNS
InduCE (ind.) 93.00 6.60 ± 2.87 78.7 3.11 ±3.04

Table 6: Results for inductive methods on the real-world dataset. “NULL” denotes that the method could
not produce a counterfactual. “DNS” denotes that the method could not produce a counterfactual as it did
not scale. Refer to App. I that details reasons on why these baselines failed to scale.

Method Tree-Cycles Tree-Grid BA-Shapes
PGExplainer 0.41 0.62 0.38
Gem 0.16 0.73 8.64
CF-GnnEx 1295.66 2382.51 3964.36
Cf2(α = 0.6) 304.13 154.88 2627.09
RCExplainer 0.76 1.42 NA
CLEAR 0.06 0.10 DNS
InduCE (ind.) 4.36 17.64 68.33
InduCE (trans.) 66.08 331.58 6546.48

(a) Efficiency

Dataset #Nodes #Edges Avg. degree Time/node (ms)
Tree-Cycles 871 1,950 2.23 60.56
Tree-Grid 1,231 3,410 2.77 13.67
BA-Shapes 700 4,100 5.86 89.91
ogbn-arxiv 169,343 1,166,243 6.89 353.43
Amazon-photos 7,487 119,043 15.90 5242.32

(b) Scalability
Table 7: (a) Running times (in seconds) of each algorithm on entire test set. (b) Scalability against various
graph properties. “DNS" denotes that the method did not scale. RCExplainer code does not extend to
multi-class setting, we denote this as “NA”.

counterfactuals in Amazon, while Clear fails to scale. In ogbn-arxiv, on the other hand, all baselines except
PGExplainer fails to scale; they crash with out-of-memory exception. In contrast, InduCE produces
promising performance with the transductive version achieving 0% fidelity.

4.8 Efficiency

Table 6a presents the inference times of various algorithms. First, the inductive methods (InduCE,
Clear, RCExplainer, PGExplainer and Gem) are much faster than the others. Between the inductive
methods, PGExplainer and Clear are the fastest. InduCE-inductive is slower since the search space
for InduCE is larger due to accounting for both edge additions and deletions. Clear is significantly
faster than Induce-inductive because it generates a perturbed adjacency matrix for the input graph
rather than modelling the marginal effect of edge perturbations. It should be noted that Clear performs
significantly worse in quantitative metrics and does not scale for dense and large datasets (Recall Table
4). Second, InduCE-inductive is up to 79 times faster than the transductive methods such as CF-
GnnExplainer and Cf2. This speed-up is a result of only doing forward passes through the neural policy
network, whereas, transductive methods learn the model parameters on each node separately. Even the
transductive version of InduCE is faster than the other transductive methods for Tree-Cycles and Tree-Grid.

Scalability against graph size: Table 6b presents the inference time per node across all datasets. We
observe that InduCE scales to million-sized networks such as ogbn-arxiv. We observe that the growth of
the running time is closely correlated with the neighbourhood density, i.e., the average degree of the graph,
and not the graph size. In a Gnn with ℓ layers, only the ℓ-hop neighborhood of the target node matters.
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Method Mutagenicity Mutag AIDS
Fid.(%) ↓ Size ↓ Fid.(%) ↓ Size ↓ Fid.(%) ↓ Size ↓

Cf2 38.7 2.87 ±1.36 88.2 1.25 ±0.43 98.5 4.83 ±2.19
InduCE (trans.) 20.2 1.30 ±0.81 0 1.35 ±0.64 67.8 4.61 ±2.38
RCExplainer 39.2 1.02 ±0.25 47.1 2.72 ±3.4 91.2 1.0 ±0.0
Clear OOM OOM 64.7 16.08 ±6.3 86.2 296.36 ±36.57
InduCE (ind.) 45.1 5.32 ±3.85 20.60 5.0 ±3.42 91.20 8.91 ±3.91

Table 8: Results on graph classification. The best result in each category is highlighted in bold. The second
best in each category is underlined.

4.9 Case Study: Counter-factual Visualization

(a) Tree-Cycles (b) Impact of additions
Figure 6: Visualization of counterfactual explanations for the same node (orange) produced by different
methods. Semantically, the node label should change if it is not a part of the motif. (a) Counterfactual
explanation for Tree-Cycles Dataset, (b) Counterfactuals predicted by InduCE.

In this section, we visually showcase how counterfactual explanations reveal Gnn vulnerabilities and the
importance of edge additions.
Revealing GNN vulnerabilities: A sample counterfactual explanation by various algorithms on Tree-
Cycles dataset is provided in Fig. 6a. The target node is part of a motif (6-cycle) and therefore the expected
counter-factual explanation is to make it a non-member of a 6-cycle. CF-GnnExplainer correctly finds
on such explanation by deleting an edge. Both Gem and Cf2 recommend a much larger explanation than
necessary. In contrast, InduCE adds an edge. More interestingly, the target node continues to remain part
of the motif. This uncovers a limitation of Gnn since it falsely classifies the target node as a non-motif node
although it is not. Furthermore, this limitation is uncovered only since InduCE can add edges. Similar
observations in other datasets are available in Figs. Ga-Gb in Appendix.

Impact of additions: In Fig. 6b top-left, we share an example where InduCE changes the label of a
target node (orange) by making it part of a cycle through edge additions. Since baselines are only capable
of deletes, they fail to change the label of such nodes. However, InduCE highlights that the Gnn does
not learn cycle-motifs of specific lengths. In the top-right (Tree-Grid), InduCE breaks the grid motif and
connects the target node (orange) to a non-motif neighbour, hence colluding its embeddings and changing
its label. These examples show the importance of edge addition to intuitively explain how the black-box
Gnn works.

4.10 Performance on Graph Classification

While our focus is on explaining node classification, InduCE can be generalized to graph classification as
well. To adapt InduCE pipeline for explaining graph classification, we use the entire graph to construct the
MDP state instead of the ℓ-hop neighborhood of the target node. Moreover, the action space is defined by
all pairs of nodes in the graph since there is no notion of a target node. The rest of the pipeline remains
unchanged.
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Table 8 presents the results on graph classification explainability on the Mutagenicity Riesen & Bunke (2008);
Kazius et al. (2005), Mutag Ivanov et al. (2019) and AIDS Ivanov et al. (2019) datasets. As visible Induce-
transductive achieves the best fidelity, while being marginally higher in explanation size, when compared to
the smallest size achieved by any of the baselines.

5 Concluding Insights

Despite being a black-box, Graph neural networks (Gnns) are becoming the go-to tool for topological data
analysis due to their superlative prediction accuracy. The ability to explain predictions is critical towards
making a model trustworthy. In this work, we proposed InduCE to understand Gnns via counterfactual
reasoning for the node classification task. While several algorithms in the literature produce counterfactual
explanations of Gnns, they suffer from restricted or inefficient counterfactual space exploration and trans-
ductivity. InduCE provides a boost to counterfactual analysis on Gnns by unleashing the power of edge
additions, efficient exploration of the combinatorial search space through marginal rewards and inductively
predicting explanations on unseen nodes. The proposed features not only lead to better explanations but
also provide a significant speed-up allowing InduCE to perform counterfactual analysis at scale.
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Dataset k-hop #additions #deletions ratio (#additions/#deletions)
Tree-cycles 4 18313 1105 16.57
Tree-grid 4 98942 3960 24.98

BA-shapes 4 3140886 47580 66.01
Amazon-Photos 4 12144800 432160 28.10

ogbg-arxiv 3 354496362 524330 676.09

Table I: Ratio of no. of additions to deletions of datasets.

(a) Tree-Grid (b) BA-Shapes

Figure G: Visualization of counterfactual explanations for the same node (orange) produced by different
methods. Semantically, the node label should change if it is not a part of the motif, i.e., (a) 3 × 3-grid, and
the (b) the house respectively. CF-GnnExplainer is unable to find a counterfactual in (b).

A Appendix

A InduCE Training

The training pipeline of InduCE is given in Algorithm 2.

B Discounted Rewards

The objective of the policy Π is to find minimal counterfactual explanations for Gnns using the reward
function mentioned in Eq 10. However, we can observe that in that equation, the marginal reward at each
step is given equal weight. In our case, we want the immediate rewards to have higher weight over the
rewards encountered later on in the perturbation trajectory Tv in order to penalize larger counterfactual
size, thus we use discounted rewards (Eq 15) with γ being the discount factor to achieve the objective. Since
we want minimal explanation size, we use small values of γ (Refer App. D.3).

Rt
dis,v(at) =

δ∑
i=0

γiRt+i+1
v (at) (15)

here δ is the maximum perturbation budget.
One limitation of policy gradient is high variance caused by the scale of rewards. A common way to reduce
variance is to subtract a baseline, b(St

v) such that it does not induce bias in the policy gradient. A simple
baseline can be the mean of the discounted rewards, so that we train the policy to pick trajectories that give
rewards better than the average rewards. We also normalize the discounted reward further by dividing with
the standard deviation.

R̃t
dis,v(at) =

Rt
dis,v(at) − R̄t

dis,v(at)
max(σ(Rt

dis,v(at)), c) (16)
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Algorithm 2 Training pipeline of InduCE.
Input: Graph G, Gnn Φ, Train set Vtr, perturbation budget δ, number of episodes M
Output: Policy Π

1: Vbatch ← {V1,V2 . . . ,VB | ∪B
i=1 Vi = Vtr} ▷ Random partitioning instances of Vtr into B batches

2: Π← initialize with random parameters
3: for all e ∈ [1, M ] do
4: for all Vb ∈ Vbatch do
5: for all v ∈ Vb do
6: t← 0
7: while LΦ(G0, v) = LΦ(Gt, v) & t < δ do
8: compute St

v

9: at ← sample from Π(St
v,Pt)

10: Gt+1
v ← perturb Gt

v with edge at

11: Rt
v ← compute reward using Eq.10

12: Rt
dis,v ← compute discounted rewards using Eq.15

13: R̃t
dis,v ← normalize discounted rewards using Eq.16

14: t← t + 1
15: Backpropagate to minimize loss using Eq. 17
16: Return Π

Dataset Train accuracy(%) Test Accuracy(%)
Tree-cycles 91.23 90.86
Tree-grid 84.34 87.44

BA-shapes 96.61 98.57
Amazon-Photos 89.59 88.75

ogbn-arxiv 71.59 55.07
Mutagenicity 85.37 85.38

Mutag 90.84 87.18
AIDS 99.57 99.25

Table J: Accuracy of Gnn Φ on datasets used in this study.

where σ(Rt
dis) is the standard deviation, c is a constant. The optimized version of the loss function(Eq 13)

is in App. C.

C Batching

Equation 13 takes an average gradient over all examples in the training set. This setting may lead to
over-smoothing of the gradients and hence induce difficulty in training. To counter this issue, we performed
batching of node instances, and back-propagated with the average gradients computed on nodes in the batch.
Thus we optimize our policy on batches of nodes, and use normalized discounted rewards in the loss function
(Refer Eq. 17).

J (Π) = −
1

Vbatch

 ∑
∀v∈Vbatch

(
|Tv|∑
t=0

log p
t
a,vR̃

t
dis,v(at) + ηEnt(Pt

v)

) (17)

D Experimental Setup

All reported experiments are conducted on an NVIDIA DGX Station with four V100 GPU cards having
128GB GPU memory, 256GB RAM, and a 20 core Intel Xeon E5-2698 v4 2.2 Ghz CPU running in Ubuntu
18.04.
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D.1 Benchmark datasets

• BA-SHAPES: The base graph is a Barabasi-Albert (BA) graph. The motifs are house-shaped struc-
tures made up of 5 nodes (Refer Figure Gb). Non-motif nodes are assigned class 0, while nodes at the
top, middle, and bottom of the motif are assigned classes 1, 2, and 3, respectively.

• TREE-CYCLES: The base graph is a binary tree with 6-node cycles used as motifs (Refer Figure
6a). The motifs are connected to random nodes in the tree. Non-motif nodes are labelled 0, while the
motif nodes are labelled 1.

• TREE-GRID: The base graph is a binary tree and the motif is a 3 × 3 grid connected to random tree
nodes (Refer Figure Ga). Just like tree-cycles dataset binary class labelling has been done.

D.2 Baselines

• CF-GnnExplainer Lucic et al. (2022): Being a transductive method for counterfactual explanations, it
learns a new set of parameters for every node and cannot be used to explain unseen nodes. We use the
default hyperparameters used by the authors.

• Cf2 Tan et al. (2022): While being transductive in nature, it combines both counterfactual and factual
properties to give an explanation. Cf2 tunes the parameter α to weigh the contribution of factual
explanations. We compare Cf2 with α = 0 where it becomes as a counterfactual explainer.

• Gem Lin et al. (2021): This is inductive by nature, however, it only considers edge deletions. It has a
limitation that it learns a factual explanation model where the number of perturbations is fixed, i.e., it
does not minimize the number of perturbations with the sole focus on changing the label. We use the
default size of 6 as the perturbation size as recommended by the authors.
Note that Gem is not extendable to include edge additions. Specifically, GEM has a distillation process
that generates the ground truth. Distillation involves removing every edge in a node’s neighbourhood
iteratively and seeing its effect on the loss. The deletions are then sorted based on their effect on the
loss. The top-k edges (k is user-specified) are used as the distilled ground truth. The explainer is later
trained to generate graphs that are the same as the distilled ground truth. To extend this process for
additions, the number of possible edge edits is significantly higher and the iterative process of GEM to
create the distilled ground truth does not scale. In addition, it is also unclear how to set k in the presence
of additions.

• PGExplainer Luo et al. (2020): This method is also inductive and only considers edge deletions. It is
a factual explainability method and requires a fixed explanation size as a hyper-parameter. We use the
default size of 6 as the perturbation size as recommended by the authors for the benchmark datasets. We
also use size 6 and 4 for Amazon-Photos and ogbn-arxiv, respectively.

• RCExplainer Bajaj et al. (2021): This method learns explanations that are stable when the input
graph is minimally perturbed. The method is inductive and combines, both counterfactual and factual
properties. The method has a hyper-parameter λ which is used to weigh the contribution of the factual
explanations. We set λ = 0 for comparison of methods in the counterfactual setting.

• Clear Ma et al. (2022): Clear is an inductive, generative counterfactual explainer. It is capable of node
addition or deletion, node feature perturbation and edge additions as well as deletions. The authors’
code prioritizes graph classification explainability. We adapt it for node classification by using k-hop ego
networks for target nodes and training the explanater on these networks. We use the authors’ default
hyperparameters.
Clear, along with all other baselines do not model the marginal impact of perturbations, which empiri-
cally produces better explanations (Refer Table 4, 6), due to the nuanced exploration of the combinatorial
search space.

• Random: We use the same baseline as used in Lucic et al. (2022). It makes the choices of deleting
an edge randomly by generating a random subgraph mask for the h-hop neighbourhood of the node and
perturbing it.

D.3 Training and Parameters

Counter-factual task: We provide a node that is part of a motif to the counterfactual explainer, and the
the task is to change its label by recommending changes in the graph. All nodes that are part of a motif,
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are given a specific label and non-motif nodes are given a different label. Since the nodes are always chosen
from motifs, the explanation is the motif itself. This setup is identical to Cf2 and CF-GnnExplainer.

The Gnn model Φ: We use the same Gnn model used in CF-GnnExplainer and Cf2. Specifically, it is
a Graph Convolutional Networks trained on each of the datasets. Each model has 3 graph convolutional lay-
ers, with 20, 128 and 256 hidden dimensions for the benchmarking datasets, Amazon-photos and ogbn-arxiv
respectively. For graph classification we use a Gnn with 3 lconvolutional layers and 20 hidden dimensions.
To compute the graph embedding we do a max-polling over the node embeddings. The non-linearity used is
relu for the first two layers and log softmax after the last layer of GCN. The learning rate is 0.01. The train
and test data are divided in the ratio 80:20 for benchmark datasets. For ogbn-arxiv, we use the standard
splits provided in the ogb package. In our experiments, we use a scaled-down version of the Amazon-Photos
dataset. We choose one random node as the central node and took its 3−hop neighbourhood in our dataset.
Amazon Photos has an average degree of 13, hence, the 3−hop neighborhood covers a reasonable distribution
of class labels. We split the nodes of this subgraph in the ratio of 80 : 20 for train and test sets. The accuracy
of the Gnn model Φ for each dataset is mentioned in Table J.

Training, Inference and Parameters: For InduCE and Gem, we use a train/evaluation split of 80/20
on the benchmark, graph and the Amazon-Photos datasets. For ogbn-arxiv, we train on 10 random examples
per class, and sample 1000 random nodes as the test dataset. We make sure that the test and train sets are
disjoint. The evaluation set for all techniques are identical. For Gem and InduCE, the train set is identical.
Since CF-GnnExplainer and Cf2 are transductive, only the evaluation set is used for them where they
learn a node-specific parameter set. The same happens on the transductive version of InduCE.

Parameters settings: We use h = 4 because extracting the 4-hop neighbourhood as the subgraph ensured
that we preserve the black-box model’s accuracy. We use β = 0.5 so as to give equal weight to the predict
loss and distance loss (see Eq. 10). We use different values of γ ∈ {0.4, 0.6} and find the best performance
at γ = 0.4 for the inductive setting and γ = 0.6 for the transductive setting with a maximum perturbation
budget δ = 15. We use maximum number of episodes M = 80, 500, 500 for BA-shapes, Tree-cycles and Tree-
grid respectively. We use GAT as the GNN of choice for the policy network. For the policy network, we use
3 GAT layers, 2 fully connected MLP layers, 16 hidden dimension, a learning rate of .0003 and LeakyReLU
with negative slope 0.1 as the activation function. We use three different values for η ∈ {0.1, 0.01, 0.001}
and η = 0.1 improves the performance due to higher weight for exploration.

Method Sparsity (Tree-Cycles) Sparsity (Tree-Grid) Sparsity (BA-Shapes) Amazon-photos ogbn-arxiv

CF-GnnEx 0.93 0.95 0.99 NULL DNS
Cf 2 0.52 0.59 0.92 0.99 DNS
InduCE (trans.) 0.92 0.96 0.98 0.99 0.78

Table K: Comparison of "sparsity" of counterfactuals predicted by transductive methods.
“NULL” means the baseline could not find a counterfactual. “DNS” means that the base-
line did not scale.

Method Sparsity (Tree-Cycles) Sparsity (Tree-Grid) Sparsity (BA-Shapes) Amazon-photos ogbn-arxiv

PGExplainer 0.34 0.64 0.61 NULL 0.66
Gem 0.54 0.77 0.88 NULL DNS
RCExplainer 0.97 0.98 NA NA NA
Clear 0.71 0.77 DNS DNS DNS
InduCE (ind.) 0.90 0.88 0.99 0.99 0.64

Table L: Comparison of "sparsity" of counterfactuals predicted by inductive methods. “NULL”
means the baseline could not find a counterfactual. “DNS” means that the baseline did
not scale (please refer to App. I for detailed reasoning). “NA” means not applicable as
RCExplainer code did not extend to multi-class setting (Refer App. J for details.)

E Additional Results on Sparsity of Counterfactuals

Sparsity is defined as the proportion of edges in N l
v, i.e., the ℓ-hop neighbourhood of the target node v.

Since counterfactuals are supposed to be minimal, a value close to 1 is desired. We compare InduCE
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with its baselines on sparsity in Tables K and L. We observe that InduCE produces better or comparable
explanations in terms of sparsity. In Table L we observe that the sparsity of InduCE-inductive is slightly
less than PGExplainer for the ogbn-arxiv dataset. However, the fidelity of PGExplainer is greater
than InduCE-inductive (Recall Table 6). Thus, when looking at the combined results, one may conclude
that PGExplainer finds counterfactual explanations for the easier examples and, as a result, has sparser
explanations. Similarly, we can interpret the sparsity of CF-GnnExplainer being better than InduCE-
transductive for Tree-Cycles in Table K as its fidelity is much higher than the latter (Recall Table 3).]

F Ablation Study

To infuse more information about the local graph structure and and its statistics, we use several heuristic
features such as degree, entropy, and one-hot encoded labels (Refer 3.1). We conduct an ablation study to
investigate the effectiveness of each heuristic feature. Table N summarises the findings. Our method is most
consistent when it uses all features. Note that features and entropy together produce competitive results.
However, the fidelity in BA-Shapes becomes much worse from this combination. This means, in most of the
cases, this combination is unable to find the counterfactual example. In such cases, the possibility of getting
better values in other measures increases.
Gcn Vs. Gat: InduCE uses a Gat to train the RL policy. In the next experiment, we evaluate the impact
of replacing the Gat with a Graph Convolutional Network (Gcn). The results are presented in Table M.
We see that Gat significantly outperforms Gcn in the inductive version and thereby justifying our choice.

Heuristic Features: Table N contains an exhaustive analyses of the performance of InduCE-inductive
using all combinations of heuristic features mentioned in section 3. The combination of features and entropy
seems to allow best performance of the model on Tree-grid and Tree-cycles datasets, however as we see in
Table 2 that BA-shapes is a dense network and clearly the degree heuristic in combination with node features
leads to excellent performance for BA-shapes in terms of the size and the accuracy. Since the ability of the
method to find a counterfactual weighs more, our default model containing all heuristic combined with node
features gives best overall performance in fidelity, with size and accuracy being better or comparable to the
other combinations in most cases.

G Additional Results on Counterfactual Size Distributions

In figures H and I we observe the distributions of edit distance between the original and the counterfactual
h-hop neighbourhood of instances in Tree-Grid and BA-Shapes datasets respectively. As observed both in
inductive and transductive versions of InduCE most of the counterfactuals are of small size and dominated
by edge additions. However, we can also observe that the transductive versions of InduCE does produce
counterfactuals of size mostly localised around 1. This is because the parameters are tailored instance by
instance. InduCE-inductive however with a minor trade-off in the counterfactual size, provides a comparable
performance to InduCE-transductive (recall Tables 3 and 4) while providing a speed-up of 79x over all the
transductive baselines (recall Table 7a). We further conduct experiments on how the accuracy of the explainer
is affected with increasing counterfactual size in App. H.

Policy Variant Tree-Cycles
Fid.(%) ↓ Size ↓ Acc.(%) ↑

InduCE-inductive-Gcn 0 2.62 ±1.52 78.84
InduCE-inductive-Gat 0 1.99 ±1.00 97.47

InduCE-transductive-Gcn 0 1.08 ±0.27 96.84
InduCE-transductive-Gat 0 1.08 ±0.27 96.20

Table M: Importance of attention in the Gnn component of InduCE.
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Method Tree-Cycles Tree-Grid BA-Shapes
Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%) ↑

Features only 0 3.12 ±1.96 80.05 0 4.50 ±3.16 73.12 18.4 3.62 ±3.46 70.29
Features + D 0 2.56 ±1.73 65.74 0 3.71 ±2.51 84.26 9.2 4.02 ±4.27 98.89
Features + E 0 2.24 ±1.15 72.69 0 3.37 ±2.22 94.63 68.4 1.25 ±0.83 86.25

Features + OH 0 3.19 ±1.83 79.70 2.3 4.10 ±3.13 87.17 28.9 4.63 ±3.41 32.75
Features + D + E 0 2.81 ±1.55 85.19 0 3.12 ±1.96 84.77 48.7 2.43 ±2.65 63.71

Features + D + OH 0 2.65 ±1.58 69.31 0 3.16 ±2.21 92.02 1.3 3.62 ±2.45 62.08
Features + E + OH 0 2.62 ±1.52 78.84 0 3.47 ±2.28 89.15 27.6 4.2 ±3.02 56.00

Features + D + E + OH 0 2.31 ±1.44 96.65 0 4.67 ±2.91 91.05 2.6 4.37 ±3.53 64.4

Table N: Ablation study results. D, E, and OH represents degree, entropy, and one hot encoded labels
respectively. We vary node features along with different heuristic features to measure the effect of each of
these features. Our proposed method InduCE is superior when it uses all the features.
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Figure H: The distributions of the edit size and their internal composition of edge additions and deletions
by InduCE on the Tree-Grid dataset.

H Size vs. Accuracy Trade-off

The accuracy vs. counterfactual size trade-off for InduCE in Table O and P. We observe that with higher
size, the accuracy decreases. Recall, we use benchmark datasets with ground-truth explanations where a
node belongs to a particular class if it belongs to a certain motif. Hence, an explanation is accurate if
it includes edges from the motif. We observe that when the explainer fails to find short explanations, it
typically deviates towards a sequence of edges outside the motif. Hence the explainer fails to change the
label till a large set of edits are made.

Size Acc. % (Tree-Cycles) Acc. % (Tree-Grid) Acc.% (BA-Shapes)

1 100 100 100
3 94 97 100
5 73 89 100
6 83 NA NA
7 86 88 100
10 NA 80 100
15 NA 73 73

Table O: Counterfactual Size vs. Accuracy Trade-off for InduCE- inductive: The results suggest
that as counterfactual size increases, the accuracy of the explanation decreases. NA stands for counterfactual
of that size was not present.

Size Acc. % (Tree-Cycles) Acc. % (Tree-Grid) Acc. % (BA-Shapes)

1 97 98 100
2 100 100 100
6 NA NA 50
7 NA NA 57

Table P: Counterfactual Size vs. Accuracy Trade-off for InduCE- transductive: The results
suggest that as counterfactual size increases, the accuracy of the explanation decreases. NA stands for
counterfactual of that size was not present.
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Figure I: The distributions of the edit size and their internal composition of edge additions and deletions by
InduCE on the BA-Shapes dataset.

I Non-scalability of the Baselines

Most baselines do not scale for Ogbn-arxiv dataset. We describe the details as follows.
Ogbn-arxiv is a million-sized node prediction dataset with 169,343 nodes and 1,166,243 edges. Cf2,
Gem and Clear do not scale (Recall Tables 5a and 5b) on this dataset since they employ computations
on a dense adjacency matrix, which require O(n2) space, where n is the number of nodes in the graph.
For a million-sized graph, this leads to memory overflow. Adapting to a sparse adjacency matrix requires
non-trivial changes to the source code.

CF-GnnExplainer extracts the k−hop neighbourhood of a target node at the runtime and adapts to
sparse adjacency matrices more easily. CF-GnnExplainer’s algorithm is model-agnostic, however, the
code-base is suitable for its customized black-box and cannot be trivially extended to any other black-box.
The explainer loads the black-box weights into itself before freezing them, assuming that the black-box
uses the same architecture as itself. It then uses those weights rather than the black-box Gnn during the
explanation. In case the explainer’s architecture does not match the black-box architecture, the keys for
loading the weights do not match, hence, the explainer’s weights are not loaded, rather randomly initialized.
As a result, the explainer gets initialized with random weights rather than the black-box’s weights and
acts as a random classifier. This is an inefficient design choice and prevents CF-GnnExplainer’s code
from scaling for ogbn-arxiv(Recall Table 5). We use PyTorch-geometric’s Fey & Lenssen (2019) standard
GCNConv layers Kipf & Welling (2016) that are compatible with sparse adjacency matrices to scale the
black-box Gnn to the million-sized graph. InduCE’s code is written in a model-agnostic fashion. Any
black-box Gnn which employs log softmax non-linearity at the last layer is compatible with InduCE.

Clear further does not scale for dense networks BA-Shapes and Amazon (Recall Table 4 and 5b.
The reason is that for dense graphs k-hop neighbourhoods are significantly larger. The backbone of Clear
is graph-VAE Simonovsky & Komodakis (2018) which does not scale for large graphs.

J Results of RCExplainer on Benchmark datasets

The codebase provided by the authors of RCExplainer could be utilized for explanation of graph classifica-
tion only. We modified it for node classification by taking the k-hop ego-networks of nodes and training the
explainer with these networks, however, the results were not reproducible. Hence, we implemented the code
for the binary node classification task. The explainer failed to push the node across the decision boundary
to get a counterfactual and was stuck in an infinite loop. We further limited the loop to a finite number of
iterations. The results are reported on the benchmark binary classification datasets in Table 4. We observe
the predicted counterfactuals are sub-par to InduCE-inductive.
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β
Tree-Cycles Tree-Grid BA-Shapes

Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%)↑

0.0001 0 1.01 ±0.12 97.22 0 1.02 ±0.12 96.12 0 1.21 ±0.67 97.87
0.25 0 1.01 ±0.12 97.22 0 1.02 ±0.12 96.90 0 1.30 ±0.86 94.34
0.5 (default) 0 1.01 ±0.12 98.61 0 1.02 ±0.12 97.67 0 1.30 ±0.90 95.31
0.75 0 1.01 ±0.12 95.83 0 1.02 ±0.12 96.90 0 1.33 ±0.85 90.79
1.00 0 1.01 ±0.12 97.22 0 1.02 ±0.12 96.90 0 1.39 ±1.09 94.38

Table Q: Results for InduCE-transductive on varying β: Lower fidelity, smaller size, and higher
accuracy are desired. The best results are in bold. Tr., Fid., Acc. denote transductive, fidelity and accuracy,
respectively. The best result is highlighted in bold.

β
Tree-Cycles Tree-Grid BA-Shapes

Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%)↑

0.0001 0 2.31 ±1.44 96.65 0 4.63 ±2.91 91.21 2.6 4.37 ±3.53 64.40
0.25 0 2.31 ±1.44 96.65 0 4.63 ±2.91 91.21 2.6 4.37 ±3.53 64.40
0.5 (default) 0 2.31 ±1.44 96.57 0 4.67 ±2.91 91.05 2.6 4.37 ±3.53 64.40
0.75 0 2.31 ±1.44 96.65 0 4.63 ±2.91 91.21 2.6 4.37 ±3.53 64.40
1.00 0 2.31 ±1.44 96.65 0 4.63 ±2.91 91.21 2.6 4.37 ±3.53 64.40

Table R: Results for InduCE-inductive on varying β: Lower fidelity, smaller size, and higher accuracy
are desired. The best results are in bold. Tr., Fid., Acc. denote transductive, fidelity and accuracy,
respectively. The best result is highlighted in bold.

K Effect of Hyper-parameters

In this section, we examine the effect of various hyper-parameters on the performance of InduCE on the
three benchmark datasets.

Impact of β: In this experiment, we vary β parameter that regulates the weightage of log-likelihood vs.
the perturbation count in Equation 8. The results are provided in Tables Q and R for the transductive
and inductive settings respectively. We vary β from 0.0001 to 1. We observe that InduCE is robust to
change in β in most cases. This can be attributed to the small sizes of counterfactuals in general in the
benchmark datasets. Thus, the actual effect of β may come into play for larger-sized counterfactuals when
trajectories are longer, i.e., a larger set of edits are needed to change the class label of the target node.
Further, for InduCE-transductive we observe that for BA-Shapes datasets as β increases the counterfactual
size increases. This seems counter-intuitive at the face but hints at the fact that for smaller trajectories,
it is more important to focus on reducing the log-likelihood of the label rather than increasing the weight
of the counterfactual size component of the reward function. In this manner, the model is incentivized to
pick perturbations that will cause the target to cross the decision boundary in the early stages of the action
trajectory.

Impact of hops (h): In this experiment, we vary the number of hops in the ego-network of the target
node while keeping the number of layers in the policy network constant. The results are provided in tables
S and T. We vary the number of hops from 2 to 5, where 3 was the number of layers in the Gnn being
explained. We observe that, in general, a hop-value closer to the number of Gnn layers leads to better
effectiveness. This observation especially shines for InduCE-inductive (Refer Table T) wherein increasing
the hops cause a drastic drop in performance. This can be attributed to the explosion of the size of the
action space or the search space of counterfactuals, which may cause generalizability issues. Furthermore,
inductive explanations are harder since the explainer needs to generalize to unseen data.

Impact of GAT-layers: Finally, we study the impact of the number of layers in the Gat used in the
policy network while keeping everything else fixed. The results are provided in Tables U and V. We observe
that the number of Gat layers should be close to the number of Gnn black-box layers, and thus, also the
number of hops in the target’s ego-network. Note that earlier we observed that increasing the number of
hops in the ego network of the target node beyond the number of layers in the GNN black box reduces
performance (Recall Table T). For an ego-network with a smaller number of hops, if we use a Gat with
a larger number of layers, the embeddings would be over-smoothed, and that would lead to degraded
performance. Therefore, ideally, for InduCE we used 4-hop ego-network and a 3-layered Gat.
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Hops(h) Tree-Cycles Tree-Grid BA-Shapes
Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%)↑

2 0 1.03 ±0.16 99.31 0 1.14 ±0.35 93.80 0 1.08 0.27 94.74
3 0 1.01 ±0.12 97.22 0 1.02 ±0.12 96.90 0 1.12 ±0.36 94.96
4 (default) 0 1.01 ±0.12 98.61 0 1.02 ±0.12 97.67 0 1.30 ±0.90 95.31
5 0 1.01 ±0.12 100 0 1.02 ±0.12 99.22 0 1.43 ±0.99 93.51

Table S: Results for InduCE-transductive on varying hops of target’s neighbourhood: Lower
fidelity, smaller size, and higher accuracy are desired. The best results are in bold. Tr., Fid., Acc. denote
transductive, fidelity and accuracy, respectively. The best result is highlighted in bold.

Hops(h) Tree-Cycles Tree-Grid BA-Shapes
Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%)↑

2 0 1.82 1.18 97.08 1.55 2.68 1.67 94.90 3.95 2.423 ±2.43 94.77
3 0 1.88 1.09 98.42 0 3.44 2.49 94.39 13.16 2.70 ±2.86 75.54
4 (default) 0 2.31 ±1.44 96.57 0 4.67 ±2.91 91.05 2.6 4.37 ±3.53 64.40
5 0 2.06 ±1.39 96.03 8.52 5.36 ±3.82 91.85 6.58 3.49 ±3.02 83.54

Table T: Results for InduCE-inductive on varying hops of target’s neighbourhood: Lower fidelity,
smaller size, and higher accuracy are desired. The best results are in bold. Tr., Fid., Acc. denote transduc-
tive, fidelity and accuracy, respectively. The best result is highlighted in bold.

Layers Tree-Cycles Tree-Grid BA-Shapes
Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%)↑

2 0 1.01 ±0.12 97.22 0 1.02 ±0.12 97.67 0 1.22 ±0.70 98.38
3 (default) 0 1.01 ±0.12 98.61 0 1.02 ±0.12 97.67 0 1.30 ±0.90 95.31
4 0 1.01 ±0.12 97.22 0 1.02 ±0.12 99.22 0 1.18 ±0.60 97.32
5 0 1.01 ±0.12 97.22 0 1.02 ±0.12 97.67 0 1.32 ±0.88 92.543

Table U: Results for InduCE-transductive on varying GAT layers in policy network: Lower
fidelity, smaller size, and higher accuracy are desired. The best results are in bold. Tr., Fid., Acc. denote
transductive, fidelity and accuracy, respectively. The best result is highlighted in bold.

Layers Tree-Cycles Tree-Grid BA-Shapes
Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%) ↑ Fid.(%) ↓ Size ↓ Acc.(%)↑

2 0 1.81 ±0.93 89.93 0.78 2.83 ±2.39 95.59 69.74 3.26 ±2.60 63.92
3 (default) 0 2.31 ±1.44 96.57 0 4.67 ±2.91 91.05 2.6 4.37 ±3.53 64.40
4 0 2.88 ±1.48 66.20 0 2.80 ±1.88 86.76 3.95 4.27 ±4.01 84.85
5 0 2.81 ±1.62 65.45 0 4.50 ±2.35 76.22 1.31 3.39 ±3.58 95.13

Table V: Results for InduCE-inductive on varying GAT layers in policy network: Lower fidelity,
smaller size, and higher accuracy are desired. The best results are in bold. Tr., Fid., Acc. denote transduc-
tive, fidelity and accuracy, respectively. The best result is highlighted in bold.
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