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ABSTRACT

Federated learning (FL) is increasingly adopted in domains like healthcare, where
data privacy is paramount. A fundamental challenge in these systems is statisti-
cal heterogeneity—the fact that data distributions vary significantly across clients
(e.g., different hospitals may treat distinct patient demographics). While cur-
rent FL algorithms focus on aggregating model updates from these heterogeneous
clients, the potential of the central server remains under-explored. This paper is
motivated by a healthcare scenario: could a central server not only coordinate
model training but also guide a new patient to the hospital best equipped for their
specific condition? We generalize this idea to propose a novel paradigm for FL
systems where the server actively guides the allocation of new tasks or queries to
the most appropriate client. To enable this, we introduce a density ratio model and
empirical likelihood-based framework that simultaneously addresses two goals:
(1) learning effective local models on each client, and (2) finding the best match-
ing client for a new query. Empirical results demonstrate the framework’s effec-
tiveness on benchmark datasets, showing improvements in both model accuracy
and the precision of client guidance compared to standard FL approaches. This
work opens a new direction for building more intelligent and resource-efficient FL
systems that leverage heterogeneity as a feature, not just a bug.

1 INTRODUCTION

Federated learning (FL) has emerged as a powerful paradigm for training machine learning models
across distributed data sources without sharing raw data. By enabling clients such as hospitals,
financial institutions, or mobile devices to collaboratively train models under the coordination of a
central server, FL offers a practical solution for privacy-preserving learning in sensitive domains (Li
et al., 2020a; Long et al., 2020; Xu et al., 2021).

This way!

Figure 1: FL server as an
intelligent router: Leveraging
learned data distributions to di-
rect queries to the most special-
ized client, rather than applying a
global model for diagnosis.

A key challenge in applying FL in practice is statistical het-
erogeneity: clients often hold data drawn from different, non-
identically distributed populations. In healthcare, hospitals
may serve distinct patient demographics; in finance, banks
may encounter different fraud patterns; and on mobile devices,
user behavior varies widely. Such heterogeneity can cause lo-
cal models to drift apart, leading to slower convergence (Li
et al., 2020b), biased updates (Karimireddy et al., 2020), and
global models that underperform when applied back to individ-
ual clients (T Dinh et al., 2020). To address these issues, most
existing FL systems treat heterogeneity as a problem to be sup-
pressed—through aggregation corrections, client reweighting,
or personalization techniques. In this prevailing paradigm, the
central server plays a largely passive role, acting only as a
coordinator that aggregates local updates into a single global
model. We contend, however, that this limited role overlooks
a key opportunity: rather than merely mitigating heterogeneity, the server can actively exploit it.

Consider a healthcare scenario: different hospitals may excel at treating different patient groups
depending on their location and/or expertise. When a new patient arrives, instead of merely de-
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ploying a global model for diagnosis, the server could help identify the hospital best equipped to
provide care, leveraging local data distributions to capture specialized expertise. A cartoon illustra-
tion of this scenario is given in Fig. 1. Similar opportunities exist in other domains: in finance, the
server could direct a fraud detection query to the bank whose historical data best matches the trans-
action profile; in personalized services, it could route a query to the client with the most relevant
user base. These examples illustrate that statistical heterogeneity across clients—often seen as an
obstacle—can instead become a valuable resource. They motivate the central insight of our work:

Beyond coordinating training, the server can actively exploit client
heterogeneity–transforming it from a challenge into a resource by guiding new queries to

the most suitable client.

Much of the existing work in FL has focused on mitigating the challenges of statistical heterogeneity,
without using the server for guiding new queries. One major line of research develops aggregation
algorithms to reduce the bias induced by non-identically distributed data. Examples include methods
that modify local updates before aggregation (Gao et al., 2022; Guo et al., 2023; Zhang et al., 2023),
reweight client contributions (Wang et al., 2020; Yin et al., 2024), or introduce regularization terms
to align local objectives with the global one (Li et al., 2020b; Acar et al., 2021; Li et al., 2021b).
These approaches aim to learn a single global model that performs reasonably well across all clients,
but they do not leverage heterogeneity as an asset. A second line of work explores personalization in
FL. Rather than enforcing a universal global model, personalization methods adapt models to each
client’s local distribution (Li et al., 2021d), often through fine-tuning (T Dinh et al., 2020; Collins
et al., 2021; Tan et al., 2022; Ma et al., 2022), multi-task learning (Smith et al., 2017; Li et al.,
2021c), or meta-learning (Fallah et al., 2020). While these approaches improve local performance,
they are typically not designed to address the challenge of guiding new queries or tasks to the most
appropriate client. Another related direction is client clustering (Ghosh et al., 2020; Li et al., 2021a;
Briggs et al., 2020; Kim et al., 2021; Long et al., 2023), where clients with similar data distri-
butions are grouped and trained jointly within each cluster. This can improve performance under
heterogeneity, but still assumes the server’s role is limited to coordinating training and distributing
models, rather than supporting query routing or task allocation. Overall, while these approaches are
effective for their intended goals, they stop short of enabling the server to actively guide new queries
to the most suitable client.

Motivated by this gap, we introduce a new paradigm in which the FL server not only coordinates
training but also learns to guide each incoming query to the client best suited to handle it. Achieving
this goal requires two capabilities: (i) effective information sharing across clients despite hetero-
geneity, and (ii) a principled way to quantify how each client’s data distribution differs from the
others so that queries can be meaningfully matched. To achieve this, we develop FedDRM, a uni-
fied framework grounded in density ratio model (DRM) (Anderson, 1979) and empirical likelihood
(EL) (Owen, 2001). DRM represents each client’s distribution as a multiplicative density tilt of a
baseline distribution, while EL facilitates nonparametric model learning, enabling the estimation of
this baseline distribution in a data-driven manner without parametric assumptions. After profiling
out the baseline distribution, the resulting objective decomposes into two interpretable cross-entropy
components: one for predicting class labels and another for identifying a sample’s client of origin.
The first supports standard FL training; the second supplies precisely the signal needed for query-
to-client routing, enabling the server to exploit—rather than suppress—statistical heterogeneity.

This formulation leads to three key contributions. First, we propose the first statistically grounded
FL framework that jointly learns heterogeneous predictive models and the distributional structure
required for query routing within a single principled objective. Second, we develop a new algo-
rithmic correction for the classification component of the EL objective. Because each client is
associated with only a single class label for client identification, the vanilla loss suffers from an
extreme form of label shift; we propose a simple yet effective reweighting adjustment that yields a
more stable classifier. Third, through experiments on benchmark datasets, we demonstrate that our
approach consistently improves both predictive accuracy and routing precision compared to stan-
dard FL methods, underscoring the benefits of integrating guidance directly into the FL workflow.
Together, these developments transform the FL server from a passive aggregator into an intelligent
router capable of directing queries to the most suitable client, opening the door to FL systems that
are not only privacy-preserving but also adaptive and expertise-aware.
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2 FEDDRM: GUIDING CLIENTS IN HETEROGENEOUS FL

2.1 PROBABILISTIC DESCRIPTION OF DATA HETEROGENEITY

Consider an FL system with m clients. Let Di := {(Xij , Yij)}ni
j=1 denote the training set on the

i-th client, where each sample is drawn independently from P
(i)
X,Y . We consider the multi-class

classification case where Yij ∈ [K] := {1, . . . ,K} with marginal distribution P(Yij = k) = πik for
k ∈ [K], and features conditioned on the labels are distributed as Xij |(Yij = k) ∼ P

(i)
k . We denote

the marginal distribution of the features on client i as P
(i)
X , and the conditional distribution of Y

given X = x as {P(i)(Y = k|X = x)}Kk=1. Different types of data heterogeneity can be described
in terms of the family of distributions {P (i)

X,Y }mi=1:

• Covariate shift: Clients differ in their marginal feature distributions while sharing the same con-
ditional label distribution. In our notation, this corresponds to

P
(i)
X ̸= P

(i′)
X for i ̸= i′, but P(i)(Y = k|X = x) = P(i′)(Y = k|X = x) for all x and k.

• Label shift: Clients have different label marginals but share the same conditional feature distri-
butions given the label. Equivalently,

πi := (πi1, . . . , πiK) ̸= πi′ := (πi′1, . . . , πi′K) for some i ̸= i′, but P (i)
k = P

(i′)
k for all k.

In practice, real-world federated systems often exhibit combinations of these shifts, which leads to
the full distributional shift where both πi and {P (i)

k }Kk=1 may vary across clients.

2.2 A SEMIPARAMETRIC DENSITY RATIO MODEL

For clarity, we begin with the special case of covariate shift across clients. Extensions to other
types of heterogeneity will then follow naturally. Let gθ(x) represent a feature embedding (e.g., an
embedding from a DNN parameterized by θ) s.t. the conditional distribution of Y |X is given by:

P(Y = k|X = x) =
exp(αk + β⊤

k gθ(x))∑
j exp(αj + β⊤

j gθ(x))
. (1)

We drop the superscript (i) since this conditional distribution remains the same across all clients
under covariate shift. Applying Bayes’ rule to (1), we derive that the class-conditional distributions
are connected by an exponential function:

dP
(i)
k /dP

(i)
1 (x) = exp(α†

ik + β⊤
k gθ(x)) (2)

where dP (i)
k /dP

(i)
1 denotes the Radon–Nikodym derivative of dP (i)

k with respect to dP
(i)
1 and α†

ik =
αk + log(πi1/πik) for i ∈ [m].

To facilitate knowledge transfer across clients in FL, we assume their datasets share some common
underlying statistical structure. Specifically, we relate the client distributions {P (l)

1 }ml=1 through a
hypothetical reference measure P

(0)
1 at the server, using DRM1 (Anderson, 1979):

dP
(i)
k /dP

(i)
1 (x) = exp(γi + ξ⊤i hτ (gθ(x))) (3)

where hτ (·) is a parametric function with parameters τ . We refer to P
(0)
1 as a hypothetical reference

since the server may not have data directly, although the formulation also applies when server-side
data are available. The DRM captures differences in the conditional distributions of X|Y = 1
across clients via density ratios, with log-ratios modeled linearly in the embeddings. This avoids
estimating each distribution separately, focusing instead on relative differences. When the covariate
shift is not too severe, the marginal distributions of different clients are connected through this

1DRM provides a framework for modeling the relationship between two or more populations that share
similar characteristics. It is highly flexible and encompasses several commonly used parametric distribution
families—such as the binomial, exponential, and normal families—as special cases (Kay & Little, 1987).

3
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parametric form, making FL effective by leveraging shared structure across clients. On the other
hand, if the distributions differ too drastically, combining data from different clients is unlikely to
improve performance; in this case, even if the DRM assumption does not hold, it is not a limitation
of the formulation but a consequence of the inherent nature of the problem. Thus, the assumption is
reasonable in practice. When γi = 0 and ξi = 0, (3) reduces to the IID case. Under this assumption,
we obtain the following relationship between the marginal feature distributions:

Theorem 2.1. With (2) and (3), the marginal distributions of X also satisfy the DRM:

dP
(i)
X /dP

(0)
X (x) = exp{γ†

i + ξ⊤i hτ (gθ(x))} (4)

where γ†
i = γi + log(πi1/π01) for all i ∈ [m], and P

(0)
X an unspecified reference measure.

See proof in App. C.1. This theorem relates each client’s marginal distribution to the reference
distribution through a parametric tilt, which directly facilitates construction of the likelihood. If
the reference measure P

(0)
X was fully specified, all {P (i)

X,Y }mi=1 would also be fully determined, and
one could estimate the unknown model parameters using a standard maximum likelihood approach.
In practice, however, P (0)

X is unknown, and assuming it follows a parametric family risks model
mis-specification and potentially biased inference.

To address this challenge, we adopt a flexible, nonparametric approach based on EL (Owen, 2001)
that integrate data across heterogeneous populations via density ratio modeling (Qin & Zhang, 1997;
Fokianos et al., 2001; Chen & Liu, 2013; Li et al., 2017; Liu et al., 2017; 2025). EL constructs like-
lihood functions directly from the observed data without requiring a parametric form. Instead of
specifying a probability model, it assigns probabilities to the observed samples and maximizes the
nonparametric likelihood subject to constraints, such as moment conditions. Unlike classical para-
metric likelihood, EL adapts flexibly to the data, making it particularly suitable when the underlying
distribution is unknown or complex, but valid structural or moment conditions are available. Specif-
ically, we let

pij = P
(0)
X ({Xij}) ≥ 0, ∀i ∈ [m], j ∈ [ni],

treating the pij as parameters. In this way, the reference measure P
(0)
X is represented as an atomic

measure without any parametric assumptions, and most importantly all samples across clients are
leveraged for information sharing. To ensure that P (0)

X and {P (i)
X }mi=1 are valid probability measures,

the following constraints are imposed:

m∑
i=1

ni∑
j=1

pij = 1,

m∑
i=1

ni∑
j=1

pij exp
{
γ†
l + ξ⊤l hτ (gθ(Xij))

}
= 1, ∀ l ∈ [m]. (5)

2.3 A SURPRISINGLY SIMPLE DUAL LOSS

With the semiparametric DRM for heterogeneous FL, we propose a maximum likelihood approach
for model learning. Let p = {pij}, α = {αk}, β = {βk}, γ† = {γ†

i }, ξ = {ξi}, and ζ =
(α,β,γ, ξ, θ, τ), the log empirical likelihood of the model based on datasets across clients is

ℓN (p, ζ) =
∑
i,j

logP
(i)
X,Y ({Xij , Yij}) =

∑
i,j,k

1(Yij = k) logP(Y = k|Xij) +
∑
i,j

logP
(i)
X ({Xij})

=
∑
i,j,k

1(Yij = k) logP(Y = k|Xij) +
∑
i,j

{γ†
i + ξ⊤i hτ (gθ(Xij)) + log pij},

where the last equality makes use of Theorem 2.1. Since our goal is to learn (1) on each client,
the weight p becomes a nuisance parameter, which we profile out to learn the parameters that
are connected to the conditional distribution of Y |X = x. The profile log-EL of ζ is defined as
pℓN (ζ) = supp ℓN (p, ζ) where the supremum is under constraints (5). By the method of Lagrange
multiplier, we show in App. C.2 that an analytical form of the profile log-EL is

pℓN (ζ) =
∑
i,j,k

1(Yij = k) logP(Yij = k|Xij) +
∑
i,j

{γ†
i + ξ⊤i hτ (gθ(xij)) + log pij(ζ)} (6)
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where pij(ζ) = N−1
{
1 +

∑m
l=1 ρl

[
exp{γ†

l + ξ⊤l hτ (gθ(xij))} − 1
]}−1

and the Lagrange multipliers
{ρl}ml=1 are the solution to∑

i,j

exp{γ†
l + ξ⊤l hτ (gθ(xij))} − 1∑

l′ ρl′
[
exp(γ†

l′ + ξ⊤l′ hτ (gθ(xij)))− 1
] = 0.

Although the profile log-EL in (6) has a closed analytical form, computing it typically requires
solving a system of m equations for the Lagrange multipliers, which can be computationally de-
manding. Interestingly, at the optimal solution these multipliers admit a closed-form expression,
yielding a surprisingly simple dual formulation of the profile log-EL presented below.
Theorem 2.2 (Dual form). At optimality, the Lagrange multipliers ρl = nl/N and the profile log-EL
in (6) becomes

pℓN (ζ) =
∑
i,j

log

{
exp(γ‡

i + ξ⊤i hτ (gθ(xij)))∑
l exp(γ

‡
l + ξ⊤l hτ (gθ(xij)))

}
+

∑
i,j

log

{
exp(αyij + β⊤

yij
gθ(xij))∑

k exp(αk + β⊤
k gθ(xij))

}
up to some constant where γ‡

i = log(ni/n1) + γ†
i .

See App. C.3 for proof. The theorem allows us to define the overall loss function as the negative
profile log-EL:

ℓ(ζ) = −pℓN (ζ) =
∑
i,j

ℓCE(i, hτ (gθ(xij));γ, ξ) +
∑
i,j

ℓCE(yij , gθ(xij);α,β), (7)

Client 2Client 1

CE: Client 
classification

CE: Target 
classification

CE: Client 
classification

CE: Target 
classification

Client class. 
block

Client class. 
block

Target class. 
head

Target class. 
head

Client label 1 Client label 2Target label
 

Target label

Figure 2: Network architecture.
Gray blocks are shared among all
clients, while colored blocks are
specific to each client.

where ℓCE(y, x;α,β) = −(αy + β⊤
y x) + log{

∑
k exp(αk +

β⊤
k x)} is the cross-entropy loss.

Remark 2.3 (Beyond covariate shift). Our method is de-
scribed under covariate shift. The derivations in key steps (2)
and (3) do not require the marginal distribution of Y to be iden-
tical across clients, which allows us to also accommodate la-
bel shift. Importantly, we show that our approach extends to
the more general setting where both Y |X and X differ across
clients in App. D. In this case, after a detailed derivation,
we find that the overall loss simplifies to a minor adjustment
in the target-class classification head. Concretely, the target-
class classification loss is equipped with a client-specific lin-
ear head, resulting in the final architecture shown in Fig. 2.
Interestingly, this architecture closely resembles those in personalized FL methods such as Collins
et al. (2021): target-class classification is performed with client-specific heads, while our new client
classification component relies on a single shared head across all clients.
Remark 2.4 (Guiding new queries). Although the derivation is mathematically involved, the re-
sulting loss function is remarkably simple: it consists of two cross-entropy terms, each associated
with a distinct classification task. The first term identifies the client from which a sample originates,
while the second predicts its target class. The additional client-classification head thus yields, for
any query, the probability of belonging to each client. By routing a query to the client with the
highest predicted probability, we obtain a principled mechanism for assigning new data to the client
best equipped to handle it.

2.4 OPTIMIZATION ALGORITHM

The overall loss ℓ(ζ) in (7) is defined as if all datasets were pooled together. Since optimizing ℓ(ζ)
with vanilla SGD and weight decay is equivalent to minimizing a loss function with an explicit L2

penalty, we denote the loss as ℓρ(ζ) = ℓ(ζ) + (ρ/2)∥ζ∥22, with minimizer ζ̃N . The subscript N is
used to indicate that this weight is based on N samples. In the FL setting, the global loss decomposes
naturally into client-specific contributions: ℓρ(ζ) =

∑m
i=1(ni/N)ℓi(ζ) where

ℓi(ζ) = ℓi(γ, ξ) + ℓi(α,β) + (ρ/2)∥ζ∥22,
ℓi(γ, ξ) = n−1

i

∑
j ℓCE(i, hτ (gθ(xij));γ, ξ), and ℓi(α,β) = n−1

i

∑
j ℓCE(yij , gθ(xij);α,β).
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Figure 3: Relative gradient drift.

A key difference arises between these two terms. For the
client-classification loss ℓi(γ, ξ), the i-th client only observes
samples labeled with its own client index i. In contrast, the
target-class loss ℓi(α,β) typically spans multiple target labels
per client (though with varying proportions). This asymmetry
leads to more pronounced gradient drift2 in ∇ℓi(γ, ξ). To il-
lustrate, consider the gradient of the client-classification loss
with respect to γk:

∂ℓi/∂γk = n−1
i

∑
j

xij{1(i = k)− pk(hτ (gθ(xij));γ, ξ)}

where pk(x;γ, ξ) = exp(γk + ξ⊤k x)/
∑

l exp(γl + ξ⊤l x). Since 1(i = k) = 0 for all k ̸= i, the
gradient contributed by client i provides no meaningful information about other clients’ parameters.
As a result, local updates to the client-classification head are inherently biased, which in turn am-
plifies gradient drift relative to target-class head. Fig. 3 shows this effect on a 10-class classification
task with 3 clients and a randomly generated embedding using FedAvg: the gradient drift for client
classification is markedly more severe than that for target classification.

Reweighting strategy. To address this, we draw on reweighting principles Chen et al. (2018); Liu
et al. (2021) to propose a simple yet effective method with theoretical guarantees. Our approach
down-weights client classification loss, whose gradient exhibits larger drift, resulting in the per-
client loss:

ℓ̃i(ζ) = (1− λ)ℓi(γ, ξ) + λℓi(α,β),

for λ > 0.5 and the reweighted global loss is ℓ̃(ζ) =
∑m

i=1(ni/N)ℓ̃i(ζ), see Algorithm 1.

Algorithm 1: FedDRM
Input: Clients m, rounds T , local steps E, learning rate η, trade-off λ

1 Initialize backbone θ(0), target head {(α(0)
i ,β

(0)
i )}mi=1, and client head (τ (0),γ(0), ξ(0))

2 for t = 0, 1, . . . , T − 1 do
3 Server broadcasts θ(t) and (τ (t),γ(t), ξ(t)) to all clients
4 for client i ∈ [m] in parallel do
5 θ

(t,0)
i ← θ(t), (α

(t,0)
i ,β

(t,0)
i )← (α

(t)
i ,β

(t)
i ), (τ

(t,0)
i ,γ

(t,0)
i , ξ

(t,0)
i )← (τ (t),γ(t), ξ(t))

6 for k = 0, 1, . . . , E − 1 do
7 Get target loss ℓi(α

(t,k)
i ,β

(t,k)
i , θ

(t,k)
i ) and client loss ℓi(τ

(t,k)
i ,γ

(t,k)
i , ξ

(t,k)
i , θ

(t,k)
i )

8 ℓ̃i(ζ
(t,k)
i )← λℓi(α

(t,k)
i ,β

(t,k)
i , θ

(t,k)
i ) + (1− λ)ℓi(τ

(t,k)
i ,γ

(t,k)
i , ξ

(t,k)
i , θ

(t,k)
i )

9 ζ
(t,k+1)
i ← ζ

(t,k)
i − η∇ℓ̃(ζ(t,k)

i )

10 end
11 θ

(t+1)
i ← θ

(t,E)
i , (α

(t+1)
i ,β

(t+1)
i )← (α

(t,E)
i ,β

(t,E)
i ), (τ

(t+1)
i ,γ

(t+1)
i , ξ

(t+1)
i )←

(τ
(t,E)
i ,γ

(t,E)
i , ξ

(t,E)
i )

12 Client i sends θ
(t+1)
i and (τ

(t+1)
i ,γ

(t+1)
i , ξ

(t+1)
i ) back to the server

13 end
14 Server updates

θ(t+1) ←
∑m

i=1
ni
N
θ
(t+1)
i , (τ (t+1),γ(t+1), ξ(t+1))←

∑m
i=1

ni
N
(τ

(t+1)
i ,γ

(t+1)
i , ξ

(t+1)
i )

15 end

To accelerate convergence, a larger value of λ is desirable. However, as λ → 1, the target-
class classification begins to dominate, which hinders effective training of the client classifica-
tion and ultimately weakens the model’s ability to guide clients. To illustrate the trade-off be-
tween accuracy and convergence, we consider a simplified setting where the embedding is fixed
(i.e., , θ and τ are known) and the true data-generating mechanism follows a multinomial lo-
gistic model with parameters ζ true = (γ true, ξtrue,αtrue,βtrue). We define the heterogeneity mea-
sure G2(ζ) =

∑m
i=1(ni/N)∥∇ℓi(ζ) − ∇ℓ(ζ)∥22, which admits the decomposition G2(ζ) =

2The gradient drift of the client loss is G2
client :=

∑m
i=1(ni/N)∥∇ℓi(γ, ξ) −

∑m
l=1(ni/N)∇ℓl(γ, ξ)∥2,

and that of the target-class loss is G2
class :=

∑m
i=1(ni/N)∥∇ℓi(α,β)−

∑m
l=1(ni/N)∇ℓl(α,β)∥2.
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(1 − λ)2G2
client(γ, ξ) + λ2G2

class(α,β). Let Ḡ2, Ḡ2
client, and Ḡ2

class denote the corresponding maxi-
mum values across updating rounds t = 0, 1, . . . , T − 1. Then, Ḡ2 ≤ (1 − λ)2Ḡ2

client + λ2Ḡ2
class.

With this notation in place, we state the following result:
Theorem 2.5. Assume ℓρ is µ-strongly convex and L-smooth. Suppose η ≤ 1/L and furthermore
ηLE ≤ 1/4. Let ζ(t) be the output after t communication rounds. Then as T,N → ∞ we have

∥ζ(T )−ζ true∥22 = Op

(
{(1− λ)∥Iγ∥min + ρ}−1 + {λ∥Iβ∥min + ρ}−1

N
+

η2E2{(1− λ)2Ḡ2
client + λ2Ḡ2

class}
1− (1− ηµ)E

)
where ∥A∥min = λmin(A), and Iclient and Iclass denote the Fisher information matrices with respect
to (γ, ξ) and (α,β), respectively.

The proof and the detailed definition of Fisher information matrix is deferred to App. E. The first
term in the bound capture the statistical accuracy, while the last term reflects the convergence rate.
For faster convergence, a larger λ is preferred, while for higher accuracy, λ must be chosen to
balance {(1−λ)∥Iγ∥min+ρ}−1 and {λ∥Iβ∥min+ρ}−1. Together, these terms reveal the trade-off
role of λ. In practice, since the Fisher information matrices and gradient drifts are unknown, λ can
be tuned using a validation set. We empirically demonstrate the trade-off in Fig. 4.

3 EXPERIMENTS ON BENCHMARK DATASETS

3.1 EXPERIMENT SETTINGS

Datasets. We conduct experiments on CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), each contain-
ing 60, 000 32×32 RGB images. CIFAR-10 has 10 classes with 6, 000 images per class. CIFAR-100
has 100 classes, with 600 images per class, grouped into 20 superclasses. Based on these datasets,
we construct three tasks of increasing complexity: (a) 10-class classification on CIFAR-10, (b)
20-class classification using the CIFAR-100 superclasses, and (c) 100-class classification using the
fine-grained CIFAR-100 labels.

Non-IID settings. Since standard benchmark datasets do not inherently exhibit statistical hetero-
geneity, we simulate non-IID scenarios following common practice (Wu et al., 2023; Tan et al., 2023;
Lu et al., 2024). We introduce both label and covariate shifts. For label shift, we construct client
datasets using two partitioning strategies: (1) Dirichlet partition with α = 0.3 (Dir-0.3): Follow-
ing (Yurochkin et al., 2019), we draw class proportions for each client from a Dirichlet distribution
with concentration parameter α = 0.3, leading to heterogeneous label marginals and unequal dataset
sizes across clients. (2) S shards per client (S-SPC): Following (McMahan et al., 2017), we sort the
data by class, split it into equal-sized, label-homogeneous shards, and assign S shards uniformly at
random to each client. This yields equal dataset sizes while restricting each client’s label support to
at most S classes. Each dataset is first partitioned across clients using one of the partitioning strate-
gies, and within each client, the local dataset is further split 70/30 into training and test sets. For
covariate shift, all three nonlinear transformations are applied to each client’s dataset: (1) gamma
correction: brightness adjustment with client-specific gamma factor γ. (2) hue adjustment: color
rotation with client-specific hue factor ∆h. (3) saturation scaling: color vividness adjustment with
client-specific saturation factor κ. We set γ ∈ {0.6, 1.4}, ∆h ∈ {−0.1, 0.1}, and κ ∈ {0.5, 1.5} in
the main experiment, resulting in an 8-client setting. See examples in App. F.1.

Baselines. We compare our FedDRM against a variety of state-of-the-art personalized FL tech-
niques, which learn a local model on each client. Ditto (Li et al., 2021c) encourages local models
to stay close via global regularization. FedRep (Collins et al., 2021) learns a global backbone with
local linear heads. FedBABU (Oh et al., 2022) freezes local classifiers while training a global back-
bone, then fine-tunes classifiers per client. FedPAC (Xu et al., 2023) personalizes through feature
alignment to a global backbone. FedALA (Zhang et al., 2023) learns client-wise mixing weights that
adaptively interpolate between the local and global models. FedAS (Yang et al., 2024) aligns local
weights to the global model, followed by client-specific updates. ConFREE (Zheng et al., 2025)
resolves conflicts among client updates before server aggregation. We also compare with other stan-
dard FL algorithms– FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020b), and FedSAM (Qu
et al., 2022)–which aim to achieve a single global model under data heterogeneity. To ensure fair
comparison, we fine-tune their global models locally on each client, yielding personalized variants
denoted FedAvgFT, FedProxFT, and FedSAMFT.
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Network architecture. We use ResNet-18 (He et al., 2016) as the feature extractor (backbone),
which encodes each input image into a 512-dimensional embedding. For the baselines, this embed-
ding is projected to 256 dimensions via a linear layer and fed into the image classifier. FedDRM
extends this design by adding a separate client-classification head: the 512-dimensional embedding
is projected to 256 dimensions and fed into the client classifier. Importantly, FedDRM uses the same
image classification architecture as all baselines.

Training details. To ensure fair comparison, all methods are trained for 800 communication rounds
with 10 local steps per round and a batch size of 128. For fine-tuning-based methods, we allocate 700
rounds for global training and 100 rounds for local fine-tuning. We use SGD with momentum 0.9,
an initial learning rate of 0.01 with cosine annealing, and weight decay 5 × 10−4. Method-specific
hyperparameters are tuned to achieve their best performance.

3.2 EVALUATION PROTOCOL

To assess the effectiveness of our proposed method in guiding clients under heterogeneous FL, we
introduce a new performance metric, termed system accuracy. This metric is designed to evaluate
the server’s ability to guide clients effectively. Concretely, we construct a pooled test set from all
clients. For FedDRM, we first use the client classification head to identify the most likely client for
each test sample by maximizing the client classification probability. The local model of the selected
client is then used to predict the image class label. For baseline methods, which lack this client-
guidance mechanism, we instead apply a majority-voting strategy: each client’s personalized model
makes a prediction for every sample in the pooled test set, and the majority label is taken as the
final prediction. The overall classification accuracy on the pooled test set is reported as the system
accuracy. We also report the widely used average accuracy in personalized FL, which measures
each local model’s classification accuracy on its own test set. The final value is computed as the
weighted average across all clients, with weights proportional to the size of each client’s training
set. In all experiments, we report the mean and standard deviation of both average accuracy and
system accuracy over the final 50 communication rounds.

3.3 MAIN RESULTS

We present the system accuracy and average accuracy in Tab. 1 and Tab. 2, respectively. Across

Table 1: System accuracy on CIFAR-10/20/100 under Dir-0.3 and 5/25-SPC settings.

Method CIFAR-10 CIFAR-20 CIFAR-100

Dir-0.3 5-SPC Dir-0.3 25-SPC Dir-0.3 25-SPC

Ditto 47.64± 0.25 46.99± 0.23 29.56± 0.18 31.87± 0.16 15.97± 0.15 19.51± 0.16
FedRep 24.96± 0.19 33.19± 0.22 23.83± 0.15 24.82± 0.20 11.11± 0.12 12.02± 0.12
FedBABU 57.43± 0.17 57.17± 0.24 36.96± 0.17 40.78± 0.13 22.92± 0.17 27.27± 0.15
FedPAC 25.14± 0.21 33.24± 0.19 23.83± 0.17 24.83± 0.18 11.17± 0.12 11.99± 0.12
FedALA 61.33± 0.17 53.20± 0.20 32.78± 0.17 35.79± 0.14 20.70± 0.14 25.80± 0.16
FedAS 28.76± 0.19 39.71± 0.20 27.16± 0.16 27.50± 0.15 13.87± 0.13 13.51± 0.14
ConFREE 25.66± 0.22 34.06± 0.22 24.08± 0.17 25.15± 0.18 11.32± 0.13 12.12± 0.13

FedAvgFT 54.90± 0.22 56.19± 0.17 37.53± 0.18 41.17± 0.16 25.21± 0.16 27.96± 0.17
FedProxFT 55.01± 0.20 56.27± 0.21 37.61± 0.18 41.20± 0.15 25.15± 0.13 27.82± 0.18
FedSAMFT 55.83± 0.21 51.73± 0.19 34.23± 0.14 36.60± 0.17 22.97± 0.16 26.89± 0.15

FedDRM 63.85± 0.18 58.50± 0.23 37.67± 0.22 41.44± 0.19 26.01± 0.16 31.24± 0.17

all settings, FedDRM consistently outperforms the baselines on both metrics, demonstrating its abil-
ity to leverage statistical heterogeneity for system-level intelligence while also providing effective
client-level personalization. In contrast, the baselines primarily focus on addressing data hetero-
geneity, resulting in lower system accuracy due to disagreements among their personalized models.
Additionally, when using a majority-vote approach as an intelligence router, baseline methods must
evaluate all m local models, whereas FedDRM requires evaluating only a single model. The shared
backbone in FedDRM can also be efficiently repurposed for image prediction by feeding it into the
corresponding client-specific classification head. We also compare the influence of label shift in this
experiment beyond covariate shift, the results align with our expectation that the less severe label
shift Dir-0.3 case has a higher accuracy than 5-SPC for all methods.
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Table 2: Average accuracy on CIFAR-10/20/100 under Dir-0.3 and 5/25-SPC settings.

Method CIFAR-10 CIFAR-20 CIFAR-100

Dir-0.3 5-SPC Dir-0.3 25-SPC Dir-0.3 25-SPC

Ditto 76.34± 0.11 65.17± 0.17 40.36± 0.18 44.83± 0.19 29.25± 0.16 36.58± 0.18
FedRep 76.49± 0.15 64.96± 0.19 41.54± 0.16 46.57± 0.19 31.22± 0.15 39.11± 0.20
FedBABU 78.22± 0.14 70.22± 0.18 44.18± 0.15 48.98± 0.19 32.91± 0.14 40.75± 0.14
FedPAC 76.53± 0.13 65.05± 0.19 41.60± 0.16 46.55± 0.19 31.20± 0.17 39.13± 0.22
FedALA 64.35± 2.40 55.58± 1.88 33.30± 0.47 36.41± 0.58 21.83± 0.94 27.83± 1.59
FedAS 78.69± 0.17 69.82± 0.16 45.65± 0.18 51.73± 0.17 36.06± 0.13 44.26± 0.19
ConFREE 76.73± 0.16 65.59± 0.17 41.91± 0.16 47.04± 0.21 31.57± 0.15 39.63± 0.17

FedAvgFT 79.08± 0.11 72.10± 0.18 46.55± 0.15 52.54± 0.17 36.83± 0.17 43.94± 0.20
FedProxFT 79.07± 0.12 72.07± 0.18 46.58± 0.19 52.49± 0.18 36.87± 0.18 43.96± 0.19
FedSAMFT 75.53± 0.11 66.30± 0.16 41.11± 0.16 44.89± 0.16 32.53± 0.14 40.25± 0.16

FedDRM 80.25± 0.14 72.50± 0.16 47.91± 0.18 53.72± 0.20 37.91± 0.15 46.73± 0.15

3.4 SENSITIVITY ANALYSIS

We evaluate the sensitivity of our method to several key factors. Experimental details are reported
in App. F.2.
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Figure 4: Client & image accu-
racy trade-off on CIFAR-10 under
the Dir-0.3 setting.

Impact of weight λ on system accuracy. The reweighting
parameter λ is crucial for deploying the EL-based framework
in the FL setting. As shown in Fig. 4, we observe the expected
trade-off between two objectives: increasing λ places more
emphasis on image classification and less on client classifica-
tion. This shift improves overall accuracy but reduces client
accuracy, consistent with Thm. 2.5. The best balance between
the two is achieved at λ = 0.8, where system accuracy peaks,
marking the optimal trade-off for the task of guiding queries in
the FL system.

Covariate shift intensity. We have already demonstrated in
the main results that label shift is detrimental to all methods, with more severe shifts causing greater
harm. To further examine the impact of covariate shift, we fix the degree of label shift and vary
covariate shift at three intensity levels—low, mid, and high—by adjusting the parameters of the
nonlinear color transformations. As shown in Fig. 5, the results reveal a clear trade-off: higher co-
variate shift intensifies differences between client data distributions, which facilitates client routing
but simultaneously weakens information sharing across clients, thereby making image classification
more difficult. Additional results examining the sensitivity of our method to the severity of label
shift are provided in App. F.2.4.
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Figure 5: Influence of covariate
shift intensity on CIFAR-10 under
the Dir-0.3 setting.

Backbone sharing strategy. In our formulation, the target-
class classification task uses the embedding gθ(x) for an in-
put feature x, while the client-classification task uses the
embedding hτ (gθ(x)) for the same feature. Since both
gθ and hτ are parameterized functions, the optimal shar-
ing strategy between the two is not obvious. To explore
this, we evaluate four cases: no sharing, shallow sharing,
mid sharing, and deep sharing. As shown in Fig. 6, all
strategies perform similarly, with shallow sharing slightly
ahead. However, given the substantial increase in parameters
for shallow sharing, deep sharing offers a more parameter-
efficient alternative while maintaining strong performance.

Number of clients. To check scalability, we set the number of
clients from 8 to 32 and compare FedDRM against the top-2 baselines from the main experiments.
As shown in Tab. 3, while all methods exhibit a moderate performance decline as the client pool
expands (a common challenge in FL), FedDRM consistently maintains a significant performance
advantage across both system and average accuracy. This demonstrates that our method scales
effectively, preserving its superiority even as the system grows.
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Table 3: Sensitivity analysis on the number of clients m.

Method System Accuracy Average Accuracy

m = 8 m = 16 m = 24 m = 32 m = 8 m = 16 m = 24 m = 32

FedAS 32.58± 0.19 36.55± 0.21 38.12± 0.21 34.50± 0.18 78.86± 0.12 73.28± 0.15 73.90± 0.16 73.45± 0.15
FedAvgFT 53.17± 0.22 50.61± 0.20 49.13± 0.20 45.07± 0.21 78.92± 0.15 73.41± 0.16 74.66± 0.17 74.18± 0.15

FedDRM 59.59± 0.20 51.61± 0.22 50.18± 0.20 46.62± 0.17 80.47± 0.12 74.25± 0.15 75.04± 0.14 74.45± 0.18

4 EXPERIMENT ON REAL MEDICAL DATASET
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Figure 6: Impact of the sharing
strategy on CIFAR-10 under the
Dir-0.3 setting using LeNet (Lecun
et al., 1998).

To further demonstrate FedDRM’s effectiveness in healthcare,
we evaluate it on the real medical dataset RETINA, follow-
ing Huang et al. (2025). RETINA comprises fundus im-
ages from three clinical centers—ACRIMA (Diaz-Pinto et al.,
2019), Rim (Fumero Batista et al., 2020), and Refuge (Orlando
et al., 2020). We exclude Drishti, which has only 82 images,
while the others provide at least 385. Each 96 × 96 RGB im-
age is labeled as Glaucomatous or Normal, creating a binary
classification task.

This dataset naturally fits a 3-client FL system, with each client
representing one center. The different image sources cause a
covariate shift in RETINA. Furthermore, the class ratios (pos-
itive vs. negative) across the three datasets are 1.34, 1.94, and 0.46, introducing a realistic label
shift. Our experimental setup largely follows the CIFAR experiments, with several adjustments: the
network embedding dimension is set to 4608 and the projection dimension 512. All methods train
for 100 communication rounds with a batch size of 32. For fine-tuning-based methods, we allocate
90 rounds to global training and 10 to local fine-tuning.
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Figure 7: Average accuracy, system accuracy, and train loss on RETINA.

Fig. 7 shows that FedDRM consistently outperforms all baselines on RETINA. Measured in ab-
solute accuracy points, FedDRM exceeds the competing methods by 0.83–3.77 points in average
accuracy and by 1.41–7.67 points in system accuracy—substantial margins given the small size
and pronounced heterogeneity of this dataset. These results underscore the robustness and practical
relevance of FedDRM in the presence of simultaneous covariate and label shifts. Furthermore, Fed-
DRM achieves the lowest training loss and the most stable convergence trajectory, demonstrating its
effectiveness in capturing heterogeneous structure in real multi-center medical data.

5 CONCLUSION

This paper presents FedDRM, a novel FL paradigm that transforms statistical heterogeneity from a
challenge into a resource. By introducing a unified EL based framework, FedDRM simultaneously
learns accurate local models and a client-selection policy, enabling a central server to intelligently
route new queries to the most appropriate client. Empirical results demonstrate that our method out-
performs existing approaches in both client-level personalization and system-level utility, paving the
way for more adaptive and resource-efficient FL systems that actively leverage statistical diversity.
We believe that this work marks a meaningful step toward more adaptive, resource-efficient, and
intelligent FL systems.
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and Carlo Fischione. Dynamic clustering in federated learning. In International Conference on
Communications, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Chengxi Li, Gang Li, and Pramod K Varshney. Federated learning with soft clustering. IEEE
Internet of Things Journal, 9(10):7773–7782, 2021a.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Com-
puters & Industrial Engineering, 149:106854, 2020a.

Pengfei Li, Yukun Liu, and Jing Qin. Semiparametric inference in a genetic mixture model. Journal
of the American Statistical Association, 112(519):1250–1260, 2017.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021b.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and
Systems, 2020b.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International Conference on Machine Learning, 2021c.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. FedBN: Federated learn-
ing on non-IID features via local batch normalization. In International Conference on Learning
Representations, 2021d.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
multi-task learning. In Advances in Neural Information Processing Systems, 2021.

Siyan Liu, Chi-Kuang Yeh, Xin Zhang, Qinglong Tian, and Pengfei Li. Positive and unlabeled data:
Model, estimation, inference, and classification. Journal of the American Statistical Association,
pp. 1–12, 2025.

Yukun Liu, Pengfei Li, and Jing Qin. Maximum empirical likelihood estimation for abundance in a
closed population from capture-recapture data. Biometrika, 104(3):527–543, 2017.

Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning for open banking. In
Federated learning: privacy and incentive, pp. 240–254. Springer, 2020.

Guodong Long, Ming Xie, Tao Shen, Tianyi Zhou, Xianzhi Wang, and Jing Jiang. Multi-center
federated learning: clients clustering for better personalization. World Wide Web, 26(1):481–500,
2023.

Yang Lu, Lin Chen, Yonggang Zhang, Yiliang Zhang, Bo Han, Yiu-ming Cheung, and Hanzi Wang.
Federated learning with extremely noisy clients via negative distillation. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2024.

Xiaosong Ma, Jie Zhang, Song Guo, and Wenchao Xu. Layer-wised model aggregation for person-
alized federated learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics, 2017.

Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu: Toward enhanced representation for
federated image classification. In International Conference on Learning Representations, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used solely as assistive tools for language editing and pol-
ishing of the manuscript. The authors take full responsibility for the accuracy and integrity of the
manuscript.

B DENSITY RATIO MODEL EXAMPLES

Many parametric distribution families including normal and Gamma are special cases of the DRM.
Example B.1 (Normal distribution). For normal distribution ϕ(x;µ, σ2) with mean µ and variance
σ2. We have log{ϕ(x;µ1, σ

2
1)/ϕ(x;µ2, σ

2
2)} = θ0+θ1x+θ2x

2 where θ0 = log σ2/σ1− (µ2
1/σ

2
1 −

µ2
2/σ

2
2)/2, θ1 = µ1/σ

2
1−µ2/σ

2
2 , θ2 = (σ−2

2 −σ−2
1 )/2 and the basis function is g(x) = (1, x, x2)⊤.

Example B.2 (Gamma distribution). For gamma distribution with shape parameter α > 0 and
rate parameter β > 0. We have log{f(x;α1, β1)/f(x;α2, β2)} = θ0 + θ1x + θ2 log x where
θ0 = log Γ(α2) − log Γ(α1) + α1 log β1 − α2 log β2, θ1 = β2 − β1, θ2 = α1 − α2 and the basis
function is g(x) = (1, x, log x)⊤.

C MATHEMATICAL DETAILS BEHIND FEDDRM

C.1 DERIVATION OF (4)

Proof. By the total law of probability, the marginal density of x is

pl(x) =
∑
k

πlkdFl(x|y = k)

=
∑
k

πlk exp{α†
lk + β⊤

k gθ(x)}dFl(x|y = 1)

=
∑
k

πlk exp{α†
lk + β⊤

k gθ(x)} exp{γl + ξ⊤l hη(gθ(x))}dF0(x|y = 1)

=
∑
k

πl1 exp{αk + β⊤
k gθ(x)} exp{γl + ξ⊤l hη(gθ(x))}dF0(x|y = 1)

=
∑
k

πl1

π01
π0k exp{α†

0k + β⊤
k gθ(x)} exp{γl + ξ⊤l hη(gθ(x))}dF0(x|y = 1)

=
πl1

π01
exp{γl + ξ⊤l hη(gθ(x))}p0(x)

Let γ†
l = γl + log(πl1/π01) and divide p0(x) on both sides completes the proof.

C.2 DERIVATION OF THE PROFILE LOG-LIKELIHOOD

Let p = {pij , j ∈ [ni]}mi=1. Given ζ = (α,β,γ, ξ, θ, η), the empirical log-likelihood function as a
function of p becomes

ℓN (p) =

m∑
i=1

ni∑
j=1

log pij + constant

where the constant depends only on ζ and does not depend on p. We now maximize the empirical
log-likelihood function with respect to p under the constraint (5) using the Lagrange multiplier
method.

Let

L =
∑
i,j

log pij −Nµ
∑
i,j

pij −N

m∑
l=1

ρl
∑
i,j

pij [exp{γ†
l + ξ⊤l hη(gθ(xij))} − 1]

Setting

0 =
∂L
∂pij

=
1

pij
−Nµ−N

m∑
l=1

ρl[exp{γ†
l + ξ⊤l hη(gθ(xij))} − 1].
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Then multiply both sides by pij and sum over i and j, we have that

0 =
∑
i,j

pij
∂L
∂pij

=
∑
i,j

{
1−Nµpij −

m∑
l=1

ρlpij [exp{γ†
l + ξ⊤l hη(gθ(xij))} − 1]

}
= N −Nµ

this gives µ = 1. Hence, we get

pij =
1

N
{
1 +

∑
l ρl[exp{γ

†
l + ξ⊤l hη(gθ(xij))} − 1]

}
where ρls are solutions to

∑
i,j

exp{γ†
l + ξ⊤l hη(gθ(xij))} − 1

1 +
∑

l′ ρl′ [exp{γ
†
l′ + ξ⊤l′ hη(gθ(xij))} − 1]

= 0

by plugin the expression for pij into the second constraints (5).

C.3 DERIVATION OF THE VALUE OF LAGRANGE MULTIPLIER AT OPTIMAL

Recall that the profile log-EL has the following form

pℓN (ζ) =
∑
i,j,k

1(yij = k) logP(yij = k|xij) +
∑
i,j

{γ†
i + ξ⊤i hη(gθ(xij)) + log pij(ζ)}

=
∑
i,j,k

1(yij = k) logP(yij = k|xij) +
∑
i,j

{
γ†
i + ξ⊤i hη(gθ(xij))

}

−
∑
i,j

log

{
1 +

m∑
l=1

ρl

[
exp{γ†

l + ξ⊤l hη(gθ(xij))} − 1
]}

where ρls are solutions to

∑
i,j

exp{γ†
l + ξ⊤l hη(gθ(xij))} − 1

1 +
∑

l′ ρl′ [exp{γ
†
l′ + ξ⊤l′ hη(gθ(xij))} − 1]

= 0.

Taking the partial derivative with respect to γ†
l , we have

0 =
∂pℓN

∂γ†
l

= nl −
∑
i,j

ρl exp{γ†
l + ξ⊤l h(xij)}

1 +
∑

l′ ρl′ [exp{γ
†
l′ + ξ⊤l′ hη(gθ(xij))} − 1]

+
∑
i,j

∑
l′(∂ρl′/∂γ

†
l )

[
exp(γ†

l′ + ξ⊤l′ hη(gθ(xij)))− 1
]

1 +
∑

l′ ρl′ [exp{γ
†
l′ + ξ⊤l′ hη(gθ(xij))} − 1]

= nl −Nρl
∑
i,j

pij exp{γ†
l + ξ⊤l h(xij)}+N

∑
l′

∂ρl′

∂γ†
l

∑
i,j

pij [exp{γ†
l + ξ⊤l h(xij)} − 1]

= nl −Nρl.

The last inequality is based on the constraint in (5). Hence, we have ρl = nl/N which completes
the proof.
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C.4 DUAL FORM OF THE PROFILE LOG EL

At the optimal value, we have ρl = nl/N with N =
∑m

l=1 nl. Plugin this value into the profile
log-EL, we then get

pℓN (ζ) =
∑
i,j

log

{
exp(αyij

+ β⊤
yij

gθ(xij))∑
j exp(αj + β⊤

j gθ(xij))

}
+

∑
i,j

log

{
exp{γ†

i + ξ⊤i hη(gθ(xij))}∑m
l=1

nl

N exp{γ†
l + ξ⊤l hη(gθ(xij))}

}

=
∑
i,j

log

{
exp(αyij + β⊤

yij
gθ(xij))∑

j exp(αj + β⊤
j gθ(xij))

}
+

∑
i,j

log

{
(n1/ni) exp{γ‡

i + ξ⊤i hη(gθ(xij))}∑m
l=1(

n1

N ) exp{γ‡
l + ξ⊤l hη(gθ(xij))}

}

=
∑
i,j

log

{
exp(αyij

+ β⊤
yij

gθ(xij))∑
j exp(αj + β⊤

j gθ(xij))

}
+

∑
i,j

log

{
(exp{γ‡

i + ξ⊤i hη(gθ(xij))}∑m
l=1 exp{γ

‡
l + ξ⊤l hη(gθ(xij))}

}

−
∑
i,j

log
(ni

N

)
.

The last term is an additive constant; the maximization does not depend on its value, which com-
pletes the proof.

D GENERALIZATION TO OTHER TYPES OF DATA HETEROGENEITY

In this section, we detail how our method generalizes to the setting where both Y |X and X differ
across clients. Recall that the log empirical likelihood function is

ℓN (p, ζ) =

m∑
i=1

ni∑
j=1

logP
(i)
X,Y ({Xij , Yij})

=
∑
i,j,k

1(Yij = k) logP(i)(Y = k|Xij) +
∑
i,j

logP
(i)
X ({Xij})

We assume that each client has its own linear head for the conditional distribution:

P(i)(Y = k|X = x) =
exp(αik + β⊤

ikgθ(x))∑
j exp(αikj + β⊤

ijgθ(x))
,

The marginal distributions P (i)
X are linked as in Theorem 2.1:

dP
(i)
X

dP
(0)
X

(x) = exp{γ†
i + ξ⊤i hτ (gθ(x))}

where P
(0)
X is an unspecified reference measure. Using a non-parametric reference distribution, we

set
pij = P

(0)
X ({Xij}) ≥ 0, ∀i ∈ [m], j ∈ [ni],

subject to the constraints
m∑
i=1

ni∑
j=1

pij = 1,

m∑
i=1

ni∑
j=1

pij exp
{
γ†
l + ξ⊤l hτ (gθ(Xij))

}
= 1, ∀ l ∈ [m].

Then, the log empirical likelihood across clients is

ℓN (p, ζ) =
∑
i,j,k

1(Yij = k) logP(i)(Y = k|Xij) +
∑
i,j

{γ†
i + ξ⊤i hτ (gθ(Xij)) + log pij}.

The profile log-EL of ζ is defined as

pℓN (ζ) = sup
p

ℓN (p, ζ)
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where the supremum is taken under the constraints above. Applying the method of Lagrange multi-
pliers, we obtain the analytical form

pℓN (ζ) =
∑
i,j,k

1(Yij = k) logP(i)(Yij = k|Xij) +
∑
i,j

{γ†
i + ξ⊤i hτ (gθ(xij)) + log pij(ζ)}

where

pij(ζ) = N−1
{
1 +

m∑
l=1

ρl

[
exp{γ†

l + ξ⊤l hτ (gθ(xij))} − 1
]}−1

and the Lagrange multipliers {ρl}ml=1 solves∑
i,j

exp{γ†
l + ξ⊤l hτ (gθ(xij))} − 1∑

l′ ρl′
[
exp(γ†

l′ + ξ⊤l′ hτ (gθ(xij)))− 1
] = 0.

Using the dual argument from Appendix C.3, the profile log-EL can be rewritten as

pℓN (ζ) =
∑
i,j

log

{
exp(αi,yij + β⊤

i,yij
gθ(xij))∑

j exp(αij + β⊤
ijgθ(xij))

}
+

∑
i,j

log

{
exp{γ†

i + ξ⊤i hη(gθ(xij))}∑m
l=1

nl

N exp{γ†
l + ξ⊤l hη(gθ(xij))}

}

=
∑
i,j

log

{
exp(αi,yij

+ β⊤
i,yij

gθ(xij))∑
j exp(αij + β⊤

ijgθ(xij))

}
+

∑
i,j

log

{
(n1/ni) exp{γ‡

i + ξ⊤i hη(gθ(xij))}∑m
l=1(

n1

N ) exp{γ‡
l + ξ⊤l hη(gθ(xij))}

}

=
∑
i,j

log

{
exp(αi,yij + β⊤

i,yij
gθ(xij))∑

j exp(αij + β⊤
ijgθ(xij))

}
+

∑
i,j

log

{
(exp{γ‡

i + ξ⊤i hη(gθ(xij))}∑m
l=1 exp{γ

‡
l + ξ⊤l hη(gθ(xij))}

}

−
∑
i,j

log
(ni

N

)
.

As a result, the loss function remains additive in two cross-entropy terms corresponding to different
tasks. The key difference from the covariate shift case is that, for the client-classification task, each
client now has its own linear head.

E SYSTEM ACCURACY & CONVERGENCE RATE TRADE-OFF

We show the proof of Theorem 2.5 in this section. To simplify the notation, we consider the follow-
ing loss: To assure strong convexity, we minimize the following objective function:

ℓρi (ζ) =
ρ

2
∥γ∥22 −

1− λ

ni

ni∑
j=1

log
exp(γ⊤

i zij)∑m
q=1 exp(γ

⊤
q zij)︸ ︷︷ ︸

=:ℓρ,clienti (γ)

+
ρ

2
∥β∥22 −

λ

ni

ni∑
j=1

log
exp(β⊤

yij
xij)∑K

k=1 exp(β
⊤
k xij)︸ ︷︷ ︸

=:ℓρ,classi (β)

,

Then, where ζ = (γ, β) stacks the parameters for client-classification γ and task-classification β.
the global objective is ℓρ(ζ) = m−1

∑m
i=1 ℓ

ρ
i (ζ).

Problem setting: Assume the data is generated according to the true multinomial logistic model
with parameters ζ true = (γtrue, βtrue). i.e.,

Pr(Yclient = q|z) =
exp(γ∗⊤

q z)∑m
r=1 exp(γ

∗⊤
r z)

, Pr(Yclass = k|x) = exp(β∗⊤
k x)∑K

r=1 exp(β
∗⊤
r x)

.

Let ζ̂N denote the minimizer of ℓρ(ζ) with N =
∑m

i=1 ni as the total number of samples.

Total error. Let ζT be the output of the algorithm after T steps. We decompose the error using the
triangle inequality as follows:

∥ζT − ζ true∥2 ≤ ∥ζT − ζ̂N∥2︸ ︷︷ ︸
optimization error

+ ∥ζ̂N − ζ true∥2︸ ︷︷ ︸
statistical error

. (8)

We know bound these two terms respectively.
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Lemma E.1 (Asymptotic normality). As N → ∞, the estimator ζ̂N satisfies
√
N (ζ̂N − ζ true)

d−→ N
(
0, I(ζ true)−1

)
,

where the Fisher information is block diagonal:

I(ζ true) =

[
(1− λ) Iγ + ρI 0

0 λ Iβ + ρI

]
,

with

Iγ = E
{(

diag(pγ(z))− pγ(z)pγ(z)
⊤)⊗ (zz⊤)

}
, Iβ = E

{(
diag(pβ(x))− pβ(x)pβ(x)

⊤)⊗ (xx⊤)
}
,

where pβ(x) = (exp(β⊤
1 x)/

∑
j exp(β

⊤
j x), . . . , exp(β⊤

dim(β)x)/
∑

j exp(β
⊤
j x))⊤, and I is the

identity matrix.

Proof. This result follows from the well-established asymptotic properties of maximum likelihood
estimators (Van der Vaart, 2000, Section 5.5).

Statistical error. By Lemma E.1, we have

N∥γ̂N −γtrue∥2 = Op

( d

(1− λ)∥Iγ∥min + ρ

)
, N∥β̂N −βtrue∥2 = Op

( p

λ∥Iβ∥min + ρ

)
, (9)

where ∥A∥min = λmin(A) is the operator norm, d and p are dimensions of z and x respectively.

Optimization error. For communication round t = 0, 1, 2, . . . , T − 1, the server holds ζt and each
client i sets ζti,0 = ζt and performs E local gradient steps:

ζti,r+1 = ζti,r − η∇ℓρi (ζ
t
i,r), r = 0, . . . , E − 1.

After E steps each client returns ζti,E and the server aggregates ζt+1 = m−1
∑m

i=1 ζ
t
i,E .

Define G2(ζ) = m−1
∑m

i=1 ∥∇ℓρi (ζ) − ∇ℓρ(ζ)∥22. It can be decomposed nicely as G2(ζ) = (1 −
λ)2G2

client(γ) + λ2G2
class(β). Let Ḡ2, Ḡ2

client, and Ḡ2
class denote the corresponding maximum values

across updating rounds t = 0, 2, . . . , T − 1. Then, Ḡ2 ≤ (1− λ)2Ḡ2
client + λ2Ḡ2

class.

In the convergence proof below, we omit the subscript ρ since it does not influence the convergence
rate. Because ℓ is µ-strongly convex and L-smooth, a single full-gradient step satisfies

∥x− η∇ℓ(x)− ζ̂N∥22 =∥x− ζ̂N∥22 − 2η⟨∇ℓ(x), x− ζ̂N ⟩+ η2∥∇ℓ(x)∥22
≤∥x− ζ̂N∥22 − 2ηµ∥x− ζ̂N∥22 + η2L2∥x− ζ̂N∥22
≤(1− ηµ)∥x− ζ̂N∥22.

For client i at local step r:

∥ζti,r+1 − ζ̂N∥22 =∥(ζti,r − η∇ℓ(ζti,r)− ζ̂N ) + η(∇ℓ(ζti,r)−∇ℓi(ζ
t
i,r))∥2

≤(1− ηµ)∥ζti,r − ζ̂N∥22 + η2∥∇ℓ(ζti,r)−∇ℓi(ζ
t
i,r)∥2

Iterating over E local steps gives

∥ζti,E − ζ̂N∥22 ≤ (1− ηµ)E∥ζt − ζ̂N∥22 + η2
E−1∑
r=0

(1− ηµ)E−1−r∥∇ℓi(ζ
t
i,r)−∇ℓ(ζti,r)∥22.

Averaging over i = 1, . . . ,m and using convexity of squared norm:

∥ζt+1 − ζ̂N∥22 ≤ (1− ηµ)E∥ζt − ζ̂N∥22 + η2
E−1∑
r=0

1

m

m∑
i=1

∥∇ℓi(ζ
t
i,r)−∇ℓ(ζti,r)∥22.
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Using L-smoothness and ηLE ≤ 1/4, one can show (via induction on r and triangle inequalities)

1

m

m∑
i=1

∥∇ℓi(ζ
t
i,r)−∇ℓ(ζti,r)∥22 ≤ Ḡ2,

where Ḡ2 is the heterogeneity measure. Summing over r = 0, . . . , E − 1 gives

η2
E−1∑
r=0

1

m

m∑
i=1

∥∇ℓi(ζ
t
i,r)−∇ℓ(ζti,r)∥22 ≤ η2E2Ḡ2.

Combine the above:

∥ζt+1 − ζ̂N∥22 ≤ (1− ηµ)E∥ζt − ζ̂N∥22 + η2E2Ḡ2.

Let st := ∥ζt − ζ̂N∥22 and α := (1− ηµ)E , B := η2E2Ḡ2. Then

st+1 ≤ αst +B ⇒ sT ≤ αT s0 +B
T−1∑
j=0

αj = αT s0 +
B(1− αT )

1− α
≤ αT s0 +

B

1− α
.

This yields the desired bound

∥ζT − ζ̂N∥22 ≤ (1− ηµ)ET ∥ζ0 − ζ̂N∥22 +
η2E2Ḡ2

1− (1− ηµ)E
. (10)

Since 1 − (1 − ηµ)E ≥ 1 − e−ηµE ≥ 1
2 min{1, ηµE}, the steady-state error is of order

O(η2E2Ḡ2/(ηµE)) = O(ηEḠ2/µ), i.e., FedAvg converges linearly to a neighborhood of radius
proportional to

√
ηEḠ2/µ.

Combining (9) and (10) with (8) gives the final result that

∥ζT − ζ true∥2 = Op

(
{(1− λ)∥Iγ∥min + ρ}−1 + {λ∥Iβ∥min + ρ}−1

N
+

η2E2Ḡ2

1− (1− ηµ)E

)
,

as both T,N → ∞, This along with Ḡ2 ≤ (1 − λ)2Ḡ2
client + λ2Ḡ2

class completes the proof of the
theorem.

F EXPERIMENT DETAILS

F.1 VISUALIZATION OF COVARIATE SHIFT AND LABEL SHIFT

In the main experiment, we simulate covariate shift by applying three distinct nonlinear transfor-
mations to each client’s dataset. Specifically, we use gamma correction with γ ∈ {0.6, 1.4}, hue
adjustment with ∆h ∈ {−0.1, 0.1}, and saturation scaling with κ ∈ {0.5, 1.5}. This creates 23 = 8
unique combinations of transformations, corresponding to an 8-client setting where each client pos-
sesses a visually distinct data distribution. A visualization of a single image sampled from CIFAR-
10 after applying these transformations is shown in Fig. 8. As can be clearly seen, the resulting
differences in feature distributions across clients are visually striking, highlighting the significant
covariate shift simulated in our experiments. We visualize the two types of label shift used in the
main experiment in Fig. 9. The figures show the number of samples from each class across 8 clients.
As observed, the 5-SPC setting assigns at most 5 classes to each client, whereas the Dir-0.3 setting
distributes more classes per client. Thus, the label shift under Dir-0.3 is less severe than under 5-
SPC. Our experimental results confirm this observation: all methods achieve higher performance
under the less severe Dir-0.3 case.

F.2 SENSITIVITY ANALYSIS DETAILS

For all subsequent sensitivity analyses, unless otherwise specified, we use CIFAR-10 under the Dir-
0.3 setting. The details of each experiment are provided below.
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Covariate Shift - Main Experiment

Figure 8: Visualization of a sample from CIFAR-10 under various nonlinear transformations.
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Figure 9: Visualization of client data distribution on CIFAR-10 under Dir-0.3 and 5-SPC settings.

F.2.1 NUMBER OF CLIENTS

To investigate the impact of the number of clients, we adopt a more fine-grained strategy for simulat-
ing covariate shift. We expand the parameter space for each nonlinear transformation to three distinct
values: gamma correction with γ ∈ {0.6, 1.0, 1.4}, hue adjustment with ∆h ∈ {−0.15, 0.0, 0.15},
and saturation scaling with κ ∈ {0.4, 1.0, 1.6}. Furthermore, we introduce an additional binary
transformation, posterization, which reduces the number of bits for each color channel to create a
flattening effect on the image’s color palette. A visualization of these transformations is presented
in Fig. 10. In the n-client setting, we apply the first n transformations from this pool.

In our experiments, we set the maximum number of clients to 32. This is due to two primary
challenges. First, as the number of clients increases, the amount of data partitioned to each client
diminishes significantly. This data scarcity creates a scenario where fine-tuning-based methods gain
an inherent advantage, as each client’s local train and test distributions are identical. Second, it is
hard to design a simulation strategy for covariate shift that is both sufficiently distinct and aligned
with the model’s inductive bias when the number of clients becomes very large.

F.2.2 COVARIATE SHIFT INTENSITY

To evaluate the robustness of our method under varying degrees of covariate shift, we construct
three intensity levels—low, mid, and high—by adjusting the parameter ranges of the nonlin-
ear transformations. The specific value ranges for each level are detailed as follows: (1) Low:
γ ∈ {0.9, 1.1},∆h ∈ {−0.01, 0.01}, κ ∈ {0.9, 1.1}. (2) Mid: γ ∈ {0.75, 1.25},∆h ∈
{−0.05, 0.05}, κ ∈ {0.7, 1.3}. (3) High: γ ∈ {0.6, 1.4},∆h ∈ {−0.1, 0.1}, κ ∈ {0.5, 1.5}.
Visualizations corresponding to these levels are presented in Fig. 11, Fig. 12, and Fig. 8. It can be
seen that the induced covariate shift is nearly imperceptible at the low level and escalates to a stark
distinction at the high level, clearly illustrating the progressive intensity of the shift.
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Covariate Shift - Sensitivity to Number of Clients

Figure 10: Visualization of a CIFAR-10 sample under covariate shift with a larger number of clients.
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Covariate Shift - Low Level

Figure 11: Visualization of a sample from CIFAR-10 under low covariate shift intensity.

F.2.3 BACKBONE SHARING STRATEGY

In our formulation, the target-class classification task uses the embedding gθ(x) for an input feature
x, while the client-classification task uses the embedding hτ (gθ(x)) for the same feature. Since both
gθ and hτ are parameterized functions, the optimal sharing strategy between the two is not obvious.
To explore this, we investigate four backbone-sharing strategies based on LeNet: no sharing, shallow
sharing, mid sharing, and deep sharing. The network architectures are illustrated in Fig. 13. From
(a) to (c), the discrepancy between the embeddings for the two tasks decreases, while the number of
learnable parameters also reduces. Our empirical results in Fig. 6 show that all strategies perform
similarly, with shallow sharing slightly ahead. However, given the substantial increase in parameters
for shallow sharing, deep sharing offers a more parameter-efficient alternative while maintaining
strong performance.
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Covariate Shift - Mid Level

Figure 12: Visualization of a sample from CIFAR-10 under mid covariate shift intensity.

(a) No Sharing (b) Shallow Sharing

(c) Mid Sharing (d) Deep Sharing

Figure 13: Visualization of the four different parameter sharing strategies.
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Figure 14: Visualization of client data distribution under Dir-0.3/1.3/2.3 settings.

Table 4: System accuracy and average accuracy under different Dirichlet parameter α values.

Method System Accuracy Average Accuracy

α = 0.3 α = 1.3 α = 2.3 α = 0.3 α = 1.3 α = 2.3

Ditto 47.64± 0.25 43.78± 0.23 44.04± 0.20 76.34± 0.11 55.56± 0.18 52.76± 0.18
FedRep 24.96± 0.19 35.45± 0.22 37.87± 0.22 76.49± 0.15 55.09± 0.17 52.95± 0.16
FedBABU 57.43± 0.17 54.60± 0.19 54.25± 0.20 78.22± 0.14 61.61± 0.16 59.83± 0.20
FedPAC 25.14± 0.21 35.53± 0.21 37.84± 0.20 76.53± 0.13 55.08± 0.15 52.95± 0.16
FedALA 61.33± 0.17 48.47± 0.18 46.68± 0.20 64.35± 2.40 49.14± 0.62 47.29± 0.50
FedAS 28.76± 0.19 41.43± 0.20 46.08± 0.22 78.69± 0.17 59.83± 0.19 58.17± 0.18
ConFREE 25.66± 0.22 36.12± 0.21 38.78± 0.23 76.73± 0.16 55.56± 0.18 53.58± 0.15
FedAvgFT 54.90± 0.22 54.80± 0.18 55.61± 0.19 79.08± 0.11 62.87± 0.16 61.94± 0.17
FedProxFT 55.01± 0.20 54.84± 0.15 55.62± 0.18 79.07± 0.12 62.84± 0.15 61.86± 0.19
FedSAMFT 55.83± 0.21 49.15± 0.17 47.71± 0.16 75.53± 0.11 55.46± 0.19 53.54± 0.15

FedDRM 63.85± 0.18 56.83± 0.18 56.00± 0.23 80.25± 0.14 64.04± 0.16 62.30± 0.15
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F.2.4 LABEL SHIFT INTENSITY

To evaluate the robustness of our method under varying degrees of label shift, we compare our
method with the baselines across a range of Dirichlet parameters α ∈ {0.3, 1.3, 2.3}. Visualiza-
tions corresponding to these settings are presented in Fig. 14. The corresponding results for system
accuracy and average accuracy are presented in Tab. 4.

Consistent with prior work (Xu et al., 2023), we can see that smaller α values—corresponding
to higher data heterogeneity—lead to higher average accuracy for all methods. This occurs because
each client’s training and testing data are drawn from the same distribution. As α decreases, the local
label distributions become increasingly skewed, with some classes receiving negligible probability
mass. This effectively reduces the number of classes present on each client, thereby simplifying
the local classification problem relative to the balanced case. For system accuracy, we find that this
trend persists for our method, as the only additional component is the client-routing step, which does
not alter the underlying behavior of local classification. In contrast, methods such as FedRep exhibit
increasing system accuracy as α grows (i.e., as the label distributions become more homogeneous).
When α is small, the local models become highly personalized and fail to reach a consistent consen-
sus across clients, causing majority voting to misroute queries and thus lowering system accuracy.
As α increases, this inconsistency diminishes, and the aggregated routing accuracy improves. These
results further confirm that our method remains robust across varying degrees of label shift.
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