

000 BEYOND AGGREGATION: GUIDING CLIENTS IN HET- 001 002 EROGENEOUS FEDERATED LEARNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Federated learning (FL) is increasingly adopted in domains like healthcare, where
012 data privacy is paramount. A fundamental challenge in these systems is statisti-
013 cal heterogeneity—the fact that data distributions vary significantly across clients
014 (e.g., different hospitals may treat distinct patient demographics). While cur-
015 rent FL algorithms focus on aggregating model updates from these heterogeneous
016 clients, the potential of the central server remains under-explored. This paper is
017 motivated by a healthcare scenario: could a central server not only coordinate
018 model training but also guide a new patient to the hospital best equipped for their
019 specific condition? We generalize this idea to propose a novel paradigm for FL
020 systems where the server actively guides the allocation of new tasks or queries to
021 the most appropriate client. To enable this, we introduce a density ratio model and
022 empirical likelihood-based framework that simultaneously addresses two goals:
023 (1) learning effective local models on each client, and (2) finding the best match-
024 ing client for a new query. Empirical results demonstrate the framework’s effec-
025 tiveness on benchmark datasets, showing improvements in both model accuracy
026 and the precision of client guidance compared to standard FL approaches. This
027 work opens a new direction for building more intelligent and resource-efficient FL
028 systems that leverage heterogeneity as a feature, not just a bug.

029 1 INTRODUCTION 030

031 Federated learning (FL) has emerged as a powerful paradigm for training machine learning models
032 across distributed data sources without sharing raw data. By enabling clients such as hospitals,
033 financial institutions, or mobile devices to collaboratively train models under the coordination of a
034 central server, FL offers a practical solution for privacy-preserving learning in sensitive domains (Li
035 et al., 2020a; Long et al., 2020; Xu et al., 2021).

036 A key challenge in applying FL in practice is statistical heterogeneity: clients often hold data drawn from different, non-
037 identically distributed populations. In healthcare, hospitals
038 may serve distinct patient demographics; in finance, banks
039 may encounter different fraud patterns; and on mobile devices,
040 user behavior varies widely. Such heterogeneity can cause local
041 models to drift apart, leading to slower convergence (Li
042 et al., 2020b), biased updates (Karimireddy et al., 2020), and
043 global models that underperform when applied back to individual
044 clients (T Dinh et al., 2020). To address these issues, most
045 existing FL systems treat heterogeneity as a problem to be sup-
046 pressed—through aggregation corrections, client reweighting,
047 or personalization techniques. In this prevailing paradigm, the
048 central server plays a largely passive role, acting only as a
049 coordinator that aggregates local updates into a single global
050 model. We contend, however, that this limited role overlooks
051 a key opportunity: rather than merely mitigating heterogeneity, the server can actively exploit it.

052 Consider a healthcare scenario: different hospitals may excel at treating different patient groups
053 depending on their location and/or expertise. When a new patient arrives, instead of merely de-

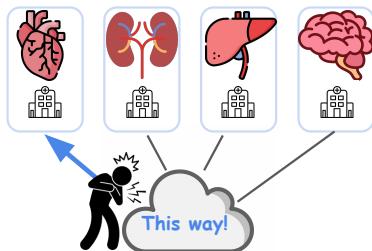


Figure 1: **FL server as an intelligent router:** Leveraging learned data distributions to direct queries to the most specialized client, rather than applying a global model for diagnosis.

054 ploying a global model for diagnosis, the server could help identify the hospital best equipped to
 055 provide care, leveraging local data distributions to capture specialized expertise. A cartoon illus-
 056 tration of this scenario is given in Fig. 1. Similar opportunities exist in other domains: in finance, the
 057 server could direct a fraud detection query to the bank whose historical data best matches the trans-
 058 action profile; in personalized services, it could route a query to the client with the most relevant
 059 user base. These examples illustrate that statistical heterogeneity across clients—often seen as an
 060 obstacle—can instead become a valuable resource. They motivate the central insight of our work:
 061

062 *Beyond coordinating training, the server can actively exploit client*
 063 *heterogeneity—transforming it from a challenge into a resource by guiding new queries to*
 064 *the most suitable client.*

066 Much of the existing work in FL has focused on mitigating the challenges of statistical heterogeneity,
 067 without using the server for guiding new queries. One major line of research develops aggregation
 068 algorithms to reduce the bias induced by non-identically distributed data. Examples include methods
 069 that modify local updates before aggregation (Gao et al., 2022; Guo et al., 2023; Zhang et al., 2023),
 070 reweight client contributions (Wang et al., 2020; Yin et al., 2024), or introduce regularization terms
 071 to align local objectives with the global one (Li et al., 2020b; Acar et al., 2021; Li et al., 2021b).
 072 These approaches aim to learn a single global model that performs reasonably well across all clients,
 073 but they do not leverage heterogeneity as an asset. A second line of work explores personalization in
 074 FL. Rather than enforcing a universal global model, personalization methods adapt models to each
 075 client’s local distribution (Li et al., 2021d), often through fine-tuning (T Dinh et al., 2020; Collins
 076 et al., 2021; Tan et al., 2022; Ma et al., 2022), multi-task learning (Smith et al., 2017; Li et al.,
 077 2021c), or meta-learning (Fallah et al., 2020). While these approaches improve local performance,
 078 they are typically not designed to address the challenge of guiding new queries or tasks to the most
 079 appropriate client. Another related direction is client clustering (Ghosh et al., 2020; Li et al., 2021a;
 080 Briggs et al., 2020; Kim et al., 2021; Long et al., 2023), where clients with similar data distri-
 081 butions are grouped and trained jointly within each cluster. This can improve performance under
 082 heterogeneity, but still assumes the server’s role is limited to coordinating training and distributing
 083 models, rather than supporting query routing or task allocation. *Overall, while these approaches are*
 084 *effective for their intended goals, they stop short of enabling the server to actively guide new queries*
 to the most suitable client.

085 Motivated by this gap, we introduce a new paradigm in which the FL server not only coordinates
 086 training but also learns to guide each incoming query to the client best suited to handle it. Achieving
 087 this goal requires two capabilities: (i) effective information sharing across clients despite hetero-
 088 geneity, and (ii) a principled way to quantify how each client’s data distribution differs from the
 089 others so that queries can be meaningfully matched. To achieve this, we develop **FedDRM**, a uni-
 090 fied framework grounded in density ratio model (DRM) (Anderson, 1979) and empirical likelihood
 091 (EL) (Owen, 2001). DRM represents each client’s distribution as a *multiplicative density tilt of a*
 092 *baseline distribution*, while EL facilitates nonparametric model learning, enabling the estimation of
 093 this baseline distribution in a data-driven manner without parametric assumptions. After profiling
 094 out the baseline distribution, the resulting objective decomposes into two interpretable cross-entropy
 095 components: one for predicting class labels and another for identifying a sample’s client of origin.
 096 The first supports standard FL training; the second supplies precisely the signal needed for query-
 097 to-client routing, enabling the server to exploit—rather than suppress—statistical heterogeneity.

098 This formulation leads to three key contributions. *First*, we propose the first statistically grounded
 099 FL framework that jointly learns heterogeneous predictive models and the distributional structure
 100 required for query routing within a single principled objective. *Second*, we develop a new algo-
 101 rithmic correction for the classification component of the EL objective. Because each client is
 102 associated with only a single class label for client identification, the vanilla loss suffers from an
 103 extreme form of label shift; we propose a simple yet effective reweighting adjustment that yields a
 104 more stable classifier. *Third*, through experiments on benchmark datasets, we demonstrate that our
 105 approach consistently improves both predictive accuracy and routing precision compared to stan-
 106 dard FL methods, underscoring the benefits of integrating guidance directly into the FL workflow.
 107 Together, these developments transform the FL server from a passive aggregator into an intelligent
 router capable of directing queries to the most suitable client, opening the door to FL systems that
 are not only privacy-preserving but also adaptive and expertise-aware.

108 2 FEDDRM: GUIDING CLIENTS IN HETEROGENEOUS FL

110 2.1 PROBABILISTIC DESCRIPTION OF DATA HETEROGENEITY

112 Consider an FL system with m clients. Let $\mathcal{D}_i := \{(X_{ij}, Y_{ij})\}_{j=1}^{n_i}$ denote the training set on the
 113 i -th client, where each sample is drawn independently from $P_{X,Y}^{(i)}$. We consider the multi-class
 114 classification case where $Y_{ij} \in [K] := \{1, \dots, K\}$ with marginal distribution $\mathbb{P}(Y_{ij} = k) = \pi_{ik}$ for
 115 $k \in [K]$, and features conditioned on the labels are distributed as $X_{ij}|(Y_{ij} = k) \sim P_k^{(i)}$. We denote
 116 the marginal distribution of the features on client i as $P_X^{(i)}$, and the conditional distribution of Y
 117 given $X = x$ as $\{\mathbb{P}^{(i)}(Y = k|X = x)\}_{k=1}^K$. Different types of data heterogeneity can be described
 118 in terms of the family of distributions $\{P_{X,Y}^{(i)}\}_{i=1}^m$:

- 121 • **Covariate shift:** Clients differ in their marginal feature distributions while sharing the same con-
 122 ditional label distribution. In our notation, this corresponds to

$$123 P_X^{(i)} \neq P_X^{(i')} \text{ for } i \neq i', \text{ but } \mathbb{P}^{(i)}(Y = k|X = x) = \mathbb{P}^{(i')}(Y = k|X = x) \text{ for all } x \text{ and } k.$$

- 125 • **Label shift:** Clients have different label marginals but share the same conditional feature distri-
 126 butions given the label. Equivalently,

$$127 \pi_i := (\pi_{i1}, \dots, \pi_{iK}) \neq \pi_{i'} := (\pi_{i'1}, \dots, \pi_{i'K}) \text{ for some } i \neq i', \text{ but } P_k^{(i)} = P_k^{(i')} \text{ for all } k.$$

129 In practice, real-world federated systems often exhibit combinations of these shifts, which leads to
 130 the **full distributional shift** where both π_i and $\{P_k^{(i)}\}_{k=1}^K$ may vary across clients.

132 2.2 A SEMIPARAMETRIC DENSITY RATIO MODEL

134 For clarity, we begin with the special case of *covariate shift* across clients. Extensions to other
 135 types of heterogeneity will then follow naturally. Let $g_\theta(x)$ represent a feature embedding (e.g., an
 136 embedding from a DNN parameterized by θ) s.t. the conditional distribution of $Y|X$ is given by:

$$138 \mathbb{P}(Y = k|X = x) = \frac{\exp(\alpha_k + \beta_k^\top g_\theta(x))}{\sum_j \exp(\alpha_j + \beta_j^\top g_\theta(x))}. \quad (1)$$

140 We drop the superscript (i) since this conditional distribution remains the same across all clients
 141 under covariate shift. Applying Bayes' rule to (1), we derive that the class-conditional distributions
 142 are connected by an exponential function:

$$144 dP_k^{(i)}/dP_1^{(i)}(x) = \exp(\alpha_{ik}^\dagger + \beta_k^\top g_\theta(x)) \quad (2)$$

146 where $dP_k^{(i)}/dP_1^{(i)}$ denotes the Radon–Nikodym derivative of $dP_k^{(i)}$ with respect to $dP_1^{(i)}$ and $\alpha_{ik}^\dagger =$
 147 $\alpha_k + \log(\pi_{i1}/\pi_{ik})$ for $i \in [m]$.

148 To facilitate knowledge transfer across clients in FL, we assume their datasets share some common
 149 underlying statistical structure. Specifically, we relate the client distributions $\{P_1^{(l)}\}_{l=1}^m$ through a
 150 hypothetical reference measure $P_1^{(0)}$ at the server, using DRM¹ (Anderson, 1979):

$$152 dP_k^{(i)}/dP_1^{(i)}(x) = \exp(\gamma_i + \xi_i^\top h_\tau(g_\theta(x))) \quad (3)$$

154 where $h_\tau(\cdot)$ is a parametric function with parameters τ . We refer to $P_1^{(0)}$ as a *hypothetical* reference
 155 since the server may not have data directly, although the formulation also applies when server-side
 156 data are available. The DRM captures differences in the conditional distributions of $X|Y = 1$
 157 across clients via density ratios, with log-ratios modeled linearly in the embeddings. This avoids
 158 estimating each distribution separately, focusing instead on relative differences. When the covariate
 159 shift is not too severe, the marginal distributions of different clients are connected through this

160 ¹DRM provides a framework for modeling the relationship between two or more populations that share
 161 similar characteristics. It is highly flexible and encompasses several commonly used parametric distribution
 162 families—such as the binomial, exponential, and normal families—as special cases (Kay & Little, 1987).

parametric form, making FL effective by leveraging shared structure across clients. On the other hand, if the distributions differ too drastically, combining data from different clients is unlikely to improve performance; in this case, even if the DRM assumption does not hold, it is not a limitation of the formulation but a consequence of the inherent nature of the problem. Thus, the assumption is reasonable in practice. When $\gamma_i = 0$ and $\xi_i = 0$, (3) reduces to the IID case. Under this assumption, we obtain the following relationship between the marginal feature distributions:

Theorem 2.1. *With (2) and (3), the marginal distributions of X also satisfy the DRM:*

$$dP_X^{(i)}/dP_X^{(0)}(x) = \exp\{\gamma_i^\dagger + \xi_i^\top h_\tau(g_\theta(x))\} \quad (4)$$

where $\gamma_i^\dagger = \gamma_i + \log(\pi_{i1}/\pi_{01})$ for all $i \in [m]$, and $P_X^{(0)}$ an unspecified reference measure.

See proof in App. C.1. This theorem relates each client's marginal distribution to the reference distribution through a parametric tilt, which directly facilitates construction of the likelihood. If the reference measure $P_X^{(0)}$ was fully specified, all $\{P_{X,Y}^{(i)}\}_{i=1}^m$ would also be fully determined, and one could estimate the unknown model parameters using a standard maximum likelihood approach. In practice, however, $P_X^{(0)}$ is unknown, and assuming it follows a parametric family risks model mis-specification and potentially biased inference.

To address this challenge, we adopt a flexible, nonparametric approach based on EL (Owen, 2001) that integrate data across heterogeneous populations via density ratio modeling (Qin & Zhang, 1997; Fokianos et al., 2001; Chen & Liu, 2013; Li et al., 2017; Liu et al., 2017; 2025). EL constructs likelihood functions directly from the observed data without requiring a parametric form. Instead of specifying a probability model, it assigns probabilities to the observed samples and maximizes the nonparametric likelihood subject to constraints, such as moment conditions. Unlike classical parametric likelihood, EL adapts flexibly to the data, making it particularly suitable when the underlying distribution is unknown or complex, but valid structural or moment conditions are available. Specifically, we let

$$p_{ij} = P_X^{(0)}(\{X_{ij}\}) \geq 0, \quad \forall i \in [m], j \in [n_i],$$

treating the p_{ij} as parameters. In this way, the reference measure $P_X^{(0)}$ is represented as an atomic measure without any parametric assumptions, and most importantly *all samples across clients are leveraged for information sharing*. To ensure that $P_X^{(0)}$ and $\{P_X^{(i)}\}_{i=1}^m$ are valid probability measures, the following constraints are imposed:

$$\sum_{i=1}^m \sum_{j=1}^{n_i} p_{ij} = 1, \quad \sum_{i=1}^m \sum_{j=1}^{n_i} p_{ij} \exp\{\gamma_l^\dagger + \xi_l^\top h_\tau(g_\theta(X_{ij}))\} = 1, \quad \forall l \in [m]. \quad (5)$$

2.3 A SURPRISINGLY SIMPLE DUAL LOSS

With the semiparametric DRM for heterogeneous FL, we propose a maximum likelihood approach for model learning. Let $\mathbf{p} = \{p_{ij}\}$, $\boldsymbol{\alpha} = \{\alpha_k\}$, $\boldsymbol{\beta} = \{\beta_k\}$, $\boldsymbol{\gamma}^\dagger = \{\gamma_i^\dagger\}$, $\boldsymbol{\xi} = \{\xi_i\}$, and $\boldsymbol{\zeta} = (\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\xi}, \theta, \tau)$, the log empirical likelihood of the model based on datasets across clients is

$$\begin{aligned} \ell_N(\mathbf{p}, \boldsymbol{\zeta}) &= \sum_{i,j} \log P_{X,Y}^{(i)}(\{X_{ij}, Y_{ij}\}) = \sum_{i,j,k} \mathbb{1}(Y_{ij} = k) \log \mathbb{P}(Y = k | X_{ij}) + \sum_{i,j} \log P_X^{(i)}(\{X_{ij}\}) \\ &= \sum_{i,j,k} \mathbb{1}(Y_{ij} = k) \log \mathbb{P}(Y = k | X_{ij}) + \sum_{i,j} \{\gamma_i^\dagger + \xi_i^\top h_\tau(g_\theta(X_{ij})) + \log p_{ij}\}, \end{aligned}$$

where the last equality makes use of Theorem 2.1. Since our goal is to learn (1) on each client, the weight \mathbf{p} becomes a nuisance parameter, which we profile out to learn the parameters that are connected to the conditional distribution of $Y|X = x$. The profile log-EL of $\boldsymbol{\zeta}$ is defined as $p\ell_N(\boldsymbol{\zeta}) = \sup_{\mathbf{p}} \ell_N(\mathbf{p}, \boldsymbol{\zeta})$ where the supremum is under constraints (5). By the method of Lagrange multiplier, we show in App. C.2 that an analytical form of the profile log-EL is

$$p\ell_N(\boldsymbol{\zeta}) = \sum_{i,j,k} \mathbb{1}(Y_{ij} = k) \log \mathbb{P}(Y_{ij} = k | X_{ij}) + \sum_{i,j} \{\gamma_i^\dagger + \xi_i^\top h_\tau(g_\theta(x_{ij})) + \log p_{ij}(\boldsymbol{\zeta})\} \quad (6)$$

216 where $p_{ij}(\zeta) = N^{-1} \left\{ 1 + \sum_{l=1}^m \rho_l \left[\exp\{\gamma_l^\top + \xi_l^\top h_\tau(g_\theta(x_{ij}))\} - 1 \right] \right\}^{-1}$ and the Lagrange multipliers
 217 $\{\rho_l\}_{l=1}^m$ are the solution to
 218

$$\sum_{i,j} \frac{\exp\{\gamma_i^\dagger + \xi_i^\top h_\tau(g_\theta(x_{ij}))\} - 1}{\sum_{l'} \rho_{l'} \left[\exp(\gamma_{l'}^\dagger + \xi_{l'}^\top h_\tau(g_\theta(x_{ij}))) - 1 \right]} = 0.$$

Although the profile log-EL in (6) has a closed analytical form, computing it typically requires solving a system of m equations for the Lagrange multipliers, which can be computationally demanding. Interestingly, at the optimal solution these multipliers admit a closed-form expression, yielding a surprisingly simple dual formulation of the profile log-EL presented below.

Theorem 2.2 (Dual form). *At optimality, the Lagrange multipliers $\rho_l = n_l/N$ and the profile log-EL in (6) becomes*

$$p\ell_N(\zeta) = \sum_{i,j} \log \left\{ \frac{\exp(\gamma_i^\dagger + \xi_i^\top h_\tau(g_\theta(x_{ij})))}{\sum_l \exp(\gamma_l^\dagger + \xi_l^\top h_\tau(g_\theta(x_{ij})))} \right\} + \sum_{i,j} \log \left\{ \frac{\exp(\alpha_{y_{ij}} + \beta_{y_{ij}}^\top g_\theta(x_{ij}))}{\sum_k \exp(\alpha_k + \beta_k^\top g_\theta(x_{ij}))} \right\}$$

up to some constant where $\gamma_i^\ddagger = \log(n_i/n_1) + \gamma_i^\dagger$.

See App. C.3 for proof. The theorem allows us to define the overall loss function as the negative profile log-EL:

$$\ell(\boldsymbol{\zeta}) = -p\ell_N(\boldsymbol{\zeta}) = \sum_{i,j} \ell_{\text{CE}}(i, h_{\tau}(g_{\theta}(x_{ij})); \boldsymbol{\gamma}, \boldsymbol{\xi}) + \sum_{i,j} \ell_{\text{CE}}(y_{ij}, g_{\theta}(x_{ij}); \boldsymbol{\alpha}, \boldsymbol{\beta}), \quad (7)$$

where $\ell_{\text{CE}}(y, x; \boldsymbol{\alpha}, \boldsymbol{\beta}) = -(\alpha_y + \beta_y^\top x) + \log\{\sum_k \exp(\alpha_k + \beta_k^\top x)\}$ is the cross-entropy loss.

Remark 2.3 (Beyond covariate shift). Our method is described under covariate shift. The derivations in key steps (2) and (3) do not require the marginal distribution of Y to be identical across clients, which allows us to also accommodate label shift. Importantly, we show that *our approach extends to the more general setting where both $Y|X$ and X differ across clients* in App. D. In this case, after a detailed derivation, we find that the overall loss simplifies to a minor adjustment in the target-class classification head. Concretely, the target-class classification loss is equipped with a client-specific linear head, resulting in the final architecture shown in Fig. 2. Interestingly, this architecture closely resembles those in personalized FL methods such as Collins et al. (2021): target-class classification is performed with client-specific heads, while our new client classification component relies on a single shared head across all clients.

Remark 2.4 (Guiding new queries). Although the derivation is mathematically involved, the resulting loss function is remarkably simple: it consists of two cross-entropy terms, each associated with a distinct classification task. The first term identifies the client from which a sample originates, while the second predicts its target class. The additional client-classification head thus yields, for any query, the probability of belonging to each client. By routing a query to the client with the highest predicted probability, we obtain a principled mechanism for assigning new data to the client best equipped to handle it.

2.4 OPTIMIZATION ALGORITHM

The overall loss $\ell(\zeta)$ in (7) is defined as if all datasets were pooled together. Since optimizing $\ell(\zeta)$ with vanilla SGD and weight decay is equivalent to minimizing a loss function with an explicit L_2 penalty, we denote the loss as $\ell^\rho(\zeta) = \ell(\zeta) + (\rho/2)\|\zeta\|_2^2$, with minimizer $\tilde{\zeta}_N$. The subscript N is used to indicate that this weight is based on N samples. In the FL setting, the global loss decomposes naturally into client-specific contributions: $\ell^\rho(\zeta) = \sum_{i=1}^m (n_i/N)\ell_i(\zeta)$ where

$$\ell_i(\boldsymbol{\zeta}) = \ell_i(\boldsymbol{\gamma}, \boldsymbol{\xi}) + \ell_i(\boldsymbol{\alpha}, \boldsymbol{\beta}) + (\rho/2) \|\boldsymbol{\zeta}\|_2^2,$$

$\ell_i(\gamma, \xi) = n_i^{-1} \sum_j \ell_{\text{CE}}(i, h_\tau(g_\theta(x_{ij})); \gamma, \xi)$, and $\ell_i(\alpha, \beta) = n_i^{-1} \sum_j \ell_{\text{CE}}(y_{ij}, g_\theta(x_{ij}); \alpha, \beta)$.

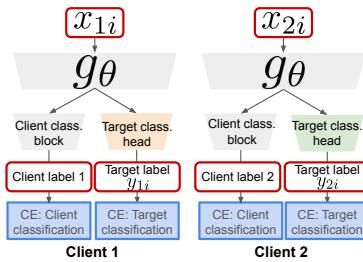


Figure 2: Network architecture. Gray blocks are shared among all clients, while colored blocks are specific to each client.

270 A key difference arises between these two terms. For the
 271 client-classification loss $\ell_i(\gamma, \xi)$, the i -th client only observes
 272 samples labeled with its own client index i . In contrast, the
 273 target-class loss $\ell_i(\alpha, \beta)$ typically spans multiple target labels
 274 per client (though with varying proportions). This asymmetry
 275 leads to more pronounced *gradient drift*² in $\nabla \ell_i(\gamma, \xi)$. To il-
 276 lustrate, consider the gradient of the client-classification loss
 277 with respect to γ_k :

278
$$\partial \ell_i / \partial \gamma_k = n_i^{-1} \sum_j x_{ij} \{ \mathbb{1}(i = k) - p_k(h_\theta(x_{ij}); \gamma, \xi) \}$$

 279
 280

281 where $p_k(x; \gamma, \xi) = \exp(\gamma_k + \xi_k^\top x) / \sum_l \exp(\gamma_l + \xi_l^\top x)$. Since $\mathbb{1}(i = k) = 0$ for all $k \neq i$, the
 282 gradient contributed by client i provides no meaningful information about other clients' parameters.
 283 As a result, local updates to the client-classification head are inherently biased, which in turn am-
 284 plifies gradient drift relative to target-class head. Fig. 3 shows this effect on a 10-class classification
 285 task with 3 clients and a randomly generated embedding using FedAvg: the gradient drift for client
 286 classification is markedly more severe than that for target classification.

287 **Reweighting strategy.** To address this, we draw on reweighting principles Chen et al. (2018); Liu
 288 et al. (2021) to propose a simple yet effective method with theoretical guarantees. Our approach
 289 down-weights client classification loss, whose gradient exhibits larger drift, resulting in the per-
 290 client loss:

291
$$\tilde{\ell}_i(\zeta) = (1 - \lambda) \ell_i(\gamma, \xi) + \lambda \ell_i(\alpha, \beta),$$

292 for $\lambda > 0.5$ and the reweighted global loss is $\tilde{\ell}(\zeta) = \sum_{i=1}^m (n_i/N) \tilde{\ell}_i(\zeta)$, see Algorithm 1.

294 **Algorithm 1:** FedDRM

295 **Input:** Clients m , rounds T , local steps E , learning rate η , trade-off λ

296 1 Initialize backbone $\theta^{(0)}$, target head $\{(\alpha_i^{(0)}, \beta_i^{(0)})\}_{i=1}^m$, and client head $(\tau^{(0)}, \gamma^{(0)}, \xi^{(0)})$
 297 2 **for** $t = 0, 1, \dots, T - 1$ **do**
 298 3 Server broadcasts $\theta^{(t)}$ and $(\tau^{(t)}, \gamma^{(t)}, \xi^{(t)})$ to all clients
 299 4 **for** client $i \in [m]$ **in parallel do**
 300 5 $\theta_i^{(t,0)} \leftarrow \theta^{(t)}, (\alpha_i^{(t,0)}, \beta_i^{(t,0)}) \leftarrow (\alpha_i^{(t)}, \beta_i^{(t)}), (\tau_i^{(t,0)}, \gamma_i^{(t,0)}, \xi_i^{(t,0)}) \leftarrow (\tau^{(t)}, \gamma^{(t)}, \xi^{(t)})$
 301 6 **for** $k = 0, 1, \dots, E - 1$ **do**
 302 7 Get target loss $\ell_i(\alpha_i^{(t,k)}, \beta_i^{(t,k)}, \theta_i^{(t,k)})$ and client loss $\ell_i(\tau_i^{(t,k)}, \gamma_i^{(t,k)}, \xi_i^{(t,k)}, \theta_i^{(t,k)})$
 303 8 $\tilde{\ell}_i(\zeta_i^{(t,k)}) \leftarrow \lambda \ell_i(\alpha_i^{(t,k)}, \beta_i^{(t,k)}, \theta_i^{(t,k)}) + (1 - \lambda) \ell_i(\tau_i^{(t,k)}, \gamma_i^{(t,k)}, \xi_i^{(t,k)}, \theta_i^{(t,k)})$
 304 9 $\zeta_i^{(t,k+1)} \leftarrow \zeta_i^{(t,k)} - \eta \nabla \tilde{\ell}(\zeta_i^{(t,k)})$
 305 10 **end**
 306 11 $\theta_i^{(t+1)} \leftarrow \theta_i^{(t,E)}, (\alpha_i^{(t+1)}, \beta_i^{(t+1)}) \leftarrow (\alpha_i^{(t,E)}, \beta_i^{(t,E)}), (\tau_i^{(t+1)}, \gamma_i^{(t+1)}, \xi_i^{(t+1)}) \leftarrow$
 307 12 $(\tau_i^{(t,E)}, \gamma_i^{(t,E)}, \xi_i^{(t,E)})$
 308 13 Client i sends $\theta_i^{(t+1)}$ and $(\tau_i^{(t+1)}, \gamma_i^{(t+1)}, \xi_i^{(t+1)})$ back to the server
 309 14 **end**
 310 15 Server updates
 311 16 $\theta^{(t+1)} \leftarrow \sum_{i=1}^m \frac{n_i}{N} \theta_i^{(t+1)}, (\tau^{(t+1)}, \gamma^{(t+1)}, \xi^{(t+1)}) \leftarrow \sum_{i=1}^m \frac{n_i}{N} (\tau_i^{(t+1)}, \gamma_i^{(t+1)}, \xi_i^{(t+1)})$
 312 15 **end**

313 To accelerate convergence, a larger value of λ is desirable. However, as $\lambda \rightarrow 1$, the target-
 314 class classification begins to dominate, which hinders effective training of the client classifica-
 315 tion and ultimately weakens the model's ability to guide clients. To illustrate the trade-off be-
 316 between accuracy and convergence, we consider a simplified setting where the embedding is fixed
 317 (*i.e.*, θ and τ are known) and the true data-generating mechanism follows a multinomial lo-
 318 gistic model with parameters $\zeta^{\text{true}} = (\gamma^{\text{true}}, \xi^{\text{true}}, \alpha^{\text{true}}, \beta^{\text{true}})$. We define the heterogeneity mea-
 319 sure $G^2(\zeta) = \sum_{i=1}^m (n_i/N) \|\nabla \ell_i(\zeta) - \nabla \ell(\zeta)\|_2^2$, which admits the decomposition $G^2(\zeta) =$
 320

321 ²The gradient drift of the client loss is $G_{\text{client}}^2 := \sum_{i=1}^m (n_i/N) \|\nabla \ell_i(\gamma, \xi) - \sum_{i=1}^m (n_i/N) \nabla \ell_i(\gamma, \xi)\|^2$,
 322 and that of the target-class loss is $G_{\text{class}}^2 := \sum_{i=1}^m (n_i/N) \|\nabla \ell_i(\alpha, \beta) - \sum_{i=1}^m (n_i/N) \nabla \ell_i(\alpha, \beta)\|^2$.

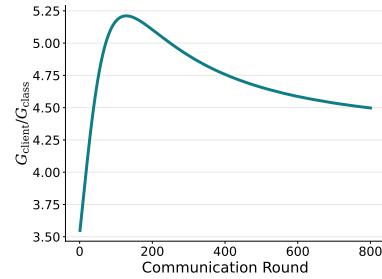


Figure 3: **Relative gradient drift.**

(1 - λ)² $G_{\text{client}}^2(\gamma, \xi)$ + $\lambda^2 G_{\text{class}}^2(\alpha, \beta)$. Let \bar{G}^2 , $\bar{G}_{\text{client}}^2$, and \bar{G}_{class}^2 denote the corresponding maximum values across updating rounds $t = 0, 1, \dots, T - 1$. Then, $\bar{G}^2 \leq (1 - \lambda)^2 \bar{G}_{\text{client}}^2 + \lambda^2 \bar{G}_{\text{class}}^2$. With this notation in place, we state the following result:

Theorem 2.5. Assume ℓ^p is μ -strongly convex and L -smooth. Suppose $\eta \leq 1/L$ and furthermore $\eta LE \leq 1/4$. Let $\zeta^{(t)}$ be the output after t communication rounds. Then as $T, N \rightarrow \infty$ we have

$$\|\zeta^{(T)} - \zeta^{\text{true}}\|_2^2 = O_p \left(\frac{\{(1 - \lambda)\|\mathcal{I}_\gamma\|_{\min} + \rho\}^{-1} + \{\lambda\|\mathcal{I}_\beta\|_{\min} + \rho\}^{-1}}{N} + \frac{\eta^2 E^2 \{(1 - \lambda)^2 \bar{G}_{\text{client}}^2 + \lambda^2 \bar{G}_{\text{class}}^2\}}{1 - (1 - \eta\mu)^E} \right)$$

where $\|A\|_{\min} = \lambda_{\min}(A)$, and $\mathcal{I}_{\text{client}}$ and $\mathcal{I}_{\text{class}}$ denote the Fisher information matrices with respect to (γ, ξ) and (α, β) , respectively.

The proof and the detailed definition of Fisher information matrix is deferred to App. E. The first term in the bound capture the statistical accuracy, while the last term reflects the convergence rate. For faster convergence, a larger λ is preferred, while for higher accuracy, λ must be chosen to balance $\{(1 - \lambda)\|\mathcal{I}_\gamma\|_{\min} + \rho\}^{-1}$ and $\{\lambda\|\mathcal{I}_\beta\|_{\min} + \rho\}^{-1}$. Together, these terms reveal the trade-off role of λ . In practice, since the Fisher information matrices and gradient drifts are unknown, λ can be tuned using a validation set. [We empirically demonstrate the trade-off in Fig. 4](#).

3 EXPERIMENTS ON BENCHMARK DATASETS

3.1 EXPERIMENT SETTINGS

Datasets. We conduct experiments on CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), each containing 60,000 32×32 RGB images. CIFAR-10 has 10 classes with 6,000 images per class. CIFAR-100 has 100 classes, with 600 images per class, grouped into 20 superclasses. Based on these datasets, we construct three tasks of increasing complexity: (a) 10-class classification on CIFAR-10, (b) 20-class classification using the CIFAR-100 superclasses, and (c) 100-class classification using the fine-grained CIFAR-100 labels.

Non-IID settings. Since standard benchmark datasets do not inherently exhibit statistical heterogeneity, we simulate non-IID scenarios following common practice (Wu et al., 2023; Tan et al., 2023; Lu et al., 2024). We introduce both label and covariate shifts. For **label shift**, we construct client datasets using two partitioning strategies: (1) *Dirichlet partition* with $\alpha = 0.3$ (*Dir-0.3*): Following (Yurochkin et al., 2019), we draw class proportions for each client from a Dirichlet distribution with concentration parameter $\alpha = 0.3$, leading to heterogeneous label marginals and unequal dataset sizes across clients. (2) *S shards per client (S-SPC)*: Following (McMahan et al., 2017), we sort the data by class, split it into equal-sized, label-homogeneous shards, and assign S shards uniformly at random to each client. This yields equal dataset sizes while restricting each client’s label support to at most S classes. Each dataset is first partitioned across clients using one of the partitioning strategies, and within each client, the local dataset is further split 70/30 into training and test sets. For **covariate shift**, all three nonlinear transformations are applied to each client’s dataset: (1) *gamma correction*: brightness adjustment with client-specific gamma factor γ . (2) *hue adjustment*: color rotation with client-specific hue factor Δh . (3) *saturation scaling*: color vividness adjustment with client-specific saturation factor κ . We set $\gamma \in \{0.6, 1.4\}$, $\Delta h \in \{-0.1, 0.1\}$, and $\kappa \in \{0.5, 1.5\}$ in the main experiment, resulting in an 8-client setting. See examples in App. F.1.

Baselines. We compare our FedDRM against a variety of state-of-the-art personalized FL techniques, which learn a local model on each client. Ditto (Li et al., 2021c) encourages local models to stay close via global regularization. FedRep (Collins et al., 2021) learns a global backbone with local linear heads. FedBABU (Oh et al., 2022) freezes local classifiers while training a global backbone, then fine-tunes classifiers per client. FedPAC (Xu et al., 2023) personalizes through feature alignment to a global backbone. FedALA (Zhang et al., 2023) learns client-wise mixing weights that adaptively interpolate between the local and global models. FedAS (Yang et al., 2024) aligns local weights to the global model, followed by client-specific updates. ConFREE (Zheng et al., 2025) resolves conflicts among client updates before server aggregation. We also compare with other standard FL algorithms—FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020b), and FedSAM (Qu et al., 2022)—which aim to achieve a single global model under data heterogeneity. To ensure fair comparison, we fine-tune their global models locally on each client, yielding personalized variants denoted FedAvgFT, FedProxFT, and FedSAMFT.

378 **Network architecture.** We use ResNet-18 (He et al., 2016) as the feature extractor (backbone),
 379 which encodes each input image into a 512-dimensional embedding. For the baselines, this embed-
 380 ding is projected to 256 dimensions via a linear layer and fed into the image classifier. FedDRM
 381 extends this design by adding a separate client-classification head: the 512-dimensional embedding
 382 is projected to 256 dimensions and fed into the client classifier. Importantly, FedDRM uses the same
 383 image classification architecture as all baselines.

384 **Training details.** To ensure fair comparison, all methods are trained for 800 communication rounds
 385 with 10 local steps per round and a batch size of 128. For fine-tuning-based methods, we allocate 700
 386 rounds for global training and 100 rounds for local fine-tuning. We use SGD with momentum 0.9,
 387 an initial learning rate of 0.01 with cosine annealing, and weight decay 5×10^{-4} . Method-specific
 388 hyperparameters are tuned to achieve their best performance.

390 3.2 EVALUATION PROTOCOL

392 To assess the effectiveness of our proposed method in guiding clients under heterogeneous FL, we
 393 introduce a new performance metric, termed **system accuracy**. This metric is designed to evaluate
 394 the server’s ability to guide clients effectively. Concretely, we construct a pooled test set from all
 395 clients. For FedDRM, we first use the client classification head to identify the most likely client for
 396 each test sample by maximizing the client classification probability. The local model of the selected
 397 client is then used to predict the image class label. For baseline methods, which lack this client-
 398 guidance mechanism, we instead apply a majority-voting strategy: each client’s personalized model
 399 makes a prediction for every sample in the pooled test set, and the majority label is taken as the
 400 final prediction. The overall classification accuracy on the pooled test set is reported as the system
 401 accuracy. We also report the widely used **average accuracy** in personalized FL, which measures
 402 each local model’s classification accuracy on its own test set. The final value is computed as the
 403 weighted average across all clients, with weights proportional to the size of each client’s training
 404 set. In all experiments, we report the mean and standard deviation of both average accuracy and
 405 system accuracy over the final 50 communication rounds.

406 3.3 MAIN RESULTS

408 We present the system accuracy and average accuracy in Tab. 1 and Tab. 2, respectively. Across

409 Table 1: System accuracy on CIFAR-10/20/100 under Dir-0.3 and 5/25-SPC settings.

411 Method	412 CIFAR-10		413 CIFAR-20		414 CIFAR-100	
	415 Dir-0.3	416 5-SPC	417 Dir-0.3	418 25-SPC	419 Dir-0.3	420 25-SPC
Ditto	47.64 \pm 0.25	46.99 \pm 0.23	29.56 \pm 0.18	31.87 \pm 0.16	15.97 \pm 0.15	19.51 \pm 0.16
FedRep	24.96 \pm 0.19	33.19 \pm 0.22	23.83 \pm 0.15	24.82 \pm 0.20	11.11 \pm 0.12	12.02 \pm 0.12
FedBABU	57.43 \pm 0.17	57.17 \pm 0.24	36.96 \pm 0.17	40.78 \pm 0.13	22.92 \pm 0.17	27.27 \pm 0.15
FedPAC	25.14 \pm 0.21	33.24 \pm 0.19	23.83 \pm 0.17	24.83 \pm 0.18	11.17 \pm 0.12	11.99 \pm 0.12
FedALA	61.33 \pm 0.17	53.20 \pm 0.20	32.78 \pm 0.17	35.79 \pm 0.14	20.70 \pm 0.14	25.80 \pm 0.16
FedAS	28.76 \pm 0.19	39.71 \pm 0.20	27.16 \pm 0.16	27.50 \pm 0.15	13.87 \pm 0.13	13.51 \pm 0.14
ConFREE	25.66 \pm 0.22	34.06 \pm 0.22	24.08 \pm 0.17	25.15 \pm 0.18	11.32 \pm 0.13	12.12 \pm 0.13
FedAvgFT	54.90 \pm 0.22	56.19 \pm 0.17	37.53 \pm 0.18	41.17 \pm 0.16	25.21 \pm 0.16	27.96 \pm 0.17
FedProxFT	55.01 \pm 0.20	56.27 \pm 0.21	37.61 \pm 0.18	41.20 \pm 0.15	25.15 \pm 0.13	27.82 \pm 0.18
FedSAMFT	55.83 \pm 0.21	51.73 \pm 0.19	34.23 \pm 0.14	36.60 \pm 0.17	22.97 \pm 0.16	26.89 \pm 0.15
FedDRM	63.85 \pm 0.18	58.50 \pm 0.23	37.67 \pm 0.22	41.44 \pm 0.19	26.01 \pm 0.16	31.24 \pm 0.17

423 all settings, FedDRM consistently outperforms the baselines on both metrics, demonstrating its ability
 424 to leverage statistical heterogeneity for system-level intelligence while also providing effective
 425 client-level personalization. In contrast, the baselines primarily focus on addressing data hetero-
 426 geneity, resulting in lower system accuracy due to disagreements among their personalized models.
 427 Additionally, when using a majority-vote approach as an intelligence router, baseline methods must
 428 evaluate all m local models, whereas FedDRM requires evaluating only a single model. The shared
 429 backbone in FedDRM can also be efficiently repurposed for image prediction by feeding it into the
 430 corresponding client-specific classification head. We also compare the influence of label shift in this
 431 experiment beyond covariate shift, the results align with our expectation that the less severe label
 432 shift Dir-0.3 case has a higher accuracy than 5-SPC for all methods.

Table 2: Average accuracy on CIFAR-10/20/100 under Dir-0.3 and 5/25-SPC settings.

Method	CIFAR-10		CIFAR-20		CIFAR-100	
	Dir-0.3	5-SPC	Dir-0.3	25-SPC	Dir-0.3	25-SPC
Ditto	76.34 \pm 0.11	65.17 \pm 0.17	40.36 \pm 0.18	44.83 \pm 0.19	29.25 \pm 0.16	36.58 \pm 0.18
FedRep	76.49 \pm 0.15	64.96 \pm 0.19	41.54 \pm 0.16	46.57 \pm 0.19	31.22 \pm 0.15	39.11 \pm 0.20
FedBABU	78.22 \pm 0.14	70.22 \pm 0.18	44.18 \pm 0.15	48.98 \pm 0.19	32.91 \pm 0.14	40.75 \pm 0.14
FedPAC	76.53 \pm 0.13	65.05 \pm 0.19	41.60 \pm 0.16	46.55 \pm 0.19	31.20 \pm 0.17	39.13 \pm 0.22
FedALA	64.35 \pm 2.40	55.58 \pm 1.88	33.30 \pm 0.47	36.41 \pm 0.58	21.83 \pm 0.94	27.83 \pm 1.59
FedAS	78.69 \pm 0.17	69.82 \pm 0.16	45.65 \pm 0.18	51.73 \pm 0.17	36.06 \pm 0.13	44.26 \pm 0.19
ConFREE	76.73 \pm 0.16	65.59 \pm 0.17	41.91 \pm 0.16	47.04 \pm 0.21	31.57 \pm 0.15	39.63 \pm 0.17
FedAvgFT	79.08 \pm 0.11	72.10 \pm 0.18	46.55 \pm 0.15	52.54 \pm 0.17	36.83 \pm 0.17	43.94 \pm 0.20
FedProxFT	79.07 \pm 0.12	72.07 \pm 0.18	46.58 \pm 0.19	52.49 \pm 0.18	36.87 \pm 0.18	43.96 \pm 0.19
FedSAMFT	75.53 \pm 0.11	66.30 \pm 0.16	41.11 \pm 0.16	44.89 \pm 0.16	32.53 \pm 0.14	40.25 \pm 0.16
FedDRM	80.25 \pm 0.14	72.50 \pm 0.16	47.91 \pm 0.18	53.72 \pm 0.20	37.91 \pm 0.15	46.73 \pm 0.15

3.4 SENSITIVITY ANALYSIS

We evaluate the sensitivity of our method to several key factors. Experimental details are reported in App. F.2.

Impact of weight λ on system accuracy. The reweighting parameter λ is crucial for deploying the EL-based framework in the FL setting. As shown in Fig. 4, we observe the expected trade-off between two objectives: increasing λ places more emphasis on image classification and less on client classification. This shift improves overall accuracy but reduces client accuracy, consistent with Thm. 2.5. The best balance between the two is achieved at $\lambda = 0.8$, where system accuracy peaks, marking the optimal trade-off for the task of guiding queries in the FL system.

Covariate shift intensity. We have already demonstrated in the main results that label shift is detrimental to all methods, with more severe shifts causing greater harm. To further examine the impact of covariate shift, we fix the degree of label shift and vary covariate shift at three intensity levels—low, mid, and high—by adjusting the parameters of the nonlinear color transformations. As shown in Fig. 5, the results reveal a clear trade-off: higher covariate shift intensifies differences between client data distributions, which facilitates client routing but simultaneously weakens information sharing across clients, thereby making image classification more difficult. [Additional results examining the sensitivity of our method to the severity of label shift are provided in App. F.2.4.](#)

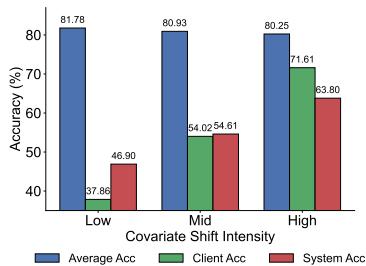


Figure 5: **Influence of covariate shift intensity** on CIFAR-10 under the Dir-0.3 setting.

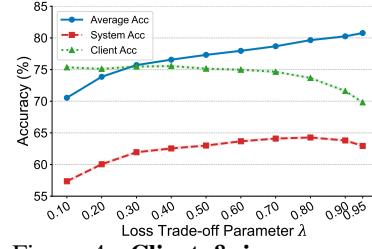


Figure 4: **Client & image accuracy trade-off** on CIFAR-10 under the Dir-0.3 setting.

Backbone sharing strategy. In our formulation, the target-class classification task uses the embedding $g_\theta(x)$ for an input feature x , while the client-classification task uses the embedding $h_\tau(g_\theta(x))$ for the same feature. Since both g_θ and h_τ are parameterized functions, the optimal sharing strategy between the two is not obvious. To explore this, we evaluate four cases: no sharing, shallow sharing, mid sharing, and deep sharing. As shown in Fig. 6, all strategies perform similarly, with shallow sharing slightly ahead. However, given the substantial increase in parameters for shallow sharing, deep sharing offers a more parameter-efficient alternative while maintaining strong performance.

Number of clients. To check scalability, we set the number of clients from 8 to 32 and compare FedDRM against the top-2 baselines from the main experiments. As shown in Tab. 3, while all methods exhibit a moderate performance decline as the client pool expands (a common challenge in FL), FedDRM consistently maintains a significant performance advantage across both system and average accuracy. This demonstrates that our method scales effectively, preserving its superiority even as the system grows.

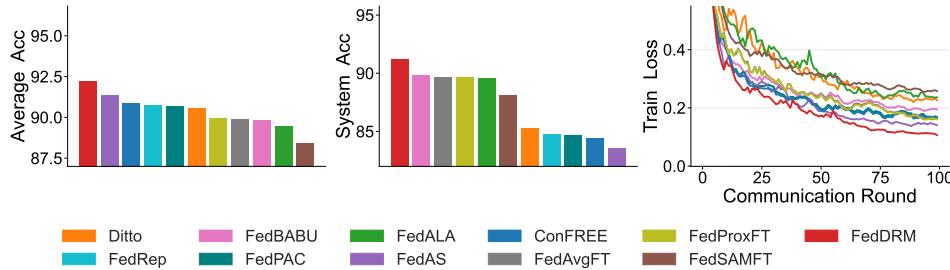
486
487 Table 3: Sensitivity analysis on the number of clients m .
488
489

Method	System Accuracy				Average Accuracy			
	$m = 8$	$m = 16$	$m = 24$	$m = 32$	$m = 8$	$m = 16$	$m = 24$	$m = 32$
FedAS	32.58 ± 0.19	36.55 ± 0.21	38.12 ± 0.21	34.50 ± 0.18	78.86 ± 0.12	73.28 ± 0.15	73.90 ± 0.16	73.45 ± 0.15
FedAvgFT	53.17 ± 0.22	50.61 ± 0.20	49.13 ± 0.20	45.07 ± 0.21	78.92 ± 0.15	73.41 ± 0.16	74.66 ± 0.17	74.18 ± 0.15
FedDRM	59.59 ± 0.20	51.61 ± 0.22	50.18 ± 0.20	46.62 ± 0.17	80.47 ± 0.12	74.25 ± 0.15	75.04 ± 0.14	74.45 ± 0.18

492
493 4 EXPERIMENT ON REAL MEDICAL DATASET
494

495 To further demonstrate FedDRM’s effectiveness in healthcare,
496 we evaluate it on the real medical dataset RETINA, following
497 Huang et al. (2025). RETINA comprises fundus images
498 from three clinical centers—ACRIMA (Diaz-Pinto et al.,
499 2019), Rim (Fumero Batista et al., 2020), and Refuge (Orlando
500 et al., 2020). We exclude Drishti, which has only 82 images,
501 while the others provide at least 385. Each 96×96 RGB image
502 is labeled as Glaucomatous or Normal, creating a binary
503 classification task.

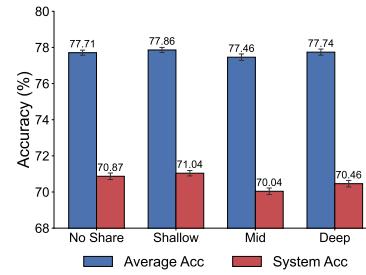
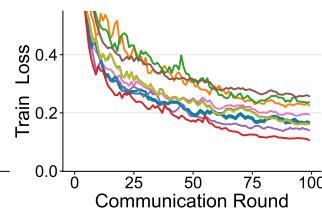
504 This dataset naturally fits a 3-client FL system, with each client
505 representing one center. The different image sources cause a
506 covariate shift in RETINA. Furthermore, the class ratios (pos-
507 itive vs. negative) across the three datasets are 1.34, 1.94, and 0.46,
508 introducing a realistic label shift. Our experimental setup largely follows the CIFAR experiments, with several adjustments: the
509 network embedding dimension is set to 4608 and the projection dimension 512. All methods train
510 for 100 communication rounds with a batch size of 32. For fine-tuning-based methods, we allocate
511 90 rounds to global training and 10 to local fine-tuning.

521 Figure 7: Average accuracy, system accuracy, and train loss on RETINA.
522

523 Fig. 7 shows that FedDRM consistently outperforms all baselines on RETINA. Measured in ab-
524 solute accuracy points, FedDRM exceeds the competing methods by 0.83–3.77 points in average
525 accuracy and by 1.41–7.67 points in system accuracy—substantial margins given the small size
526 and pronounced heterogeneity of this dataset. These results underscore the robustness and practical
527 relevance of FedDRM in the presence of simultaneous covariate and label shifts. Furthermore, Fed-
528 DRM achieves the lowest training loss and the most stable convergence trajectory, demonstrating its
529 effectiveness in capturing heterogeneous structure in real multi-center medical data.

531 5 CONCLUSION
532

533 This paper presents FedDRM, a novel FL paradigm that transforms statistical heterogeneity from a
534 challenge into a resource. By introducing a unified EL based framework, FedDRM simultaneously
535 learns accurate local models and a client-selection policy, enabling a central server to intelligently
536 route new queries to the most appropriate client. Empirical results demonstrate that our method out-
537 performs existing approaches in both client-level personalization and system-level utility, paving the
538 way for more adaptive and resource-efficient FL systems that actively leverage statistical diversity.
539 We believe that this work marks a meaningful step toward more adaptive, resource-efficient, and
intelligent FL systems.

530 Figure 6: Impact of the sharing
531 strategy on CIFAR-10 under the
532 Dir-0.3 setting using LeNet (Lecun
533 et al., 1998).

540 REFERENCES
541

542 Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and
543 Venkatesh Saligrama. Federated learning based on dynamic regularization. In *International Con-*
544 *ference on Learning Representations*, 2021.

545 J. A. Anderson. Multivariate logistic compounds. *Biometrika*, 66(1):17–26, 1979.

546

547 Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering
548 of local updates to improve training on non-iid data. In *International Joint Conference on Neural*
549 *Networks*, 2020.

550

551 Jiahua Chen and Yukun Liu. Quantile and quantile-function estimations under density ratio model.
552 *The Annals of Statistics*, 41(3):1669–1692, 2013.

553

554 Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
555 normalization for adaptive loss balancing in deep multitask networks. In *International Conference*
556 *on Machine Learning*, 2018.

557

558 Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared repre-
559 sentations for personalized federated learning. In *International Conference on Machine Learning*,
2021.

560

561 Andres Diaz-Pinto, Sandra Morales, Valery Naranjo, Thomas Köhler, Jose M Mossi, and Amparo
562 Navea. Cnns for automatic glaucoma assessment using fundus images: an extensive validation.
563 *Biomedical Engineering Online*, 18(1):1–19, 2019.

564

565 Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with theo-
566 retical guarantees: A model-agnostic meta-learning approach. In *Advances in Neural Information*
567 *Processing Systems*, 2020.

568

569 Konstantinos Fokianos, Benjamin Kedem, Jing Qin, and David A Short. A semiparametric approach
570 to the one-way layout. *Technometrics*, 43(1):56–65, 2001.

571

572 Francisco José Fumero Batista, Tinguaro Diaz-Aleman, Jose Sigut, Silvia Alayon, Rafael Arnay, and
573 Denisse Angel-Pereira. RIM-ONE DL: A unified retinal image database for assessing glaucoma
574 using deep learning. *Image Analysis & Stereology*, 39(3):161–167, 2020.

575

576 Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu. FedDC: Feder-
577 ated learning with non-IID data via local drift decoupling and correction. In *Proceedings of the*
578 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2022.

579

580 Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
581 clustered federated learning. *Advances in Neural Information Processing Systems*, 2020.

582

583 Yongxin Guo, Xiaoying Tang, and Tao Lin. FedBR: Improving federated learning on heterogeneous
584 data via local learning bias reduction. In *International Conference on Machine Learning*, 2023.

585

586 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
587 nition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
588 2016.

589

590 Chun-Yin Huang, Ruinan Jin, Can Zhao, Daguang Xu, and Xiaoxiao Li. Federated learning on vir-
591 tual heterogeneous data with local-global dataset distillation. *Transactions on Machine Learning*
592 *Research*, 2025. ISSN 2835-8856.

593

594 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
595 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
596 *International Conference on Machine Learning*, 2020.

597

598 Richard Kay and Sarah Little. Transformations of the explanatory variables in the logistic regression
599 model for binary data. *Biometrika*, 74(3):495–501, 1987.

594 Yeongwoo Kim, Ezeddin Al Hakim, Johan Haraldson, Henrik Eriksson, José Mairton B da Silva,
 595 and Carlo Fischione. Dynamic clustering in federated learning. In *International Conference on*
 596 *Communications*, 2021.

597

598 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
 599 of Toronto, 2009.

600 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
 601 nition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

602

603 Chengxi Li, Gang Li, and Pramod K Varshney. Federated learning with soft clustering. *IEEE*
 604 *Internet of Things Journal*, 9(10):7773–7782, 2021a.

605 Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. *Com-*
 606 *puters & Industrial Engineering*, 149:106854, 2020a.

607

608 Pengfei Li, Yukun Liu, and Jing Qin. Semiparametric inference in a genetic mixture model. *Journal*
 609 *of the American Statistical Association*, 112(519):1250–1260, 2017.

610 Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In *Proceedings*
 611 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2021b.

612

613 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 614 Federated optimization in heterogeneous networks. In *Proceedings of Machine Learning and*
 615 *Systems*, 2020b.

616 Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
 617 learning through personalization. In *International Conference on Machine Learning*, 2021c.

618

619 Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. FedBN: Federated learn-
 620 ing on non-IID features via local batch normalization. In *International Conference on Learning*
 621 *Representations*, 2021d.

622 Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
 623 multi-task learning. In *Advances in Neural Information Processing Systems*, 2021.

624

625 Siyan Liu, Chi-Kuang Yeh, Xin Zhang, Qinglong Tian, and Pengfei Li. Positive and unlabeled data:
 626 Model, estimation, inference, and classification. *Journal of the American Statistical Association*,
 627 pp. 1–12, 2025.

628 Yukun Liu, Pengfei Li, and Jing Qin. Maximum empirical likelihood estimation for abundance in a
 629 closed population from capture-recapture data. *Biometrika*, 104(3):527–543, 2017.

630

631 Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning for open banking. In
 632 *Federated learning: privacy and incentive*, pp. 240–254. Springer, 2020.

633 Guodong Long, Ming Xie, Tao Shen, Tianyi Zhou, Xianzhi Wang, and Jing Jiang. Multi-center
 634 federated learning: clients clustering for better personalization. *World Wide Web*, 26(1):481–500,
 635 2023.

636

637 Yang Lu, Lin Chen, Yonggang Zhang, Yiliang Zhang, Bo Han, Yiu-ming Cheung, and Hanzi Wang.
 638 Federated learning with extremely noisy clients via negative distillation. In *Proceedings of the*
 639 *AAAI Conference on Artificial Intelligence*, 2024.

640 Xiaosong Ma, Jie Zhang, Song Guo, and Wencho Xu. Layer-wised model aggregation for person-
 641 alized federated learning. In *Proceedings of the IEEE/CVF conference on computer vision and*
 642 *pattern recognition*, 2022.

643

644 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 645 Communication-efficient learning of deep networks from decentralized data. In *International*
 646 *Conference on Artificial Intelligence and Statistics*, 2017.

647 Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu: Toward enhanced representation for
 federated image classification. In *International Conference on Learning Representations*, 2022.

648 José Ignacio Orlando, Huazhu Fu, João Barbosa Breda, Karel van Keer, Deepti R Bathula, Andrés
 649 Diaz-Pinto, Ruogu Fang, Pheng-Ann Heng, Jeyoung Kim, JoonHo Lee, et al. REFUGE challenge:
 650 A unified framework for evaluating automated methods for glaucoma assessment from fundus
 651 photographs. *Medical Image Analysis*, 59:101570, 2020.

652 Art B Owen. *Empirical likelihood*. Chapman and Hall/CRC, 2001.

653 Jing Qin and Biao Zhang. A goodness-of-fit test for logistic regression models based on case-control
 654 data. *Biometrika*, 84(3):609–618, 1997.

655 Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning via
 656 sharpness aware minimization. In *International Conference on Machine Learning*, 2022.

657 Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
 658 learning. In *Advances in Neural Information Processing Systems*, 2017.

659 Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau en-
 660 velopes. *Advances in Neural Information Processing Systems*, 2020.

661 Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
 662 *IEEE Transactions on Neural Networks and Learning Systems*, 34(12):9587–9603, 2022.

663 Yue Tan, Chen Chen, Weiming Zhuang, Xin Dong, Lingjuan Lyu, and Guodong Long. Is het-
 664 erogeneity notorious? taming heterogeneity to handle test-time shift in federated learning. In
 665 *Advances in Neural Information Processing Systems*, 2023.

666 Aad W Van der Vaart. *Asymptotic statistics*, volume 3. Cambridge university press, 2000.

667 Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective in-
 668 consistency problem in heterogeneous federated optimization. In *Advances in Neural Information
 669 Processing Systems*, 2020.

670 Yue Wu, Shuaicheng Zhang, Wenchao Yu, Yanchi Liu, Quanquan Gu, Dawei Zhou, Haifeng Chen,
 671 and Wei Cheng. Personalized federated learning under mixture of distributions. In *International
 672 Conference on Machine Learning*, 2023.

673 Jian Xu, Xinyi Tong, and Shao-Lun Huang. Personalized federated learning with feature alignment
 674 and classifier collaboration. In *International Conference on Learning Representations*, 2023.

675 Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang. Federated
 676 learning for healthcare informatics. *Journal of Healthcare Informatics Research*, 5(1):1–19, 2021.

677 Xiyuan Yang, Wenke Huang, and Mang Ye. Fedas: Bridging inconsistency in personalized fed-
 678 erated learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 679 Recognition*, 2024.

680 Qiaoyun Yin, Zhiyong Feng, Xiaohong Li, Shizhan Chen, Hongyue Wu, and Gaoyong Han.
 681 Tackling data-heterogeneity variations in federated learning via adaptive aggregate weights.
 682 *Knowledge-Based Systems*, 304:112484, 2024.

683 Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
 684 Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In *Interna-
 685 tional Conference on Machine Learning*, 2019.

686 Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.
 687 Fedala: Adaptive local aggregation for personalized federated learning. In *Proceedings of the
 688 AAAI Conference on Artificial Intelligence*, 2023.

689 Hao Zheng, Zhigang Hu, Liu Yang, Meiguang Zheng, Aikun Xu, and Boyu Wang. Confree:
 690 Conflict-free client update aggregation for personalized federated learning. In *Proceedings of
 691 the AAAI Conference on Artificial Intelligence*, 2025.

692

693

694

695

696

697

698

699

700

701

702 A THE USE OF LARGE LANGUAGE MODELS (LLMs)

704 Large language models (LLMs) were used solely as assistive tools for language editing and polishing of the manuscript. The authors take full responsibility for the accuracy and integrity of the
 705 manuscript.

708 B DENSITY RATIO MODEL EXAMPLES

710 Many parametric distribution families including normal and Gamma are special cases of the DRM.

711 **Example B.1** (Normal distribution). For normal distribution $\phi(x; \mu, \sigma^2)$ with mean μ and variance
 712 σ^2 . We have $\log\{\phi(x; \mu_1, \sigma_1^2)/\phi(x; \mu_2, \sigma_2^2)\} = \theta_0 + \theta_1 x + \theta_2 x^2$ where $\theta_0 = \log \sigma_2/\sigma_1 - (\mu_1^2/\sigma_1^2 -$
 713 $\mu_2^2/\sigma_2^2)/2$, $\theta_1 = \mu_1/\sigma_1^2 - \mu_2/\sigma_2^2$, $\theta_2 = (\sigma_2^{-2} - \sigma_1^{-2})/2$ and the basis function is $g(x) = (1, x, x^2)^\top$.

714 **Example B.2** (Gamma distribution). For gamma distribution with shape parameter $\alpha > 0$ and
 715 rate parameter $\beta > 0$. We have $\log\{f(x; \alpha_1, \beta_1)/f(x; \alpha_2, \beta_2)\} = \theta_0 + \theta_1 x + \theta_2 \log x$ where
 716 $\theta_0 = \log \Gamma(\alpha_2) - \log \Gamma(\alpha_1) + \alpha_1 \log \beta_1 - \alpha_2 \log \beta_2$, $\theta_1 = \beta_2 - \beta_1$, $\theta_2 = \alpha_1 - \alpha_2$ and the basis
 717 function is $g(x) = (1, x, \log x)^\top$.

719 C MATHEMATICAL DETAILS BEHIND FEDDRM

721 C.1 DERIVATION OF (4)

723 *Proof.* By the total law of probability, the marginal density of x is

$$\begin{aligned}
 725 \quad p_l(x) &= \sum_k \pi_{lk} dF_l(x|y=k) \\
 726 &= \sum_k \pi_{lk} \exp\{\alpha_{lk}^\top + \beta_k^\top g_\theta(x)\} dF_l(x|y=1) \\
 727 &= \sum_k \pi_{lk} \exp\{\alpha_{lk}^\top + \beta_k^\top g_\theta(x)\} \exp\{\gamma_l + \xi_l^\top h_\eta(g_\theta(x))\} dF_0(x|y=1) \\
 729 &= \sum_k \pi_{l1} \exp\{\alpha_k + \beta_k^\top g_\theta(x)\} \exp\{\gamma_l + \xi_l^\top h_\eta(g_\theta(x))\} dF_0(x|y=1) \\
 731 &= \sum_k \frac{\pi_{l1}}{\pi_{01}} \pi_{0k} \exp\{\alpha_{0k}^\top + \beta_k^\top g_\theta(x)\} \exp\{\gamma_l + \xi_l^\top h_\eta(g_\theta(x))\} dF_0(x|y=1) \\
 733 &= \frac{\pi_{l1}}{\pi_{01}} \exp\{\gamma_l + \xi_l^\top h_\eta(g_\theta(x))\} p_0(x)
 \end{aligned}$$

738 Let $\gamma_l^\dagger = \gamma_l + \log(\pi_{l1}/\pi_{01})$ and divide $p_0(x)$ on both sides completes the proof. \square

740 C.2 DERIVATION OF THE PROFILE LOG-LIKELIHOOD

742 Let $\mathbf{p} = \{p_{ij}, j \in [n_i]\}_{i=1}^m$. Given $\zeta = (\alpha, \beta, \gamma, \xi, \theta, \eta)$, the empirical log-likelihood function as a
 743 function of \mathbf{p} becomes

$$744 \quad \ell_N(\mathbf{p}) = \sum_{i=1}^m \sum_{j=1}^{n_i} \log p_{ij} + \text{constant}$$

747 where the constant depends only on ζ and does not depend on \mathbf{p} . We now maximize the empirical
 748 log-likelihood function with respect to \mathbf{p} under the constraint (5) using the Lagrange multiplier
 749 method.

750 Let

$$751 \quad \mathcal{L} = \sum_{i,j} \log p_{ij} - N\mu \sum_{i,j} p_{ij} - N \sum_{l=1}^m \rho_l \sum_{i,j} p_{ij} [\exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\} - 1]$$

753 Setting

$$755 \quad 0 = \frac{\partial \mathcal{L}}{\partial p_{ij}} = \frac{1}{p_{ij}} - N\mu - N \sum_{l=1}^m \rho_l [\exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\} - 1].$$

756 Then multiply both sides by p_{ij} and sum over i and j , we have that
 757

$$758 \quad 0 = \sum_{i,j} p_{ij} \frac{\partial \mathcal{L}}{\partial p_{ij}} = \sum_{i,j} \left\{ 1 - N\mu p_{ij} - \sum_{l=1}^m \rho_l p_{ij} [\exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\} - 1] \right\} \\ 760 \\ 761 \\ 762 \\ 763 \\ 764$$

763 this gives $\mu = 1$. Hence, we get
 764

$$765 \quad p_{ij} = \frac{1}{N \left\{ 1 + \sum_l \rho_l [\exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\} - 1] \right\}} \\ 766 \\ 767$$

768 where ρ_l s are solutions to
 769

$$771 \quad \sum_{i,j} \frac{\exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\} - 1}{1 + \sum_{l'} \rho_{l'} [\exp\{\gamma_{l'}^\dagger + \xi_{l'}^\top h_\eta(g_\theta(x_{ij}))\} - 1]} = 0 \\ 772 \\ 773$$

774 by plugin the expression for p_{ij} into the second constraints (5).
 775

777 C.3 DERIVATION OF THE VALUE OF LAGRANGE MULTIPLIER AT OPTIMAL

778 Recall that the profile log-EL has the following form
 779

$$781 \quad p\ell_N(\boldsymbol{\zeta}) = \sum_{i,j,k} \mathbb{1}(y_{ij} = k) \log \mathbb{P}(y_{ij} = k | x_{ij}) + \sum_{i,j} \{\gamma_i^\dagger + \xi_i^\top h_\eta(g_\theta(x_{ij})) + \log p_{ij}(\boldsymbol{\zeta})\} \\ 782 \\ 783 \\ 784 \\ 785 \\ 786 \\ 787 \\ 788$$

789 where ρ_l s are solutions to
 790

$$791 \quad \sum_{i,j} \frac{\exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\} - 1}{1 + \sum_{l'} \rho_{l'} [\exp\{\gamma_{l'}^\dagger + \xi_{l'}^\top h_\eta(g_\theta(x_{ij}))\} - 1]} = 0. \\ 792 \\ 793 \\ 794$$

795 Taking the partial derivative with respect to γ_l^\dagger , we have
 796

$$798 \quad 0 = \frac{\partial p\ell_N}{\partial \gamma_l^\dagger} = n_l - \sum_{i,j} \frac{\rho_l \exp\{\gamma_l^\dagger + \xi_l^\top h(\mathbf{x}_{ij})\}}{1 + \sum_{l'} \rho_{l'} [\exp\{\gamma_{l'}^\dagger + \xi_{l'}^\top h_\eta(g_\theta(x_{ij}))\} - 1]} \\ 799 \\ 800 \\ 801 \\ 802 \\ 803 \\ 804 \\ 805 \\ 806 \\ 807 \\ 808 \\ 809$$

The last inequality is based on the constraint in (5). Hence, we have $\rho_l = n_l/N$ which completes the proof.

810 C.4 DUAL FORM OF THE PROFILE LOG EL
811812 At the optimal value, we have $\rho_l = n_l/N$ with $N = \sum_{l=1}^m n_l$. Plugin this value into the profile
813 log-EL, we then get

814
815
$$p\ell_N(\zeta) = \sum_{i,j} \log \left\{ \frac{\exp(\alpha_{y_{ij}} + \beta_{y_{ij}}^\top g_\theta(x_{ij}))}{\sum_j \exp(\alpha_j + \beta_j^\top g_\theta(x_{ij}))} \right\} + \sum_{i,j} \log \left\{ \frac{\exp\{\gamma_i^\dagger + \xi_i^\top h_\eta(g_\theta(x_{ij}))\}}{\sum_{l=1}^m \frac{n_l}{N} \exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\}} \right\}$$

816
817
818
819
820
821
822
823
824
825

$$\begin{aligned}
&= \sum_{i,j} \log \left\{ \frac{\exp(\alpha_{y_{ij}} + \beta_{y_{ij}}^\top g_\theta(x_{ij}))}{\sum_j \exp(\alpha_j + \beta_j^\top g_\theta(x_{ij}))} \right\} + \sum_{i,j} \log \left\{ \frac{(n_1/n_i) \exp\{\gamma_i^\dagger + \xi_i^\top h_\eta(g_\theta(x_{ij}))\}}{\sum_{l=1}^m (\frac{n_l}{N}) \exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\}} \right\} \\
&= \sum_{i,j} \log \left\{ \frac{\exp(\alpha_{y_{ij}} + \beta_{y_{ij}}^\top g_\theta(x_{ij}))}{\sum_j \exp(\alpha_j + \beta_j^\top g_\theta(x_{ij}))} \right\} + \sum_{i,j} \log \left\{ \frac{(\exp\{\gamma_i^\dagger + \xi_i^\top h_\eta(g_\theta(x_{ij}))\})}{\sum_{l=1}^m \exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\}} \right\} \\
&\quad - \sum_{i,j} \log \left(\frac{n_i}{N} \right).
\end{aligned}$$

826 The last term is an additive constant; the maximization does not depend on its value, which com-
827 pletes the proof.
828829 D GENERALIZATION TO OTHER TYPES OF DATA HETEROGENEITY
830831 In this section, we detail how our method generalizes to the setting where both $Y|X$ and X differ
832 across clients. Recall that the log empirical likelihood function is
833

834
835
$$\ell_N(\mathbf{p}, \zeta) = \sum_{i=1}^m \sum_{j=1}^{n_i} \log P_{X,Y}^{(i)}(\{X_{ij}, Y_{ij}\})$$

836
837
838
839

$$= \sum_{i,j,k} \mathbb{1}(Y_{ij} = k) \log \mathbb{P}^{(i)}(Y = k|X_{ij}) + \sum_{i,j} \log P_X^{(i)}(\{X_{ij}\})$$

840 We assume that each client has its own linear head for the conditional distribution:
841

842
$$\mathbb{P}^{(i)}(Y = k|X = x) = \frac{\exp(\alpha_{ik} + \beta_{ik}^\top g_\theta(x))}{\sum_j \exp(\alpha_{ikj} + \beta_{ikj}^\top g_\theta(x))},$$

843

844 The marginal distributions $P_X^{(i)}$ are linked as in Theorem 2.1:
845

846
847
$$\frac{dP_X^{(i)}}{dP_X^{(0)}}(x) = \exp\{\gamma_i^\dagger + \xi_i^\top h_\tau(g_\theta(x))\}$$

848

849 where $P_X^{(0)}$ is an unspecified reference measure. Using a non-parametric reference distribution, we
850 set
851

852
$$p_{ij} = P_X^{(0)}(\{X_{ij}\}) \geq 0, \quad \forall i \in [m], j \in [n_i],$$

853

subject to the constraints
854

855
$$\sum_{i=1}^m \sum_{j=1}^{n_i} p_{ij} = 1, \quad \sum_{i=1}^m \sum_{j=1}^{n_i} p_{ij} \exp\{\gamma_l^\dagger + \xi_l^\top h_\tau(g_\theta(X_{ij}))\} = 1, \quad \forall l \in [m].$$

856

857 Then, the log empirical likelihood across clients is
858

859
$$\ell_N(\mathbf{p}, \zeta) = \sum_{i,j,k} \mathbb{1}(Y_{ij} = k) \log \mathbb{P}^{(i)}(Y = k|X_{ij}) + \sum_{i,j} \{\gamma_i^\dagger + \xi_i^\top h_\tau(g_\theta(X_{ij})) + \log p_{ij}\}.$$

860

861 The profile log-EL of ζ is defined as
862

863
$$p\ell_N(\zeta) = \sup_{\mathbf{p}} \ell_N(\mathbf{p}, \zeta)$$

864 where the supremum is taken under the constraints above. Applying the method of Lagrange multi-
 865 pliers, we obtain the analytical form
 866

$$867 p\ell_N(\zeta) = \sum_{i,j,k} \mathbb{1}(Y_{ij} = k) \log \mathbb{P}^{(i)}(Y_{ij} = k | X_{ij}) + \sum_{i,j} \{\gamma_i^\dagger + \xi_i^\top h_\tau(g_\theta(x_{ij})) + \log p_{ij}(\zeta)\}$$

869 where

$$870 p_{ij}(\zeta) = N^{-1} \left\{ 1 + \sum_{l=1}^m \rho_l \left[\exp\{\gamma_l^\dagger + \xi_l^\top h_\tau(g_\theta(x_{ij}))\} - 1 \right] \right\}^{-1}$$

873 and the Lagrange multipliers $\{\rho_l\}_{l=1}^m$ solves

$$874 \sum_{i,j} \frac{\exp\{\gamma_l^\dagger + \xi_l^\top h_\tau(g_\theta(x_{ij}))\} - 1}{\sum_{l'} \rho_{l'} \left[\exp\{\gamma_{l'}^\dagger + \xi_{l'}^\top h_\tau(g_\theta(x_{ij}))\} - 1 \right]} = 0.$$

877 Using the dual argument from Appendix C.3, the profile log-EL can be rewritten as

$$\begin{aligned} 879 p\ell_N(\zeta) &= \sum_{i,j} \log \left\{ \frac{\exp(\alpha_{i,y_{ij}} + \beta_{i,y_{ij}}^\top g_\theta(x_{ij}))}{\sum_j \exp(\alpha_{ij} + \beta_{ij}^\top g_\theta(x_{ij}))} \right\} + \sum_{i,j} \log \left\{ \frac{\exp\{\gamma_i^\dagger + \xi_i^\top h_\eta(g_\theta(x_{ij}))\}}{\sum_{l=1}^m \frac{n_l}{N} \exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\}} \right\} \\ 880 &= \sum_{i,j} \log \left\{ \frac{\exp(\alpha_{i,y_{ij}} + \beta_{i,y_{ij}}^\top g_\theta(x_{ij}))}{\sum_j \exp(\alpha_{ij} + \beta_{ij}^\top g_\theta(x_{ij}))} \right\} + \sum_{i,j} \log \left\{ \frac{(n_l/n_i) \exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\}}{\sum_{l=1}^m \left(\frac{n_l}{N}\right) \exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\}} \right\} \\ 881 &= \sum_{i,j} \log \left\{ \frac{\exp(\alpha_{i,y_{ij}} + \beta_{i,y_{ij}}^\top g_\theta(x_{ij}))}{\sum_j \exp(\alpha_{ij} + \beta_{ij}^\top g_\theta(x_{ij}))} \right\} + \sum_{i,j} \log \left\{ \frac{(\exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\})}{\sum_{l=1}^m \exp\{\gamma_l^\dagger + \xi_l^\top h_\eta(g_\theta(x_{ij}))\}} \right\} \\ 882 &\quad - \sum_{i,j} \log \left(\frac{n_i}{N} \right). \end{aligned}$$

890 As a result, the loss function remains additive in two cross-entropy terms corresponding to different
 891 tasks. The key difference from the covariate shift case is that, for the client-classification task, each
 892 client now has its own linear head.

894 E SYSTEM ACCURACY & CONVERGENCE RATE TRADE-OFF

896 We show the proof of Theorem 2.5 in this section. To simplify the notation, we consider the following
 897 loss: To assure strong convexity, we minimize the following objective function:

$$899 \ell_i^\rho(\zeta) = \underbrace{\frac{\rho}{2} \|\gamma\|_2^2 - \frac{1-\lambda}{n_i} \sum_{j=1}^{n_i} \log \frac{\exp(\gamma_j^\top z_{ij})}{\sum_{q=1}^m \exp(\gamma_q^\top z_{ij})} + \frac{\rho}{2} \|\beta\|_2^2 - \frac{\lambda}{n_i} \sum_{j=1}^{n_i} \log \frac{\exp(\beta_{y_{ij}}^\top x_{ij})}{\sum_{k=1}^K \exp(\beta_k^\top x_{ij})}}_{=: \ell_i^{\rho, \text{client}}(\gamma)} \underbrace{- \frac{\lambda}{n_i} \sum_{j=1}^{n_i} \log \frac{\exp(\beta_{y_{ij}}^\top x_{ij})}{\sum_{k=1}^K \exp(\beta_k^\top x_{ij})}}_{=: \ell_i^{\rho, \text{class}}(\beta)},$$

903 Then, where $\zeta = (\gamma, \beta)$ stacks the parameters for client-classification γ and task-classification β ,
 904 the global objective is $\ell^\rho(\zeta) = m^{-1} \sum_{i=1}^m \ell_i^\rho(\zeta)$.

906 **Problem setting:** Assume the data is generated according to the true multinomial logistic model
 907 with parameters $\zeta^{\text{true}} = (\gamma^{\text{true}}, \beta^{\text{true}})$. i.e.,

$$909 \Pr(Y_{\text{client}} = q | z) = \frac{\exp(\gamma_q^* \top z)}{\sum_{r=1}^m \exp(\gamma_r^* \top z)}, \quad \Pr(Y_{\text{class}} = k | x) = \frac{\exp(\beta_k^* \top x)}{\sum_{r=1}^K \exp(\beta_r^* \top x)}.$$

911 Let $\widehat{\zeta}_N$ denote the minimizer of $\ell^\rho(\zeta)$ with $N = \sum_{i=1}^m n_i$ as the total number of samples.

913 **Total error.** Let ζ^T be the output of the algorithm after T steps. We decompose the error using the
 914 triangle inequality as follows:

$$915 \|\zeta^T - \zeta^{\text{true}}\|_2 \leq \underbrace{\|\zeta^T - \widehat{\zeta}_N\|_2}_{\text{optimization error}} + \underbrace{\|\widehat{\zeta}_N - \zeta^{\text{true}}\|_2}_{\text{statistical error}}. \quad (8)$$

917 We know bound these two terms respectively.

918 **Lemma E.1** (Asymptotic normality). As $N \rightarrow \infty$, the estimator $\hat{\zeta}_N$ satisfies
919

$$920 \quad \sqrt{N} (\hat{\zeta}_N - \zeta^{\text{true}}) \xrightarrow{d} \mathcal{N}(0, \mathcal{I}(\zeta^{\text{true}})^{-1}),$$

922 where the Fisher information is block diagonal:

$$924 \quad \mathcal{I}(\zeta^{\text{true}}) = \begin{bmatrix} (1-\lambda)\mathcal{I}_\gamma + \rho I & 0 \\ 0 & \lambda\mathcal{I}_\beta + \rho I \end{bmatrix},$$

926 with

$$928 \quad \mathcal{I}_\gamma = \mathbb{E} \{ (\text{diag}(p_\gamma(z)) - p_\gamma(z)p_\gamma(z)^\top) \otimes (zz^\top) \}, \quad \mathcal{I}_\beta = \mathbb{E} \{ (\text{diag}(p_\beta(x)) - p_\beta(x)p_\beta(x)^\top) \otimes (xx^\top) \},$$

929 where $p_\beta(x) = (\exp(\beta_1^\top x)/\sum_j \exp(\beta_j^\top x), \dots, \exp(\beta_{\dim(\beta)}^\top x)/\sum_j \exp(\beta_j^\top x))^\top$, and I is the
930 identity matrix.
931

932 *Proof.* This result follows from the well-established asymptotic properties of maximum likelihood
933 estimators (Van der Vaart, 2000, Section 5.5). \square
934

936 **Statistical error.** By Lemma E.1, we have

$$938 \quad N\|\hat{\gamma}_N - \gamma^{\text{true}}\|^2 = O_p\left(\frac{d}{(1-\lambda)\|\mathcal{I}_\gamma\|_{\min} + \rho}\right), \quad N\|\hat{\beta}_N - \beta^{\text{true}}\|^2 = O_p\left(\frac{p}{\lambda\|\mathcal{I}_\beta\|_{\min} + \rho}\right), \quad (9)$$

940 where $\|A\|_{\min} = \lambda_{\min}(A)$ is the operator norm, d and p are dimensions of z and x respectively.
941

942 **Optimization error.** For communication round $t = 0, 1, 2, \dots, T-1$, the server holds ζ^t and each
943 client i sets $\zeta_{i,0}^t = \zeta^t$ and performs E local gradient steps:
944

$$\zeta_{i,r+1}^t = \zeta_{i,r}^t - \eta \nabla \ell_i^\rho(\zeta_{i,r}^t), \quad r = 0, \dots, E-1.$$

946 After E steps each client returns $\zeta_{i,E}^t$ and the server aggregates $\zeta^{t+1} = m^{-1} \sum_{i=1}^m \zeta_{i,E}^t$.
947

948 Define $G^2(\zeta) = m^{-1} \sum_{i=1}^m \|\nabla \ell_i^\rho(\zeta) - \nabla \ell(\zeta)\|_2^2$. It can be decomposed nicely as $G^2(\zeta) = (1-\lambda)^2 G_{\text{client}}^2(\gamma) + \lambda^2 G_{\text{class}}^2(\beta)$. Let \bar{G}^2 , $\bar{G}_{\text{client}}^2$, and \bar{G}_{class}^2 denote the corresponding maximum values
949 across updating rounds $t = 0, 1, 2, \dots, T-1$. Then, $\bar{G}^2 \leq (1-\lambda)^2 \bar{G}_{\text{client}}^2 + \lambda^2 \bar{G}_{\text{class}}^2$.
950

951 In the convergence proof below, we omit the subscript ρ since it does not influence the convergence
952 rate. Because ℓ is μ -strongly convex and L -smooth, a single full-gradient step satisfies
953

$$954 \quad \begin{aligned} \|x - \eta \nabla \ell(x) - \hat{\zeta}_N\|_2^2 &= \|x - \hat{\zeta}_N\|_2^2 - 2\eta \langle \nabla \ell(x), x - \hat{\zeta}_N \rangle + \eta^2 \|\nabla \ell(x)\|_2^2 \\ &\leq \|x - \hat{\zeta}_N\|_2^2 - 2\eta\mu \|x - \hat{\zeta}_N\|_2^2 + \eta^2 L^2 \|x - \hat{\zeta}_N\|_2^2 \\ &\leq (1 - \eta\mu) \|x - \hat{\zeta}_N\|_2^2. \end{aligned}$$

958 For client i at local step r :

$$960 \quad \begin{aligned} \|\zeta_{i,r+1}^t - \hat{\zeta}_N\|_2^2 &= \|(\zeta_{i,r}^t - \eta \nabla \ell(\zeta_{i,r}^t) - \hat{\zeta}_N) + \eta (\nabla \ell(\zeta_{i,r}^t) - \nabla \ell_i(\zeta_{i,r}^t))\|_2^2 \\ &\leq (1 - \eta\mu) \|\zeta_{i,r}^t - \hat{\zeta}_N\|_2^2 + \eta^2 \|\nabla \ell(\zeta_{i,r}^t) - \nabla \ell_i(\zeta_{i,r}^t)\|_2^2 \end{aligned}$$

963 Iterating over E local steps gives

$$965 \quad \|\zeta_{i,E}^t - \hat{\zeta}_N\|_2^2 \leq (1 - \eta\mu)^E \|\zeta^t - \hat{\zeta}_N\|_2^2 + \eta^2 \sum_{r=0}^{E-1} (1 - \eta\mu)^{E-1-r} \|\nabla \ell_i(\zeta_{i,r}^t) - \nabla \ell(\zeta_{i,r}^t)\|_2^2.$$

968 Averaging over $i = 1, \dots, m$ and using convexity of squared norm:

$$970 \quad \|\zeta^{t+1} - \hat{\zeta}_N\|_2^2 \leq (1 - \eta\mu)^E \|\zeta^t - \hat{\zeta}_N\|_2^2 + \eta^2 \sum_{r=0}^{E-1} \frac{1}{m} \sum_{i=1}^m \|\nabla \ell_i(\zeta_{i,r}^t) - \nabla \ell(\zeta_{i,r}^t)\|_2^2.$$

972 Using L -smoothness and $\eta LE \leq 1/4$, one can show (via induction on r and triangle inequalities)
 973

$$974 \quad 975 \quad 976 \quad \frac{1}{m} \sum_{i=1}^m \|\nabla \ell_i(\zeta_{i,r}^t) - \nabla \ell(\zeta_{i,r}^t)\|_2^2 \leq \bar{G}^2,$$

977 where \bar{G}^2 is the heterogeneity measure. Summing over $r = 0, \dots, E-1$ gives
 978

$$979 \quad 980 \quad 981 \quad \eta^2 \sum_{r=0}^{E-1} \frac{1}{m} \sum_{i=1}^m \|\nabla \ell_i(\zeta_{i,r}^t) - \nabla \ell(\zeta_{i,r}^t)\|_2^2 \leq \eta^2 E^2 \bar{G}^2.$$

982 Combine the above:
 983

$$984 \quad \|\zeta^{t+1} - \hat{\zeta}_N\|_2^2 \leq (1 - \eta\mu)^E \|\zeta^t - \hat{\zeta}_N\|_2^2 + \eta^2 E^2 \bar{G}^2.$$

985 Let $s_t := \|\zeta^t - \hat{\zeta}_N\|_2^2$ and $\alpha := (1 - \eta\mu)^E$, $B := \eta^2 E^2 \bar{G}^2$. Then
 986

$$987 \quad 988 \quad 989 \quad s_{t+1} \leq \alpha s_t + B \quad \Rightarrow \quad s_T \leq \alpha^T s_0 + B \sum_{j=0}^{T-1} \alpha^j = \alpha^T s_0 + \frac{B(1 - \alpha^T)}{1 - \alpha} \leq \alpha^T s_0 + \frac{B}{1 - \alpha}.$$

990 This yields the desired bound
 991

$$992 \quad 993 \quad 994 \quad \|\zeta^T - \hat{\zeta}_N\|_2^2 \leq (1 - \eta\mu)^{ET} \|\zeta^0 - \hat{\zeta}_N\|_2^2 + \frac{\eta^2 E^2 \bar{G}^2}{1 - (1 - \eta\mu)^E}. \quad (10)$$

995 Since $1 - (1 - \eta\mu)^E \geq 1 - e^{-\eta\mu E} \geq \frac{1}{2} \min\{1, \eta\mu E\}$, the steady-state error is of order
 996 $O(\eta^2 E^2 \bar{G}^2 / (\eta\mu E)) = O(\eta E \bar{G}^2 / \mu)$, i.e., FedAvg converges linearly to a neighborhood of radius
 997 proportional to $\sqrt{\eta E \bar{G}^2 / \mu}$.
 998

999 Combining (9) and (10) with (8) gives the final result that
 1000

$$1001 \quad \|\zeta^T - \zeta^{\text{true}}\|^2 = O_p \left(\frac{\{(1 - \lambda)\|\mathcal{I}_\gamma\|_{\min} + \rho\}^{-1} + \{\lambda\|\mathcal{I}_\beta\|_{\min} + \rho\}^{-1}}{N} + \frac{\eta^2 E^2 \bar{G}^2}{1 - (1 - \eta\mu)^E} \right),$$

1003 as both $T, N \rightarrow \infty$, This along with $\bar{G}^2 \leq (1 - \lambda)^2 \bar{G}_{\text{client}}^2 + \lambda^2 \bar{G}_{\text{class}}^2$ completes the proof of the
 1004 theorem.
 1005

1006 F EXPERIMENT DETAILS

1008 F.1 VISUALIZATION OF COVARIATE SHIFT AND LABEL SHIFT

1009 In the main experiment, we simulate covariate shift by applying three distinct nonlinear transformations to each client's dataset. Specifically, we use gamma correction with $\gamma \in \{0.6, 1.4\}$, hue
 1010 adjustment with $\Delta h \in \{-0.1, 0.1\}$, and saturation scaling with $\kappa \in \{0.5, 1.5\}$. This creates $2^3 = 8$
 1011 unique combinations of transformations, corresponding to an 8-client setting where each client pos-
 1012 sses a visually distinct data distribution. A visualization of a single image sampled from CIFAR-
 1013 10 after applying these transformations is shown in Fig. 8. As can be clearly seen, the resulting
 1014 differences in feature distributions across clients are visually striking, highlighting the significant
 1015 covariate shift simulated in our experiments. We visualize the two types of label shift used in the
 1016 main experiment in Fig. 9. The figures show the number of samples from each class across 8 clients.
 1017 As observed, the 5-SPC setting assigns at most 5 classes to each client, whereas the Dir-0.3 setting
 1018 distributes more classes per client. Thus, the label shift under Dir-0.3 is less severe than under 5-
 1019 SPC. Our experimental results confirm this observation: all methods achieve higher performance
 1020 under the less severe Dir-0.3 case.
 1021

1023 F.2 SENSITIVITY ANALYSIS DETAILS

1024 For all subsequent sensitivity analyses, unless otherwise specified, we use CIFAR-10 under the Dir-
 1025 0.3 setting. The details of each experiment are provided below.
 1026

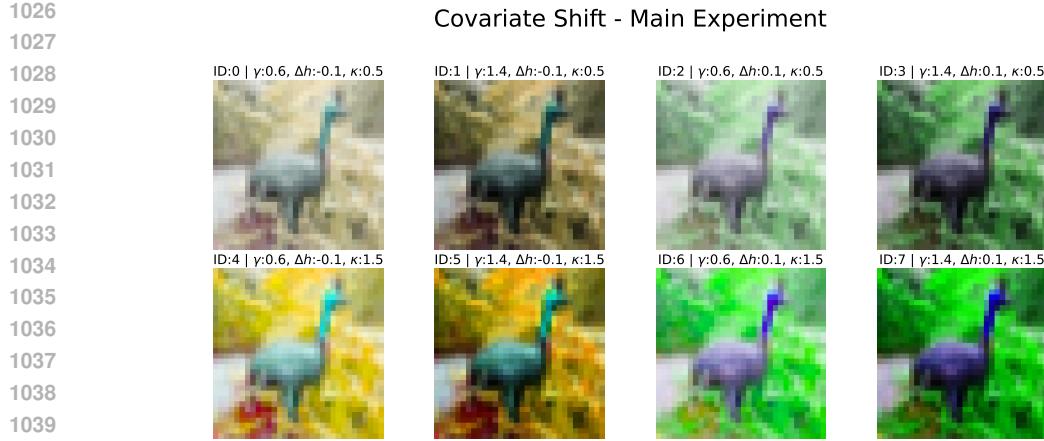


Figure 8: Visualization of a sample from CIFAR-10 under various nonlinear transformations.

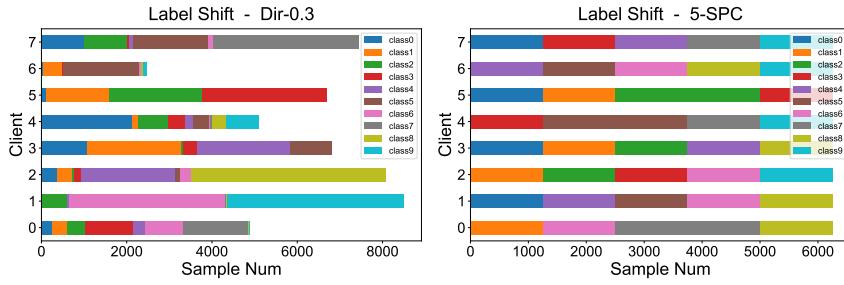


Figure 9: Visualization of client data distribution on CIFAR-10 under Dir-0.3 and 5-SPC settings.

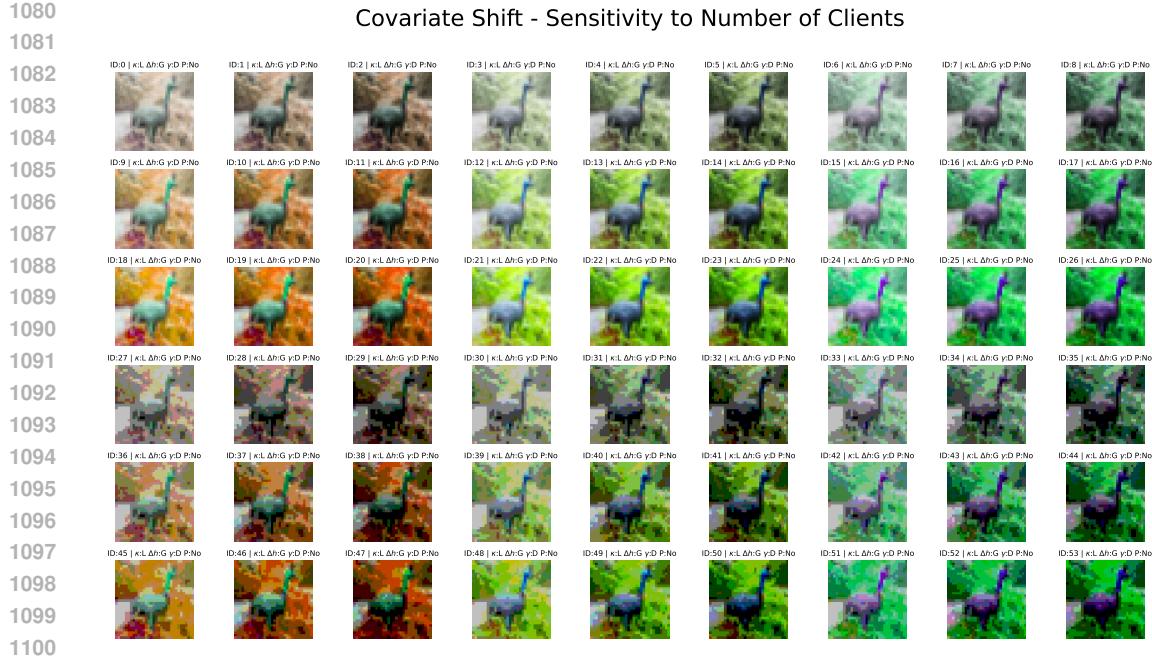
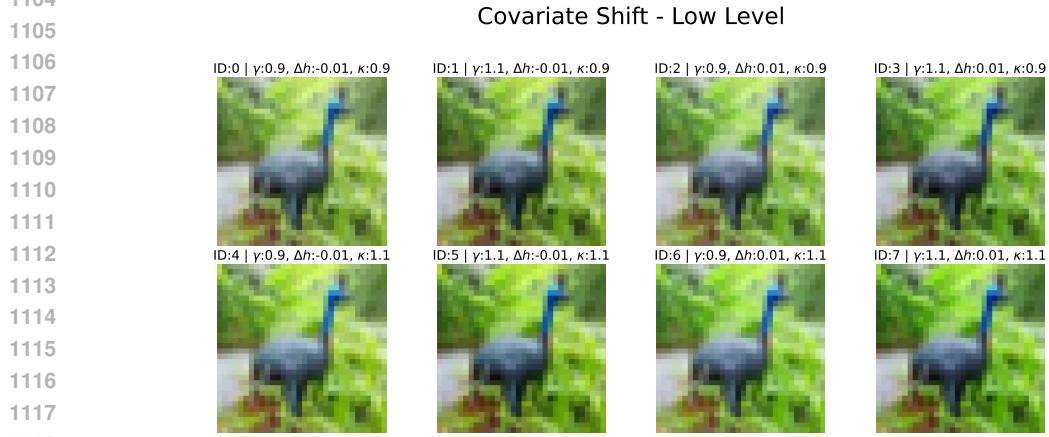
F.2.1 NUMBER OF CLIENTS

To investigate the impact of the number of clients, we adopt a more fine-grained strategy for simulating covariate shift. We expand the parameter space for each nonlinear transformation to three distinct values: gamma correction with $\gamma \in \{0.6, 1.0, 1.4\}$, hue adjustment with $\Delta h \in \{-0.15, 0.0, 0.15\}$, and saturation scaling with $\kappa \in \{0.4, 1.0, 1.6\}$. Furthermore, we introduce an additional binary transformation, posterization, which reduces the number of bits for each color channel to create a flattening effect on the image’s color palette. A visualization of these transformations is presented in Fig. 10. In the n -client setting, we apply the first n transformations from this pool.

In our experiments, we set the maximum number of clients to 32. This is due to two primary challenges. First, as the number of clients increases, the amount of data partitioned to each client diminishes significantly. This data scarcity creates a scenario where fine-tuning-based methods gain an inherent advantage, as each client’s local train and test distributions are identical. Second, it is hard to design a simulation strategy for covariate shift that is both sufficiently distinct and aligned with the model’s inductive bias when the number of clients becomes very large.

F.2.2 COVARIATE SHIFT INTENSITY

To evaluate the robustness of our method under varying degrees of covariate shift, we construct three intensity levels—low, mid, and high—by adjusting the parameter ranges of the nonlinear transformations. The specific value ranges for each level are detailed as follows: (1) **Low**: $\gamma \in \{0.9, 1.1\}$, $\Delta h \in \{-0.01, 0.01\}$, $\kappa \in \{0.9, 1.1\}$. (2) **Mid**: $\gamma \in \{0.75, 1.25\}$, $\Delta h \in \{-0.05, 0.05\}$, $\kappa \in \{0.7, 1.3\}$. (3) **High**: $\gamma \in \{0.6, 1.4\}$, $\Delta h \in \{-0.1, 0.1\}$, $\kappa \in \{0.5, 1.5\}$. Visualizations corresponding to these levels are presented in Fig. 11, Fig. 12, and Fig. 8. It can be seen that the induced covariate shift is nearly imperceptible at the low level and escalates to a stark distinction at the high level, clearly illustrating the progressive intensity of the shift.



F.2.3 BACKBONE SHARING STRATEGY

In our formulation, the target-class classification task uses the embedding $g_\theta(x)$ for an input feature x , while the client-classification task uses the embedding $h_\tau(g_\theta(x))$ for the same feature. Since both g_θ and h_τ are parameterized functions, the optimal sharing strategy between the two is not obvious. To explore this, we investigate four backbone-sharing strategies based on LeNet: no sharing, shallow sharing, mid sharing, and deep sharing. The network architectures are illustrated in Fig. 13. From (a) to (c), the discrepancy between the embeddings for the two tasks decreases, while the number of learnable parameters also reduces. Our empirical results in Fig. 6 show that all strategies perform similarly, with shallow sharing slightly ahead. However, given the substantial increase in parameters for shallow sharing, deep sharing offers a more parameter-efficient alternative while maintaining strong performance.

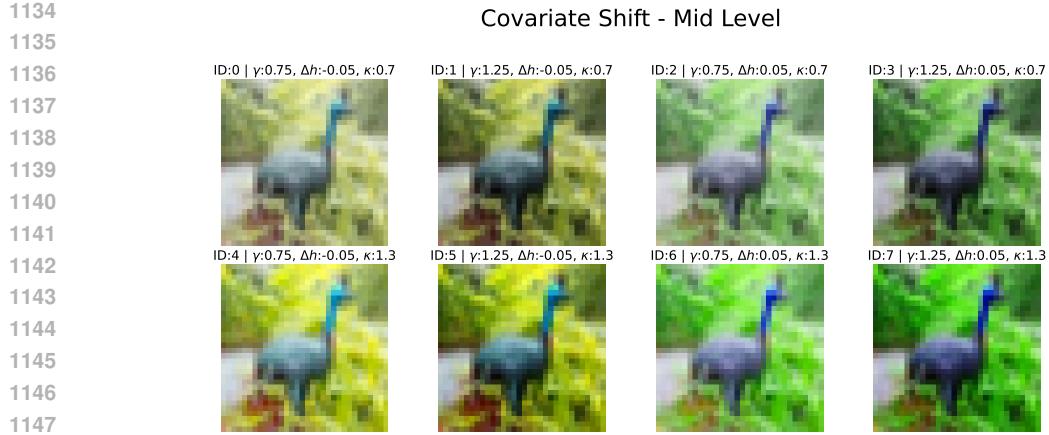


Figure 12: Visualization of a sample from CIFAR-10 under mid covariate shift intensity.

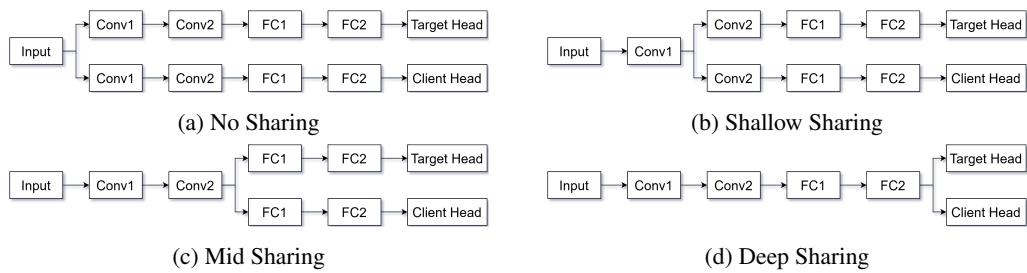


Figure 13: Visualization of the four different parameter sharing strategies.

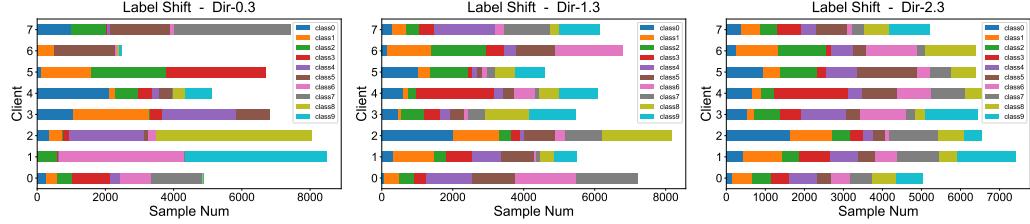


Figure 14: Visualization of client data distribution under Dir-0.3/1.3/2.3 settings.

Table 4: System accuracy and average accuracy under different Dirichlet parameter α values.

Method	System Accuracy			Average Accuracy		
	$\alpha = 0.3$	$\alpha = 1.3$	$\alpha = 2.3$	$\alpha = 0.3$	$\alpha = 1.3$	$\alpha = 2.3$
Ditto	47.64 ± 0.25	43.78 ± 0.23	44.04 ± 0.20	76.34 ± 0.11	55.56 ± 0.18	52.76 ± 0.18
FedRep	24.96 ± 0.19	35.45 ± 0.22	37.87 ± 0.22	76.49 ± 0.15	55.09 ± 0.17	52.95 ± 0.16
FedBABU	57.43 ± 0.17	54.60 ± 0.19	54.25 ± 0.20	78.22 ± 0.14	61.61 ± 0.16	59.83 ± 0.20
FedPAC	25.14 ± 0.21	35.53 ± 0.21	37.84 ± 0.20	76.53 ± 0.13	55.08 ± 0.15	52.95 ± 0.16
FedALA	61.33 ± 0.17	48.47 ± 0.18	46.68 ± 0.20	64.35 ± 2.40	49.14 ± 0.62	47.29 ± 0.50
FedAS	28.76 ± 0.19	41.43 ± 0.20	46.08 ± 0.22	78.69 ± 0.17	59.83 ± 0.19	58.17 ± 0.18
ConFREE	25.66 ± 0.22	36.12 ± 0.21	38.78 ± 0.23	76.73 ± 0.16	55.56 ± 0.18	53.58 ± 0.15
FedAvgFT	54.90 ± 0.22	54.80 ± 0.18	55.61 ± 0.19	79.08 ± 0.11	62.87 ± 0.16	61.94 ± 0.17
FedProxFT	55.01 ± 0.20	54.84 ± 0.15	55.62 ± 0.18	79.07 ± 0.12	62.84 ± 0.15	61.86 ± 0.19
FedSAMFT	55.83 ± 0.21	49.15 ± 0.17	47.71 ± 0.16	75.53 ± 0.11	55.46 ± 0.19	53.54 ± 0.15
FedDRM	63.85 ± 0.18	56.83 ± 0.18	56.00 ± 0.23	80.25 ± 0.14	64.04 ± 0.16	62.30 ± 0.15

1188
1189

F.2.4 LABEL SHIFT INTENSITY

1190 To evaluate the robustness of our method under varying degrees of label shift, we compare our
 1191 method with the baselines across a range of Dirichlet parameters $\alpha \in \{0.3, 1.3, 2.3\}$. Visualiza-
 1192 tions corresponding to these settings are presented in Fig. 14. The corresponding results for system
 1193 accuracy and average accuracy are presented in Tab. 4.

1194 Consistent with prior work (Xu et al., 2023), we can see that smaller α values—corresponding
 1195 to higher data heterogeneity—lead to higher average accuracy for all methods. This occurs because
 1196 each client’s training and testing data are drawn from the same distribution. As α decreases, the local
 1197 label distributions become increasingly skewed, with some classes receiving negligible probability
 1198 mass. This effectively reduces the number of classes present on each client, thereby simplifying
 1199 the local classification problem relative to the balanced case. For system accuracy, we find that this
 1200 trend persists for our method, as the only additional component is the client-routing step, which does
 1201 not alter the underlying behavior of local classification. In contrast, methods such as FedRep exhibit
 1202 increasing system accuracy as α grows (i.e., as the label distributions become more homogeneous).
 1203 When α is small, the local models become highly personalized and fail to reach a consistent consen-
 1204 sus across clients, causing majority voting to misroute queries and thus lowering system accuracy.
 1205 As α increases, this inconsistency diminishes, and the aggregated routing accuracy improves. These
 1206 results further confirm that our method remains robust across varying degrees of label shift.

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241