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ABSTRACT

The excessive memory and energy consumption of modern Artificial Neural Net-
works (ANNs) is posing limitations on the machines that can run these models.
Sparsification of ANNs is often motivated by time, memory and energy savings
only during model inference, yielding no benefits during training. A growing
body of work is now focusing on providing the benefits of model sparsification
also during training. While these methods improve the energy efficiency during
training, the algorithms yielding the most accurate models still have a peak mem-
ory usage on the same order as the dense model. We propose a Dynamic Sparse
Training (DST) algorithm that reduces the peak memory usage during training
while preserving the energy advantages of sparsely trained models. We evaluate
our algorithm on CIFAR-10/100 using ResNet-56 and VGG-16 and compare it
against a range of sparsification methods. The benefits of our method are twofold:
first, it allows for a given model to be trained to an accuracy on par with the dense
model while requiring significantly less memory and energy; second, the savings
in memory and energy can be allocated towards training an even larger sparse
model on the same machine, generally improving the accuracy of the model.

1 INTRODUCTION

Artificial Neural Networks (ANN) are currently the most prominent machine learning method be-
cause of their superiority in a broad range of applications, including computer vision (O’Mahony
et al., 2019; Voulodimos et al., 2018; Guo et al., 2016a), natural language processing (Otter et al.,
2020; Young et al., 2018), and reinforcement learning (Schrittwieser et al., 2020; Arulkumaran et al.,
2017), among many others (Wang et al., 2020; Zhou et al., 2020; Liu et al., 2017). However, as
ANNs keep increasing in size to further improve their representational power (Du et al., 2019; No-
vak et al., 2018), the memory and energy requirements to train and make inferences with these
models becomes a limiting factor (Hwang, 2018; Ahmed & Wahed, 2020).

The scaling problem of ANNs is most prominent in the fully-connected layers, or the dense part of
an ANN that includes multiplication with a weight matrix that scales quadratically with the number
of units, making very wide ANNs infeasible. This problem is exacerbated as ANNs learn from high-
dimensional inputs such as video and spatial data (Garcia-Garcia et al., 2018; Ma et al., 2019) and
produce high-dimensional representations for many-classes classification or generative models for
images and video (Mildenhall et al., 2021; Ramesh et al., 2021), all of which are gaining importance.

A large body of work has addressed the scaling problem (Reed, 1993; Gale et al., 2019; Blalock et al.,
2020; Hoefler et al., 2021), many studies look into sparsity of the weight matrix as a solution based
on the observation that the weight distribution of a dense model at the end of training often has a peak
around zero, indicating that the majority of weights contribute little to the function being computed
(Han et al., 2015). By utilizing sparse matrix representations and operations, the floating-point
operations (FLOPS), and thus the energy usage, of a model can be reduced dramatically. Biological
neural networks have also evolved to utilize sparsity, which is seen as an important property for
learning efficiency (Pessoa, 2014; Bullmore & Sporns, 2009; Watts & Strogatz, 1998).

Early works in ANN sparsity removed connections, a process called pruning, of a trained dense
model based on the magnitude of the weights (Janowsky, 1989; Ström, 1997), resulting in a more
efficient model for inference. While later works improved upon this technique (Guo et al., 2016b;
Dong et al., 2017; Yu et al., 2018), they all require at least the cost of training a dense model, yielding
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no efficiency benefit during training. This limits the size of sparse models that can be trained on a
given machine by the largest dense model it can train.

In light of this limitation, the Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018), surpris-
ingly, hypothesized that there exists a subnetwork within a dense over-parameterized model that
when trained with the same initial weights will result in a sparse model with comparable accuracy to
that of the dense model. However, the proposed method for finding a Winning Ticket within a dense
model is very compute intensive, as it requires training the dense model (typically multiple times)
to obtain the subnetwork. Morover, later work weakened the hypothesis for larger ANNs (Frankle
et al., 2019). Despite this, it was still an important catalyst for new methods that aim to find the
Winning Ticket more efficiently.

Efficient methods for finding a Winning Ticket can be categorized as: pruning before training and
Dynamic Sparse Training (DST). The before-training methods prune connections from a randomly
initialized dense model (Lee et al., 2018; Wang et al., 2019; Tanaka et al., 2020). In contrast, the
DST methods start with a randomly initialized sparse model and change the connections dynami-
cally during training, maintaining the overall sparsity (Mocanu et al., 2018; Mostafa & Wang, 2019;
Evci et al., 2020). In practice, DST methods generally achieve better accuracy than the pruning
before training methods (Wang et al., 2019). In addition, the DST methods do not need to represent
the dense model at any point, giving them a clear memory efficiency advantage, an important prop-
erty for our motivation. The first DST method was Sparse Evolutionary Training (SET) (Mocanu
et al., 2018). SET removes the connections with the lowest weight magnitude, a common pruning
strategy (Mostafa & Wang, 2019; Dettmers & Zettlemoyer, 2019; Evci et al., 2020), and grows new
connections uniformly at random. RigL (Evci et al., 2020) improved upon SET by growing the con-
nections with the largest gradient magnitude instead. These connections are expected to get large
weight magnitudes as a result of gradient descent optimization.

While these methods drastically reduce the FLOPS required to train sparse models, the pruning
before training methods and RigL share an important limitation: they have a peak memory usage
during training on the same order as the dense model. This is because the pruning before training
methods use the dense randomly initialized model, and RigL requires the periodic computation of
the gradient with respect to the loss for all possible connections. We present a DST algorithm that
reduces the peak-memory usage to the order of a sparse model while maintaining the improvements
in compute and achieving the same accuracy as RigL. We achieve this by efficiently sampling a
subset of the inactive connections using a heuristic of the gradient magnitude. We then only evaluate
the gradient on this subset of connections. Interestingly, the size of the subset can be on the same
order as the number of active connections, therefore reducing the peak memory to the order of the
sparse model. We evaluate the accuracy of our method on CIFAR-10/100 using ResNet-56 and
VGG-16 models and compare it against a range of sparsification methods at sparsity levels of 90%,
95%, and 98%. The benefits of our method can be utilized in the following two ways:

1. It allows for a given model to be trained to an accuracy on par with the dense model while
requiring significantly less memory and energy.

2. The savings in memory and energy can be allocated towards training an even larger sparse
model on the same machine, generally improving the accuracy of the model.

2 RELATED WORK

A variety of methods have been proposed that aim to reduce the size of ANNs, such as dimension-
ality reduction of the model parameters (Jaderberg et al., 2014; Novikov et al., 2015), and weight
quantization (Gupta et al., 2015; Mishra et al., 2018). However, we are interested in model sparsifi-
cation methods because they reduce both the size and the FLOPS of a model. Following Wang et al.
(2019), we categorize the sparsification methods as: pruning after training, pruning during training,
pruning before training, and Dynamic Sparse Training.

After training The first pruning algorithms operated on dense trained models, pruning the connec-
tions with the smallest weight magnitude (Janowsky, 1989; Thimm & Fiesler, 1995; Ström, 1997;
Han et al., 2015). This method was later generalized to first-order (Mozer & Smolensky, 1988;
Karnin, 1990; Molchanov et al., 2019a;b) and second-order (LeCun et al., 1989; Hassibi & Stork,
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1992) Taylor polynomials of the loss with respect to the weights. These methods can be interpreted
as calculating an importance score for each connection based on how its removal will effect the loss
(Guo et al., 2016b; Dong et al., 2017; Yu et al., 2018).

During training Gradual pruning increases the sparsity of the model during training till the de-
sired sparsity is reached (Zhu & Gupta, 2017; Liu et al., 2021a). Kingma et al. (2015) introduced
variational dropout which adapts the dropout rate of each unit during training, Molchanov et al.
(2017) showed that pruning the units with the highest dropout rate is an effective way to sparsify
a model. Louizos et al. (2018) propose a method based on the reparameterization trick that allows
to directly optimize the L0-norm, which penalizes the number of non-zero weights. Alternatively,
DeepHoyer is a differentiable regularizer with the same minima as the L0-norm (Yang et al., 2019).

Before training The Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018; Frankle et al.,
2019) started a line of work that aims to find a sparse model by pruning a dense model before
training (Liu et al., 2018). SNIP (Lee et al., 2018) uses the sensitivity of each connection to the
loss as the importance score of a connection. GraSP (Wang et al., 2019) optimizes gradient flow to
accelerate training, however, Lubana & Dick (2020) argue that preserving gradient flow instead is a
better approach. Tanaka et al. (2020) highlight a problem in the aforementioned methods: they suffer
from layer collapse in high sparsity regimes, that is, during the pruning phase all the connections
of a layer can be removed, making the model untrainable. They propose SynFlow, which prevents
layer collapse by calculating how each connection contributes to the flow of information using a
path regularizer (Neyshabur et al., 2015b), similar to (Lee et al., 2019).

Dynamic Sparse Training The methods in this last category, including ours, maintain the same
sparsity throughout training but periodically rewire a fraction of the active connections. This in-
volves periodically pruning a fraction of active connections, followed by growing the same number
of inactive connections. SET (Mocanu et al., 2018) was the first method and used simple magni-
tude pruning and random growing of connections. DeepR (Bellec et al., 2018) assigns a fixed sign
to each connection at initialization and prunes those connections whose sign would change during
training. DSR (Mostafa & Wang, 2019) prunes connections with the lowest global weight mag-
nitude and uses random growing, allowing the connections to be redistributed over the layers and
used in layers where they contribute the most. SNFS (Dettmers & Zettlemoyer, 2019) improves
upon the previous methods by using an informed growing criteria: it grows the connections with the
largest gradient momentum magnitude. RigL (Evci et al., 2020) makes this more efficient by only
periodically calculating the gradient with respect to all possible connections. We propose another
efficiency improvement by only calculating the gradient periodically on a subset of the connections.

3 METHOD

While RigL (Evci et al., 2020) is currently the best DST method in terms of accuracy and efficiency,
it has an important limitation: it evaluates the gradient magnitude with respect to the loss for every
possible connection during the growing step. This means that it requires enough memory to store
a gradient for every possible connection, which is the same as the memory requirement for storing
the dense model. This is important because the memory requirements dictate the machine that can
train a model. Our main contribution is a more efficient growing algorithm in terms of compute and
memory. Specifically, we only calculate the gradients on a subset S ⊂ W of all possible connections
W, illustrated in Figure 1. Periodically, the subset is randomly sampled during each growing step
from a probability distribution based on a heuristic of the gradient magnitude. In this section we
explain which heuristics were considered and how to efficiently sample from their distributions in
the case of fully-connected layers. We provide a discussion in Appendix C on how to apply these
heuristics to convolutional layers.

Perhaps the simplest heuristic is to sample the subset S from a uniform distribution over the inactive
connections W \ A, where A denotes the set of active connections. A connection e ∈ W is fully
specified by the input and output units it connects, i.e., (a, b) = e. Thus, to ensure an efficient
sampling process, we can sample connections at random by independently sampling from distribu-
tions over the input and output units of a layer, which is equivalent to a joint probability distribution
over all the connections in the layer. This ensures that the probability of sampling each connection
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Figure 1: The illustrated set sizes of a pruning and growing round in RigL (left) and our method
(right). Where W is the set of all possible connections, A the set of active connections, P the set of
pruned connections, G the set of grown connections, and S the subset of inactive connections. The
gray solid filled area becomes the set of active connections at the next time step.

is never explicitly represented, only the probability of sampling each unit is represented, which is
more efficient. Formally, to create the subset we sample from the discrete uniform distributions over
the input and output units of a layer l such that the sampled connections are not active connections:

ai ∼ U
{
1, . . . , n[l−1]

}
, bi ∼ U

{
1, . . . , n[l]

}
, s.t. (ai, bi) /∈ A (1)

where n[l] denotes the number of units in the l-th layer. Note that we abuse the notation of the
various connection sets to be per layer or global interchangeably. Interestingly, sampling the subset
uniformly at random in this way can be seen as the interpolation between SET and RigL, when |S|
is equal to the size of the set of grown connections |G| it simplifies to SET and when |S| is equal to
the number of possible connections |W| it simplifies to RigL.

In general, we sample the endpoints of the connections in the l-th layer from the discrete probability
distributions ai ∼ f[l] and bi ∼ g[l] such that the sampled connections are not active connections.
In this general setting, the distributions f and g don’t need to be uniform, it might instead be useful
to bias the subset towards connections that are more likely to have a large gradient magnitude and
therefore serve as a better heuristic. To this end, we investigate two other distributions: the first uses
the gradient of synaptic flow which measures how much an inactive connection would contribute to
the overall connectivity of the model; and the second uses an upper bound of the gradient magnitude.
In Section 4.2 we assess which of these heuristics is most appropriate for training sparse models.

3.1 SYNAPTIC FLOW (SYNFLOW)

First introduced by Neyshabur et al. (2015b), the path regularizer measures the contribution of each
connection to the overall synaptic flow, for example, a given connection contributes more when it
has strong afferent and efferent connections, even though its weight might not be particularly large.
This regularizer was used to train unbalanced ANNs more effectively (Neyshabur et al., 2015a). In
the context of model sparsification, Tanaka et al. (2020) used the path regularizer R(θ) in Equation 2.
Their pruning before training algorithm, named SynFlow, prunes connections using a generalization
of the weight magnitude M(θ) with the goal of preventing layer collapse. We use θ to denote all the
parameters and use θ[l] as the notation for the sparse weight matrix of the l-th layer.

R(θ) = 1T

(
L∏

l=1

∣∣∣θ[l]∣∣∣)1, M(θ) =
∂R(θ)

∂θ
⊙ θ (2)

Our motivation differs from that of Tanaka et al. (2020). We are interested in SynFlow because the
connectivity of a unit can be used as a heuristic of the gradient magnitude. Intuitively, a connection
with strong synaptic flow to its input unit and from its output unit is more likely to have a large
gradient magnitude. This is due to the gradient information propagating over those same strong
connections. From the perspective of a single layer, we sample an input unit proportionally to its
afferent synaptic flow and an output unit proportionally to its efferent synaptic flow as follows:

f[l] :=
1T
(∏l−1

k=1

∣∣θ[k]∣∣)
1T
(∏l−1

k=1

∣∣θ[k]∣∣)1 , g[l] :=

(∏L
k=l+1

∣∣θ[k]∣∣)1
1T
(∏L

k=l+1

∣∣θ[k]∣∣)1 (3)
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The SynFlow heuristic only requires a single forward and backward pass to evaluate the afferent and
efferent synaptic flow for all layers. This is achieved by creating a copy of the model whose weights
take the absolute value of the original weights and passing it an all ones input vector. In addition,
the nonlinearities of this model copy need to be linear in the positive domain.

3.2 GRADIENT MAGNITUDE UPPER BOUND (GRABO)

Since we are ultimately interested in finding the inactive connections with the largest gradient mag-
nitude, sampling connections with a probability proportional to their gradient magnitude would be
an ideal heuristic. The gradient magnitude for a single connection can be expressed as follows:∣∣∣∇θ[l]

∣∣∣ = ∣∣∣∣(h[l−1]
)T

δ[l]
∣∣∣∣ =⇒

∣∣∣∇θ
[l]
a,b

∣∣∣ = ∣∣∣∣∣
B∑
i=1

h
[l−1]
i,a δ

[l]
i,b

∣∣∣∣∣ (4)

where h[l] and δ[l] are the activation and gradient of the loss at the output units of the l-th layer,
respectively. This simplifies to

∣∣∣h[l−1]
1,a δ

[l]
1,b

∣∣∣ when the batch size B is 1. The simplified expression
can then be used to sample connections efficiently according to:

f[l] :=

∣∣∣h[l−1]
1,·

∣∣∣
1T
∣∣∣h[l−1]

1,·

∣∣∣ , g[l] :=

∣∣∣δ[l]1,·∣∣∣
1T
∣∣∣δ[l]1,·∣∣∣ (5)

This induces a joint probability distribution that is proportional to the gradient magnitude only when
the batch size is 1. In practice, however, training samples come in mini batches during gradient
descent in order to reduce the variance of the gradient. This means that Equation 5 does not induce
the correct distribution.

Instead, we sample connections proportionally to the following upper bound of the gradient magni-
tude which enables efficient sampling, even with mini batches:

∣∣∣∇θ[l]
∣∣∣ = ∣∣∣∣(h[l−1]

)T
δ[l]
∣∣∣∣ ≤

(
B∑
b

∣∣∣h[l−1]
b,·

∣∣∣)T( B∑
b

∣∣∣δ[l]b,·∣∣∣
)

(6)

The proof for Equation 6 involves the triangle inequality and is provided in Appendix D. Connec-
tions are then sampled from the following probability distributions:

f[l] :=

∑B
i

∣∣∣h[l−1]
i,·

∣∣∣∑B
i 1T

∣∣∣h[l−1]
i,·

∣∣∣ , g[l] :=

∑B
i

∣∣∣δ[l]i,·∣∣∣∑B
i 1T

∣∣∣δ[l]i,·∣∣∣ (7)

This particular upper bound has the property that Equation 7 simplifies to Equation 5 when B = 1.
The implementation of this heuristic has the advantage that it does not require any modifications to
the model, as is the case with the SynFlow heuristic. Yet it still only requires a single forward and
backward pass to evaluate the distributions.

4 EXPERIMENTS

At this point, the foremost question is: what is the minimum size of the subset that maintains the
maximum accuracy? We answer this question in Section 4.2 and then compare the accuracy of
our method against other sparsification methods in Section 4.3. Lastly, in Section 4.4 we explore
the relation between the width of a model and its accuracy while keeping the number of active
connections constant across all model widths by increasing the sparsity of wider models.

4.1 EXPERIMENT SETUP

We evaluate our method and compare it to baselines on the CIFAR-10 and CIFAR-100 datasets
(Krizhevsky et al., 2009). To establish how each method compares across model architectures we
experiment with ResNet-56 (He et al., 2016) and use a 4 times downscaled version of VGG-16
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(Simonyan & Zisserman, 2014) such that both models have roughly the same number of parameters.
The bias and batch-norm parameters are kept dense since they only contribute marginally to the size
of the model. We repeat each experiment 3 times across different seeds and report the mean and plot
the 95th percentile. We adopt the implementation of the baselines based on their available code.

All experiments use the same optimization settings in order to isolate the differences in sparsifi-
cation. Similar to Evci et al. (2020) and Lubana & Dick (2020), we use SGD with a momentum
coefficient of 0.9, an L2 regularization coefficient of 0.0001, and an initial learning rate of 0.1 which
is dropped by a factor of 10 at epochs 80 and 120. We use a batch size of 128 and train for a max-
imum of 200 epochs. Training stops early when the loss does not improve for 50 epochs. We also
apply standard data augmentation to the training data, including random flips and crops.

The LTH procedure described by Frankle & Carbin (2018), denoted as Lottery in the results, uses
iterative pruning with iterations at 0%, 50%, 75%, 90%, 95% and 98% sparsity. The gradual pruning
method by Zhu & Gupta (2017), denoted as Pruning in the results, reaches the target sparsity at the
second learning rate drop and prunes connections every 1000 steps. The pruning before training
methods use one iteration over all the training data to prune the dense model to the target sparsity.
All the DST methods use the same update schedule: the connections are updated every 1000 steps,
and similar to Evci et al. (2020), the fraction of active connections that is pruned is cosine annealed
from 0.2 to 0.0 at the second learning rate drop. This is because Liu et al. (2021a) showed that DST
methods struggle to recover from pruning when the learning rate is low.

It is important to note, given our motivation, that the DST methods initialize the sparse model in a
way that does not require to represent or store the dense model at any time. In particular, each layer
is initialized as a random bipartite graph using the Erdős–Rényi G(n,M) random graph generation
algorithm (Erdős & Rényi, 1959). The weights of the random sparse model are initialized using the
procedure proposed by Evci et al. (2019) which adapts standard weight initialization to take into
account the actual fan-in of each unit in order to properly scale the weight distribution for each unit.

Although the sparsity at initialization is assigned uniformly to all the layers, the pruning and grow-
ing procedures are applied globally. This means that the pruned connections are dynamically redis-
tributed across layers throughout training, maintaining the overall sparsity. This approach generally
outperforms local, layer-wise sparsity (Mostafa & Wang, 2019). To ensure stable training we found
that it is important to sample the subset layer-wise, i.e., the subset size of a layer is proportional to
the size of W of that layer. The grown connections are then taken globally again as the connections
among all subsets that have the largest gradient magnitude.

4.2 SIZE OF THE SUBSET

First, we want to determine how the size of the subset affects the accuracy. In addition, we are
interested in comparing the accuracy obtained by the three heuristics. The size of the subset is set
proportionally to the number of pruned connections |P|, with |S| being {1, 2, 4, 6, 8, 10} times |P|.
Note that when |S| = |P| = |G|, i.e., when the multiplier is one, our method is identical to SET in
the case of the random heuristic. The results are shown in Figure 2 where the size of the subset is
expressed as a fraction of |W| instead. The results include the baseline accuracy of SET and RigL.
The extended results in Appendix E show the same trends and include 90% and 95% sparsity.
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Figure 2: The accuracy of the heuristics while increasing the subset size S as a fraction of |W|.
Showing ResNet-56 and VGG-16 models trained on the CIFAR-10/100 datasets with 98% sparsity.
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Remarkably, it is enough for the subset to contain only 3% of all the connections and still consis-
tently achieves the accuracy of RigL. This is on the same order of connections as the number of active
connections, thus reducing the peak memory usage to that on the order of the sparse model. The
same trend appears among all the heuristics, but in general the GraBo heuristic reaches the max-
imum accuracy at smaller subset sizes. The SynFlow heuristic, in turn, outperforms the Random
heuristic, indicating that our method indeed benefits from using informed heuristics. Interestingly,
with ResNet-56 our method outperforms RigL when the subset size contains 4% of all the connec-
tions, however, this trend is not present for VGG-16 nor does it appear at lower sparsity levels where
the accuracy of our method is on par with RigL.

4.3 COMPARISON WITH RELATED WORK

We also compare our method to a broad range of sparsification methods in Table 1. The Random
method denotes training a static random sparse model, and SynFlow (Tanaka et al., 2020) is the
pruning before training method, not to be confused with our method and the SynFlow heuristic. The
other baselines are Lottery (Frankle & Carbin, 2018), Pruning (Zhu & Gupta, 2017), SNIP (Lee
et al., 2018), GraSP (Wang et al., 2019), |GraSP| (Lubana & Dick, 2020), SET (Mocanu et al.,
2018), and RigL (Evci et al., 2020). Our results in Table 1 use the GraBo heuristic with the subset
size being 10 times the number of pruned connections.

Table 1: Top-1 accuracy of ResNet-56 and VGG-16 on CIFAR-10 and CIFAR-100

Dataset CIFAR-10 CIFAR-100

Model ResNet-56 VGG-16 ResNet-56 VGG-16
Dense 91.87 89.31 68.80 62.50

Sparsity 90% 95% 98% 90% 95% 98% 90% 95% 98% 90% 95% 98%
Lottery 89.18 87.90 84.40 87.82 86.12 82.42 61.58 57.44 48.82 53.67 48.10 38.36
Pruning 90.20 89.09 86.71 88.52 87.70 86.20 66.62 63.77 57.13 57.89 55.20 45.93

Random 88.85 86.88 73.98 83.11 77.59 58.95 60.68 51.64 31.43 46.83 37.39 21.29
SNIP 89.89 88.29 84.67 87.15 84.19 72.78 62.15 56.33 43.48 52.80 45.85 16.09
GraSP 87.48 86.58 81.88 85.97 84.58 80.24 58.13 52.78 37.83 51.56 46.45 35.19
|GraSP| 89.19 87.51 82.04 85.89 82.10 34.73 42.60 22.38 11.74 52.04 44.25 01.00
SynFlow 89.70 88.42 85.14 87.72 85.78 80.03 61.79 54.06 35.27 53.04 47.25 35.02

SET 89.89 88.29 84.67 86.10 83.34 73.12 63.90 58.04 45.91 52.77 44.82 29.82
RigL 90.55 89.29 85.62 88.33 86.24 81.09 64.91 59.88 49.00 54.82 49.01 37.16
Ours 90.56 89.29 86.08 87.80 86.14 80.58 64.72 60.05 49.14 54.76 48.68 37.17

Among the sparse training methods (from Random downwards in Table 1) our method and RigL out-
perform the other methods consistently over all datasets, sparsities, and model architectures. While
at 90% sparsity all the methods achieve comparable accuracy, at the extreme sparsity rate of 98%,
differences between methods become more evident. We see that gradually pruning connections dur-
ing training (Pruning) can improve the accuracy quite significantly, especially in the extreme sparsity
regimes. However, this comes at the cost of training the dense model, thus requiring significantly
more memory and energy. We see this as motivation for research into sparse training methods which
further increases their accuracy while preserving their efficiency advantage.

4.4 THE VALUE OF DIMENSIONS

In our final experiment we investigate how the width of the model affects the accuracy when the
number of active parameters is kept constant. The width is used to multiply the number of filters in
convolution layers and units in fully-connected layers. The results are presented in Table 2.

While basic machine learning theory tells us that the complexity of a function is directly related to
the number of parameters, the results indicate that there are ways to use a certain parameter budget
more effectively. Another classical example of this is the convolutional layer, its success stems from
its parameter efficiency by consistently outperforming fully-connected layers with the same number
of parameters in vision tasks. However, an important distinction with sparse methods is that there is
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Table 2: Effect of network width on CIFAR-100

Model ResNet-56 VGG-16

Width |W| Sparsity Top-1 acc. |W| Sparsity Top-1 acc.

1.0 0.9M 0% 68.80 0.9M 0% 62.50
1.5 1.9M 55% 71.46 2.1M 55% 65.86
2.0 3.4M 75% 72.07 3.8M 75% 67.18
2.5 5.3M 84% 72.56 5.9M 84% 67.86
3.0 7.6M 89% 72.21 8.4M 89% 68.37
3.5 10.4M 92% 72.75 11.5M 92% 68.32
4.0 13.6M 94% 72.70 15.0M 94% 68.45

no inherent bias from human design, i.e., the active connections are found as a result of the training
process and not hand crafted as is the case with convolutional layers.

Moreover, the results indicate that enabling training of larger models on the same machine because
of the memory and compute savings of our method translates to increased accuracy (up to a certain
sparsity level). These findings are similar to those from Zhu & Gupta (2017), however, our method
enables a sparse model to be trained whose dense version would not fit on a given machine, enabling
any given machine to train more accurate models.

5 DISCUSSION

We conjecture that the higher accuracy achieved by gradual pruning (Zhu & Gupta, 2017) is, at least
partly, because it considers the entire connection search space, whereas our method and RigL use a
greedy exploration algorithm, the gradient magnitude. This topic has been investigated by Liu et al.
(2021a;b), who improve the performance of RigL by increasing the search space. We consider these
extensions orthogonal to our work as they benefit from incorporating our method as well.

Mocanu et al. (2018) and Evci et al. (2020) differentiate between three sparsity distribution strate-
gies: uniform, Erdős–Rényi, and Erdős–Rényi-Kernel. The later two are for fully-connected and
convolutional layers, respectively, and assign a relative higher sparsity to layers with many possible
connections. For simplicity, our experiments use a uniform sparsity distribution but we note that our
method works with any of the improved sparsity distributions.

Like many other methods, we use magnitude pruning throughout training. With pruning before
training, layer collapse has been observed as a result of magnitude pruning when a model is pruned
to high levels of sparsity. Tanaka et al. (2020) investigated layer collapse and found that the training
process is implicitly regularizing the magnitudes of the connections which minimizes the risk of
layer collapse during DST. In addition, magnitude pruning is also very efficient, finding the top-k
among a set of weights has a complexity of O(|A| log |P|).
Like Dettmers & Zettlemoyer (2019), our implementation is build using PyTorch and uses masked
weights to simulate sparse neural networks. This is because support for sparse matrix operations
in machine learning frameworks is currently incomplete. We therefore cannot provide any concrete
measurements on memory savings. We leave it to follow up studies to implement our method in an
efficient sparse manner to evaluate the practical memory savings of our method. Our work focuses
on the theoretic and algorithmic aspects of a more memory efficient dynamic spare training method.

Lastly, we provide plots of the layer-wise sparsity of every method on each model, dataset, and at
sparsity levels of 90%, 95%, and 98%. This information provides insight into how each method
distributes the available connections over the layers of a model. Since this data is not essential to the
conclusion of our paper we provide them as supplementary material in Appendix F.

6 CONCLUSION

We present a dynamic sparse training algorithm that reduces the peak memory during training while
maintaining the same accuracy as the current best methods. This is achieved by only evaluating the
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gradient for a subset of the connections instead of all possible connections. Our method achieves the
same accuracy while evaluating the gradient for only 3% of the connections at 98% sparsity. The
connections in the subset are sampled proportionally to a heuristic of the gradient magnitude. We
compare three heuristics: uniform, the gradient of synaptic flow, and the upper bound of the gradient
magnitude. We find that the upper bound of the gradient magnitude generally reaches the maximum
accuracy at smaller subset sizes. In addition, the GraBo heuristic is also easier to implement as
it doesn’t require a model copy, like the SynFlow heuristic, therefore we conclude that the GraBo
heuristic is the most appropriate for sparse training. Lastly, we show that the savings in memory
and compute can be allocated towards training even wider models to achieve better accuracy. Our
method reduces the peak memory usage to the order of a sparse gradient update, enabling a given
model to be trained on a machine with less memory.

REPRODUCIBILITY

To ensure reproducability we used standard model architectures and stated any modifications in
Section 4.1. We used the CIFAR-10/100 datasets with their train and test split as provided by the
Torchvision library. The optimizer settings are stated in Section 4.1. The data normalization and
augmentation settings are specified in Appendices A and B, respectively. We provide a proof of the
gradient magnitude upper bound used in Section 3.2 in Appendix D. The procedure for sampling
the subset in convolutional layers is described in Appendix C. Additional implementation details are
provided in Appendix G. Our aim is to open source the code for the experiments but as of the paper
deadline this is pending legal approval.
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Paul Erdős and Alfréd Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 6:290,
1959.

Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich Elsen. The difficulty of training sparse
neural networks. arXiv preprint arXiv:1906.10732, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2018.

9



Under review as a conference paper at ICLR 2023

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Pablo
Martinez-Gonzalez, and Jose Garcia-Rodriguez. A survey on deep learning techniques for image
and video semantic segmentation. Applied Soft Computing, 70:41–65, 2018.

Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S Lew. Deep learning
for visual understanding: A review. Neurocomputing, 187:27–48, 2016a.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. Advances
in neural information processing systems, 29, 2016b.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International conference on machine learning, pp. 1737–1746.
PMLR, 2015.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Advances in neural information processing systems, 5, 1992.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. J. Mach.
Learn. Res., 22(241):1–124, 2021.

Tim Hwang. Computational power and the social impact of artificial intelligence. arXiv preprint
arXiv:1803.08971, 2018.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Steven A Janowsky. Pruning versus clipping in neural networks. Physical Review A, 39(12):6600,
1989.

Ehud D Karnin. A simple procedure for pruning back-propagation trained neural networks. IEEE
transactions on neural networks, 1(2):239–242, 1990.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameteri-
zation trick. Advances in neural information processing systems, 28, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations, 2018.

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. A signal propagation
perspective for pruning neural networks at initialization. In International Conference on Learning
Representations, 2019.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting
pruning plasticity with neuroregeneration. Advances in Neural Information Processing Systems,
34:9908–9922, 2021a.

10



Under review as a conference paper at ICLR 2023

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In International
Conference on Machine Learning, pp. 6989–7000. PMLR, 2021b.

Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E Alsaadi. A survey
of deep neural network architectures and their applications. Neurocomputing, 234:11–26, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. In International Conference on Learning Representations, 2018.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l 0 regularization. In International Conference on Learning Representations, 2018.

Ekdeep Singh Lubana and Robert Dick. A gradient flow framework for analyzing network pruning.
In International Conference on Learning Representations, 2020.

Siwei Ma, Xinfeng Zhang, Chuanmin Jia, Zhenghui Zhao, Shiqi Wang, and Shanshe Wang. Image
and video compression with neural networks: A review. IEEE Transactions on Circuits and
Systems for Video Technology, 30(6):1683–1698, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie Marr. Wrpn: Wide reduced-precision
networks. In International Conference on Learning Representations, 2018.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In International Conference on Machine Learning, pp. 2498–2507. PMLR, 2017.

P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Pruning convolutional neural networks for
resource efficient inference. In 5th International Conference on Learning Representations, ICLR
2017-Conference Track Proceedings, 2019a.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11264–11272, 2019b.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pp.
4646–4655. PMLR, 2019.

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from a
network via relevance assessment. Advances in neural information processing systems, 1, 1988.

Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized optimiza-
tion in deep neural networks. Advances in neural information processing systems, 28, 2015a.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Conference on Learning Theory, pp. 1376–1401. PMLR, 2015b.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760, 2018.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. Advances in neural information processing systems, 28, 2015.

Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the usages of deep learning for
natural language processing. IEEE transactions on neural networks and learning systems, 32(2):
604–624, 2020.

11



Under review as a conference paper at ICLR 2023

Niall O’Mahony, Sean Campbell, Anderson Carvalho, Suman Harapanahalli, Gustavo Velasco Her-
nandez, Lenka Krpalkova, Daniel Riordan, and Joseph Walsh. Deep learning vs. traditional com-
puter vision. In Science and information conference, pp. 128–144. Springer, 2019.

Luiz Pessoa. Understanding brain networks and brain organization. Physics of life reviews, 11(3):
400–435, 2014.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021.

Russell Reed. Pruning algorithms-a survey. IEEE transactions on Neural Networks, 4(5):740–747,
1993.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Nikko Ström. Sparse connection and pruning in large dynamic artificial neural networks. In Fifth
European Conference on Speech Communication and Technology. Citeseer, 1997.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 33:6377–6389, 2020.

Georg Thimm and Emile Fiesler. Evaluating pruning methods. In Proceedings of the International
Symposium on Artificial neural networks, pp. 20–25, 1995.

Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis.
Deep learning for computer vision: A brief review. Computational intelligence and neuroscience,
2018, 2018.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2019.

Xizhao Wang, Yanxia Zhao, and Farhad Pourpanah. Recent advances in deep learning. International
Journal of Machine Learning and Cybernetics, 11(4):747–750, 2020.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differen-
tiable scale-invariant sparsity measures. In International Conference on Learning Representa-
tions, 2019.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends in deep learn-
ing based natural language processing. ieee Computational intelligenCe magazine, 13(3):55–75,
2018.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao, Ching-
Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score propagation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 9194–
9203, 2018.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI Open, 1:57–81, 2020.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

12



Under review as a conference paper at ICLR 2023

A DATA NORMALIZATION

We normalize all the training and test data to have a mean of 0 and a standard deviation of 1. The
dataset statistics that we used are specified below, where µ is the mean and σ the standard deviation.
Each value corresponds to a color channel of the images.

A.1 CIFAR-10

µ = (0.4914, 0.4822, 0.4465), σ = (0.2470, 0.2435, 0.2616)

A.2 CIFAR-100

µ = (0.5071, 0.4865, 0.4409), σ = (0.2673, 0.2564, 0.2762)

B DATA AUGMENTATION

We used standard data augmentation as part of our training data pipeline. The specific augmentation
techniques are specified below.

B.1 CIFAR-10

We use a random horizontal flip of the image with a probability of 0.5. We then pad the image with
4 black pixels on all sides and randomly crop a section of 32 by 32 pixels.

B.2 CIFAR-100

We pad the image with 4 black pixels on all sides and randomly crop a section of 32 by 32 pixels.
We then randomly flip the image horizontally with a probability of 0.5. Lastly, we randomly rotate
the image between 15 degrees clockwise and counter clockwise.

C CONVOLUTIONAL LAYER SUBSET SAMPLING

While in fully-connected layers a weight is specified by the input and output units that it connects, a
weight in a 2D convolutional layer is specified by the input channel, output channel, and its x and y
coordinate on the kernel. This means that it requires four discrete probability distributions to sample
a weight of a 2D convolutional layer, instead of two for fully-connected layers.

With the uniform heuristic these four distributions are simply discrete uniform distributions between
1 and the number of input channels, output channels, kernel width, and kernel height. With the
SynFlow heuristic, we sample an input channel proportional to the sum of afferent synaptic flow
over the input channels and an output channel proportional to the sum of efferent synaptic flow over
the output channels. With the GraBo heuristic, we sample an input channel proportional to the sum
of activity over the input channels and an output channel proportional to the sum of the gradient over
the output channels. The x and y coordinate on the kernel are more challenging to sample efficiently
with the informed heuristics, therefore we decided to keep sampling those uniformly.

D GRADIENT MAGNITUDE UPPER BOUND PROOF

Lemma D.1. The gradient magnitude of the loss with respect to the parameters of a fully-connected
layer l has the following upper bound:

∣∣∣∇θ[l]
∣∣∣ ≤ ( B∑

i

∣∣∣h[l−1]
i,·

∣∣∣)T( B∑
i

∣∣∣δ[l]i,·∣∣∣
)
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where θ[l] ∈ Rn[l−1]×n[l]

, h[l] ∈ RB×n[l]

, and δ[l] ∈ RB×n[l]

are the sparse weight matrix, activa-
tion and gradient of the loss at the output units of the l-th layer, respectively. The number of units in
the l-th layer is denoted by n[l] ∈ N+, and B ∈ N+ is the batch size.

Proof. The proof starts with the definition of the gradient of the fully-connected layer, which is
calculated during back propagation as the activations of the previous layer multiplied with the back
propagated gradient of the output units of the layer. We then write this definition for a single con-
nection in the weight matrix and use the triangle inequality to specify the first upper bound. In
Equation 10 we rewrite the upper bound of Equation 9 as all the cross products between the batch
dimensions minus all the non-identical cross terms. Not that all the non-identical cross terms are
positive because of the absolute, therefore we get another upper bound by removing the non-identical
cross terms which we then write in matrix form in Equation 11.

∣∣∣∇θ[l]
∣∣∣ = ∣∣∣∣(h[l−1]

)T
δ[l]
∣∣∣∣ (8)

=⇒
∣∣∣∇θ

[l]
a,b

∣∣∣ = ∣∣∣∣∣
B∑
i=1

h
[l−1]
i,a δ

[l]
i,b

∣∣∣∣∣ ≤
B∑
i=1

∣∣∣h[l−1]
i,a δ

[l]
i,b

∣∣∣ (9)

=

B∑
i

∣∣∣h[l−1]
i,a

∣∣∣ B∑
i

∣∣∣δ[l]i,b∣∣∣− B∑
r,s ̸=r

∣∣∣h[l−1]
i,r δ

[l]
i,s

∣∣∣ ≤ B∑
i

∣∣∣h[l−1]
i,a

∣∣∣ B∑
i

∣∣∣δ[l]i,b∣∣∣ (10)

=⇒
∣∣∣∇θ[l]

∣∣∣ ≤ ( B∑
i

∣∣∣h[l−1]
i,·

∣∣∣)T( B∑
i

∣∣∣δ[l]i,·∣∣∣
)

(11)

E SUBSET MULTIPLIER

The extended results on the affect of the size of the subset are shown in Figure 3.

F LAYER-WISE SPARSITY

We show the sparsity of each layer obtained with the various methods at the end of training in
Figure 4.

G IMPLEMENTATION NOTES

The implementation of the SynFlow heuristic required the usage of double floating point precision
and normalization of the output criteria in order to prevent the values from overflowing. This is
one additional disadvantage of using the SynFlow heuristic, in addition to its requirement to make a
copy of the model, making it consume three times the memory of GraBo.
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Figure 3: The accuracy of the heuristics while increasing the subset size S as a fraction of |W|.
Showing ResNet-56 and VGG-16 models trained on the CIFAR-10/100 datasets with 90%, 95%,
and 98% sparsity.
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Figure 4: (Part 1) The layer-wise sparsity resulting from each method at the end of training. Showing
ResNet-56 and VGG-16 models trained on the CIFAR-10/100 datasets with 90%, 95%, and 98%
sparsity.
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Figure 4: (Part 2) The layer-wise sparsity resulting from each method at the end of training. Showing
ResNet-56 and VGG-16 models trained on the CIFAR-10/100 datasets with 90%, 95%, and 98%
sparsity. For our method |S| = 10|P|.
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