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ABSTRACT

The pairwise interaction paradigm of graph machine learning has predominantly
governed the modelling of relational systems. However, graphs alone cannot
capture the multi-level interactions present in many complex systems and the ex-
pressive power of such schemes was proven to be limited. To overcome these
limitations, we propose Message Passing Simplicial Networks (MPSNs), a class of
models that perform message passing on simplicial complexes (SCs) – topological
objects generalising graphs to higher dimensions. To theoretically analyse the
expressivity of our model we introduce a Simplicial Weisfeiler-Lehman (SWL)
colouring procedure for distinguishing non-isomorphic SCs. We relate the power of
SWL to the problem of distinguishing non-isomorphic graphs and show that SWL
and MPSNs are strictly more powerful than the WL test and not less powerful than
the 3-WL test. We deepen the analysis by comparing our model with traditional
graph neural networks with ReLU activations in terms of the number of linear
regions of the functions they can represent. We empirically support our theoretical
claims by showing that MPSNs can distinguish challenging strongly regular graphs
for which GNNs fail and, when equipped with orientation equivariant layers, they
can improve classification accuracy in oriented SCs compared to a GNN base-
line. Our model also attains competitive results on real-world graph classification
datasets, with best performance on those tasks with a more prominent number of
higher-order interactions. Additionally, we implement a library for neural message
passing on simplicial complexes that we envision to release in due course.

1 INTRODUCTION
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Figure 1: Message Passing with upper and face adjacen-
cies illustrated for vertex v2 and edge (v5, v7).

Graph neural networks (GNNs) have been well
developed for learning features of graphs, which
are one of the most common abstractions for
complex systems (Bronstein et al., 2017). How-
ever, GNNs are limited in their capability of
capturing higher-order interactions such as tri-
angles or cliques (Chen et al., 2020) that are
usually prominent in many natural graphs such
as organic molecules (Bouritsas et al., 2020) (e.g.
aromatic rings) or social networks (Milo et al., 2002). This paper tries to enhance GNN expressiv-
ity by considering local higher-order interactions. Among many modelling frameworks that have
been proposed to describe complex systems with higher-order relations (Battiston et al., 2020), we
specifically focus on simplicial complexes, a convenient middle ground between graphs (which are
a particular case of a simplicial complex) and more general hypergraphs. Importantly, they offer
strong mathematical connections to algebraic and differential topology and geometry. The simplicial
Hodge Laplacian (Barbarossa & Sardellitti, 2020; Schaub et al., 2020), a discrete counterpart of the
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Laplacian operator in Hodge–de Rham theory (Rosenberg, 1997), provides a connection with the
theory of spectral analysis and signal processing on these higher-dimensional domains.

We start by deriving from first principles a Simplicial Weisfeiler-Lehman (SWL) test for distinguish-
ing non-isomorphic simplicial complexes. Motivated by this theoretical construction, we propose
Message Passing Simplicial Networks (MPSNs), a message passing neural architecture for simplicial
complexes that extends previous approaches such as GNNs and spectral simplicial convolutions
(Bunch et al., 2020; Ebli et al., 2020). We then show that the proposed MPSN is as powerful as SWL.
Strictly better than the conventional WL test (Weisfeiler & Leman, 1968), MPSN can be used to
distinguish non-isomorphic graphs. We also show that the SWL test and MPSN are not less powerful
than the 3-WL test (Cai et al., 1992; Morris et al., 2019). Moreover, we explore the expressive power
of GNNs and MPSNs in terms of the number of linear regions of the functions they can represent
(Pascanu et al., 2013; Montúfar et al., 2014). We obtain bounds for the maximal number of linear
regions of MPSNs and show a higher functional complexity than GNNs and simplicial convolutional
neural networks (SCNNs) (Ebli et al., 2020), for which we provide optimal bounds that might be of
independent interest. Proofs and the required background are presented in the Appendix.

We will also be releasing a library based on PyTorch Geometric (Fey & Lenssen, 2019) for neural
message passing on simplicial complexes. The library can handle SC datasets, simplicial message
passing networks, oriented SCs, (higher-order) batching, clique complexes and many other features.

2 MESSAGE PASSING SIMPLICIAL NETWORKS

Simplicial WL. We develop a simplicial version of the WL test with the ultimate goal of deriving
a message passing procedure that can retain the expressive power of the test. We call this simplicial
colouring algorithm Simplicial WL (SWL). Given a complexK, all the simplices σ ∈ K are initialised
with the same colour. Given the colour ctσ of simplex σ at iteration t, we compute the colour of
simplex σ at the next iteration ct+1

σ , by perfectly hashing the multi-sets of colours belonging to the
adjacent simplices of σ. The algorithm stops after a finite number of steps or when the colours are no
longer updated. Two simplicial complexes are considered non-isomorphic if the colour histograms at
any level of the complex are different.

A crucial choice has to be made about what simplices are considered to be adjacent. Unlike graphs,
simplicial complexes contain many types of adjacencies: lower adjacencies (i.e. sharing of an
immediate face), upper adjacencies (i.e. sharing of an immediate coface), boundary relationships
(e.g. a triangle that is the face of a tetrahedron) and the opposite co-boundary relationships. To
circumvent making arbitrary decisions, we start with an SWL test that includes all these possible
choices. We use the following notation: ctF (σ) = {{ctω|ω ∈ F(σ)}} for the colours of the faces
of σ, ctC(σ) = {{ctω|ω ∈ C(σ)}} for the colour of the cofaces, ct↓(σ) = {{(ctω, ctσ∩ω)|ω ∈ N↓(σ)}}
for the colour of its down adjacent neighbours and the face σ ∩ ω they share, and finally, ct↑(σ) =

{{(ctω, ctσ∪ω)|ω ∈ N↑(σ)}} for the colours of the upper adjacent neighbours and the coface σ ∪ ω
they share. We then obtain the following update rule, which contains the complete set of adjacencies:
ct+1
σ = HASH{ctσ, ctF (σ), ctC(σ), ct↓(σ), ct↑(σ)}. Starting from this complete set, we will now show

that certain adjacencies can be removed without sacrificing the expressive power of the test (in terms
of simplicial complexes that can be distinguished).
Theorem 1. SWL with ct+1

v = HASH
(
ctv, c

t
F (v), ct↑(v)

)
is as powerful as SWL with the generalised

update rule HASH
(
ctv, c

t
F (v), ctC(v), ct↓(v), ct↑(v)

)
.

We note that other possible combinations of adjacencies might also fully preserve the expressive
power of the general SWL test.

The SWL procedure can be used not only to distinguish simplicial complexes, but also graphs. To
test the isomorphism of two graphs, SWL can test the isomorphism of the corresponding clique
complexes of the graphs (i.e. every (k + 1)-clique in the graph becomes a k-simplex in the complex).
By taking this pre-processing step, we can relate SWL to WL:
Theorem 2. SWL is strictly more powerful than WL.

We present in Figure 5 (Appendix) a pair of graphs that cannot be distinguished by the WL test, but
whose clique complexes can be distinguished by SWL.
Theorem 3. SWL is not less powerful than 3-WL.
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MPSN. We propose the following message passing operations based on the four types of messages
discussed in the previous section: faces, cofaces, lower adjacencies and upper adjacencies.

mt+1
F (v) = AGGw∈F(v)

(
MF

(
htv, h

t
w

))
mt+1
C (v) = AGGw∈C(v)

(
MC
(
htv, h

t
w

))
(1)

mt+1
↓ (v) = AGGw∈N↓(v)

(
M↓
(
htv, h

t
w, h

t
v∩w

))
mt+1
↑ (v) = AGGw∈N↑(v)

(
M↑
(
htv, h

t
w, h

t
v∪w

))
.

If the underlying complex also has a particular orientation, this extra information can be eas-
ily included in the message functions defined above. Then, the update operation takes into ac-
count these four types of incoming messages and the previous colour of the simplex ht+1

v =

U
(
htv,m

t
F (v),mt

C(v),mt+1
↓ (v),mt+1

↑ (v)
)

. To obtain a global embedding for a p-simplicial com-
plex K from an MPSN with L layers, the readout function takes as input the multi-sets of colours cor-
responding to all the dimensions of the complex hG = READOUT({{hLv }}v∈K0

, . . . , {{hLv }}v∈Kp
).

Lemma 4. MPSNs are at most as powerful as SWL in distinguishing non-isomorphic simplicial
complexes.
Theorem 5. MPSNs with a sufficient number of layers and injective message, aggregate and update
functions are as powerful as SWL in distinguishing non-isomorphic simplicial complexes.

This theorem, combined with Theorem 2, provides an important corollary that MPSNs are not only
beneficial for statistical tasks on higher-dimensional simplicial complexes, but they can also improve
over standard GNNs on graph machine learning tasks.
Corollary 6. There exists an MPSN that is more powerful than WL at distinguishing non-isomorphic
graphs when using a clique-complex lifting.
Theorem 7. MPSNs generalise certain spectral convolution operators (Ebli et al., 2020; Bunch
et al., 2020) defined over simplicial complexes.

Next we show how MPSNs handle the symmetries present in simplicial complexes. We defer the
treatment of orientation equivariance and invariance in oriented SCs for Appendix E.
Theorem 8 (Informal). An MPSN layer is (simplex) permutation equivariant, while an MPSN
network ending with a readout layer is (simplex) permutation invariant.

GNN SCNN MPSN

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Regions over 2D slice ofGNN input space, S=3, d=1, m=3, p=2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Regions over 2D slice ofSCNN input space, S=3, d=1, m=3, p=2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Regions over 2D slice ofMPSN input space, S=3, d=1, m=3, p=2

Figure 2: A 2D slice of the input feature spaces of
GNN, SCNN, MPSN layers with S0 = S1 = 3, S2 =
1 (the complex is a triangle), d0 = d1 = d2 = 1,
m = 3, colored by linear regions of the represented
functions, for a random choice of the weights.

Linear regions analysis. While the WL test has
been used for studying the expressive power of
GNNs, other tools have been used to study the
expressive power of conventional neural networks,
like fully connected and convolutional. One such
tool is based on the number of linear regions of
networks using piece-wise linear activations (Pas-
canu et al., 2013; Montúfar et al., 2014). We show
how this tool can also be used to approximate the
number of linear regions of the functions repre-
sented by GNNs, SCNNs (Ebli et al., 2020) and
MPSNs. We focus on the case where the message
function is a linear layer and AGG is sum followed
by ReLU. We obtain new results in all cases, showing superior capacity of MPSNs. The details of the
notation and proofs of Theorems 9, 10, and 11 are relegated to Appendix C.
Theorem 9 (Number of linear regions of a GNN layer). Consider a graph G with S0 nodes, node
input features of dimension d ≥ 1, and node output features of dimensionm. Suppose the aggregation
functionH as function ofX is linear and invertible. Then, the number of linear regions of the functions

represented by a ReLU GNN layer (9) has the optimal upper bound RGNN =
(

2
∑d−1
i=0

(
m−1
i

))S0

.

This applies to aggregation functions with no trainable parameters including GCN convolution (Kipf
& Welling, 2017), spectral GNN (Defferrard et al., 2016; Bruna et al., 2014), and traditional message
passing (Gilmer et al., 2017).

The above result should be compared with the optimal upper bound for a standard dense ReLU layer
without biases, which for d inputs and m outputs is 2

∑d−1
i=0

(
m−1
i

)
.
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Theorem 10 (Number of linear regions for an SCNN layer). Consider a p-dimensional simplicial
complex with Sn n-simplicies for n = 0, 1, . . . , p. Suppose that each Mn is invertible. Then the
number of linear regions of the functions represented by a ReLU SCNN layer (10) has the optimal

upper bound RSCNN =
∏p
n=0

(
2
∑dn−1
i=0

(
mn−1
i

))Sn

, where, for each of the n-simplices, dn is the
input feature dimension and mn is the number of output features.
Theorem 11 (Number of linear regions of an MPSN layer). With the above settings, the max-
imum number of linear regions of the functions represented by a ReLU MPSN layer is upper

bounded by RMPSN ≤
∏p
n=0

(
2
∑dn−1+dn+dn+1−1
i=0

(
m−1
i

))Sn

, where we set d−1 = dp+1 = 0.

We also note the ‘trivial’ upper bound, with N :=
∑p
n=0 Sndn and M :=

∑p
n=0 Snm, RMPSN ≤

2
∑N−1
j=0

(
M−1
j

)
.Moreover, ifm ≤ dn and rank(On) = Sn for all n, writing S = max{S0, . . . , Sp},

we have the lower bound RMPSN ≥ 2
∑N−(mS)−1
j=0

(
M−1
j

)
.

We note that the MPSN lower bound (26) surpasses the SCNN upper bound (22), with order∏
n(
∑
n′ mSn′)

dnSn and
∏
n(mSn)dnSn , respectively, when dn ≥ m. The GNN bound (21) is a

special case of the SCNN bound (22) with p = 0, and has asymptotic order md0S0 .

Computational Complexity A d-simplex σ of a p-complex has d + 1 faces and there are
(
d+1
2

)
upper adjacencies between its faces. Then, a message passing procedure relying on Theorem 1, which
considers only these adjacencies, has a computational complexity Θ

(∑p
d=0(d+ 1)Sd +

(
d+1
2

)
Sd
)

=

Θ
(∑p

d=0

(
d+1
2

)
Sd
)
. If we consider p to be a small constant, which is common for many real-world

datasets, then the binomial coefficients can be absorbed in the bound, which results in a linear
computational complexity in the size of the complex Θ(

∑p
d=0 Sd).

When operating on clique complexes, we also have to take into account the complexity of the pre-
processing step. The number of k-cliques in a graph is upper-bounded by O(nk) and they can be
listed in O(a(G)k−2m) time (Chiba & Nishizeki, 1985), where a(G) is the arboricity of the graph
(i.e. a measure of graph sparsity) and m is the number of edges. Since the arboricity can be shown
to be at most O(m1/2) and m ≤ n2, all k-cliques can be listed in O(nk−2m). In particular, all
triangles can be found in O(m3/2). For certain classes, such as planar graphs, where a(G) ≤ 3,
the complexity becomes linear in the size of the graph. Overall, the fact that the algorithm can take
advantage of the sparsity of the graph makes it strictly better than the Ω(nk) complexity of k-GNNs.

3 EXPERIMENTS
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Figure 3: Failure rate on the task of distin-
guishing SR graphs; log-scale, the smaller
the better. Each SR family is denoted as
SR(v, k, λ, µ), where the four parameters in-
dicate the number of nodes, degree, number
of common neighbors between adjacent ver-
tices and non-adjacent ones. GIN fails to
distinguish all graph pairs in all families.

Verification on SR Graphs We experimentally validate
our theoretical result on the expressive power of our pro-
posed architecture on the task of distinguishing hard pairs
of isomorphic graphs. In particular, we benchmark our
architecture on 9 synthetic datasets comprising families of
Strongly Regular graphs . Strongly Regular (SR) graphs
represent ‘hard’ instances of graph isomorphism, as pairs
thereof cannot provably be distinguished by the 3-WL test
(we refer readers to Section B.1 for a formal proof).

Results are illustrated in Figure 3, where we show perfor-
mance on our isomorphism problem in terms of failure
rate, that is the fraction of non-distinguished pairs. Our
employed architecture is parameterised similarly to GIN
(Xu et al., 2019b) and hence we refer to it as Simplicial
Isomorphism Network (SIN). As it can be observed, SIN
is able to distinguish the majority of graph pairs in all
families, since, in contrast to standard graph neural networks, it is able to access information related
to the presence and number of cliques therein. We additionally run an MLP model with sum readout
on the same inputs. SIN outperforms this strong baseline on certain families, showing the importance
of performing simplicial message passing. Finally, we run a GIN architecture comparable to SIN and
empirically verify its inability to distinguish any pair, theoretically justified by its expressive power
being upper-bounded by 1-WL. Additional experimental details are in Appendix G.1.
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Table 1: Graph classification accuracy on TUDatasets. The first section of the table includes graph kernel
methods, while the second includes graph neural networks.

Dataset Proteins NCI1 IMDB-B IMDB-M RDT-B RDT-M5K

size 1113 4110 1000 1500 2000 5000
#classes 2 2 2 3 2 5
Avg. #nodes 39.1 29.8 19.8 13.0 429.6 508.5
Avg. #Triangles 27.4 0.05 392.0 305.9 24.8 21.8
Median #Triangles 21.0 0.0 119.5 56.0 11.0 11.0

RWK (Gärtner et al., 2003) 59.6±0.1 >3 days N/A N/A N/A N/A
GK (k=3) (Shervashidze et al., 2009) 71.4±0.31 62.5±0.3 N/A N/A N/A N/A
PK (Neumann et al., 2016) 73.7±0.7 82.5±0.5 N/A N/A N/A N/A
WL kernel Shervashidze et al. (2011) 75.0±3.1 86.0±1.8 73.8±3.9 50.9±3.8 81.0±3.1 52.5±2.1

DCNN (Atwood & Towsley, 2016) 61.3±1.6 56.6±1.0 49.1±1.4 33.5±1.4 N/A N/A
DGCNN (Zhang et al., 2018) 75.5±0.9 74.4±0.5 70.0±0.9 47.8±0.9 N/A N/A
IGN (Maron et al., 2018) 76.6±5.5 74.3±2.7 72.0±5.5 48.7±3.4 N/A N/A
GIN (Xu et al., 2019b) 76.2±2.8 82.7±1.7 75.1±5.1 52.3±2.8 92.4±2.5 57.5±1.5
PPGNs (Maron et al., 2019) 77.2±4.7 83.2±1.1 73.0±5.8 50.5±3.6 N/A N/A
Natural GN (de Haan et al., 2020) 71.7±1.0 82.4±1.3 73.5±2.0 51.3±1.5 N/A N/A

SIN (Ours) 76.4 ± 3.3 82.7 ± 2.1 75.6 ± 3.2 52.4 ± 2.9 92.2 ± 1.0 57.3 ± 1.6

Real-World Graph Classification We study the practical impact of considering higher-order
interactions via clique-complexes and report results for a few popular graph classification tasks
commonly used for benchmarking GNNs. We follow the same experimental setting and evaluation
procedure described in Xu et al. (2019b). Accordingly, we report the best mean validation accuracy
computed in a 10-fold cross-validation fashion, as well the related standard deviation. Additional
architectural details are in Appendix G.2. The performance of our SIN model are reported in Table 1,
along with those of graph kernel methods and other GNNs. SIN generally performs on-par with
state-of-the-art approaches. We observe that our model has the highest mean performance on the
IMDB datasets, which have the largest mean and median number of triangles. At the same time, on
datasets like NCI1, where the number of higher-order structures is close to zero, the model shows the
same mean accuracy as GIN.

Figure 4: Two sample trajec-
tories from the two classes.

Trajectory Classification Here, we turn our attention to an application
involving oriented simplicial complexes. Inspired by Schaub et al. (2020),
we generate a synthetic dataset of trajectories on the simplicial complex
from Figure 4. All trajectories pass either through the bottom left corner
or the top-right corner, thus giving rise to two different classes that we
aim to distinguish. Due to the two holes present in the complex, the
trajectories of the two classes correspond to approximately orthogonal
directions in the space of harmonic functions of the L1 Hodge-Laplacian
(Schaub et al., 2020). Therefore, we hypothesise, that an orientation
invariant MPSN network with orientation equivariant layers should easily distinguish the two classes.
We describe our model and other task details in Appendix G.3. As a baseline, we consider a similar
message passing GNN operating in the line graph of the 1-skeleton of the simplicial complex, without
being (explicitly) aware of the orientation and the triangles present in the graph. As expected, the
MPSN model obtains 96.5% accuracy compared to 71.5% for the GNN baseline.

4 CONCLUSION

We introduce a provably powerful message passing procedure for simplicial complexes relying on
local higher-order interactions. We motivate our message passing framework by the introduction
of SWL, a colouring algorithm for simplicial complex isomorphism testing, generalising the WL
test for graphs. We prove that when graphs are lifted in the simplicial complex space via their
clique complex, SWL and MPSNs are more expressive than the WL test. At the same time, we
produce an estimate for the number of linear regions of GNNs, SCNNs and MPSNs, which also
reveals the superior expressive power of our model. We empirically confirm these results on a dataset
of challenging strongly regular graphs, real-world graph classification benchmarks, a trajectory
classification problem, and by computing 2D slices through the linear regions of the models.
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Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

F. Cazals and C. Karande. A note on the problem of reporting maximal cliques. Theoretical Computer
Science, 407(1):564–568, 2008.

Zachary Chase. The maximum number of triangles in a graph of given maximum degree. Advances
in Combinatorics, 2020.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? In NeurIPS, 2020.

N. Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput., 14:
210–223, 1985.
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A BACKGROUND

Simplicial complexes Combinatorially, a simplicial complex K is a family of sets closed under
taking subsets (Hatcher, 2000). A member σ ∈ K with cardinality k + 1 is called a k-dimensional
simplex or simply a k-simplex. One can interpret simplices as geometric objects: 0-simplices as
vertices, 1-simplices as edges, 2-simplices as triangles, and so on. A simplicial complex is intuitively
a collection of such simplices that intersect ‘nicely’ (see Figure 1). Each k-simplex has k + 1 faces
of dimension k − 1 (e.g. the three edges of a triangle). If σ1 is a face of σ2, then σ2 is a coface of
σ1. Two k-simplicies are lower adjacent if they have a common face (e.g. two triangles sharing an
edge) and upper adjacent if they have a common coface (e.g. two vertices connected by an edge).
We denote by F(σ), C(σ),N↓(σ),N↑(σ) the sets of faces, cofaces, lower and upper neighbours of
simplex σ. We use Kd to refer to all the simplicies of dimension d in the complex. An oriented
simplicial complex is a simplicial complex together with a total order on its set of 0-simplices. The
orientation of a simplicial complex is needed for defining simplicial homology (Hatcher, 2000) –
the theory of counting d-dimensional ‘holes’ in the complex (e.g. connected components, cycles or
voids). However, orientations do not encode any topological information, as simplicial homology is
independent of the choice of order.

Graph neural networks GNNs are neural models for processing signals on 1-dimensional sim-
plicial complexes (graphs). Most GNN models follow the message passing scheme of Gilmer et al.
(2017) or its simplified variants. Under this framework, the tth layer of a GNN performs the following
message and updates computations:

mt+1
v = AGGw∈N (v)

(
M
(
htv, h

t
w, h

t
e(v,w)

))
(2)

ht+1
v = U

(
htv,m

t+1
v

)
, (3)

where htv denotes the features of node v at layer t, hte(v,w) represents the features of the edge e(v, w)

and N (v) is the set of neighbours of node v. Some architectures do not use any edge features. AGG
is a permutation-invariant aggregation operator such as sum, mean, or max, and the message and
update functions M and U are typically learnable.

For node/edge regression and classification tasks, the final representations hLv and hLe(v,w) are used
to make the prediction. For graph-level tasks, such as graph classification, all the final individual
representations of the nodes are combined into a single vector by a readout function:

hG = READOUT
(
{{hLv |v ∈ G}}

)
. (4)

Most GNN architectures differ only in the design of aggregate (AGG), message (M ) and update (U ).

The Weisfeiler-Lehman (WL) test The WL (or 1-WL) graph-isomorphism test is a fast heuristic
providing a necessary condition for two graphs to be isomorphic (Weisfeiler & Leman, 1968).
It is an iterative color refinement procedure for the graph nodes. Given a graph G, all the
nodes v ∈ VG are initialised with the same colour c0v; they are then iteratively refined as:
ct+1
v = HASH

(
ctv, {{ctu}}u∈N (v)

)
, that is by applying an injective map on the multiset of neighboring

colours. The algorithm stops when the graph colouring is stable (colours are no longer updated),
yielding a colour histogram. If two graphs are associated with two different colour histograms
they are deemed non-isomorphic. However, if the histograms are identical, then the WL test is
non-conclusive: the two graphs are possibly, but not necessarily, isomorphic. The analogy between
color refinement and message passing has been analyzed in Xu et al. (2019b); Morris et al. (2019),
where the expressive power of standard graph neural networks is at most as the WL test.

The k-WL test is a higher-order extension of the WL algorithm that works on k-tuples instead of
individual nodes. With the exception of 1-WL and 2-WL tests (that are equivalent), (k + 1)-WL
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is strictly stronger than k-WL, for any k ≥ 2, that is, there exist graphs on which k-WL fails and
(k + 1)-WL succeeds, but not vice versa. k-WL is thus a hierarchy or increasingly more powerful
graph isomorphism tests, sometimes referred to as the Weisfeiler-Lehman hierarchy. Maron et al.
(2019) proposed a form of graph neural networks equivalent to 3-WL that however lack locality and
suffer from high memory and computational complexity.

B PROOFS OF SWL THEORY RESULTS

We first introduce the required notion and notation. We note that even though these results mainly
refer to simplicial complexes, they also apply to graphs because any graph is also a simplicial complex.
The first definition formalises the notion of ‘colouring’ for the simplices of a simplicial complex.
Definition 12 (Colouring function). A colouring function is a function c : K → Σ that takes as input
a simplex from a simplicial complex K and outputs a colouring of that simplex from a countable
alphabet Σ. We denote the space of all colouring functions for a complex K as CK . We abuse the
notation slightly and use cv interchangeably with c(v).
Definition 13 (Histogram). The histogram of a multiset {{σi}} with ai ∈ Σ is a function H : Σ→ N,
where H(σ) specifies the number of occurences of σ in the multiset.

The next definition generalised the concept of a colouring algorithm such as WL or SWL.
Definition 14 (Colouring algorithm). A colouring algorithmA is a computable function that takes as
input a complex K and outputs a colouring from CK with the property that for any two K1 and K2,
the colour histograms of A(K1) and A(K2) over the simplicies of a certain dimension are different
only if K1 and K2 are not isomorphic.

In other words, if the colour histograms at any level of the complex (vertices, edges, triangles, etc.)
are different, it implies that the simplicial complexes are different. However, this does not mean any
two non-isomorphic simplicial complexes must have different colourings. Finally, we introduce the
notion of colour-refinement as a way of comparing two colourings.
Definition 15 (Simplicial complex colour refinement). Let c1 and c2 be two colouring functions for
a complex K. We say that c1 v c2 (i.e. c1 color-refines c2) if for any two simplicies v, w ∈ K we
have that c1(v) = c1(w) implies that c2(v) = c2(w).

We now prove a lemma that will be used repeatedly in our proofs in this section. It shows how color
refinement can be used to compare the ability of certain coloring algorithms.
Lemma 16. Let A1 and A2 be two colouring algorithms. If A1(K) v A2(K) for any complex K,
then any two non-isomorphic simplicial complexes K1 and K2 that can be distinguished by A2 can
also be distinguished by A1. In other words, A1 is at least as powerful as A2.

Proof. Let K1 and K2 be two non-isomorphic simplicial complexes that can be distinguished by A2.
Because they can be distinguished, this means that there exists a certain dimension where the colour
histograms produced by A2(K1) and A2(K2) are different. We denote these histograms by sets of
tuples {(ci, fi)}i that contain a unique colour ci and its frequency fi among the simplicies of the
given dimension. The two sets can be different in three (potentially concurrent) ways:

1. A2(K1) contains a colour not present in A2(K2) (among the simplicies of the considered
dimension).

2. A2(K2) contains a colour not present in A2(K1) (among the simplicies of the considered
dimension).

3. The frequencies of a certain colour present in both histograms are different.

By A1(K) v A2(K) for any K, any colour histogram under A1 will ‘refine’ the colour histogram
underA2. That is, it splits eachH2(ci) = fi in theA2 histogram (H2) into multiple sub-colours with
their own frequency H1(ci,j) = fi,j where j is an index over the sub-colours, H2 is the histogram
produced by the colouring of A1, and

∑
j H1(ci,j) = H2(ci). It then implies that the histograms

of the two graphs will also be different under the colouring of A1 for any of the three cases listed
above.
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Let us now proceed by proving Theorem 1. We will first introduce and prove the following:

Lemma 17. SWL with HASH
(
ctv, c

t
F (v), ct↓(v), ct↑(v)

)
is as powerful as SWL with the generalised

update rule HASH
(
ctv, c

t
F (v), ctC(v), ct↓(v), ct↑(v)

)
.

Proof. Let a denote the colouring of the general version and b the colour of the restricted version.
Then, a v b because of considering the additional cofaces in the colouring procedure. We will now
prove the converse. Suppose bt+1

v = bt+1
w . Then, we have that the arguments of the hash function are

equal. Thus, btv = btw, b
t
↓(v) = bt↓(w), bt↑(v) = bt↑(w), and btF (v) = btF (w). Because the multi-sets

of the upper colours are equal, the multi-sets of the second entries of the tuples inside them (i.e. the
co-face colours) are also equal to {{btv∪v′ |v′ ∈ N↑(v)}} = {{btw∪w′ |w′ ∈ N↑(w)}}. As v and w have
the same dimension and their multi-sets have the same size, they have the same number of cofaces.
Due to that each of these co-faces shows up the same number of times in the multi-sets, the colours of
the cofaces are thus the same: {{btx|x ∈ C(v)}} = {{bty|y ∈ C(w)}}. By the induction, the arguments
of the hash function used by a are the same for v and w. Thus, at+1

v = at+1
w .

Proof of Theorem 1. Let b denote the colouring based on the first rule and a the colouring as used
in the proof of Lemma 17. As before, it is trivial to show at v bt by the additional argument (the
colours of the down adjacencies). We now prove that b2t v at by induction.

The base case holds by definition. We assume the statement is true for t and prove it for t + 1, as
follows. Suppose b2t+2

v = b2t+2
w . By expanding the hash function two steps back in time, we obtain

b2tv = b2tw , b
2t
F (v) = b2tF (w), b2t↑ (v) = b2t↑ (w).

Suppose for the sake of contradiction that b2t↓ (v) 6= b2t↓ (w). This means that there exists a pair
of colours (l0 = b2tx , l1 = b2tx∩v) with x ∈ N↓(v) that shows up (without loss of generality) more
times in b2t↓ (v) than in b2t↓ (w). Let us partition these apparitions in these two multi-sets by the faces
f1 ∈ F(v) and f2 ∈ F(w) having the colour b2tf1 = b2tf2 = l1. By b2tF (v) = b2tF (w), we have the
same number of such faces / partitions for v and w.

Note that for each such face f of v, the size of the set Av(f) = {x|b2tx = l0, x ∈ N↓(v), f = x ∩ v}
(containing the lower adjacent simplices of v with colour l0 and sharing face f ) determines the colour
of f at step t+ 1 since the colours {{b2tx |x ∈ Av(f)}} show up in the tuples of b2t↑ (f), which is an
input of the hash function colouring f . The same applies for the faces of w. Because there are more
colors l = (l0, l1) in b2t↓ (v) than in b2t↓ (w) (by the assumption in the paragraph above), the histogram
of the sizes of these partitions are different between v and w. This means that in the next time step,
{{b2t+1

f1
}} 6= {{b2t+1

f2
}}. Since these colours are also different from the colours of the other faces of

v and w at step 2t+ 1, we have that b2t+1
F (v) 6= b2t+1

F (w). Finally, this implies that b2t+2
v 6= c2t+2

w ,
which is a contradiction. Therefore, b2t↓ (v) = b2t↓ (w).

Now, we apply the induction hypothesis to obtain that atv = atw, a
t
F (v) = atF (w), at↑(v) = at↑(w)

and at↓(v) = at↓(w). Then, b2t v at.

We show a slightly weaker version of Theorem 2.

Lemma 18. SWL is at least as powerful as WL.

Proof. Let G be a graph with a clique complex K. Let ct be the colouring of the nodes of G at
iteration t of WL and sct the colouring of the (same) vertices in K at iteration t of SWL. To prove
the lemma, we will show by induction that sct is a refinement of ct. Combined with Lemma 16, this
proves the result.

For the base case, the implication holds at initialisation since all nodes are assigned the same colour.
That is: sc0(v) = sc0(w) =⇒ c0(v) = c0(w). For the induction step, suppose sct+1(v) =
sct+1(w), for two 0-simplices v and w in K. In this case, the arguments of the HASH function must
be equal. Concretely, as vertices are only upper adjacent and have no faces, sct(v) = sct(w) and
sct↑(v) = sct↑(w). In turn, the sets formed of the first entry of the tuples in these two multi-sets
are also equal: SCv = {{sctx}} = {{scty}} = SCw, for all x ∈ N↑(v) and y ∈ N↑(w). By the
induction hypothesis, the equalities sct(v) = sct(w) and SCv = SCw imply ct(v) = ct(w) and
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Cv = {{ctx}} = {{cty}} = Cw. Since these are the arguments the WL hash function uses to compute
the colours of v and w at the next step, we obtain ct+1(v) = ct+1(w).

Informally, this proof shows that the information coming from the colouring of the upper layers of
the complex will refine the colouring of the vertices. This means that SWL will be able to distinguish
just through its vertex-level colour histogram at least the same set of graphs that WL can distinguish.
However, this proof disregards the histograms of the higher-levels and these can indeed be used to
show that SWL is strictly more powerful than WL, which is done in Theorem 2.

Figure 5: Two graphs that cannot be distinguished by 1-WL, but have distinct clique complexes (the second
contains triangles).

Proof of Theorem 2. Based on Lemma 18, it is sufficient to present a pair of graphs that cannot be
distinguished by WL, but whose clique complexes can be distinguished by SWL. Such a pair is
included in Figure 5. While WL produces the same colouring for both graphs, one clique complex
contains two triangles, while the other has no triangles.

Proof of Lemma 4. Let sctv and htv be the colouring of the simplex v at iteration t of SWL and the
t-th layer of an MPSN, respectively. We will show by induction that sct refines the colouring of ht.
For this proof, it is convenient to use the most general version of SWL, containing the complete set
of adjacencies.

As above, the base case holds since both methods start with the same initial colour. For the induction
step, suppose we have two simplicies v and w such that sct+1(v) = sct+1(w). Because the SWL
colouring is an injective mapping, the arguments to the HASH function are the same. This means that
sct(v) = sct(w) and the multi-sets of colours formed by their neighbours are identical: sct↓(v) =

sct↓(w), sct↑(v) = sct↑(w), sctF (v) = sctF (w), sctC(v) = sctC(w). By the induction hypothesis,
these multi-sets will be equal under the colouring ht. Enumerating all, ht(v) = ht(w), ht↓(v) =

ht↓(w), ht↑(v) = ht↑(w), htF (v) = htF (w), htC(v) = htC(w). Because the exact same multi-sets are
supplied as input to the MESSAGE, AGGREGATE and UPDATE functions, their output are also the
same for v and v. Then, ht+1

v = ht+1
w . Applying Lemma 16 thus proves the lemma.

Proof of Theorem 5. By Lemma 4, we only need to show that for an MPSN model satisfying the
conditions in the theorem, we have that ht v sct.
The base case can be proved by definition. For the step case, given that the UPDATE, AGGREGATE
and MESSAGE functions are injective, for any two simplicies ht+1

v = ht+1
w , the inputs to these

functions at the previous iteration were also the same. As in our previous proofs, by applying the
induction hypothesis, the inputs to the SWL HASH function at iteration t for v and w are also equal
and sct+1

v = sct+1
w . It follows ht v sct, sct v ht (Lemma 4) and, consequently, sct = ht.

B.1 HIGHER-ORDER WL AND STRONGLY REGULAR GRAPHS

Higher-order variants of the standards WL procedure operate on node tuples rather than single nodes
and iteratively apply color refinement steps thereon.

k-WL The k-WL is one such higher-order variants. It specifically operates on node k-
tuples by refining their colors based on the generalized notion of j-neighborhood. The j-
neighborhood (j ∈ {1, . . . , k}) for node k-tuple v = (v1, v2, . . . , vk) is defined as Nj(v) =
{(v1, . . . , vj−1, w, vj+1, . . . , vk)|w ∈ VG}. The algorithm first initialises node tuples based
on their isomorphism type: two k-tuples va = (va1 , v

a
2 , . . . , v

a
k), vb = (vb1, v

b
2, . . . , v

b
k) have

the same isomorphism type (and are thus assigned the same initial colour cva = cvb) iff (i)
∀ i, j ∈ {1, . . . , k}, vai = vaj ⇔ vbi = vbj , (ii) ∀ i, j ∈ {1, . . . , k}, vai ∼ vaj ⇔ vbi ∼ vbj , where
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∼ indicates adjacency. Given this initial colouring, the procedure iteratively applies the following
color refinement step

ct+1
v = HASH

(
ctv,M

t(v)
)
, (5)

M t(v) =
(
{{ctu|u ∈ Nj(v)}}

∣∣j = 1, 2, . . . , k
)

(6)

until the colouring does not change further. The k-WL procedure can be employed to test the
isomorphism between graphs in the same way as the standard WL one is. For any k ≥ 2, it is
known that (k + 1)-WL test is strictly stronger than k-WL one, i.e. there exist exemplary pairs of
non-isomorphic graphs that k-WL cannot distinguish while (k+1)-WL can, but not vice-versa. Local
variants of k-WL have recently been introduced in Morris et al. (2020).

k-FWL The k-Folklore WL procedure (k-FWL) is another higher-order variant of the stan-
dard WL. Similarly to k-WL, it operates by refining the colors of node k-tuples, initialised
based on their isomorphism type. However, it employs a different notion of neighborhood
and refinement step. The Folklore j-neighborhood for node k-tuple v is defined as NF

j (v) =(
(j, v2, . . . , vk), (v1, j, . . . , vk), . . . , (v1, . . . , vk−1, j)

)
, with j ∈ VG. The algorithm iteratively ap-

plies the steps

ct+1
v = HASH

(
ctv,M

F,t(v)
)
, (7)

MF,t(v) = {{
(
ctu|u ∈ NF

j (v)
)∣∣j ∈ VG}} (8)

until the colouring does not change. It is known that k-FWL is equivalent to (k + 1)-WL for k ≥ 2.

Strongly Regular Graphs A Strongly Regular graph in the family SR(n,d,λ,µ) is a regular graph
with n nodes and degree d, for which every two adjacent nodes always have λ mutual neighbours and
every two non-adjacent nodes always have µ mutual neighbours. This class of graphs is of particular
interest due to the following lemma.
Lemma 19. No pair of Strongly Regular graphs in family SR(n,d,λ,µ) can be distinguished by the
2-FWL test.

Proof. Let us denote by V2
G the set of all node 2-tuples in graph G. We note that three isomorphism

types are induced by considering node 2-tuples:

(1) node type: v = (v1, v1)

(2) edge type: v = (v1, v2) with v1 ∼ v2 (the two nodes are adjacent in the original graph)

(3) non-edge type: v = (v1, v2) with v1 6∼ v2 (the two nodes are not adjacent in the original
graph).

These three isomorphism types partition the tuple set V2
G into the three subsets V2

G(1),V
2
G(2),V

2
G(3)

such that any tuple v ∈ V2
G(i) is of isomorphism type i. We write v(i) to indicate v ∈ V2

G(i) for
simplicity.

At initialisation, the 2-FWL algorithm assigns a colour to each tuple v ∈ V2
G based on its isomorphism

type, that is ∀v ∈ V2
G(i), cv = c0i . The colouring is therefore constant within partitions. Then, we

notice that the colouring is kept constant within partitions through the application of the refinement
steps described by Equation 7. In other words, the 2-FWL procedure cannot produce a colour
partitioning of the set of node 2-tuples that is finer than the one at initialisation. This is shown by
induction on the step t of color refinement.

The base case evidently holds for t = 0 since all tuples in the same partition are assigned the same
colour by the 2-FWL initialisation procedure. For the induction step we assume that the colouring
is constant within each partition at t and show that it maintains constant at t + 1, that is, after the
application of one colour refinement step. This is proved by showing that all node tuples within the
same partition have their colour refined identically. We will show this for each of the three partitions
separately, leveraging on the induction hypothesis and the properties of Strongly Regular graphs.
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A node tuple v = (v1, v1) ∈ V2
G(1) has NF

j (v) =
(
(j, v1), (v1, j)

)
, j ∈ VG. Therefore, any

v ∈ V2
G(1) has exactly:

• (j = v1) 1 neighborhood of the form
(
w(1),w(1)

)
, associated with color tuple (ct1, c

t
1);

• (j ∼ v1) d neighborhoods of the form
(
w(2),u(2)

)
, associated with color tuple (ct2, c

t
2);

• (j 6∼ v1) n − d − 1 neighborhoods of the form
(
w(3),u(3)

)
, associated with color tuple

(ct3, c
t
3).

For any v ∈ V2
G(1) we then have

ct+1
v = HASH

(
ct1,M

F,t(v)
)

MF,t(v) = {{(ct1, ct1)︸ ︷︷ ︸
1 time

, (ct2, c
t
2)︸ ︷︷ ︸

d times

, (ct3, c
t
3)︸ ︷︷ ︸

n− d− 1 times

}}.

A node tuple v = (v1, v2) ∈ V2
G(2) has NF

j (v) =
(
(j, v2), (v1, j)

)
, j ∈ VG. Therefore, any

v ∈ V2
G(2) has exactly:

• (j = v2) 1 neighborhood of the form
(
w(1),u(2)

)
, associated with color tuple (ct1, c

t
2);

• (j = v1) 1 neighborhood of the form
(
w(2),u(1)

)
, associated with color tuple (ct2, c

t
1);

• (j ∼ v2, j ∼ v1) λ neighborhoods of the form
(
w(2),u(2)

)
, associated with color tuple

(ct2, c
t
2);

• (j ∼ v2, j 6∼ v1) d− λ neighborhoods of the form
(
w(2),u(3)

)
, associated with color tuple

(ct2, c
t
3);

• (j 6∼ v2, j ∼ v1) d− λ neighborhoods of the form
(
w(3),u(2)

)
, associated with color tuple

(ct3, c
t
2);

• (j 6∼ v2, j 6∼ v1) k = n− 2− 2d+ λ neighborhoods of the form
(
w(3),u(3)

)
, associated

with color tuple (ct3, c
t
3).

For any v ∈ V2
G(2) we have

ct+1
v = HASH

(
ct2,M

F,t(v)
)

MF,t(v) = {{(ct1, ct2)︸ ︷︷ ︸
1 time

, (ct2, c
t
1)︸ ︷︷ ︸

1 time

, (ct2, c
t
2)︸ ︷︷ ︸

λ times

, (ct2, c
t
3)︸ ︷︷ ︸

d− λ times

, (ct3, c
t
2)︸ ︷︷ ︸

d− λ times

, (ct3, c
t
3))︸ ︷︷ ︸

k times

}}.

A node tuple v = (v1, v2) ∈ V2
G(3) has NF

j (v) =
(
(j, v2), (v1, j)

)
, j ∈ VG. Therefore, any

v ∈ V2
G(3) has exactly:

• (j = v2) 1 neighborhood of the form
(
w(1),u(3)

)
, associated with color tuple (ct1, c

t
3);

• (j = v1) 1 neighborhood of the form
(
w(3),u(1)

)
, associated with color tuple (ct3, c

t
1);

• (j ∼ v2, j ∼ v1) µ neighborhoods of the form
(
w(2),u(2)

)
, associated with color tuple

(ct2, c
t
2);

• (j ∼ v2, j 6∼ v1) d− µ neighborhoods of the form
(
w(2),u(3)

)
, associated with color tuple

(ct2, c
t
3);

14
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Figure 6: Rooks 4x4 graph and the Shrikhande graph: Strongly Regular non-isomorphic graphs with parameters
SR(16,6,2,2). Our approach can distinguish them: only Rook’s graph (left) possesses 4-cliques (orange) and
thus the two graphs are associated with distinct clique complexes. The 3-WL test fails to distinguish them.

• (j 6∼ v2, j ∼ v1) d− µ neighborhoods of the form
(
w(3),u(2)

)
, associated with color tuple

(ct3, c
t
2);

• (j 6∼ v2, j 6∼ v1) k = n− 2− 2d+ µ neighborhoods of the form
(
w(3),u(3)

)
, associated

with color tuple (ct3, c
t
3).

For any v ∈ V2
G(3) we then have

ct+1
v = HASH

(
ct3,M

F,t(v)
)

MF,t(v) = {{(ct1, ct3)︸ ︷︷ ︸
1 time

, (ct3, c
t
1)︸ ︷︷ ︸

1 time

, (ct2, c
t
2)︸ ︷︷ ︸

µ times

, (ct2, c
t
3)︸ ︷︷ ︸

d− µ times

, (ct3, c
t
2)︸ ︷︷ ︸

d− µ times

, (ct3, c
t
3))︸ ︷︷ ︸

k times

}}.

This proves the induction and confirms that all tuples in the same partition have the same colour at
any colour refinement time step t.

If the colouring is constant within partitions at any 2-FWL step, then the colour histogram associated
with a graph at step t purely depends on the cardinality of each of the three. We notice that, for any
G ∈ SR(n,d,λ,µ), they are completely determined by the first two parameters:

|V2
G(1)| = n, |V2

G(2)| = nd, |V2
G(3)| = |V

2
G| − (n+ nd).

Given the above, any two graphs G1, G2 ∈ SR(n,d,λ,µ) are associated with the same colour his-
tograms at any step of the 2-FWL procedure and, therefore, cannot possibly deemed non-isomorphic
by the last.

We leverage on Lemma 19 to prove Theorem 3.

Proof of Theorem 3. In virtue of Lemma 19 and the fact that 2-FWL is as powerful as 3-WL, The-
orem 3 is proved by exhibiting a pair of Strongly Regular graphs in the same family that are
distinguished by the SWL test. This pair is given by the two graphs in Figure 6: Rook’s 4x4 graph
(G1) and the Shrikhande graph (G2), (the only) members of the SR(16,6,2,2) family of Strongly
Regular graphs. The SWL test which considers their clique 3-complexes distinguish them due to
the fact that, differently from G1, G2 possesses no 4-cliques, thus its associated complex has no
3-simplices.

C LINEAR REGIONS OF GNN, SCNN AND MPSN

While the WL test has been used for studying the expressive power of GNNs, other tools have
been used to study the expressive power of conventional neural networks, like fully connected and
convolutional. One such tool is based on the number of linear regions of networks using piece-wise
linear activations (Pascanu et al., 2013; Montúfar et al., 2014). This number has been used to draw
distinctions between the expressive power of shallow and deep network architectures (Pascanu et al.,
2013; Montúfar et al., 2014). It can also be related to the approximation properties of the networks
(Telgarsky, 2016) and it has also been considered to shed light into the representational power of
(standard) convolutional networks (Xiong et al., 2020). We show how this tool can also be used to
approximate the number of linear regions of the functions represented by GNNs and message passing
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simplicial networks. We focus on the case where the message function is a linear layer and AGG is
sum followed by ReLU. We obtain new results in all cases, showing superior capacity of MPSNs. A
network with piece-wise linear gates computes functions that are piece-wise linear over the input
space. A linear region is a maximal connected subset of the input over which the function is affine.

Background on hyperplane arrangements A function f : RN → RM is a piecewise linear
function if its graph {(x, f(x)) : x ∈ RN} ⊆ RN × RM consists of a finite number of polyhedral
pieces. Projecting these polyhedra back onto RN by (x, y) 7→ x defines a polyhedral subdivision of
RN . The linear regions of the function are the N dimensional pieces in this subdivision. These are
the (inclusion maximal) connected regions of the input space where the function is affine linear.

Let ψ : R→ R; s 7→ max{0, s} be the linear rectification. A ReLU with N inputs defines a function
y : x 7→ ψ(w>x), which for any fixed value of the weight vector w ∈ RN , w 6= 0, has gradient with
respect to the input vector x ∈ RN equal to 0 on the open halfspace {x : w>x < 0} and equal to w
on the open halfspace {x : w>x > 0}. Hence a ReLU defines a piecewise linear function with two
linear regions. A layer of ReLUs ψ(w>i x), i = 1, . . . ,M has linear regions given by the intersection
of linear regions of the individual ReLUs. The number of linear regions of the function represented
by the layer is equal to the number of connected components that are left behind once we remove
∪Mi=1Ai from RN , where Ai = {x ∈ RN : w>i x = 0} is the hyperplane dividing the two linear
regions of the ith ReLU. Hence the linear regions of a layer of ReLUs can be described in terms of a
hyperplane arrangement, i.e. a collection A = {Ai : i = 1, . . . ,M} of hyperplanes.

An arrangement of hyperplanes in RN is in general position if the intersection of any k hyperplanes
in the arrangement has the expected dimension. We will focus on central arrangements, where each
hyperplane contains the origin. A central arrangement is in general position when the normal vectors
wi1 , . . . , wik of any k ≤ N of the hyperplanes are linearly independent. The following well-known
result from the theory of hyperplane arrangements will be particularly important in our discussion.
Theorem 20. Let A be a central arrangement of M hyperplanes in RN in general position. Then
the number of regions of the arrangement, denoted r(A), is equal to 2

∑N−1
j=0

(
M−1
j

)
. This is also

the maximum number of regions of any central arrangement of M hyperplanes in RN .

This result can be derived from Zaslavsky’s theorem (Zaslavsky, 1975), which expresses the number
of regions of an arbitrary arrangement, not necessarily in general position, in terms of properties of a
partially ordered set, namely the collection of intersections of the hyperplanes in the arrangement
partially ordered by reverse inclusion.

We will focus on central arrangements, but we point out that similar results to Theorem 20 can be
derived for the case of non-central hyperplane arrangements. An non-central arrangement of (affine)
hyperplanes in RN is in general position when any k ≤ N of the hyperplanes intersect in a set of
dimension N − k, and any k > N of the hyperplanes have an empty intersection. For such an
arrangement, the number of regions is

∑N
j=0

(
M
j

)
.

The main challenges in computing the number of regions defined hyperplane arrangements happen
when the hyperplanes satisfy some type of constraints and are not in general position. The type
of layers that we discuss in the following correspond to central arrangements subject to certain
constraints, namely that the normal vectors are the rows of a matrix with a particular block Kronecker
product structure.

GNN The result in Theorem 11 contrasts with the following complexity of the plain GNNs. We start
with the simple case of Graph Neural Networks (GNNs). A graph G = (V,E, ω) is a set of triplets
with vertices V = {vi}S0

i=1, edges E ⊆ V × V , and edge weight function ω : E → R. The graph has
an adjacency matrix A with the (i, j)th entry aij = ω(vi, vj). Each node has a d-dimensional feature,
and we collect the feature vectors into a matrix X ∈ RS0×d. We consider a GNN convolutional layer
of the form

Xout = ψ
(
H(A,X in)W0

)
, (9)

where ψ is the entry-wise ReLU, H(A,X) is an aggregation mapping, and W0 ∈ Rd×m are the
trainable weights. We restate in the following theorem for Theorem 9 and give at full proof.
Theorem 21 (Number of linear regions of a GNN layer). Consider a graph G with S0 nodes,
node input features of dimension d ≥ 1, and node output features of dimension m. Suppose the
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aggregation functionH as function of X is linear and invertible. Then, the number of linear regions
of the functions represented by a ReLU GNN layer (9) has the optimal upper bound

RGNN =

(
2

d−1∑
i=0

(
m− 1

i

))S0

.

This applies to aggregation functions with no trainable parameters including GCN convolution (Kipf
& Welling, 2017), spectral GNN (Defferrard et al., 2016; Bruna et al., 2014), and traditional message
passing (Gilmer et al., 2017).

Proof. For simplicity, we write Y = H(A,X)T ∈ Rd×S0 and V = WT ∈ Rm×d. We denote
Y:j the jthe column of Y , and Vi: the ith row of V . The GNN layer defines hyperplanes, for
i = 1, . . . ,m, j = 1, . . . , S0,

Aij :=
{
Y ∈ Rd×S0 : Vi:Y:j = 0

}
.

The arrangement A = {Aij : i = 1, . . . ,m, j = 1, . . . , S0} is a direct sum of the arrangements
Aj = {Aij : i = 1, . . . ,m}, j = 1, . . . , S0. It can be shown (see Zaslavsky, 1975) that this implies
r(A) =

∏S0

j=1 r(Aj).

Each Aj is an arrangement of m hyperplanes in RN , N = dS0, whose normals span a subspace of
dimension at most d, irrespective of S0. Counting the number of regions defined by Aj is equivalent
to counting the number of regions defined by its essentialization ess(Aj), which is the arrangement
that the hyperplanes define on the span of their normal vectors. We can regard ess(Aj) as a (central)
arrangement of m hyperplanes in Rd with normals Vi: ∈ Rd, i = 1, . . . ,m. For generic choices of
the weight matrix W> = V , this is a central arrangement in general position. Hence, by Theorem 20,
r(Aj) = r(ess(Aj)) = 2

∑d−1
i=0

(
m−1
i

)
.

For the number of regions of the entire arrangement A, corresponding to the number of linear
regions of the function expressed by the layer, we obtain RGNN = r(A) =

∏S0

j=1 r(Aj) =(
2
∑d−1
i=0

(
m−1
i

))S0

. This concludes the proof.

The above result should be compared with the optimal upper bound for a standard dense ReLU layer
without biases, ψ(Wx), which for d inputs and m outputs is 2

∑d−1
i=0

(
m−1
i

)
.

The invertibility condition for the aggregation function H can be relaxed, but is satisfied by many
commonly used graph convolutions: i) For an undirected graph, the normalised adjacency matrix has
non-negative eigenvalues. If the eigenvalues are all positive, the aggregation function is invertible. ii)
The Fourier transform is the square matrix of eigenvectors, as used in spectral GNN (Bruna et al.,
2014). When the graph Laplacian is non-singular, Fourier transform matrix, that is aggregation
mapping is invertible. iii) For the transform Φ by graph wavelet basis, Haar wavelet basis or graph
framelets, the Φ are all invertible (Xu et al., 2019a; Li et al., 2020; Zheng et al., 2020a;b; 2021; Wang
et al., 2020). So the bound in Theorem 21 applies to them.

SCNN Simplicial Complex Neural Networks (SCNNs) were proposed by Ebli et al. (2020). An
SCNN layer for features on a p-simplicial complex is defined in terms of matrices Mn (e.g. simplicial
Laplacian) by

Hout
n = ψ

(
MnH

in
n Wn

)
, n = 0, . . . , p. (10)

In this type of layer, the features on simplices of different dimensions n = 0, 1 . . . , p are computed
in parallel. The following theorem is a restatement of Theorem 10, for which we now give full proof
and explanation.
Theorem 22 (Number of linear regions for an SCNN layer). Consider a p-dimensional simplicial
complex with Sn n-simplicies for n = 0, 1, . . . , p. Suppose that each simplicial Laplacian in
dimension n Ln is invertible. Then the maximum number of linear regions of the functions represented
by a ReLU SCNN layer N of the form (10) is

RN =

p∏
n=0

(
2

dn−1∑
i=0

(
mn

i

))Sn

, (11)
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where, for each of the n-simplices, dn is the input feature dimension and mn is the number of output
features. Consider a p-dimensional simplicial complex with Sn n-simplicies for n = 0, 1, . . . , p.
Suppose that each simplicial Laplacian in dimension n LnMn is invertible. Then the number of linear
regions of the functions represented by a ReLU SCNN layer (10) of the form Hout

n = ψ(LnH
in
n Wn),

n = 1, . . . , p, has the optimal upper bound

RSCNN =

p∏
n=0

(
2

dn−1∑
i=0

(
mn − 1

i

))Sn

,

where, for each n-simplex, dn is the input feature dimension and mn is the number of output features.

The product over n in (22) reflects the fact that the features over simplices of different dimensions do
not interact. The GNN bound in Theorem 21 is recovered as the special case of the SCNN bound
with p = 0.

It is instructive to compare the SCNN bound in Theorem 22 with the optimal bound for a dense layer.
By Roth’s lemma (Roth, 1934), vec(MnH

in
n Wn) = (W>n ⊗Mn) · vec(H in

n ), where vec denotes
column-by-column vectorization and ⊗ the Kronecker product. Hence, for each n, we can regard the
SCNN layer as a standard layer ψ(Ux) with weight matrix U = (W>n ⊗Mn) ∈ R(mnSn)×(Sndn)

and input vector x = vec(H in
n ) ∈ RSndn . Notice that for the SCNN layer, the weight matrix has a

specific structure. A standard dense layer with Sndn inputs and mnSn ReLUs with generic weights
and no biases computes functions with 2

∑Sndn−1
i=0

(
mnSn−1

i

)
regions.

Proof of Theorem 22. By the definition of the SCNN layer, for each dimension n, each of the Sn
n-simplices in the simplicial complex has dn input features. Similar to the proof of Theorem 21, the
arrangement for the n-dimensional simplices corresponds to a direct sum of Sn arrangements, each
of mn hyperplanes in Rdn . Hence the number of linear regions for this part of the complex is(

2

dn−1∑
i=0

(
mn − 1

i

))Sn

. (12)

Now for the entire layer, the arrangements for the different n are also combined as a direct sum, so
that their number of regions multiply. We have n ranging from dimension 0 to p, so that

p∏
n=0

(
2

dn−1∑
i=0

(
mn − 1

i

))Sn

. (13)

This concludes the proof.

MPSN In our Message Passing Simplicial Network (MPSN), the features on simplices of different
dimensions are allowed to interact. For a p-dimensional complex, denote the set of n-simplices by
Sn with Sn = |Sn|. Denote the n-simplex input feature dimension by dn, and the output feature
dimension by mn = m, n = 0, . . . , p. We consider an MPSN layer with linear message functions,
sum aggregation for all messages and an update function taking the sum of the messages followed by
a ReLU activation. For each v ∈ Sn, the output feature vector takes the form:

houtn,v = ψ
( ∑
w∈Sn

Mn,v,wh
in
n,wWn +

∑
w∈Sn−1

Un,v,wh
in
n−1,wWn−1 +

∑
w∈Sn+1

On,v,wh
in
n+1,wWn+1

)
,

(14)
where ψ is an entry-wise activation (s 7→ max{0, s} for ReLU), Wn ∈ Rdn×mn are trainable weight
matrices, F(v) ⊆ Sn−1 denotes the set of (n−1)-faces and C(v) ⊆ Sn+1 the set of (n+ 1)-co-faces
(containing faces) of v ∈ Sn in the simplicial complex. Further, Un ∈ RSn×Sn−1 , Mn ∈ RSn×Sn

and On ∈ RSn×Sn+1 are some choice of adjacency matrices for the simplicial complex. These could
be, for instance, the Hodge Laplacian matrix Ln and the corresponding boundary matrices Bn, B>n+1
that relate simplicies to their faces and cofaces (Barbarossa & Sardellitti, 2020).

We can rewrite (14) more generality and more concisely as follows. For each n the output features on
Sn can be written as

Hout
n =ψ(MnHnWn + UnHn−1Wn−1 +OnHn+1Wn+1)
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=ψ

(
[UnHn−1|MnHn|OnHn+1]

[
Wn−1

Wn

Wn+1

])
, (15)

for some fixed matrices Un ∈ RSn×Sn−1 , Mn ∈ RSn×Sn and On ∈ RSn×Sn+1 depending only on
the simplicial complex. To avoid clutter, we omit the superscript “in” of the input feature matrices
Hn. Concatenating (15) for all n, we can write the entire MPSN layer as

Hout
0

Hout
1

Hout
2

...
Hout

p

 = ψ


M0H0 O0H1

U1H0 M1H1 O1H2

U2H1 M2H2 O2H3

. . .



W0

W1

W2

...
Wp


 . (16)

We will use this representation (or rather (15)) in the proof of the first bound in Theorem 26 (which is
a restatement of Theorem 11).

It is also useful to write the linear function in standard form. Using Roth’s lemma, we can write (15)
as

vec(Hout
n ) = ψ

([
W>n−1 ⊗ Un|W>n ⊗Mn|W>n+1 ⊗On

]
vec
([
Hn−1|Hn|Hn+1

]))
. (17)

Now, concatenating over n yields the expression ψ(WH) from (18) for the entire layer,

we can write (14) as (details in Appendix C)

Hout = ψ(WH in), (18)

where H in = vec([H in
0 |H in

1 | · · · |H in
p ]) ∈ RN , N =

∑p
n=0 Sndn, Hout =

vec([Hout
0 |Hout

1 | · · · |Hout
p ]) ∈ RM with M =

∑p
n=0 Snm, and

W =


W>0 ⊗M0 W>1 ⊗O0

W>0 ⊗U1 W>1 ⊗M1 W>2 ⊗O1

W>1 ⊗U2 W>2 ⊗M2 W
>
3 ⊗O2

. . .

 . (19)

We study the number of linear regions of the function (18) with ReLU based on the matrix W ∈
RM×N . For each of the output coordinates i ∈ {1, . . . ,M}, the ReLU splits the input space RN into
two regions separated by a hyperplane {H in ∈ RN : Wi:H

in = 0} with normal W>i: ∈ RN .

In order to count the total number of regions, we will use results from the theory of hyperplane
arrangements. Zaslavsky (1975, Theorem A) shows that the number of regions r(A) defined by an
arrangement A of hyperplanes in RN is

r(A) = (−1)NχA(−1),

where χA is the characteristic polynomial of the arrangement. By virtue of a theorem of Whitney
(see Stanley 2004, Theorem 2.4 and Orlik & Terao 1992, Lemma 2.55), it can be written as χA(t) =∑

(−1)|B|tN−rank(B),where the sum runs over subarrangements B ⊆ A that are central (hyperplanes
in B have a nonempty intersection), and rank(B) denotes the dimension spanned by the normals to
the hyperplanes in B. In our case, A is a central arrangement with normals given by the rows of the
matrix W in (19). Hence:

Lemma 23. The number of linear regions of the function (18) with W ∈ RM×N and ψ being ReLU
is equal to

r(A) =
∑

B⊆{1,...,M}

(−1)|B|−rank(WB:),

where WB: denotes the submatrix of rows i ∈ B.

This formula counts the linear regions of any particular function represented by our layer. Some
interesting cases can be computed explicitly.

Proposition 24. Consider some K ≤ N . If rank(WB:) = min{|B|,K} for any B, then r(A) =

2
∑K−1
j=0

(
M−1
j

)
.
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Proof. This result is known in theory of partial orders and hyperplane arrangements. We include
a proof which illustrates the evaluation of the characteristic polynomial. If there is K so that
rank(WB:) = min{|B|,K} for all B, then Lemma 23 can be evaluated as

r(A) =
∑
B

(−1)|B|−min{|B|,K}

=

K∑
j=0

∑
B∈({1,...,M}j )

1 +

M∑
j=K+1

∑
B∈({1,...,M}j )

(−1)j−K

=

K∑
j=0

(
M

j

)
+ (−1)M−K

M−(K+1)∑
j=0

(
M

j

)
(−1)j

=

K∑
j=0

(
M

j

)
+ (−1)

(
M − 1

K

)

=2

K−1∑
j=0

(
M − 1

j

)
,

which is what was claimed.

We can characterize cases where the hypothesis of Proposition 24 is satisfied for particular values of
K. For instance, using the tridiagonal block structure of W in (19):

Proposition 25. Ifm ≤ dn and rank(On) = Sn for n = 0, . . . , p, then rank(WB:) ≥ min{|B|,K},
where K = N −m ·max{S0, . . . , Sp}.

Proof. Since matrix W from (19) is lower block triangular, we have

rank(W ) ≥ rank
(
[W>0 ⊗M0|W>1 ⊗O0]

)
+

p−2∑
n=1

rank
(
W>n+1 ⊗On

)
+ rank

([
W>p ⊗Op−1

W>p ⊗Mp

])
.

Since the matrix W is also upper block triangular, we have a similar bound in terms of the Un.
Using the rank formula for Kronecker products rank(W>n ⊗Mn) = rank(W>n ) rank(Mn), we
see that if all the factor matrices are full rank, then rank(WB:) ≥

∑p−1
n=0 min{dn,m}Sn for any

B ⊆ {1, . . . ,
∑p−1
n=0mSn}. Recall that WB: denotes the submatrix of W composed of the rows

i ∈ B.

With the above proposition, we would obtain the following bounds for counting the linear regions of
an MPSN layer. This is a restatement of Theorem 11. Here we give more details of the meaning and
proof of the bounds.

Theorem 26 (Number of linear regions of an MPSN layer). With the above settings, the maximum
number of linear regions of the functions represented by a ReLU MPSN layer (18) is upper bounded
by

RMPSN ≤
p∏

n=0

2

dn−1+dn+dn+1−1∑
i=0

(
m− 1

i

)Sn

, (20)

where we set d−1 = dp+1 = 0. We also note the ‘trivial’ upper bound, with N :=
∑p
n=0 Sndn and

M :=
∑p
n=0 Snm, RMPSN ≤ 2

∑N−1
j=0

(
M−1
j

)
. Moreover, if m ≤ dn and rank(On) = Sn for all n,

writing S = max{S0, . . . , Sp}, we have the lower bound

RMPSN ≥ 2

N−(mS)−1∑
j=0

(
M − 1

j

)
.
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We note that the MPSN lower bound (26) surpasses the SCNN upper bound (22), with order∏
n(
∑
n′ mSn′)

dnSn and
∏
n(mSn)dnSn , respectively, when dn ≥ m. The GNN bound (21) is a

special case of the SCNN bound (22) with p = 0, and has asymptotic order md0S0 .

It is not difficult to obtain minor case by case improvements of the bounds in Theorem 26 by
conducting a more careful analysis of the row independencies in matrix W for specific values of the
input feature dimensions d0, . . . , dp, output feature dimension m, numbers of simplices S0, . . . , Sp,
and the structure of the matrices Un,Mn, On, n = 0, . . . , p.

Proof of Theorem 26. The proof of the fist upper bound is analogous to Theorem 22. The difference
is now we consider also the faces and cofaces that interact with an n-simplex in the MPSN. We use
the expression (15). The difference compared with Theorem 22 lies in the number of input features
for each n, which here results in

p∏
n=0

2

dn−1+dn+dn+1−1∑
i=0

(
m− 1

i

)Sn

, (21)

which is the first upper bound. The second upper bound is the trivial upper bound, which is the
maximum possible number of regions of a central arrangement of M hyperplanes in RN from
Theorem 20. The lower bound follows from inserting Proposition 25 into Proposition 24.

The regions for the three network architectures are illustrated in Figure 2 for a complex with
S0 = S1 = 3 and S2 = 1, each input dimension 1 and output dimension m = 3. It shows that from
GNN, SCNN to MPSN the number of linear regions increases in turn, consistent with the theory.

MPSN with populated higher-features To conclude this section, we consider a situation of
interest, where we are given a simplicial complex but only vertex features are available. To still
exploit the structure of the simplicial complex, we can populate the higher features as linear functions
of the vertex features. In this case (18) becomes ψ(W ′ vec(H in

0 )), where W ′ = WC for some
matrix C ∈ R(

∑
n dnSn)×(d0S0). We show that this strategy indeed can increase the complexity of

the represented functions.
Proposition 27 (MPSN with populated higher-features). Consider an arbitrary simplicial complex
and an MPSN layer mapping RS0×d0 → RS0×m;H in

0 7→ Hout
0 , whereby higher-dimensional

input features are populated as linear functions of the input vertex features. Consider further
the corresponding SCNN layer which computes Hout

0 = ψ(L0H
in
0 W0). Then, RMPSN ≥ RSCNN.

Moreover, for certain simplicial complexes and feature dimensions d0, . . . , dp,m, the above inequality
is strict.

Proof. Focusing on the S0 output features, the relevant matrices are [W>0 ⊗M0] for the simplicial
network and [W>0 ⊗M0|W>1 ⊗ O0]C for the MSPN with populated higher-dimensional features.
Both matrices have format mS0 × dS0 and rank min{m, d0} rank(M0). However, subsets of rows
have different ranks in both cases. For illustration, if d = 1 and l is the smallest number of nonzero
entries of any row in M0, then [W>0 M0] has an m row submatrix of rank min{m, l}. In contrast, an
m row submatrix of the augmented matrix will have rank min{m, l + l′}, where l′ is the smallest
number of nonzero entries of a row in O0.

The regions for the two cases are illustrated in Figure 7. It shows MPSN (Right) has more regions
than GNN/SCNN (Left) and has a higher complexity for populated case.

D RELATIONSHIP TO CONVOLUTIONS

Background on Hodge Laplacian The simplicial convolutions described in this section rely on
the Hodge Laplacians of the simplicial complex. Such a Laplacian operator Lp is associated with
each dimension p of the complex. The operator Lp has a special structure that depends on the
boundary operators of the corresponding dimensions Bp and Bp+1. These matrices are the discrete
equivalent of the boundary operators encountered in algebraic topology (see Schaub et al. (2020) for
more details). They essentially describe things such as the fact that boundary of a (filled) triangle is
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Figure 7: Shown is a 2D slice of the input vertex feature space of SCNN and MPSN layers with S0 = S1 = 3,
d0 = d1 = 1, m = 3, computing output vertex features, with input edge features set as a random linear function
of the input vertex features.

formed by its edges with some particular choice of orientation (positive or negative). The Laplacian
can be written as a function of these boundary matrices as Lp = BTp Bp + Bp+1B

T
p+1. We denote

the first term by L↓p and the second by L↑p, because they encode (orientation-aware) up and down
adjacencies between the p-simplicies of the complex. Additionally, let us recall the important relation
BpBp+1 = 0 (i.e. the zero map). This equation, which is fundamental in homology theory and
differential geometry, formally specifies that the boundary of a simplex has no boundary (e.g. the
boundary of a filled triangle has no boundary because it forms a loop and, therefore, it has no
endpoints).

We emphasise that the boundary matrices and the Laplacian and, consequently, the convolutions which
are based on these Laplacian operators depend on an arbitrary choice of orientation for the simplicial
complex. Therefore, convolutional operators based on this Laplacian using arbitrary nonlinear
activations are not generally orientation-equivariant. In other words, changing the orientation of
the input complex could result in completely different outputs. We analyse this in more detail in
Appendix E

Simplicial Neural Networks Ebli et al. (2020) presented Simplicial Neural Networks (SNNs),
neural network models extending convolutional layers to attributed simplicial complexes. The
theoretical construction closely resembles the one by Defferrard et al. (2016), where the standard
graph Laplacian is simply replaced by the more general Hodge p-Laplacian Lp, i.e. the generalization
of the Laplacian operator to simplices of order p. The p-th order SNN convolutional layer is

F−1p (φW ) ∗p c = ψ

(
R∑
r=0

WrL
r
pc

)
, (22)

where φW is a convolutional filter with learnable parameters W , c ∈ Cp(K) is a p-cochain on input
simplicial complex K (i.e. a real valued function over the set of p-simplices in K) and ψ accounts for
the application of bias and non-linearity. In particular, the convolutional filter φW is parameterized as
an R-degree polynomial of the Hodge p-Laplacian Lp. By imposing a small degree R, it is possible
to guarantee spatial filter localization similarly as in graphs.

This proposed convolutional layer can easily be rewritten in terms of our message passing scheme.
Let us first conveniently introduce the following Lemma:

Lemma 28. The r-th power of the Hodge p-Laplacian, Lrp, is equivalent to the sum of the r-th
powers of its constituent upper and lower components, that is: Lrp = (L↓p + L↑p)

r = (L↓p)
r + (L↑p)

r.

Proof. We prove the lemma by induction on the power exponent r. As the base case, we consider
exponent r = 1, for which the equivalence clearly holds as L1

p = (L↓p + L↑p)
1 = L↓p + L↑p =

(L↓p)
1 + (L↑p)

1.

For the induction step, we assume that Lr−1p = (L↓p)
r−1 + (L↑p)

r−1 holds true and prove that
Lrp = (L↓p)

r + (L↑p)
r. Lrp is defined as Lrp = LpL

r−1
p = (L↓p + L↑p)(L

↓
p + L↑p)

r−1.
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By the induction hypothesis: (L↓p + L↑p)(L
↓
p + L↑p)

r−1 = (L↓p + L↑p)
(
(L↓p)

r−1 + (L↑p)
r−1) =

L↓p(L
↓
p)
r−1 +L↓p(L

↑
p)
r−1 +L↑p(L

↓
p)
r−1 +L↑p(L

↑
p)
r−1 = (L↓p)

r +L↑p(L
↓
p)
r−1 +L↓p(L

↑
p)
r−1 + (L↑p)

r.
The second term L↑p(L

↓
p)
r−1 is rewritten as Bp+1B

T
p+1(BTp Bp)

r−1 = Bp+1B
T
p+1 BTp Bp︸ ︷︷ ︸

(r − 1) times

= 0,

since BTp+1B
T
p = (BpBp+1)T , which equals 0T by definition. Similarly, the third term L↓p(L

↑
p)
r−1

is rewritten as BTp Bp(Bp+1B
T
p+1)r−1 = BTp BpBp+1B

T
p+1︸ ︷︷ ︸

(r − 1) times

= 0, since, again, BpBp+1 = 0.

We now proceed to prove Theorem 7 that our MPSN can be reduced to SCNN of Ebli et al. (2020) or
Bunch et al. (2020). We split the proofs in two individuals.

Proof of Theorem 7 in reference to Ebli et al. (2020). We first rephrase Equation 22 for a generic
layer and multi-dimensional input and output p-simplicial representations

Ht+1 = ψ
( R∑
r=0

LrpH
tW t+1

r

)
= ψ

(
HtW t+1

0 +

R∑
r=1

LrpH
tW t+1

r

)
.

The convolutional operation for p-simplex v can be rewritten as

ht+1
v = ψ

(
htvW

t+1
0 +

R∑
r=1

(Lrp)vH
tW t+1

r

)
= ψ

(
htvW

t+1
0 +

R∑
r=1

∑
w∈Sp

(Lrp)v,wh
t
wW

t+1
r

)
,

where ht+1
v denotes the v-th row of matrix Ht+1, (Lrp)v denotes the v-th row of operator Lrp and

(Lrp)v,w its entry at position v, w. We now leverage on Lemma 28 to rewrite the convolution operation
on simplex v as

ht+1
v = ψ

( R∑
r=1

∑
w∈Sp

(
((L↓p)

r)v,w + ((L↑p)
r)v,w

)
htwW

t+1
r + htvW

t+1
0

)

= ψ
(∑
w∈Sp

R∑
r=1

((L↓p)
r)v,wh

t
wW

t+1
r +

∑
w∈Sp

R∑
r=1

((L↑p)
r)v,wh

t
wW

t+1
r + htvW

t+1
0

)
.

Considering that matrices L↓p and L↑p only convey the notions of, respectively, lower and upper
simplex adjacency, the equation above is easily interpreted in terms of our message passing scheme
by setting

M t+1
↑
(
htv, h

t
w, h

t
v∪w

)
=

R∑
r=1

((L↑p)
r)v,wh

t
wW

t+1
r

M t+1
↓
(
htv, h

t
w, h

t
v∩w

)
=

R∑
r=1

((L↓p)
r)v,wh

t
wW

t+1
r

U t+1
(
htv, {mt

i(v)}i=↓,↑
)

= ψ
(
htvW

t+1
0 +m↑

t+1
v +m↓

t+1
v

)
,

and by letting AGG be the summation over the extended notion of upper and lower R-neighborhoods,
that is neighborhoods comprising p-simplices at a distance from v which is at most R (w is at
distance d from v if there exists a sequence of upper- (respectively, lower-) adjacent p-simplices
[ν0, ν1, . . . , νd] such that ν0 = v, νd = w).

It is noteworthy that, contrary to our general proposed framework, the two message functions M t+1
↑

and M t+1
↓ share the same learnable parameters {W t+1

r }Rr=1, and that no signal of order lower or
higher than p is involved in the computation.
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SC-Conv Bunch et al. (2020) proposed a convolutional operator that can be applied on 2-
dimensional simplicial complexes. The construction is based on the canonical normalised Hodge
Laplacians defined by Schaub et al. (2020); starting from the operators, the authors generalize the
Graph Convolutional Network model proposed in Kipf & Welling (2017) by defining the correspond-
ing adjacency matrices with added self-loops:

Xt+1
0 = σ

(
D−11 B1X

t
1W

t
0,1 + Ãu0X

t
0W

t
0,0

)
Xt+1

1 = σ
(
B2D3X

t
2W

t
1,2 + (Ãd1 + Ãu1 )Xt

1W
t
1,1 +D2B

T
1 D
−1
1 Xt

0W
t
1,0

)
Xt+1

2 = Ãd2X
t
2W

t
2,1 +D4B

T
2 D
−1
5 Xt

1W
t
2,0.

We defer readers to Section 2.1 of the original paper for the definitions of the {Ãαi }2i=0 and {D}5i=1
matrices in the above equations. Differently from (Ebli et al., 2020), this scheme models the
interactions between signals defined at different dimensions. It can, nonetheless, be rewritten in terms
of our message passing framework.

Proof of Theorem 7 in reference to Bunch et al. (2020). We report here the derivation for message
passing on 1-simplices (edges) as it is the most general. The derivation on 0- and 2-simplices can
simply be obtained as a special case of this last. We first denote, for simplicity,

∆1,1 = Ãd1 + Ãu1 , ∆1,0 = D2B
T
1 D
−1
1 , ∆1,2 = B2D3.

We note that the convolutional operation for a generic 1-simplex e can be rewritten as

xt+1
1,e = σ

(
(∆1,2)eX

t
2W

t
1,2 + (∆1,1)eX

t
1W

t
1,1 + (∆1,0)eX

t
0W

t
1,0

)
= σ

(∑
u∈S2

(∆1,2)e,ux
t
2,uW

t
1,2 +

∑
f∈S1

(Ãu1 )e,fx
t
1,fW

t
1,1

+
∑
f∈S1

(Ãd1)e,fx
t
1,fW

t
1,1 +

∑
v∈S0

(∆1,0)e,vx
t
0,vW

t
1,0

)
= σ

( ∑
u∈C(e)

(∆1,2)e,ux
t
2,uW

t
1,2 +

( ∑
f∈N↑(e)

(Ãu1 )e,fx
t
1,f

+
∑

f∈N↓(e)

(Ãd1)e,fx
t
1,f + (∆1,1)e,ex

t
1,e

)
W t

1,1 +
∑

v∈F(e)

(∆1,0)e,vx
t
0,vW

t
1,0

)
.

This equation is interpreted in terms of our message passing scheme by setting

M t+1
1,↑
(
xt1,e, x

t
1,f , x

t
2,e∪f

)
= (Ãu1 )e,fx

t
1,f

M t+1
1,↓
(
xt1,e, x

t
1,f , x

t
0,e∩f

)
= (Ãd1)e,fx

t
1,f

M t+1
1,C
(
xt1,e, x

t
2,u

)
= (∆1,2)e,ux

t
2,u

M t+1
1,F
(
xt1,e, x

t
0,v

)
= (∆1,0)e,vx

t
0,v

U t+1
1

(
xt1,e, {mt

i(e)}i=F,C,↓,↑
)

= σ
(
W t

1,1
T (

(∆1,1)e,ex
t
1,e +m↑(e)

t+1 +m↓(e)
t+1
)

+W t
1,2

T
mC(e)

t+1 +W t
1,0

T
mF (e)t+1

)
,

and AGG =
∑

.

E EQUIVARIANCE AND INVARIANCE

One would expect MPSNs to be aware of the two symmetries of a simplicial complex: relabeling of
the simplicies in the complex and, optionally, changes in the orientation of the complex if orientations
are taken into account. We address these two below.
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Let K be simplicial p-complex with boundary matrices Bi with i ∈ {0, . . . , p} and corresponding
simplicial attributes Xi. Let Pi ∈ RSi×Si be some corresponding permutation matrices for the
simplicies of dimension i. Let PiXi and Pi−1BiPTi be the permuted feature matrices and boundary
operators, respectively. Additionally, Let P be an operator acting on simplicial complexes that
produces a new complex PK permuted as above.
Definition 29 (Permutation equivariance and invariance). We say that a function f is (simplex)
permutation equivariant if f(PK) = Pf(K) for any P (i.e. for any set of permutation operators
{Pi}). Similarly, we say that a function f is (simplex) permutation invariant if f(PK) = f(K) for
any P .
Remark 30. Equivariant functions f must map the simplicial complex to another complex with the
same structure, but with possibly different features, similarly to an MPSN layer. In contrast, an
invariant function f is not restricted in its choice of the co-domain, similarly to an MPSN network
ending with a readout.
Theorem 31. An MPSN layer is simplex permutation equivariant and an MPSN network with a final
readout layer is simplex permutation invariant.

Proof. It is sufficient to prove that an MPSN layer is permutation equivariant. Since the final readout
layer is permutation invariant by definition, the invariance of the whole model follows directly. In the
proof, we abuse the notation slightly and use Pi(a) to denote the corresponding permutation function
of Pi acting on indices.

We focus on a single simplex v of an arbitrary dimension n and the corresponding w = Pn(v). Let
ht+1
v be the output feature of simplex v for an MPSN layer taking K as input and h̄t+1

w the output
features of simplex w for the same MPSN layer taking PK as input. We will now show they are
equal by showing that the multi-set of features being passed to the message, aggregate and update
functions are the same for the two simplicies.

The faces of the n-simplicies in K are given by the non-zero elements of Bn. Similarly, the lower
adjacencies in PK are given by the non-zero elements of Pn−1BnPTn (i.e. the matrix where the rows
and columns are permuted according to Pn). Therefore, we obtain

(Bn)a,b = (Pn−1BnP
T
n )Pn−1(a),Pn(b),

In particular, this holds for b = v, Pn(b) = w. Because the feature matrices for the (n− 1)-simplices
in PK are also permuted with Pn−1Xn−1, v and w receive the same message from their faces. The
proof follows similarly for coface adjacencies.

The lower adjacenices of the n-simplicies in K are given by the non-zero entries of BTnBn. Similarly,
the lower adjacencies in PK are given by the non-zero elements of

(Pn−1BnP
T
n )T (Pn−1BnP

T
n ) = PnB

T
nP

T
n−1Pn−1BnP

T
n = PnB

T
nBnP

T
n .

That is, the same adjacencies as inK, but with the rows and columns accordingly permuted. Therefore,

(BTnBn)a,b = (PnB
T
nBnP

T
n )Pn(a),Pn(b),

which, in particular, holds for a = v, Pn(a) = w. Since the feature matrices for the n-simplices in
PK are also accordingly permuted with PnXn, v and w receive the same message from the lower
adjacenct simplicies. This can be similarly shown for upper adjacencies.

Another symmetry that we would like to preserve is orientation. For instance, we know that the
homology of the complex is invariant to the particular orientation that was chosen. Therefore, for
certain applications where orientations are of interest, we would like to design MPSN layers that
are orientation equivariant and MPSN networks that are orientation invariant. We first define these
notions. Let Ti = diag(ti,1, . . . , ti,Si) a set of diagonal matrices where ti,k = ±1 for any k and
i ∈ {0, . . . , p}. Additionally, we impose the constraint T0 = I , since vertices have no orientation.
Changing the orientation of the complex amounts to obtaining a new set of features TiXi and
boundary matrices Ti−1BiTi. We denote the corresponding change of orientation for the whole
complex by T K as above.
Definition 32 (Orientation equivariance and invariance). We say that a function f is orientation
equivariant if f(T K) = T f(K) for any T (i.e. for any set of orientation operators {Ti}). Similarly,
we say that a function f is orientation invariant if f(T K) = f(K) for any T .
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Remark 33. Orientation invariance can be trivially achieved by considering the absolute value of
the features and by treating the complex as an unoriented one.

However, it is (in general) desirable to use equivariance at the intermediate layers and make the
network invariant with a final transformation (readout). To study such models requires making further
assumptions about the structure of the message, update and aggregate functions. For instance, we can
consider the model from (14) used in our linear regions analysis, with a convenient vectorised form

Xout
i = ψ

(
BTi BiX

in
i W1 +X in

i W2 +Bi+1B
T
i+1X

in
i W3 +BTi X

in
i−1W4 +Bi+1X

in
i+1W5

)
, (23)

where we have split the upper and lower adjacencies in two. This corresponds to an MPSN with a
message function that multiplies the linearly transformed features of the neighbour by the relative
orientation (±1), sum-based aggregation and an update function that adds the incoming messages to
its linearly transformed features and passes the output through ψ.
Proposition 34. When ψ is an odd activation function, the MPSN layer from Equation (23) is
orientation equivariant.

Proof. We denote with Xout
i = fi(Bi, Bi+1, X

in
i , X

in
i−1, X

in
i+1) the application of one such MPSN

layer on i-dimensional chains. For this MPSN layer to be equivariant, we need to show that
fi(Ti−1BiTi, TiBi+1Ti+1, TiX

in
i , Ti−1X

in
i−1, Ti+1X

in
i+1) = TiX

out
i . Because TiTi = I and TTi =

Ti for all i, we can easily rewrite LHS as

ψ
(
Ti
(
BTi BiX

in
i W1 +X in

i W2 +Bi+1B
T
i+1X

in
i W3 +BTi X

in
i−1W4 +Bi+1X

in
i+1W5

))
. (24)

Notice that if ψ and Ti commute, then this becomes TiXout
i . We remark that they commute when ψ

is an odd function and, in particular, when ψ is the identity.

Remark 35. A (permutation invariant) aggregation-based readout layer first applying an element-
wise even function ψ to the elements of its input multiset is orientation invariant since

AGG({{ψ(xi)}}) = AGG({{ψ(±xi)}}). (25)

F DISCUSSION AND RELATED WORK

F.1 COMPUTATIONAL COMPLEXITY

Message passing on clique complexes Generally, finding all the maximal cliques in a graph
(Bron & Kerbosch, 1973; Tomita et al., 2006; Cazals & Karande, 2008) has an optimal worst-case
complexity of O(3n/3). However, finding all the cliques of a certain maximum dimension in (sparse)
real-world graphs can be shown to be significantly faster, as shown in the analysis from the main text.
In our experiments, we use a simplex tree data-structure (Boissonnat & Maria, 2014) implemented
in the topological data analysis library Gudhi (The GUDHI Project, 2021) to compute the clique
complex. Empirically, in large-scale experiments involving graphs with 106 nodes, simplex trees are
able to generate the clique complex up to a constant desired dimension in a computational cost that is
linear in the number of simplicies in the complex (Boissonnat & Maria, 2014). Guarantees about the
maximum number of such cliques can also be obtained in terms of the maximum degree of the graph,
besides its arboricity. Recently, Chase (2020) has proven the Gan-Loh-Sudakov conjecture (Gan
et al., 2015) stating that the maximum number of cliques of size t in a graph of maximum degree δ is
q
(
δ+1
t

)
+
(
r
t

)
, where n = q(δ + 1) + r, 0 ≤ r ≤ δ. This provides further guarantees that the time

complexity will be good on real-world graphs, where δ is typically small compared to the size of the
graph.

F.2 OTHER LIFTING TRANSFORMATIONS AND CUBICAL COMPLEXES

We note that other graph lifting transformations could also be used for applying SWL and MPSNs to
graph domains. While clique complexes are the commonest such transformation, many others exist
(Ferri et al., 2018) and they could be used to emphasise motifs that are relevant for the task (Milo
et al., 2002). More broadly, the transformation could target a much wider set of complexes such as
cubical complexes (Kaczynski et al., 2004) or cell complexes (Hatcher, 2000), for which a message
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Figure 8: Example of two cubical complexes whose underlying graphs cannot be distinguished by 1-WL, but are
not isomorphic as cubical complexes.

Figure 9: Decalin and Bicyclopentyl: Non-isomorphic molecular graphs that cannot be distinguished neither
by WL nor by SWL, when based on clique complexes (here the nodes represent carbon atoms, and edges are
chemical bonds).

passing procedure has already been proposed (Hajij et al., 2020). Cell Complexes have a similar
hierarchical structure to simplicial complexes, and the approach of Hajij et al. (2020) is very close
to ours. At the same time, arbitrary cell complexes are too general for most applications. Here we
discuss how our approach could be extended to cubical complexes, a type of cell complex that from a
theoretical point of view is similar to simplicial complexes (Kaczynski et al., 2004), and which is
used in applications. We plan to extend our approach to cubical complexes in future work.

Cubical complexes are cell complexes consisting of unions of points, edges, squares, cubes, and
higher-dimensional hypercubes (Kaczynski et al., 2004). While they are less well-known than
simplicial complexes, they can nevertheless be used in applications, and are better suited to the study
of certain types of data sets, see, e.g. Wagner et al. (2011). Our approach to message passing can be
directly implemented also for cubical complexes. One could similarly define a WL test for cubical
complexes, however, the results of Section 2 do not carry over to cubical complexes, since there exist
graphs that cannot be embedded into an n-dimensional cube for any n (Garey & Graham, 1975). It is
therefore not possible to relate the expressive power for graphs in the WL test to cubical complexes.

In Figure 8 we provide an example of two cubical complexes that are not isomorphic, while their
underlying graphs are isomorphic. We note that the clique complexes of the underlying graphs are
also isomorphic. The examples in Figures 5 and 8 raise the question of whether we could design
tests that are better suited to take into account the topological information encoded in simplicial and
cubical complexes, such as homeomorphism tests, which have already been studied, see e.g. Baik &
Miller (1990). In particular, such tests should be able to distinguish the graphs in Figure 9, a pair of
real world molecular graphs that cannot be distinguished by the SWL test based on clique complexes.

A natural next step in our work is to perform tests on data sets that are more naturally modelled
by cubical complexes, such as digital images, for which they can provide computational speed-ups
compared to simplicial complexes (Wagner et al., 2011; Kaczynski et al., 2004).

F.3 PROVABLY EXPRESSIVE GNNS

In order to overcome the limited expressive power of standard GNN architectures, several works have
proposed variants inspired by the higher-order k-WL procedures (see Appendix). Maron et al. (2019)
introduced a model equivalent in power to 3-WL, Morris et al. (2019) proposed k-GNNs, graph
neural networks equivalents of set-based k-WL tests. By performing message passing on all possible
k-sets of nodes and across non-local neighborhoods, these models trade locality of computation for
expressive power, and thus suffer from high spatial and temporal complexities. Local k-WL variants
are introduced and characterized in their expressive power in a follow-up work (Morris et al., 2020).
These approaches distinguish local and global neighbors and provably powerful neural counterparts
are introduced. Although more efficient than standard higher-order procedures, in contrast to our
method, these approaches still account for all possible node k-tuples in a graph, and do not model the
relation between signals defined over different dimensions. An alternative approach to improving
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GNN expressivity has been adopted in Bouritsas et al. (2020), where isomorphism counting of graph
substructures is employed as a symmetry breaking mechanism to disambiguate neighbors. Similarly
to ours, this approach retains locality of operations; however, message passing is only performed at
the node level, and thus does not account for signals defined over higher-dimensional objects.

G ADDITIONAL EXPERIMENTS AND DETAILS

G.1 STRONGLY REGULAR GRAPHS

In the experiments discussed in Section 3, we consider two graphs to be isomorphic if the Euclidean
distance between their representations is below a fixed threshold ε. We set ε = 0.01 and embed
graphs in a 16-dimensional space by running an untrained, 5-layer, MPSN model on the associated
clique complexes. In particular, each graph is lifted to a (k − 1)-dimensional simplicial complex,
with k the size of the largest clique in the family it belongs to. Nodes are initialised with a constant,
unitary signal, while simplices with the sum of the features of the constituent nodes. In the employed
architecture, in accordance with Theorem 1, messages are only aggregated from faces and upper-
adjacent simplices (for which we also include the representations of the shared cofaces). The
following message passing operations are employed to compute the t+ 1 intermediate representation
for p-simplex v:

ht+1
v = MLPtU

(
MLPt

(
(1 + ε)htv +

∑
w∈F(v)

htw
)
‖ MLPt

(
(1 + ε)htv +

∑
w∈N (v)

M t
↑(h

t
w, h

t
v∪w)

))
M t
↑(h

t
w, h

t
v∪w) = MLPtM

(
htw ‖ htv∪w

)
(26)

where ‖ indicates concatenation, MLPt is a 2-Layer Perceptron and MLPtU , MLPtM consist of a
dense layer followed by a non-linearity. Parameter ε is set to zero and is not optimised. Chain
representations are pooled via summation and final complex embeddings are obtained by applying an
2-Layer Perceptron to the sum of chain representations at each dimension. The ELU Clevert et al.
(2016) non-linearity is applied throughout the whole architecture. The experiments are performed
for 10 different random weight-initialisations; in Figure 3 we report mean failure rate along with
standard error (vertical error bars). The “MLP+sum” baseline consists of model which first performs
a non-linear projection of simplex features, then applies an overall sum readout and finally applies
two additional non-linear projection layers. ELU nonlinearities are employed for this baseline as
well. The datasets can be found at the webpage http://users.cecs.anu.edu.au/˜bdm/
data/graphs.html.

G.2 REAL-WORLD GRAPH CLASSIFICATION

For this set of experiments, we employ a SIN model which applies the following message passing
scheme to compute the t+ 1 intermediate representation for p-simplex v:

ht+1
v = MLPtU,p

(
MLPtF,p

(
(1+ εF )htv +

∑
w∈F(v)

htw
)
‖ MLPt↑,p

(
(1+ ε↑)h

t
v +

∑
w∈N (v)

htw
))

(27)

where ‖ indicates concatenation, MLPtF,p and MLPt↑,p are 2-Layers Perceptrons endowed with Batch
Normalization (Ioffe & Szegedy, 2015) (BN) and ReLU activations, MLPtU,p is a dense layer followed
by the application of BN and ReLU. The only exception is represented by Reddit datasets, on which
BN was observed to cause instabilities in the training process and was not applied. Parameters εF and
ε↑ are set to zero and are not optimised. As it is possible to notice in Equation (27), upper message
m↑,p(v) is computed as m↑,p(v) =

∑
w∈N (v) h

t
w, thus explicitly disregarding the representation of

shared cofaces htv∪w: this choice showed to yield better performance on these benchmarks. The
overall architecture closely resembles the one adopted in Xu et al. (2019b): 4 message passing
layers and a Jumping Knowledge readout scheme (Xu et al., 2018), which computes final p-chain
embeddings by applying a non-linear dense layer to the concatenation of the representations obtained
at each message passing iteration. Final complex representations are obtained by summing the chain
embeddings read-out at dimensions 0 (‘nodes’) and 2 (‘triangles’). One last dense layer is applied to
output class predictions.
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G.3 TRAJECTORY CLASSIFICATION

For the trajectory classification task we generate the simplicial complex using an approach similar to
Schaub et al. (2020). We generate 1,000 random points in the unit square, we perform a Delaunay
triangulation of these points and then remove the triangles (and points) intersecting with two pre-
defined regions of the plane to create the two holes. To generate the trajectories, we first randomly
sample a random point from the top-left corner of the complex and an end point from the bottom-right
corner of the complex. We then perform a random walk on the edges of the complex. With a
probability of 0.9, the neighbour closest to the end-point is chosen, and with a probability 0.1, a
random neighbour is chosen. To generate the two classes, we set random points either from the
bottom-left corner or the top-right corner as an intermediate checkpoint. We generate 1,000 train
trajectories and 200 test trajectories. We train all modes for 50 epochs and report the final test result.

Model-wise, we use an MPSN network with equivariant layers with identity activation function as in
Equation (23). The final layer is an orientation-invariant readout layer, which first passes the features
through the absolute value function and then performs a sum aggregation. For the MPNN baseline
we use again a model like Equation (23), but with no upper adjacencies (no triangle awareness) and
with no awareness of the relative orientations. The MPNN is thus essentially performing message
passing in the line graph.
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