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Abstract

We study Leaky ResNets, which interpolate between ResNets (L̃ = 0) and Fully-1

Connected nets (L̃ → ∞) depending on an ’effective depth’ hyper-parameter L̃.2

In the infinite depth limit, we study ’representation geodesics’ Ap: continuous3

paths in representation space (similar to NeuralODEs) from input p = 0 to output4

p = 1 that minimize the parameter norm of the network. We give a Lagrangian5

and Hamiltonian reformulation, which highlight the importance of two terms: a6

kinetic energy which favors small layer derivatives ∂pAp and a potential energy7

that favors low-dimensional representations, as measured by the ’Cost of Identity’.8

The balance between these two forces offers an intuitive understanding of feature9

learning in ResNets. We leverage this intuition to explain the emergence of a10

bottleneck structure, as observed in previous work: for large L̃ the potential energy11

dominates and leads to a separation of timescales, where the representation jumps12

rapidly from the high dimensional inputs to a low-dimensional representation,13

move slowly inside the space of low-dimensional representations, before jumping14

back to the potentially high-dimensional outputs. Inspired by this phenomenon, we15

train with an adaptive layer step-size to adapt to the separation of timescales.16

1 Introduction17

Feature learning is generally considered to be at the center of the recent successes of deep neural18

networks (DNNs), but it also remains one of the least understood aspects of DNN training.19

There is a rich history of empirical analysis of the features learned by DNNs, for example the20

appearance of local edge detections in CNNs with a striking similarity to the biological visual cortex21

[19], feature arithmetic properties of word embeddings [22], similarities between representations22

at different layers [18, 20], or properties such as Neural Collapse [24] to name a few. While some23

of these phenomenon have been studied theoretically [3, 8, 27], a more general theory of feature24

learning in DNNs is still lacking.25

For shallow networks, there is now strong evidence that the first weight matrix is able to recognize a26

low-dimensional projection of the inputs that determines the output (assuming this structure is present)27

[4, 2, 1]. A similar phenomenon appears in linear networks, where the network is biased towards28

learning low-rank functions and low-dimensional representations in its hidden layers [13, 21, 29].29

But in both cases the learned features are restricted to depend linearly on the inputs, and the feature30

learning happens in the very first weight matrix, whereas it has been observed that features increase31

in complexity throughout the layers [31].32

The linear feature learning ability of shallow networks has inspired a line of work that postulates that33

the weight matrices learn to align themselves with the backward gradients and that by optimizing for34

this alignment directly, one can achieve similar feature learning abilities even in deep nets [5, 25].35
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For deep nonlinear networks, a theory that has garnered a lot of interest is the Information Bottleneck36

[28], which observed amongst other things that the inner representations appear to maximize their37

mutual information with the outputs, while minimizing the mutual information with the inputs. A38

limitation of this theory is its reliance on the notion of mutual information which has no obvious39

definition for empirical distributions, which lead to some criticism [26].40

A recent theory that is similar to the Information Bottleneck but with a focus on the41

dimensionality/rank of the representations and weight matrices rather than the mutual information is42

the Bottleneck rank/Bottleneck structure [16, 15, 30]: which describes how, for large depths, most of43

the representations will have approximately the same low dimension, which equals the Bottleneck44

rank of the task (the minimal dimension that the inputs can be projected to while still allowing45

for fitting the outputs). The intuitive explanation for this bias is that a smaller parameter norm is46

required to (approximately) represent the identity on low-dimensional representations rather than47

high dimensional ones. Some other types of low-rank bias have been observed in recent work [9, 14].48

In this paper we will focus on describing the Bottleneck structure in ResNets, and formalize the49

notion of ‘cost of identity’ as a driving force for the bias towards low dimensional representation.50

The ResNet setup allows us to consider the continuous paths in representation space from input to51

output, similar to the NeuralODE [6], and by adding weight decay, we can analyze representation52

geodesics, which are paths that minimize parameter norm, as already studied in [23].53

1.1 Leaky ResNets54

Our goal is to study a variant of the NeuralODE [6, 23] approximation of ResNet with leaky skip55

connections and with L2-regularization. The classical NeuralODE describes the continuous evolution56

of the activations αp(x) ∈ Rw starting from α0(x) = x at the input layer p = 0 and then follows57

∂pαp(x) = Wpσ(αp(x))

for the w × (w + 1) matrices Wp and the nonlinearity σ : Rw → Rw+1 which maps a vector z to58

σ(z) = ( [z1]+ . . . [zw]+ 1 ) , applying the ReLU nonlinearity entrywise and appending a59

new entry with value 1. Thanks to the appended 1 we do not need any explicit bias, since the last60

column Wp,·w+1 of the weights replaces the bias.61

This can be thought of as a continuous version of the traditional ResNet with activations αℓ(x) for62

ℓ = 1, . . . , L: αℓ+1(x) = αℓ(x) +Wℓσ(αℓ(x)).63

We will focus on Leaky ResNets, a variant of ResNets that interpolate between ResNets and FCNNs,64

by tuning the strength of the skip connections leading to the following ODE with parameter L̃:65

∂pαp(x) = −L̃αp(x) +Wpσ(αp(x)).

This can be thought of as the continuous version of αℓ+1(x) = (1− L̃)αℓ(x) +Wℓσ(αℓ(x)). As we66

will see, the parameter L̃ plays a similar role as the depth in a FCNN.67

Finally we will be interested describing the paths that minimize a cost with L2-regularization68

min
Wp

1

N

N∑
i=1

∥f∗(xi)− α1(xi)∥2 +
λ

2L̃

∫ 1

0

∥Wp∥2F dp.

The scaling of λ
L̃

for the regularization term will be motivated in Section 1.2.69

This type of optimization has been studied in [23] without leaky connections, but we will describe in70

this paper large L̃ behavior which leads to a so-called Bottleneck structure [16, 15] as a result of a71

separation of time scales in p.72

1.2 A Few Symmetries73

Changing the leakage parameter L̃ is equivalent (up to constants) to changing the integration range74

[0, 1] or to scaling the outputs.75

Integration range: Consider the weights Wp on the range [0, 1] and leakage parameter L̃, leading76

to activations αp. Then stretching the weights to a new range [0, c], by defining W ′
q = 1

cWq/c for77
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q ∈ [0, c], and dividing the leakage parameter by c, stretches the activations α′
q = αp/c:78

∂qα
′
q(x) = −

L̃

c
α′
q(x) +

1

c
Wq/cσ(α

′
q(x)) =

1

c
∂pαq/2(x),

and the parameter norm is simply divided by c:
∫ c

0

∥∥W ′
q

∥∥2 dq = 1
c

∫ 1

0
∥Wp∥2 dp.79

This implies that a path on the range [0, c] with leakage parameter L̃ = 1 is equivalent to a path on80

the range [0, 1] with leakage parameter L̃ = c up to a factor of c in front of the parameter weights.81

For this reason, instead of modeling different depths as changing the integration range, we will keep82

the integration range to [0, 1] for convenience but change the leakage parameter L̃ instead. To get rid83

of the factor in front of the integral, we choose a regularization term of the form λ
L̃

. From now on, we84

call L̃ the (effective) depth of the network.85

Note that this also suggests that in the absence of leakage (L̃ = 0), changing the range of integration86

has no effect on the effective depth, since 2L̃ = 0 too. Instead, in the absence of leakage, the effective87

depth can be increased by scaling the outputs as we now show.88

Output scaling: Given a path Wp on the [0, 1] (for simplicity, we assume that there are no bias, i.e.89

Wp,·w+1 = 0), then increasing the leakage by a constant L̃ → L̃ + c leads to a scaled down path90

α′
p = e−cpαp. Indeed we have α′

0(x) = α0(x) and91

∂pα
′
p(x) = −(L̃+ c)α′

p(x) +Wpσ(α
′
p(x)) = e−cp (∂pαp(x)− cαp(x)) = ∂p(e

−cpαp(x)).

Thus a nonleaky ResNet L̃ = 0 with very large outputs α1(x) is equivalent to a leaky ResNet L̃ > 092

with scaled down outputs e−L̃α1(x). Such large outputs are common when training on cross-entropy93

loss, and other similar losses that are only minimized at infinitely large outputs. When trained on94

such losses, it has been shown that the outputs of neural nets will keep on growing during training95

[12, 7], suggesting that when training ResNets on such a loss, the effective depth increases during96

training (though quite slowly).97

1.3 Lagrangian Reformulation98

The optimization of Leaky ResNets can be reformulated, leading to a Lagrangian form.99

First observe that the weights Wp at any minimizer can be expressed in terms of the matrix of100

activations Ap = αp(X) ∈ Rw×N over the whole training set X ∈ Rw×N (similar to [17]):101

Wp = (L̃Ap + ∂pAp)σ(Ap)
+

where (·)+ is the pseudo-inverse.102

We therefore consider the equivalent optimization over the activations Ap:103

min
Ap:A0=X

1

N
∥f∗(X)−A1∥2 +

λ

2L̃

∫ 1

0

∥∥∥L̃Ap + ∂pAp

∥∥∥2
Kp

dp.

This is our first encounter with the norm ∥M∥Kp
= ∥Mσ(Ap)

+∥F corresponding to the scalar104

product ⟨A,B⟩Kp
= Tr

[
AK+

p B
]

for Kp = σ(Ap)
Tσ(Ap) that will play a central role in our105

upcoming analysis. By convention, we say that ∥M∥Kp
=∞ if M does not lie in the image of Kp,106

i.e. ImMT ⊈ ImKp.107

It can be helpful to decompose this loss along the different neurons108

min
Ap:A0=X

w∑
i=1

1

N
∥f∗

i (X)−A1,i∥2 +
λ

2L̃

∫ 1

0

∥∥∥L̃Ap,i· + ∂pAp,i·

∥∥∥2
Kp

dp,

Leading to a particle flow behavior, where the neurons Ap,i· ∈ RN are the particles. At first glance, it109

appears that there is no interaction between the particles, but remember that the norm ∥·∥Kp
depends110

on the covariance Kp =
∑w

i=1 σ(Ai·)σ(Ai·)
T , leading to a global interaction between the neurons.111
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If we assume that ImAT
p ⊂ Imσ(Ap)

T , we can decompose the inside of the integral as three terms:112

1

2L̃

∥∥∥L̃Ap + ∂pAp

∥∥∥2
K+

p

=
L̃

2
∥Ap∥2Kp

+ L̃ ⟨∂pAp, Ap⟩K+
p
+

1

2L̃
∥∂pAp∥2Kp

.

The middle term ⟨∂pAp, Ap⟩K+
p

plays a relatively minor role in our analysis1, so we focus more on113

the two other terms:114

Cost of identity ∥Ap∥2Kp
/ potential energy − L̃

2 ∥Ap∥2Kp
: This term can be interpreted as a form of115

potential energy, since it only depends on the representation Ap and not its derivative ∂pAp. We call116

it the cost of identity (COI), since it is the Frobenius norm of the smallest weight matrix Wp such that117

Wpσ(Ap) = Ap. The COI can be interpreted as measuring the dimensionality of the representation,118

inspired by the fact if the representations Ap is non-negative (and there is no bias β = 0), then119

Ap = σ(Ap) and the COI simply equals the rank ∥Ap∥2Kp
= RankAp (this interpretation is further120

justified in Section 1.4). We follow the convention of defining the potential energy as the negative of121

the term that appears in the Lagrangian, so that the Hamiltonian equals the sum of these two energies.122

Kinetic energy 1
2L̃
∥∂pAp∥2Kp

: This term measures the size of the representation derivative ∂pAp123

w.r.t. the Kp norm. It favors paths p 7→ Ap that do not move too fast, especially along directions124

where σ(Ap) is small.125

This suggests that the local optimal paths must balance two objectives that are sometimes opposed:126

the kinetic energy favors going from input representation to output representation in a ‘straight line’127

that minimizes the path length, the COI on the other hand favors paths that spends most of the path in128

low-dimensional representations that have a low COI. The balance between these two goals shifts129

as the depth L̃ grows, and for large depths it becomes optimal for the network to rapidly move to a130

representation of smallest possible dimension (not too small that it becomes impossible to map back131

to the outputs), remain for most of the layers inside the space of low-dimensional representations,132

and finally move rapidly to the output representation; even if this means doing a large ‘detour’ and133

having a large kinetic energy. The main goal of this paper is to describe this general behavior.134

Note that one could imagine that as L̃→∞ it would always be optimal to first go to the minimal135

COI representation which is the zero representation Ap = 0, but once the network reaches a zero136

representation, it can only learn constant representations afterwards (the matrix Kp = 11T is then137

rank 1 and its image is the space of constant vectors). So the network must find a representation that138

minimizes the COI under the condition that there is a path from this representation to the outputs.139

Remark. While this interpretation and decomposition is a pleasant and helpful intuition, it is rather140

difficult to leverage for theoretical proofs directly. The problem is that we will focus on regimes141

where the representations Ap and σ(Ap) are approximately low-dimensional (since those are the142

representations that locally minimize the COI), leading to an unbounded pseudo-inverse σ(Ap)
+.143

This is balanced by the fact that (L̃Ap + ∂pAp) is small along the directions where σ(Ap)
+ explodes,144

ensuring a finite weight matrix norm
∥∥∥L̃Ap + ∂pAp

∥∥∥2
K+

p

. But the suppression of (L̃Ap + ∂pAp)145

along these bad directions usually comes from cancellations, i.e. ∂pAp ≈ −L̃Ap. In such cases, the146

decomposition in three terms of the Lagrangian is ill adapted since all three terms are infinite and147

cancel each other to yield a finite sum
∥∥∥L̃Ap + ∂pAp

∥∥∥2
Kp

. One of our goal is to save this intuition148

and prove a similar decomposition with stable equivalent to the cost of identity and kinetic energy149

where K+
p is replaced by the bounded (Kp + γI)

+ for the right choice of γ.150

1In linear networks σ = id it can actually be discarded, since it is integrable∫ 1

0
Tr

[
∂pApσ(Ap)

+σ(Ap)
+TAT

p

]
dp = log |A1|+ − log |A0|+, where |·|+ is pseudo-determinant,

the product of the non-zero singular values. Since its integral only depends on the endpoints, it has no impact on
the representation path in between, which is the focus of this paper. In nonlinear networks, we are not able to
discard in such a manner, but we will see that in the rest of analysis the two other terms play a central role, while
the second term plays less role.
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1.4 Cost of Identity as a Measure of Dimensionality151

The cost of identity can be thought of as a measure of dimensionality of the representation. It is152

obvious for non-negative representations because ∥Ap∥2K+
p
= ∥ApAp

+∥2F = RankAp, but in general,153

it can be shown to upper bound a notion of ‘stable rank’:154

Proposition 1. ∥Aσ(A)+∥2F ≥
∥A∥2

∗
∥A∥2

F

for the nuclear norm ∥A∥∗ =
∑RankA

i=1 si(A).155

Proof. We know that ∥σ(A)∥F ≤ ∥A∥F , therefore ∥Aσ(A)+∥2F ≥ min∥B∥F≤∥A∥F
∥AB+∥2F which156

is minimized when B =
∥A∥F√
∥A∥∗

√
A, yielding the result.157

The stable rank ∥A∥2
∗

∥A∥2
F

is upper bounded by RankA, with equality if all non-zero singular values158

of A are equal, and it is lower bound by the more common notion of stable rank ∥A∥2
F

∥A∥2
op

, because159 ∑
si max si ≥

∑
s2i for the singular values si.160

Note that in contrast to the COI which is a very unstable quantity because of the pseudo-inverse, the161

ratio ∥A∥2
∗

∥A∥2
F

is continuous except at A = 0. This also makes it much easier to compute empirically162

than the COI itself.163

We know that the COI matches the dimension or rank for positive representations, but it turns out that164

the local minima of the COI that are stable under the addition of a new neuron are all positive:165

Proposition 2. A local minimum of A 7→ ∥Aσ(A)+∥2F is said to be stable if it remains a local166

minimum after concatenating a zero vector A′ =

(
A
0

)
∈ R(w+1)×N . All stable minima are167

non-negative, and satisfy ∥Aσ(A)+∥2F = RankA.168

Proof. The COI of the nearby point
(

A
ϵz

)
for z ∈ Imσ(A)T equals169

Tr
[
(ATA+ ϵ2zzT )

(
(σ(A)Tσ(A) + ϵ2σ(z)σ(z)T

)+]
=

∥∥Aσ(A)+
∥∥2 + ϵ2

∥∥zTσ(A)+
∥∥2 − ϵ2

∥∥σ(z)Tσ(A)+σ(A)+TAT
∥∥2 +O(ϵ4).

Assume by contradiction that there is a i = 1, . . . , N such that σ(A·i) ̸= A·i, then choosing170

z = σ(A)Tσ(A·i) we have σ(z) = z and the two ϵ2 terms are negative:171

ϵ2 ∥σ(Ai)∥2 − ϵ2 ∥Ai∥2 < 0,

which implies that A′ it is not a local minimum.172

These stable minima will play a significant role in the rest of our analysis, as we will see that for large173

L̃ the representations Ap of most layers will be close to one such local minimum. Now we are not174

able to rule out the existence of non-stable local minima (nor guarantee that they are avoided with175

high probability), but one can show that all strict local minima of wide enough networks are stable.176

Actually we can show something stronger, starting from any non-stable local minimum there is a177

constant loss path that connects it to a saddle:178

Proposition 3. If w > N(N + 1) then if Â ∈ Rw×N is local minimum of A 7→ ∥Aσ(A)+∥2F that is179

not non-negative, then there is a continuous path At of constant COI such that A0 = Â and A1 is a180

saddle.181

This could explain why a noisy GD would avoid such negative/non-stable minima, since there is182

no ‘barrier’ between the minima and a lower one, one could diffuse along the path described in183

Proposition 3 until reaching a saddle and going towards a lower COI minima. But there seems to be184

something else that pushes away from such non-negative minima, as in our experiments with full185

population GD we have only observed stable/non-negative local minimas.186
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(a) Hamiltonian measures across L̃ (b) Bottleneck structure (c) Hamiltonian dynamics

Figure 1: Leaky ResNet structures: We train equidistant networks with a fixed L = 20 over a
range of effective depths L̃. The true function f∗ : R30 → R30 is the composition of two random
FCNNs g1, g2 mapping from dim. 30 to 3 to 30. (a) Estimates of the Hamiltonian constants for
networks trained with different L̃. The Hamiltonian refers to − 2

L̃
H which estimates the true rank

k∗. The COI refers to minp ||Ap||. The trend line follows the median estimate for − 2
L̃
H across each

network’s layers, whereas the error bars signify its minimum and maximum over p ∈ [0, 1]. The
"stable" Hamiltonians utilize the relaxation from Theorem 4. (b) Spectra of the representations Ap

and weights Wp respectively for L̃ = 7. (c) Hamiltonian dynamics of the network in (b).

1.5 Hamiltonian Reformulation187

We can further reformulate the evolution of the optimal representations Ap in terms of a Hamiltonian,188

similar to Pontryagin’s maximum principle.189

Let us define the backward pass variables Bp = − 1
λ∂Ap

C(A1) for the cost C(A) = 1
2∥f

∗(X)−A∥2F ,190

which play the role of the ‘momenta’ of Ap in this Hamiltonian interpretation, which follows the191

backward differential equation192

B1 = − 1

λ
∂A1C(A1) =

2

λN
(f∗(X)−A1)

−∂pBp = σ̇(Ap)⊙
[
WT

p Bp

]
− L̃Bp.

Now at any critical point, we have that ∂WpC(A1) + λ
L̃
Wp = 0 and thus Wp =193

− L̃
λ∂Ap

C(A1)σ(Ap)
T = L̃Bpσ(Ap)

T , leading to joint dynamics for Ap and Bp:194

∂pAp = L̃(Bpσ(Ap)
Tσ(Ap)−Ap)

−∂pBp = L̃
(
σ̇(Ap)⊙

[
σ(Ap)B

T
p Bp

]
−Bp

)
.

These are Hamiltonian dynamics ∂pAp = ∂BpH and −∂pBp = ∂ApH w.r.t. the Hamiltonian195

H(Ap, Bp) =
L̃

2

∥∥Bpσ(Ap)
T
∥∥2 − L̃Tr

[
BpA

T
p

]
.

The Hamiltonian is a conserved quantity, i.e. it is constant in p. It will play a significant role in196

describing a separation of timescales that appears for large depths L̃. Another significant advantage197

of the Hamiltonian reformulation over the Lagrangian approach is the absence of the unstable198

pseudo-inverses σ(Ap)
+.199

Remark. Note that the Lagrangian and Hamiltonian reformulations have already appeared in previous200

work [23] for non-leaky ResNets. Our main contributions are the description in the next section of the201

Hamiltonian as the network becomes leakier L̃→∞, the connection to the cost of identity, and the202

appearance of a separation of timescales. These structures are harder to observe in non-leaky ResNets203

(though they could in theory still appear since increasing the scale of the outputs is equivalent to204

increasing the effective depth L̃ as shown in Section 1.2).205

The Lagrangian and Hamiltonian are also very similar to the ones in [10, 11], and the separation of206

timescales and rapid jumps that we will describe also bear a strong similarity. Though a difference207

with our work is that the norm ∥·∥Kp
depends on Ap and can be degenerate.208
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2 Bottleneck Structure in Representation Geodesics209

A recent line of work [16, 15] studies the appearance of a so-called Bottleneck structure in large210

depth fully-connected networks, where the weight matrices and representations of ‘almost all’ layers211

of the layers are approximately low-rank/low-dimensional as the depth grows. This dimension k is212

consistent across layers, and can be interpreted as being equal to the so-called Bottleneck rank of the213

learned function. This structure has been shown to extend to CNNs in [30], and we will observe a214

similar structure in our leaky ResNets, further showcasing its generality.215

More generally, our goal is to describe the ‘representation geodesics’ of DNNs: the paths in216

representation space from input to output representation. The advantage of ResNets (leaky or217

not) over FCNNs is that these geodesics can be approximated by continuous paths and are described218

by differential equations (as described by the Hamiltonian reformulation).219

This section provides an approximation of the Hamiltonian that illustrates the separation of timescales220

that appears for large depths, with slow layers with low COI/dimension, and fast layers with high221

COI/dimension.222

2.1 Separation of Timescales223

If ImAT
p ⊂ Imσ(Ap)

T , then the Hamiltonian equals the sum of the kinetic and potential energies:224

H =
1

2L̃
∥∂pAp∥2Kp

− L̃

2
∥Ap∥2Kp

.

This implies that ∥∂pAp∥Kp
= L̃

√
∥Ap∥2Kp

+ 2
L̃
H which implies that for large L̃, the derivative225

∂pAp is only finite at ps where the COI ∥Ap∥2Kp
is close to − 2

L̃
H. On the other hand, ∂pAp will226

blow up for all p with a finite gap
√
∥Ap∥2Kp

+ 2
L̃
H > 0 between the COI and the Hamiltonian. This227

suggests a separation of timescales as L̃→∞, with slow dynamics in layers whose COI/dimension228

is close to − 2
L̃
H and fast dynamics in the high COI/dimension layers.229

But the assumption ImAT
p ⊂ Imσ(Ap)

T seems to rarely be true in practice, and both kinetic and230

COI appear to be often infinite in practice. But up to a few approximations, the same argument can231

be made for stable versions of the kinetic energy/COI:232

Theorem 4. For sequence AL̃
p of geodesics with

∥∥∥BL̃
p

∥∥∥2 ≤ c <∞, and any γ > 0, we have233

−
(
1

L̃
ℓγ,L̃ +

√
γc

)2

≤ − 2

L̃
H−min

p

∥∥∥AL̃
p

∥∥∥2
(Kp+γI)

≤ γc,

for the path length ℓγ,L̃ =
∫ 1

0

∥∥∥∂pAL̃
p

∥∥∥
(Kp+γI)

dp. Finally234

−L̃√γc ≤ ∥∂pAp∥(Kp+γi) − L̃

√
∥Ap∥2(Kp+γI) +

2

L̃
H ≤ 2L̃

√
γc.

Note that the size of ∥BL̃
p ∥2 can vary a lot throughout the layers, we therefore suggest choosing235

a p-dependent γ: γp = γ0∥σ(AL̃
p )∥2op = γ0∥Kp∥2op. There are two motivations for this: first it is236

natural to have γ scale with Kp, ; and second, since Wp = L̃Bpσ(Ap)
T is of approximately constant237

size (thanks to balancedness, see Appendix A.3), we typically have that the size of Bp is inversely238

proportional to that of σ(Ap), so that γp∥Bp∥2 should keep roughly the same size for all p.239

Theorem 4 shows that for large L̃ (and choosing e.g. γ = L̃−1), the Hamiltonian is close to the240

minimal COI along the path. Second, the norm of the derivative ∥∂pAp∥(Kp+γi) is close to L̃ times241

the ‘extra-COI’
√
∥Ap∥2(Kp+γI) +

2
L̃
H ≈

√
∥Ap∥2(Kp+γI) −minq ∥Aq∥2(Kq+γI), which describes242

the separation of timescales, with slow (∼ 1) dynamics at layers p where the COI is almost optimal243

and fast (∼ L̃) dynamics everywhere the COI is far from optimal.244
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(a) Test performance versus depth (b) Bottleneck structure and adaptivity. (c) Paths

Figure 2: Discretization: We train networks with a fixed L̃ = 3 over a range of depths L and
definitions of ρℓs. The true function f∗ : R30 → R30 is the composition of three random ResNets
g1, g2, g3 mapping from dim. 30 to 6 to 3 to 30. (a) Test error as a function of L for different
discretization schemes. (b) Weight spectra across layers for adaptive ρℓ (L = 18), grey vertical lines
represents the steps pℓ (c) 2D projection of the representation paths Ap for L = 18. Observe how
adaptive ρℓs appears to better spread out the steps.

Assuming a finite length ℓγ,L̃ < ∞, the norm of the derivative must be finite at almost all layers,245

meaning that the COI/dimensionality is optimal in almost all layers, with only a countable number246

of short high COI/dimension jumps. These jumps typically appear at the beginning and end of the247

network, because the input and output dimensionality and COI are (mostly) fixed, so it will typically248

be non-optimal, and so there will often be fast regions close to the beginning and end of the network.249

We have actually never observed any jump in the middle of the network, though we are not able to250

rule them out theoretically.251

If we assume that the paths AL̃
p are stable under adding a neuron, then we can additionally guarantee252

that the representations in the slow layers (‘inside the Bottleneck’) will be non-negative:253

Proposition 5. Let AL̃
p be a uniformly bounded sequence of local minima for increasing L̃, at254

any p0 ∈ (0, 1) such that ∥∂pAp∥ is uniformly bounded in a neighborhood of p0 for all L̃, then255

A∞
p0

= limL̃ AL̃
p0

is non-negative.256

We therefore know that the optimal COI minq ∥Aq∥2(Kq+γI) is close to the dimension of the limiting257

representations A∞
p0

, i.e. it must be an integer k∗ which we call the Bottleneck rank of the sequence258

of minima since it is closely related to the Bottleneck rank introduced in [16]. The HamiltonianH is259

then close to − L̃
2 k

∗.260

Figure 1 illustrates these phenomena: the Hamiltonian (and the stable Hamiltonians Hγ =261

1
2L̃
∥∂pAp∥2(Kp+γI) −

L̃
2 ∥Ap∥2(Kp+γI)) approach the rank k∗ = 3 from below, while the minimal262

COI approaches it from above; The kinetic energy is proportional to the extra COI, and they are both263

large towards the beginning and end of the network where the weights Wp are higher dimensional.264

We see in Figure 1c that the (stable) Hamiltonian are not exactly constant, but it still varies much less265

than its components, the kinetic and potential energies.266

Because of the non-convexity of the loss we are considering, one can imagine that there could exist267

distinct sequences of local minima as L̃→∞, which could have different rank, depending on what268

low-dimension they reach inside their bottleneck. Indeed in our experiments we have seen that the269

number of dimensions that are kept inside the bottleneck can vary by 1 or 2, and in FCNN distinct270

sequences of depth increasing minima with different ranks have been observed in [15].271

3 Discretization Scheme272

To use such Leaky ResNets in practice, we need to discretize over the range [0, 1]. For this we273

choose a set of layer-steps ρ1, . . . , ρL with
∑

ρℓ = 1, and define the activations at the locations274
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pℓ = ρ1 + · · ·+ ρℓ ∈ [0, 1] recursively as275

αp0
(x) = x

αpℓ
(x) = (1− ρℓL̃)αpℓ−1

(x) + ρℓWpℓ
σ
(
αpℓ−1

(x)
)

and the regularized cost L(θ) = C(α1(X)) + λ
2L̃

∑L
ℓ=1 ρℓ ∥Wpℓ

∥2, for the parameters θ =276

(Wp1 , . . . ,WpL
). Note that it is best to ensure that ρℓL̃ remains smaller than 1 so that the prefactor277

(1− ρℓL̃) does not become negative, though we will also discuss certain setups where it might be278

okay to take larger layer-steps.279

Now comes the question of how to choose the ρℓs. We consider three options:280

Equidistant: The simplest choice is to choose equidistant points ρℓ = 1
L . Note that the condition281

ρℓL < 1 then becomes L > L̃. But this choice might be ill adapted in the presence of a Bottleneck282

structure due to the separation of timescales.283

Irregular: Since we typically observe that the fast layers appear close to the inputs and outputs with284

a slow bottleneck in the middle, one could simply choose the ρℓ to be go from small to large and back285

to small as ℓ ranges from 1 to L. This way there are many discretized layers in the fast regions close286

to the input and output and not too many layers inside the Bottleneck where the representations are287

changing less. More concretely one can choose ρℓ = 1
L + a

L (
1
4 −

∣∣ ℓ
L −

1
2

∣∣) for a ∈ [0, 1), the choice288

a = 0 leads to an equidistant mesh, but increasing a will lead to more points close to the inputs and289

outputs. To guarantee ρℓL̃ < 1, we need L > (1 + a 1
4 )L̃.290

Adaptive: But this can be further improved by choosing the ρℓ to guarantee that the distances291

∥Aℓ −Aℓ−1∥ /∥Ap∥ are approximately the same for all ℓ (we divide by the size of Ap since292

it can vary a lot throughout the layers). Since the rate of change of Ap is proportional to ρℓ293

(∥Aℓ −Aℓ−1∥ /∥Ap∥ = ρℓcℓ), it is optimal to choose ρℓ =
c−1
ℓ∑
c−1
ℓ

for cℓ = ∥Aℓ−Aℓ−1∥/ρℓ∥Ap∥. The294

update ρℓ ←
c−1
i∑
c−1
i

can be done at every training step or every few training steps.295

Note that the condition ρℓL̃ < 1 might not be necessary inside the bottleneck since we have the296

approximation Wpσ(Apℓ−1
) ≈ L̃Apℓ−1

, canceling out the negative direction. In particular with the297

adaptive layer-steps that we propose, a large ρℓ is only possible for layers where cℓ is small, which is298

only possible when Wpσ(Apℓ−1
) ≈ L̃Apℓ−1

.299

Figure 2 illustrates the effect of the choice of ρℓ for different depths L, we see a small but consistent300

advantage in the test error when using adaptive or irregular ρℓs. Looking at the resulting Bottleneck301

structure, we see that the adaptive ρℓs result in more steps especially in the beginning of the network,302

but also at the end. This because the ‘true function’ f∗ : R30 → R30 we are fitting in these303

experiments is of the form f∗ = g3 ◦ g2 ◦ g1 where the first inner dimension is 6 and the second is 3,304

thus resulting in a rank of k∗ = 3. But before reaching this minimal dimension, the network needs to305

represent g2 ◦ g1, which requires more layers, and one can almost see that the weight matrices are306

roughly 6-dimensional around p = 0.3. The adaptivity to this structure could explain the advantage307

in the test error.308

4 Conclusion309

We have given a description of the representation geodesics Ap of Leaky ResNets. We have identified310

an invariant, the Hamiltonian, which is the sum of the kinetic and potential energy, where the kinetic311

energy measures the size of the derivative ∂pAp, while the potential energy is inversely proportional312

to the cost of identity, which is a measure of dimensionality of the representations. As the effective313

depth of the network grows, the potential energy dominates and we observe a separation of timescales.314

At layers with minimal dimensionality over the path, the kinetic energy (and thus the derivative ∂pAp)315

is finite. Conversely, at layers where the representation is higher-dimensional, the kinetic energy must316

scale with L̃. This leads to a Bottleneck structure, with a short, high-dimensional jump from the input317

representation to a low dimensional representation, followed by slow dynamics inside the space of318

low-dimensional representations followed by a final high-dimensional jump to the high dimensional319

outputs.320
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A Proofs408

A.1 Cost of Identity409

Proposition 6 (Proposition 3 in the main.). If w > N(N + 1) then if Â ∈ Rw×N is local minimum410

of A 7→ ∥Aσ(A)+∥2F that is not non-negative, then there is a continuous path At of constant COI411

such that A0 = Â and A1 is a saddle.412

Proof. The local minimum Â leads to a pair of N × N covariance matrices K̂ =413

ÂT Â and K̂σ = σ(Â)Tσ(Â). The pair (K̂, K̂σ) belongs to the conical hull414

Cone
{
(Âi·Â

T
i· , σ(Âi·)σ(Âi·)

T ) : i = 1, . . . , w
}

. Since this cones lies in a N(N + 1)-dimensional415

space (the space of pairs of symmetric N × N matrices), we know by Caratheodory’s416

theorem (for convex cones) that there is a conical combination (K̂, K̂σ − β21N×N ) =417 ∑w
i=1 ai(Âi·Â

T
i· , σ(Âi·)σ(Âi·)

T ) such that no more than N(N + 1) of the coefficients are non-418

zero. We now define At to have lines At,i· =
√

(1− t) + taiÂi·, so that At=0 = Â and at t = 1 at419

least one line of At=1 is zero (since at least one of the ais is zero). First note that the covariance pairs420

remain constant over the path: Kt = AT
t At =

∑w
i=1((1− t) + tai)Âi·Â

T
i· = (1− t)K̂ + tK̂ = K̂421

and similarly Kσ
t = K̂σ, which implies that the cost ∥Atσ(At)

+∥2F = Tr
[
KtK

σ+
t

]
is constant422

too. Second, since a representation A is non-negative iff the covariances satisfy K = Kσ, the423

representation path At cannot be non-negative either since it has the same kernel pairs (K̂, K̂σ) with424

K̂ ̸= K̂σ .425

Now (the converse of) Proposition 2 tells us that if At=1 is not non-negative and has a zero line, then426

it is not a local minimum, which implies that it is a saddle.427

A.2 Bottleneck428

Theorem 7. For any uniformly bounded sequence AL̃
p of geodesics, i.e.

∥∥∥AL̃
p

∥∥∥2 ,∥∥∥BL̃
p

∥∥∥2 ≤ c <∞,429

and any γ > 0, we have430

−
(
1

L̃
ℓγ,L̃ +

√
γc

)2

≤ − 2

L̃
H−min

p

∥∥∥AL̃
p

∥∥∥2
(Kp+γI)

≤ γc,

for the path length ℓγ,L̃ =
∫ 1

0

∥∥∥∂pAL̃
p

∥∥∥
(Kp+γI)

dp. Finally431

−L̃√γc ≤ ∥∂pAp∥(Kp+γi) − L̃

√
∥Ap∥2(Kp+γI) +

2

L̃
H ≤ 2L̃

√
γc.

Proof. First observe that432 ∥∥∥∥ 1

L̃
∂pAp + γBp

∥∥∥∥2
(Kp+γI)

= ∥Bp(Kp + γ)−Ap∥2(Kp+γI)

=
∥∥Bpσ(Ap)

T
∥∥2 + γ ∥Bp∥2 − 2Tr

[
BpA

T
p

]
+ ∥Ap∥2(Kp+γI)

=
2

L̃
H+ γ ∥Bp∥2 + ∥Ap∥2(Kp+γI)

and thus we have433

− 2

L̃
H = ∥Ap∥2(Kp+γI) −

∥∥∥∥ 1

L̃
∂pAp + γBp

∥∥∥∥2
(Kp+γI)

+ γ ∥Bp∥2 .
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(1) The upper bound − 2
L̃
H−minp

∥∥∥AL̃
p

∥∥∥2
(Kp+γI)

≤ γc then follows from the fact that ∥Bp∥2 ≤ c.434

For the lower bound, first observe that435

1

L̃
∥∂pAp∥(Kp+γI) ≥

∥∥∥∥ 1

L̃
∂pAp + γBp

∥∥∥∥
(Kp+γI)

− ∥γBp∥(Kp+γI)

≥
√
∥Ap∥2(Kp+γI) +

2

L̃
H+ γ ∥Bp∥2 −

√
γc

≥
√
∥Ap∥2(Kp+γI) +

2

L̃
H−√γc, (1)

and therefore436

1

L̃
ℓγ,L̃ =

1

L̃

∫ 1

0

∥∂pAp∥(Kp+γI) dp

≥
∫ 1

0

√
∥Ap∥2(Kp+γI) +

2

L̃
H−√γcdp

≥
√

min
p
∥Ap∥2(Kp+γI) +

2

L̃
H−√γc

which implies the lower bound.437

(2) The lower bound follows from equation 1. The upper bound follows from438

1

L̃
∥∂pAp∥(Kp+γI) ≤

∥∥∥∥ 1

L̃
∂pAp + γBp

∥∥∥∥
(Kp+γI)

+ ∥γBp∥(Kp+γI)

≤
√
∥Ap∥2(Kp+γI) +

2

L̃
H+ γ ∥Bp∥2 +

√
γc

≤
√
∥Ap∥2(Kp+γI) +

2

L̃
H+

√
γ ∥Bp∥+

√
γc

≤
√
∥Ap∥2(Kp+γI) +

2

L̃
H+ 2

√
γc.

439

Proposition 8 (Proposition 5 in the main.). Let AL̃
p be a uniformly bounded sequence of local minima440

for increasing L̃, at any p0 ∈ (0, 1) such that ∥∂pAp∥ is uniformly bounded in a neighborhood of p0441

for all L̃, then A∞
p0

= limL̃ AL̃
p0

is non-negative.442

Proof. Given a path Ap with corresponding weight matrices Wp corresponding to a width w, then443 (
A
0

)
is a path with weight matrix

(
Wp 0
0 0

)
. Our goal is to show that for sufficiently large444

depths, one can under certain assumptions slightly change the weights to obtain a new path with the445

same endpoints but a slightly lower loss, thus ensuring that if certain assumptions are not satisfied446

then the path cannot be locally optimal.447

Let us assume that ∥∂pAp∥ ≤ c1 in a neighborhood of a p0 ∈ (0, 1), and assume by contradiction448

that there is an input index i = 1, . . . , N such that Ap0,·i has at least one negative entry, and therefore449

∥Ap0,·i∥
2 − ∥σ(Ap0,·i)∥

2
= c0 > 0 for all L̃.450

We now consider the new weights451 (
Wp − L̃ϵ2t(p)Ap,·iσ(Ap,·i)

T ϵL̃t(p)Ap,·i
ϵL̃t(p)σ(Ap,·i) 0

)
for t(p) = max{0, 1− |p−p0|

r } a triangular function centered in p0 and for an ϵ > 0.452
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For ϵ and rsmall enough, the parameter norm will decrease:453 ∫ 1

0

∥∥∥∥ Wp − L̃ϵ2t(p)Ap,·iσ(Ap,·i)
T ϵL̃t(p)Ap,·i

ϵL̃t(p)σ(Ap,·i) 0

∥∥∥∥2 dp
=

∫ 1

0

∥Wp∥2 + L̃2ϵ2t(p)2
(
− 2

L̃
AT

p,·iWpσ(Ap,·i) + ∥Ap,·i∥2 + ∥σ(Ap,·i)∥2
)
dp.

Now since Wpσ(Ap,·i) = ∂pAp,·i + L̃Ap,·i, this simplifies to454 ∫ 1

0

∥Wp∥2 + L̃2ϵ2t(p)2
(
−∥Ap,·i∥2 + ∥σ(Ap,·i)∥2 −

1

L̃
AT

p,·i∂pAp,·i

)
dp+O(ϵ4).

By taking r small enough, we can guarantee that −∥Ap,·i∥2 + ∥σ(Ap,·i)∥2 < − c0
2 for all p such that455

t(p) > 0, and for L̃ large enough we can guarantee that
∣∣∣ 1
L̃
AT

p,·i∂pAp,·i

∣∣∣ is smaller then c0
4 , so that456

we can guarantee that the parameter norm will be strictly smaller for ϵ small enough.457

We will now show that with these new weights the path becomes approximately
(

Ap

ϵap

)
where458

ap = L̃

∫ p

0

t(q)Kp,i·e
L̃(q−p)dq.

Note that ap is positive for all p since Kp has only positive entries. Also note that as L̃ → ∞,459

ap → t(p)Kp,i· and so that a0 → 0 and a1 → 1.460

On one hand, we have the time derivative461

∂p

(
Ap

ϵap

)
=

(
Wpσ(Ap)− L̃Ap

ϵL̃ (t(p)Kp,i· − ap)

)
.

On the other hand the actual derivative as determined by the new weights:462 (
Wp − L̃ϵ2t(p)Ap,·iσ(Ap,·i)

T ϵL̃t(p)Ap,·i
ϵL̃t(p)σ(Ap,·i) 0

)(
σ(Ap)
ϵσ(ap)

)
− L̃

(
Ap

ϵap

)
=

(
Wpσ(Ap)− L̃Ap − L̃ϵ2t(p)2Ap,·iKp,i· + L̃ϵ2t(p)Ap,·iap

ϵL̃t(p)Kp,i· − ϵL̃a(p)

)
.

The only difference is the two terms463

−L̃ϵ2t(p)2Ap,·iKi· + L̃ϵ2t(p)Ap,·iap = L̃ϵ2t(p)Ap,·i (t(p)Ki· − ap) .

One can guarantee with a Grönwall type of argument that the representation path resulting from the464

new weights must be very close to the path
(

Ap

ϵap

)
.465

A.3 Balancedness466

This paper will heavily focus on the HamiltonianHp that is constant throughout the layers p ∈ [0, 1],467

and how it can be interpreted. Note that the Hamiltonian we introduce is distinct from an already468

known invariant, which arises as the result of so-called balancedness, which we introduce now.469

Though this balancedness also appears in ResNets, it is easiest to understand in fullyconnected470

networks. First observe that for any neuron i ∈ 1, . . . , w at a layer ℓ one can multiply the incoming471

weights (Wℓ,i·, bℓ,i) by a scalar α and divide the outcoming weights Wℓ+1,·i by the same scalar472

α without changing the subsequent layers. One can easily see that the scaling that minimize the473

contribution to the parameter norm is such that the norm of incoming weights equals the norm474

of the outcoming weights ∥Wℓ,i·∥2 + ∥bℓ,i∥2 = ∥Wℓ+1,·i∥2. Summing over the is we obtain475

∥Wℓ∥2F + ∥bℓ∥2 = ∥Wℓ+1∥2F and thus ∥Wℓ∥2F = ∥W1∥2F +
∑ℓ−1

k=1 ∥bk∥
2
F , which means that the476

norm of the weights is increasing throughout the layers, and in the absence of bias, it is even constant.477

Leaky ResNet exhibit the same symmetry:478
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Proposition 9. At any critical Wp, we have ∥Wp∥2 = ∥W0∥2 + L̃
∫ p

0
∥Wp,·w+1∥2 dq.479

Proof. This proofs handles the bias Wp,·(w+1) differently to the rest of the weights Wp,·(1:w), to480

simplify notations, we write Vp = Wp,·(1:w) and bp = Wp,·(w+1) for the bias.481

First let us show that choosing the weight matrices Ṽq = r′(q)Vr(q) and bias b̃q = r′(q)eL̃(r(q)−q)br(q)482

leads to the path Ãq = eL̃(r(q)−q)Ar(q). Indeed the path Ãq = eL̃(r(q)−q)Ar(q) has the right value483

when p = 0 and it then satisfies the right differential equation:484

∂qÃq = L̃(r′(q)− 1)Ãq + eL̃(r(q)−q)r′(q)∂pAr(q)

= L̃(r′(q)− 1)Ãq + eL̃(r(q)−q)r′(q)
(
−L̃Ar(q) + Vr(q)σ(Ar(q)) + br(q)

)
= −L̃Z̃q + r′(q)Ar(q)σ

(
Z̃q

)
+ eL̃(r(q)−q)r′(q)br(q)

= Ṽqσ
(
Ãq

)
+ b̃q − L̃Ãq

The optimal reparametrization r(q) is therefore the one that minimizes485 ∫ 1

0

∥∥∥W̃q

∥∥∥2 + ∥∥∥b̃q∥∥∥2 dq =

∫ 1

0

r′(q)2
(∥∥Wr(q)

∥∥2 + e2L̃(r(q)−q)
∥∥br(q)∥∥2) dq

For the identity reparametrization r(q) = q to be optimal, we need486 ∫ 1

0

2dr′(p)
(
∥Wp∥2 + ∥bp∥2

)
+ 2L̃dr(p) ∥bp∥2 dp = 0

for all dr(q) with dr(0) = dr(1) = 0. Since487 ∫ 1

0

dr′(p)
(
∥Wp∥2 + ∥bp∥2

)
dp = −

∫ 1

0

dr(p)∂p

(
∥Wp∥2 + ∥bp∥2

)
dq,

we need488 ∫ 1

0

dr(p)
[
−∂p

(
∥Wp∥2 + ∥bp∥2

)
+ L̃ ∥bp∥2

]
dp = 0

and thus for all p489

∂p

(
∥Wp∥2 + ∥bp∥2

)
= L̃ ∥bp∥2 .

Integrating, we obtain as needed490

∥Wp∥2 + ∥bp∥2 = ∥W0∥2 + ∥b0∥2 + L̃

∫ p

0

∥bq∥2 dq.

491

B Experimental Setup492

Our experiments make use of synthetic data to train leaky ResNets so that the Bottleneck rank k∗ is493

known for our experiments. The synthetic data is generated by teacher networks for a given true rank494

k∗. To construct a bottleneck, the teacher network is a composition of networks for which the the495

inner-dimension is k∗. Our experiments used an input and output dimension of 30, and a bottleneck496

of k∗ = 3. For data, we sampled a thousand data points for training, and another thousand for testing497

which are collectively augmented by demeaning and normalization.498

To train the leaky ResNets, it is important for them to be wide, usually wider than the input or output499

dimension, we opted for a width of 100. However, the width of the representation must be constant500

to implement leaky residual connections, so we introduce a single linear mapping at the start, and501

another at the end, of the forward pass to project the representations into a higher dimension for the502

paths. These linear mappings can be either learned or fixed.503

15



Figure 3: Various properties of the Hamiltonian dynamics of Leaky ResNets which remain bounded

To achieve a tight convergence in training, we train primarily using Adam using Mean Squared Error504

as a loss function, and our custom weight decay function. After training on Adam (we found 5000505

epochs to work well), we then train briefly (usually 1000 epochs) using SGD with a smaller learning506

rate to tighten the convergence.507

The bottleneck structure of a trained network, as seen in Figure 1b and 2b, can be observed in the508

spectra of both the representations Ap and the weight matrices Wp at each layer. As long as the509

training is not over-regularized (λ too large) then the spectra reveals a clear separation between k∗510

number of large values as the rest decay. In our experiments, λ = 0.001
L̃

to get good results. To511

facilitate the formation of the bottleneck structure, L should be large, for our experiments we usually512

use L = 20. Figure 2a shows how larger L, which have better separation between large and small513

singular values, lead to improved test performance.514

As first noted in section 1.3, solving for the Cost Of Identity, the kinetic energy, and the Hamiltonian515

H is difficult due to the instability of the pseudo-inverse. Although the relaxation (Kp+γI) improves516

the stability, we also utilize the solve function to avoid computing a pseudo-inverse altogether. The517

stability of these computations rely on the boundedness of some additional properties: the path length518 ∫
||∂pAp|| dp, as well as the magnitudes of Bp, and Bpσ(Ap)

T from the Hamiltonian reformulation.519

Figure 3 shows how their respective magnitudes remains relatively constant as the effective depth L̃520

grows.521

For compute resources, these small networks are not particularly resource intensive. Even on a CPU,522

it only takes a couple minutes to fully train a leaky ResNet.523
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contributions made in the paper and important assumptions and limitations. A No or535

NA answer to this question will not be perceived well by the reviewers.536

• The claims made should match theoretical and experimental results, and reflect how537

much the results can be expected to generalize to other settings.538

• It is fine to include aspirational goals as motivation as long as it is clear that these goals539

are not attained by the paper.540

2. Limitations541

Question: Does the paper discuss the limitations of the work performed by the authors?542

Answer: [Yes]543

Justification: We discuss limitations of our results and approach after we state them.544

Guidelines:545

• The answer NA means that the paper has no limitation while the answer No means that546
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