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Abstract

We investigate the role of cognitive maps and hippocampal-entorhinal architecture
in a mental navigation (MNAV) task by conducting experiment in humans, mon-
keys and neural network models. Humans can generalize their mental navigation
performance to untrained start-target landmark pairs in a given landmark sequence
and also rapidly adapt to new sequences. The model uses a continuous-time recur-
rent neural network (CTRNN) for action decisions and a hippocampal-entorhinal
model network, MESH (Memory network with Scaffold and Heteroassociation), for
encoding and learning maps. The model is first trained on a navigation-to-sample
(NTS) task and tested on MNAV task where no sensory feedback is available,
across five different environments (i.e. landmark sequences). The CTRNN with
MESH solves MNAV task by reconstructing the next image via path integration
and vastly outperforms the model with CTRNN alone. In both NTS and MNAV
tasks, MESH-CTRNN model shows better generalization to untrained pairs within
each environment and faster adaptation to new environments. Like humans, mon-
keys also exhibit generalization to untrained landmark pairs in MNAV task. We
compared the neural dynamics in monkeys’ entorhinal cortex to the dynamics of
CTRNN and found behaviorally relevant periodic signals in both. The study demon-
strates the importance of hippocampal cognitive maps in enabling data-efficient
and generalizable learning in the brain.

1 Introduction

Cognition involves organizing experiences into retrievable knowledge for novel mental computations,
which is achieved through cognitive maps encoding spatial, temporal, and abstract relationships.
Spatial contexts have been extensively studied, with sensory experiences driving spatially selective
responses in the hippocampus and entorhinal cortex (EC) [5]. When animals encounter a new task
that conceptually matches a previously seen task, it is common to observe rapid learning even if
surface-level details and inputs differ. Such learning is believed to involve a transfer of conceptual
understanding to the new task facilitated by the coding principle of the spatial cells reported in the
hippocampal formation [1]. However, neural models of such generalization are lacking.

Recently, Neupane et al. [4] showed cognitive map being endogenously recruited in monkeys’
entorhinal cortex to solve a mental navigation task. We extended this study by collecting human
behavioral data on the mental navigation task and documenting three types of generalization as shown
in Figure 1. We then built artificial neural network models that exhibited all three generalizations
and showed neural dynamics similar to that in monkey EC. Conventional recurrent networks can
perform the mental navigation task but fail to generalize. We hypothesize that a structured neocortical-
entorhinal-hippocampal circuit, the Memory Scaffold with Heteroassociation (MESH) adapted
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Figure 1: (a) Navigate-To-Sample (NTS) and Mental Navigation (MNAV) Tasks. An agent moves
the joystick toward a target landmark presented on the bottom of the screen from a start landmark. In
NTS, the current landmark is visible while it is invisible in MNAV. The distance between landmarks
is fixed as 0.65s and the landmark sequence is also fixed in each environment. There are three types
of generalization of this task; (b) from NTS to MNAV, (c) training start-target landmark pairs to new
start-target pairs during MNAV, and (d) rapid adaptation to new landmark sequences after learning
task.

from Sharma et al. [7] with grid cell modules can achieve the generalizations observed in human
participants. We build a multi-region brain model, using a continuous-time recurrent policy neural
network (CTRNN) to decide actions and the hippocampal MESH network to encode and learn maps.
The learning rules in MESH are online and associative, based on velocity input and external cues.
The outputs of MESH drive the action network. We sequentially trained the model on five landmark
sequences in the navigate-to-sample setting. Our model achieved the same performance in visual
and mental navigation tasks while CTRNN without MESH failed at mental navigation. The model
exhibited better generalization to unseen pairs in each environment and adapted to new environments
faster than the baseline. Furthermore, We found the periodicity patterns and distance-direction coding
in the internal dynamics of the network that are also found in the neural recording of the entorhinal
cortex [4]. Our work is thus a step toward a whole-system understanding of how the brain performs
highly data-efficient and generalizable learning.

2 Mental Navigation Task

Neupane et al.[4] developed a mental navigation task for monkeys. Agents are trained on a sequence
of six landmark images (Figure 1). Given a start and a target landmark, they must use a joystick to
move between them (navigate-to-sample or NTS task). After reaching a performance criterion in NTS,
the monkeys were introduced to the mental navigation task (MNAV). In MNAV, the image sequence
was occluded and only the start and the target landmark were visible before joystick deflection. The
sequence was hidden throughout the trial, including after the joystick deflection. To solve the task,
the animals had to rely on their memory of relative landmark positions and navigate without sensory
feedback. Monkeys successfully learned to perform the MNAV task, and the produced vectors closely
matched the actual vectors in terms of magnitude and direction.

3 Behavioral Study

We extended the behavioral experiments to humans. Instead of a single six-landmark sequence as
in Neupane et al.[4], we used three nine-landmark sequences. We randomly select 27 classes of
images having distinctive objects from MSCOCO [3] dataset as landmarks. We collected data from 7
participants and they received a small gift regardless of their performance. Please refer to Appendix B
for a detailed procedure. We found that human subjects can rapidly generalize to MNAV after training
on NTS (Figure 2a) and to unseen start-target pairs that are not used during training (Figure 2b).
Moreover, Figure 2c shows that the performance during the initial two blocks is improved for each
new subsequent environment, suggesting that subjects learned the task structure and rapidly adapted
to a new landmark sequences.
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Figure 2: Results of behavioral experiments with human subjects. (a) NTS and MNAV performance
in the first session. Humans can generalize from NTS to MNAV and memorize the landmark sequence
the next day. (b) Humans can generalize from training pairs to training pairs. (c) NTS performance in
each environment.
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Figure 3: (a) The agent explores the sequence of images with blank intervals. On each trial, the input
to the network is a pair of start and target images. The images are encoded as grid codes by MESH
and fed into CTRNN to decide an action; move in one direction or stop the trial. As in the animal
experiment, the start image is continuously updated in navigation-to-sample task but masked in the
mental navigation task. (b) Success rate of NTS and MNAV in environment 1 of our MESH-CTRNN
(solid line) and the baseline, CTRNN (dashed line). (c) Performance of two models about training
and new pairs in environment 1 NTS setting. Performance of three environments in NTS setting (d)
and the first environment while training subsequent environments (e). The lines and shades denote
average and standard error, respectively.

4 Method
We built a multi-region brain model, using a CTRNN-based network to decide actions, and the
entorhinal-hippocampal MESH network [7] to encode and learn maps that associate observations
with the grid cell scaffold. Figure 3a shows the architecture of the model. The learning rules for map
formation in MESH run online, based on velocity (action) input and external cues (sensory inputs).
MESH is composed of three layers; sensory (input), place cell, and grid cell layers. The grid code
(phase code) is formulated as a k-hot vector imposed by local recurrent inhibition, where k is the
number of modules and each module has a different period. All codes are paired with place cell
activation before training and the sensory input is associated with each grid code by pseudo-inverse
learning between the input and place cells. Please refer to Appendix A and Sharma et al.[7] for
more details. The association between the current image and the grid code is made via this learning
mechanism during NTS. Given the grid codes of both current and target images, the CTRNN predicts
the actions - move left, move right or stop.

In MNAV, MESH first associates both the start and the target images with corresponding grid codes.
Upon taking an action, MESH infers the subsequent code for every subsequent image via path
integration without having to refer to the landmark. The output of MESH drives the action network
and the action is fed into the grid cell layer as a velocity input. Consequently, the proposed model
can retrieve the correct grid representation for each image during the mental navigation task.

5 Model Experiments

5.1 Comparison with Vanilla Model

We sequentially trained the model in three different environments only in navigation-to-sample (NTS)
using ground-truth actions. Each environment has six different landmarks with the same size of
intervals similar to [4]. Among all possible pairs in each environment, 80% pairs are used in training
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Figure 4: (a) activity changes of two neurons in CTRNN and (b) firing rate of two neurons aligned to
joystick offset, color-coded by temporal distance. Histogram of periodicity of auto-correlation of
each neuron in CTRNN (c) and entorhinal cortex. (b) and (d) are adapted from Figure 2 in Neupane et
al. [4] There is a clear periodicity in neural recording (c) and auto-correlation.

(Training pairs) and the others are only used in testing (New pairs). The model was tested on both
NTS and MNAV using all pairs. We employed the success rate to evaluate performance in all
conditions: both navigation with Training and New start-target pairs. All experiments were conducted
five times with different random seeds. Please refer to Appendix C for experimental details.

We demonstrate the success rates in the first environment for both the NTS and MNAV conditions in
Figure 3b, and for Training and New pairs in the NTS condition in Figure 3c. Figure 3d illustrates
the success rates in three different environments that were sequentially trained. Figure 3e shows the
success rate in the first environment while training in other environments. Overall, MESH-CTRNN
model can perform mental navigation with three distinct types of generalization observed in human
subjects without catastrophic forgetting. In contrast, CTRNN without MESH can learn the task albeit
slower but fails at generalizations and exhibits catastrophic forgetting. Such superior performance is
because of the biologically inspired embedding space of grid phases in MESH architecture that can
encode all observations efficiently.

5.2 Comparison between Model and Monkey Physiology

We compare the internal dynamics of the model and that of the entorhinal cortex of two monkeys
performing mental navigation task (adapted from from Neupane et al. [4]). We analyzed the hidden
states in CTRNN and found periodic patterns of activity in the hidden units 4a. The most prominent
periodicity was the same as the image interval as shown in Figure 4c. We recently reported such a
behaviorally relevant periodicity in monkey’s entorhinal cortex as shown in Figure 4b and Figure 4d.

6 Discussion

We trained humans and a multi-brain region neural network model with a hippocampal-entorhinal
scaffold network, MESH [7] to perform a novel mental navigation task [4]. Both showed three
types of generalizations: (1) generalization to mental navigation by training on visual navigation
(2) generalization to unseen start-target landmark pairs and (3) generalization in new environments
with minimal learning. We also showed that the model’s internal dynamics are similar to the neural
recording in monkeys’ entorhinal cortex which showed behaviourally relevant periodic signals.

We sequentially trained the model on five different environments and tested how quickly it could adapt
to new environments and whether it could overcome catastrophic forgetting. The model could solve
the purely mental version of NTS after training only on NTS, by using path integration to reconstruct
the next grid state without referring to visual stimuli. It could also overcome catastrophic forget-
ting and learn new environments instantly (one-shot) by projecting observations into its structured
embedding space based on the grid cell code.

One notable design feature of our model is the nature of grid code made available for the downstream
CTRNN. We convert the k-hot grid phase into an integer code before feeding it as an input to CTRNN.
The network performance was dependent on this choice among many other coding choices. One way
to interpret this observation is to view the grid coding scheme as a decoding problem. As such, there
must exist a brain area that reads out grid phase activation and transforms it into an integer code.

In sum, our model exhibits a high degree of alignment with behavior and neurophysiology and thus
offers a rich test-bed to perform perturbation experiments and generate hypotheses.
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Appendix

A MESH

Memory Scaffold with Heteroassociation (MESH) [7] is a content-addressable memory (CAM)
model that stores vectors as fixed points of its dynamics and reconstructs them from noisy cues. It
is composed of ‘features’, ‘hidden states’, and ‘labels’, that are originally designed for the memory
cliff problem; if the number of stored vectors exceeds a threshold, the model fails to reconstruct all
vectors. MESH constructs a fixed scaffold of pre-defined content-independent fixed points (labels),
which are then used to store the content-laden patterns through hetero-associative learning.

The MESH architecture is similar to the hippocampus and the entorhinal cortex relation by corre-
sponding hidden states and labels to place cell and grid cell layers, respectively. The place cell layer
p ∈ {−1,+1}NP represents an NP dimensional binary vector, and the grid cell layer g ∈ {0, 1}

∑
λi

is defined as the concatenation of λi dimensional one-hot vectors, where λi is the period of i-th grid
cell.

Before initiating the experiments, the memory scaffold, including the states of grid and place cells
and their interconnections, is pre-defined. The matrix that projects the grid cell layer to the place cell
layer, denoted as WPG, is set up in a random manner ensuring that it retains a one-to-one projection.
Conversely, the matrix leading from the place cell layer back to the grid cell layer is adapted through
Hebbian learning. This ensures that an active place cell, which defines a specific place code, is linked
to simultaneously active grid cells, which represent an associated grid code:

WGP =
1

|N|

µ=N∑
µ=1

g · (sign(WPG · g))T , (1)

where N is the number of training patterns (vectors).
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Figure 5: Landmark sequences. There are nine landmarks in each sequence and the distance between
each landmark is 0.75s.

The weight between sensory inputs and the place cell layers (WSP and WPS) are learned by
pseudoinverse learning rule [6] in an online manner [8] while exploring the environment as follows:

WSP = S ·P†, (2)

WPS = P · S†, (3)

where S ∈ RNs×N and P ∈ RNp×N denote sensory patterns and place patterns respectively, and †
indicates the pseudoinverse.

Given the sensory input at time t, st, its corresponding place cell and grid cell activations are
computed as follows:

pt = sign(WPS · st), (4)
gt = CAN(WGP · pt). (5)

where CAN(·) represents the continuous attractor recurrence in the grid layer that is implemented
using a module-wise winner-take-all dynamics (one-hot for each grid cell).

The grid cell activation is modulated by velocity signals, an action predicted by CTRNN in our
case. This emulates the path integration, wherein the activation index of each grid cell module is
shifted based on the direction of the action to deduce the subsequent grid state. Upon acquiring
the subsequent grid code, gt+1, its related place code, pt+1, is correlated with the sensory input
represented by st+1.

B Details of Behavioral Study

All human experiments were approved by the Committee on the Use of Humans as Experimental
Subjects at our organization. Subjects conducted six sessions of which each one takes 60 minutes on
a different day. There are three 9-landmark sequences where the interval between each landmark is
0.75s as shown in Figure 5. Subjects press the left and right arrow keys on the keyboard to navigate
toward the correct target landmark from the start landmark. If they stop at the target landmark within
0.25s error range, it is considered as correct. If a subject corrects at 15 pairs among the recent 20
pairs or tries more than 360 times in each case, the next case is started. Table 1 illustrates a sequence
of case in each session. Each landmark sequence is trained as NTS for two consecutive sessions and
keeps testing on the following sessions as MNAV. In the last session, subjects were tested on entire
landmark sequences both NTS and MNAV settings.

C Experimental Details

We model a landmark as a randomly generated 384-dimensional vector with the same size of interval
that is modeled as 0-vector. As an agent moves in one direction, the input vector is shifted to 64
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Table 1: Sequence of task in each session for behavioral study. Each landmark sequence is trained for
two consecutive sessions and keeps testing

Session Landmark Sequence Type Pairs

session 1 Sequence 1 NTS Training
Sequence 1 MNAV Training

session 2
Sequence 1 NTS Training
Sequence 1 MNAV Training + New
Sequence 1 NTS Training + New

session 3
Sequence 2 NTS Training
Sequence 2 MNAV Training
Sequence 1 MNAV Training + New

session 4

Sequence 2 NTS Training
Sequence 2 MNAV Training + New
Sequence 1 MNAV Training + New
Sequence 2 NTS Training + New

session 5

Sequence 3 NTS Training
Sequence 3 MNAV Training
Sequence 1 MNAV Training + New
Sequence 2 MNAV Training + New

session 6

Sequence 3 NTS Training
Sequence 3 MNAV Training + New
Sequence 1 MNAV Training + New
Sequence 2 MNAV Training + New
Sequence 3 NTS Training + New
Sequence 1 NTS Training + New
Sequence 2 NTS Training + New

dimensions toward the direction, which means that the image-to-image distance is 12 steps. Regarding
Hippocampal-MESH, the grid periods are 11, 12, 13 and the number of place cells is 400. The
dimension of hidden states of CTRNN is 256 and its decaying factor is 0.9. The hidden states pass
ReLU activation followed by one fully-connected layer to predict action (left, right, stop). We train
the models for 2000 epochs for each environment and the maximum length of each episode is 100.
We use Adam [2] with learning rate 0.001.
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