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Abstract
While research in the field of transformer mod-
els has primarily focused on enhancing perfor-
mance metrics such as accuracy and perplexity,
practical applications in industry often necessi-
tate a rigorous consideration of inference latency
constraints. Addressing this challenge, we in-
troduce SpeedLimit, a novel Neural Architecture
Search (NAS) technique that optimizes accuracy
whilst adhering to an upper-bound latency con-
straint. Our method incorporates 8-bit integer
quantization in the search process to outperform
the current state-of-the-art technique. Our results
underline the feasibility and efficacy of seeking
an optimal balance between performance and la-
tency, providing new avenues for deploying state-
of-the-art transformer models in latency-sensitive
environments.

1. Introduction
Transformer models are incredibly capable across diverse
domains, most notably natural language processing (Brown
et al., 2020; Radford et al., 2019; Devlin et al., 2018; Liu
et al., 2019) and computer vision (Dosovitskiy et al., 2020;
Parmar et al., 2018; Chen et al., 2021). In recent years,
transformer capability has been driven in large parts by ex-
panding model sizes (Kaplan et al., 2020). With state-of-the-
art (SOTA) models now exceeding hundreds of gigabytes
in size (Chowdhery et al., 2022; Smith et al., 2022), it has
become incredibly costly to deploy and maintain services
that rely on them. Additionally, the models are so large that
low-latency deployments have become impossible without
paying for the most advanced hardware. In many applica-
tion areas, upper bound latency restrictions are required,
for example chatbot services or real time object recogni-
tion. These applications occur across many diverse settings,
from large cloud computing clusters to small edge devices.
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Figure 1. Latency vs. MNLI task accuracy. SpeedLimit outper-
forms AutoTinyBERT (Yin et al., 2021), full precision BERT
(baseline), and int8 quantized BERT (Quantized) across all latency
requirements tested.

In these scenarios, the latency requirements are fixed and
machine learning engineers must find the most performant
model that meets said requirement. To solve this problem
we propose SpeedLimit, a neural architecture search (NAS)
technique for finding optimal transformer models with fixed
upper bound latency constraints.

In this paper we focus on BERT (Devlin et al., 2018) as
our motivating transformer architecture. The current SOTA
NAS process to find BERT models that satisfy a latency
requirement, called AutoTinyBERT (Yin et al., 2021), fo-
cuses solely on models with float32 parameters. Seen as the
goal of the algorithm is to find the most accurate models
at a certain latency target, it seems naive to not incorporate
8-bit integer (int8) quantization into this process in light of
the inference speedup associated with quantized models on
increasingly common commodity hardware. Additionally,
as we will show, naively quantizing the float32 model that
other NAS techniques create does not guarantee the best int8
model. We thus aim to fix this problem by incorporating
quantization into the NAS process itself. This means we
search directly for the best int8 model at a given latency
constraint.

SpeedLimit applies a two-stage NAS technique to find such
an optimal int8 quantized architecture (Cai et al., 2020). Our
approach involves training a Supermodel via knowledge dis-
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Figure 2. SpeedLimit pipeline.

tillation, and then employing an evolutionary search to find
the best quantized subnetworks of this Supermodel, called
candidates. Two-stage NAS streamlines the evaluation pro-
cess by eliminating the need for extensive training from
scratch, which is particularly vital for large SOTA trans-
formers. Candidates are assessed based on their latency and
accuracy, with the top-performing one chosen as the final
model. SpeedLimit is able to find models that outperform
those found by AutoTinyBERT and a baseline of default
BERT models (both full precision and int8 quantized) in
terms of accuracy and latency.

2. Background and related work
Neural architecture search (NAS) is a technique for auto-
matically finding optimal deep neural network architectures
(Elsken et al., 2019). NAS techniques define some search
space of architectures, and a search strategy over this space.
Common search algorithms include evolutionary search, re-
inforcement learning, Bayesian optimization, and gradient
based methods (Elsken et al., 2019). A search algorithm
works in tandem with some performance estimation strategy
that the algorithm uses to query for the runtime performance
of each architecture during the search. NAS techniques can
be broadly classified into two categories according to their
performance estimation strategy: one-stage and two-stage.

In one-stage NAS, the performance of an architecture is
calculated by simply instantiating it, training it from scratch,
and evaluating the resulting model. In two-stage NAS, be-
fore performing the search, a Supermodel (that is larger than
any candidate architecture in the search space) is trained.
Then during the search process, the performance of archi-

tectures is estimated by instantiating them with weights
extracted from the Supermodel and either evaluating the
resulting models immediately or after a small number of
fine-tuning steps (Cai et al., 2020). Because of the reduction
in training candidate architectures, two-stage NAS accel-
erates the search process significantly, especially for large
models. AutoTinyBERT (Yin et al., 2021) was able to use
two-stage NAS to produce models with reduced inference
latency without loss in performance on the GLUE bench-
mark (Yin et al., 2021) compared to the SOTA search-based
method and distillation-based methods (Xu et al., 2021;
Sanh et al., 2019; Jiao et al., 2019; Wang et al., 2020; Sun
et al., 2020). AutoTinyBERT specifically uses NAS to create
models that satisfy certain latency constraints, whilst max-
imizing model accuracy, as opposed to targeting accuracy
directly.

Quantization is another technique aimed at model compres-
sion by converting high-precision floating-point parameter
values to lower-precision data types, which in turn reduces
memory footprint and can speed up model inference if the
target hardware supports faster computation on said quan-
tized data types. Specifically, accelerated int8 quantized in-
ference is now supported by server-grade CPUs and GPUs,
allowing such models to include more parameters compared
to float32 models under the same latency constraint. This
opens up a new direction for optimization by trading param-
eters’ precision for larger parameter counts, which inspires
this work. Prior works such as I-BERT (Kim et al., 2021)
and Q8BERT (Zafrir et al., 2019) have successfully applied
quantization to BERT, maintaining high test accuracy while
achieving model compression and inference speedup.

Finally, the 2018 JASQ method (Chen et al., 2018) com-
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Figure 3. Latency and sizes of models found by SpeedLimit and AutoTinyBERT.

Figure 4. Comparison of various models’ int8 version and float32
version latencies. The same float32 and int8 model configuration
can result in very different corresponding latency values.

bined quantization with NAS, and helped to motivate our
contributions, but is ultimately a very different endeavor.
JASQ searches both architectures and quantization policies
to produce an optimal CNN with quantization precision
potentially mixed across layers. Unlike our method, they
target much smaller models and only in the vision and not
language domain. Accordingly, they employ one-stage as
opposed to two-stage NAS. Additionally, their method tar-
gets a certain model size constraint as opposed to latency,
hence their use of mixed precision quantization. We solely
target int8 quantization as it has more widely supported com-
putational speedup compared to other quantized datatypes.

3. Methodology
We propose SpeedLimit, a method to automatically search
for an optimal quantized Transformer architecture given a
latency constraint. By optimal, we mean maximizing the
performance of the model by some metric on a downstream
fine-tuning task whilst still hitting an inference latency con-
straint. We use BERT as an example Transformer, however
our techniques can easily be applied to other Transformer
based models.

Figure 2 shows the full SpeedLimit pipeline. Firstly, given
some latency constraint, we use a latency predictor to nar-
row the search space of all possible architectures to just
that of int8 architectures that will meet the inputted latency
constraint. We call the resulting search space the narrowed
search space. The use of the latency predictor greatly accel-
erates the search space narrowing process, as it removes the
need to profile the performance of all the model architec-
tures present in the original search space. Next, we apply
two-stage NAS to the narrowed search space, using iterative
rounds of evolutionary search to find the optimal BERT
configuration. As we use two-stage NAS, before conducting
the search we train a large Supermodel. At each round of
the search, candidate models are extracted from this Super-
model, fine-tuned for a small number of epochs, quantized
and evaluated. For quantization, we use the PyTorch imple-
mentation of dynamic quantization, however this can easily
be replaces with other post-training quantization techniques
such as GPTQ (Frantar et al., 2022). The best models are
evolved and make up the candidates for the following round.
After a user inputted number of rounds, the best performing
current candidate is returned.

Search space: BERT contains many architecture hyper-
parameters that can be changed. In this work, we restrict our
search space to only contain architectures that have homo-
geneous encoder blocks (the architecture of each encoder
block is identical). Let e be the number of encoder blocks
present in the model and d be the number of different in-
dividual encoder block architectures. Using homogeneous
encoder blocks reduces our search space from polynomial
order e, O(de), to simply linear O(d). This reduction in
search space size is essential because even two-stage NAS
is very computationally intensive. We consider varying h,
the dimensionality of encoder, attention head, and pooler
layers, f , the size of the dense feed forward layers, and e.
With these hyperparameters, each model architecture we
consider can be encoded in a three element tuple (e, h, f ).
Let A be the set of all architectures we consider. Naturally
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Figure 5. Accuracy and latency values of models found by SpeedLimit and AutoTinyBERT.

we must bound the values of e, h and f to ensure that |A| is
small enough to allow searches in reasonable times. Table 1
in the Appendix presents the architectures we used during
testing.

Given a user-inputted latency constraint l, we aim to search
only the architectures that correspond to int8 quantized
models meeting this constraint. We define A∗ to be the
set of such models, which we call the narrowed search
space. Ideally, we would instantiate every architecture in
A, quantize them, find their latencies, and only places archi-
tectures in A∗ that meet l. Unfortunately, this is incredibly
time-consuming because instantiating and quantizing large
transformer models takes a non-trivial amount of time, and
|A| is large. Instead, we take a small subset of A, find the
latencies of the quantized models corresponding to these
architectures, train a small latency predictor L on this data,
and use this latency predictor to find A∗. Overall, this pro-
cess takes far less time than checking the latencies of all
architectures in A. More formally, after training L, we find
the narrowed search space as A∗ = {a ∈ A : L(a) < l}.
For more details on the exact training procedure for L used
in our experiments, see section C of the Appendix.

Supermodel: During evolutionary search, candidate models
are selected and instantiated using weights extracted from
the Supermodel. For this reason, we need the Supermodel to
have an architecture that is larger than any of those contained
within A. Let As be the architecture of the Supermodel
and E , H, F be the sets of e, h and f values present in A.
Thus, we have: As = (max(E),max(H),max(F)). We
instantiate the Supermodel with architecture As and use the
modified training algorithm proposed in (Yin et al., 2021)
(that encourages the model to be more amenable to weight
sharing) to train it. See section A of the Appendix for
more information on the weight extraction procedure and
Supermodel training algorithm.

Conducting evolutionary search: We adapt the evolution-

ary search process from AutoTinyBERT (our algorithm is
outlined in section B of the Appendix). The search takes
as input the narrowed search space A∗. For a user inputted
number of rounds, the algorithm extracts the current can-
didate architectures from the Supermodel, fine-tunes them,
quantizes them, and evaluates their performance. The best
performing architectures are evolved and used as the starting
candidates for the next iteration of search (with the candi-
dates in the first round of search being chosen randomly
from A∗). Evolving involves either mutating the candidate
by randomly perturbing (e, h, f) values (ensuring the re-
sult still adheres to the latency constraint) with probability
pm or sampling an entirely new candidate with probability
1− pm. Thus, pm is a hyperparameter that controls the rate
of exploration of the search algorithm.

4. Results and Discussion
Latency results for BERT models: To motivate why
searching for int8 quantized models can outperform search-
ing for full precision models, we benchmarked various quan-
tized and non-quantized BERT models whose architectures
were drawn from A as defined in Table 1 of the Appendix.
For experiments, we used an Intel Ice Lake Xeon Platinum
8358 CPU @ 2.60GHz. This CPU was chosen intention-
ally as it comes enabled with the AVX-VNNI extension
that allow for accelerated int8 operations. To benchmark
the models, we simply drew a set of architectures and in-
stantiated full floating point models of each. We recorded
the averaged latency of every model over 4 single sentence
inputs, each containing 128 tokens (after one untimed run
to allow for model warm-up). We then used PyTorch’s dy-
namic quantization library to quantize the models to int8
and re-ran the average latency test. Figure 4 shows the col-
lected data. Every point represents a certain architecture for
a BERT model. We fitted a linear regression to the data to
quantify the relationship between int8 and float32 inference
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times, finding latencyfloat32 = 1.75× latencyint8− 2.65.

The regression analysis illustrates a significant reduction
in model latency when using int8 as compared to float32,
indicating the potential for employing a more parameter-
dense, quantized model within the same latency constraint.
Interestingly, Figure 4 shows two distinct models, identical
in float32 latency, have a roughly 50% discrepancy in int8
latency. This phenomenon, pervasive across our dataset,
underscores the necessity of an independent, quantization-
aware search for int8 models. Relying solely on a float32
model search followed by quantization could result in sub-
optimal int8 models due to the observed variance in int8
latencies for models with identical float32 latencies.

Optimal Configurations for int8 BERT Models: Using
the method described in section 3 we conducted searches for
four different latency targets. We usedA and L as described
in section C of the Appendix. For each latency target ex-
periment, we conducted four rounds of evolutionary search.
The final search result is shown in Figure 5. We see our
method outperforms AutoTinyBERT for all latency targets
bar two for the STS-B dataset. In the best case, we see up to
a 2.7% accuracy gain on the MNLI dataset. More generally,
a better search strategy should give a curve closer to the up-
per left corner, thus being closer to the Pareto frontier. We
see that, across almost all tasks, SpeedLimit beats AutoTiny-
BERT by this qualitative metric. We also note (Yin et al.,
2021) reports AutoTinyBERT outperforms standard BERT
models with corresponding latencies. We test this specifi-
cally using the MNLI dataset in Figure 1. More precisely,
we compare the latency and accuracy of models found by
SpeedLimit against a set of default BERT architectures fine-
tuned using full float32 precision (Baseline BERT). We also
compare against these baseline models quantized to int8
using PyTorch dynamic quantization (Quantized BERT).
As expected (seen as we outperform AutoTinyBERT), we
outperform both of these BERT baselines.

With quantization, we allow the model to have more param-
eters while remaining within the latency range restriction.
Although the reduced precision for all the parameters chang-
ing from float32 to int8 will reduce the model’s performance
to some extent, this loss is overpowered by the accuracy gain
of additional parameters. We also recorded the size of the
models that are presented in Figure 3. We see that in addi-
tion to better performance, the memory footprint of models
found by SpeedLimit are on average 3.4× smaller than those
found by AutoTinyBERT. This reduction in size is critical
for many applications, especially when deploying models
such as BERT on edge devices with low memory resources
(Murshed et al., 2021).

5. Conclusion
We present SpeedLimit, a novel method that combines two-
stage NAS and quantization to find latency constrained
BERT models. We are able to outperform the current SOTA
method in terms of accuracy, latency, and memory footprint
of outputted models. Our method serves as a key step for-
ward in allowing practitioners to deploy performant models
in strict latency constrained environments.
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A. Super Model
We use the same Supermodel training and submodel weight extraction technique as (Yin et al., 2021). We summarize the
training scheme here. We divide each training input batch into n sub-batches and distribute them onto n threads. Then for
m steps, we sample n sub models from the Supermodel and distribute them onto the n threads and calculate the gradient
update to be taken. After these m steps have completed, we average all the gradient updates across the n threads and use
this average gradient to update the model weights.

For the loss, we use pure knowledge distillation from a BERT-base-uncased teacher model conducting masked language
modelling on the BookCorpus (Zhu et al., 2015) dataset. We use the same hyperparameters as (Yin et al., 2021) (peak
learning rate of 1e-5, warm-up rate of 0.1, n = 16 and m = 3) except we use a smaller batch size of 12, a maximum
sequence length of 512, and train for 4 epochs.

B. Search Procedure
Algorithm 1 summarizes the evolutionary search algorithm used in SpeedLimit.

Algorithm 1 Evolutionary Search
Input: T , the number of generations of evolutionary search, S the number of candidates to consider at generation, pm the
mutation probability, A∗

G1 ← A∗

for t = 1, 2, . . . , T do
Gt ← {}
while |Gt| < S do
αold ← a sample (without replacement) from Gt−1.
αquant ← an 8-bit quantized version of αold.
p← a uniform random number from 0 to 1.
if p < pm then
αnew ← a mutation of αquant.

else
αnew ← a random sample from A.

end if
Append αnew to Gt

end while
end for
M← the set of models with architectures from GT and weights from the Supermodel.
Mquant ← {}
for m ∈M do

Append the quantized version of m toMquant
end for
αopt ← the architecture of model with the best accuracy on the target task fromMquant.
return αopt

C. Experimental Details
For our experimental results presented in section 4, we applied constraints on the (e, h, f) values that we included in the
search space of architectures A. This was done to ensure that narrowing the search space to A∗, set of architectures that met
the inputted latency constraint, could be done in reasonable time. The values we selected to be in A are shown in table 1.

For the latency predictor L, we used a simple multi layer perceptron with 3 hidden layers and 2000 nodes per layer. We
trained using an Adam optimizer with a learning rate of 1e− 5, β1 = 0.9, β2 = 0.99, θ0 = 1e− 08 and a mean squared
error loss. We conducted a grid search to find the optimal learning rate, and used the default values from the PyTorch
implementation of the Adam optimizer for β1, β2 and θ0. We trained the latency predictor for 5000 steps, each of which used
a batch of 128 random architectures from A (as defined in table 1) labeled with quantized latencies. To find the latencies
for this training data, we instantiated the given architecture, quantized it, and recorded the latency across 5 forward passes
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with a single input containing 128 tokens. We excluded the first latency value as they were usually significantly larger than
subsequent values due to model warm-up (caching of model parameters), and used the average of the remaining 4 latency
values as the latency label. Our implementation of L was able to achieve a 3.28% mean average percentage error on a held
out testing set.

Table 1. Hyperparameter values in search space
Hyperparameter Value present in A

e [1, 2, 3, 4, 5]
h [120, 132, . . . , 12k, . . . , 516, 528]
f [128, 140, . . . , 12k, . . . , 1004, 1016]
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