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Abstract

Transformers have rapidly become the preferred choice
for audio classification, surpassing methods based on
CNNs. However, Audio Spectrogram Transformers (ASTs)
exhibit quadratic scaling due to self-attention. The removal
of this quadratic self-attention cost presents an appealing
direction. Recently, state space models (SSMs), such as
Mamba, have demonstrated potential in language and vi-
sion tasks in this regard. In this study, we explore whether
reliance on self-attention is necessary for audio classifica-
tion tasks. By introducing Audio Mamba (AuM), the first
self-attention-free, purely SSM-based model for audio clas-
sification, we aim to address this question. We evaluate
AuM on various audio datasets - comprising six different
benchmarks - where it achieves comparable or better per-
formance compared to well-established AST model.

1. Introduction
In recent years, CNNs [15, 18] have been replaced with
transformer-based architectures [7, 10, 26, 27] in a
paradigm shift in deep learning, as transformers outperform
convolutional neural networks. Not only does the perfor-
mance of transformers exceed that of CNNs, but establish-
ing a unified architecture among many different research
fields and tasks — traditionally using completely different
models — is another breakthrough [1, 2, 11, 12, 21, 23, 24,
29, 30]. Despite their success, transformers are hindered by
their reliance on the computationally intensive self-attention
mechanism. The O(n2) cost of attention is a natural con-
cern when processing longer sequences. This limitation
motivates the exploration of alternative architectures, no-
tably state-space models (SSMs) [8, 13, 14, 25] such as
Mamba [13], which replaces the self-attention mechanism
in favor of incorporating time-varying parameters to cap-
ture global context efficiently. Recently, the introduction
of Mamba [13] marks a significant advancement in model
efficiency for both training and inference, suggesting a po-
tential alternative to transformer-based approaches. Given
the universality and scalability of transformers across var-
ious tasks, Mamba’s potential, coupled with its computa-

0 1 2 3

4 5 6 7

Patchification

0 1 2 3 4 5 6 7

!! !" !# !$ "#$ !% !& !' !(

%! %" %# %$ %)*+ %% %& %' %(

Classification Head Output

“Snake Hissing”

Audio Spectrogram

“Snake Hissing”

L x

Projection

Activation

Conv1d

Projection

Activation

SSM

Projection

Flatten & Linear Projection

Mamba Encoder

Bidirectional Case

AuM Block

Forward 
SSM

Forward 
Conv1D

Activation

Backward 
SSM

Backward 
Conv1D

Activation

Forward 
SSM

Activation

Backward 
SSM

Forward 
Conv1D

Forward 
SSM

Forward 
Conv1D

Activation

a) Forward conv1d
Uni-directional SSM

b) Forward conv1d
Bi-directional SSM

c) Bi-directional conv1d
Bi-directional SSM

Each Design Choice

Figure 1. The proposed Audio Mamba (AuM) architecture.

tional efficiency, is particularly promising for becoming a
similarly generic and versatile architecture.

Despite Mamba’s recent successes in language model-
ing and vision [19, 20, 31–33], the adoption of Mamba
and similar SSM-based models in the audio classification
domain still remains unexplored. This gap motivates our
work, where we introduce a novel SSM-based model, Au-
dio Mamba - AuM, applied directly to audio spectrograms.
Our approach is self-attention free, focusing purely on long
sequence modeling with state space models. AuM not
only achieves comparable performance to the Audio Spec-
trogram Transformer (AST) [10], the most prominent ap-
proach in audio classification, but also retains several ad-
vantages of transformer-based models. These include the
ability to handle varying sequence lengths and the ease of
transferability to other tasks. Due to the employment of



state space models, reliance on self-attention is eliminated,
enabling the model to operate with linear time complexity
relative to sequence length and feature dimension, as op-
posed to AST where quadratic complexity is observed. The
closest work to ours is Vision Mamba [33], which utilizes
bidirectional SSM for global visual context modeling and
positional embeddings for location information in a struc-
ture similar to Vision Transformers (ViT) [7]. Drawing on
AST’s success in applying ViT’s principles to audio classi-
fication, we also draw inspiration from the findings of Vi-
sion Mamba and study the methodologies suitable for ap-
plying bidirectional state space models to audio classifica-
tion. To accomplish this task, we take the following steps:
(1) We divide the input spectrogram into patches, which are
then projected into patch embedding tokens. (2) We add
an additional learnable classification token to the sequence
of patch tokens, specifically in the middle. (3) The Audio
Mamba Encoder blocks process these token sequences in
both forward and backward directions with SSM modules.
(4) The classification token is utilized to train the model on
the supervised audio classification task and also for mak-
ing predictions in the inference stage. We summarize the
contributions of our work as follows:
• We introduce Audio Mamba (AuM) for processing audio

spectrograms, utilizing bidirectional state space models
(SSM) to handle tokens in both forward and backward
directions, in a similar structure of Audio Spectrogram
Transformers (AST).

• By eliminating self-attention modules, AuM achieves lin-
early scaled resource consumption when evaluated with
long audio sequences.

• Our comprehensive experiments across six diverse
datasets — AudioSet [9], AudioSet Balanced, VG-
GSound [4], VoxCeleb [22], Speech Commands V2 [28],
and Epic-Sounds [17] — show that AuM delivers perfor-
mance that is comparable to or exceeds the most promi-
nent audio classification method AST.

2. Audio Mamba
2.1. Flow of the Architecture

The Audio Mamba (AuM) architecture, as depicted in Fig.
1, begins by transforming an input audio waveform into an
audio spectrogram X ∈ RF×T , where F and T represent
the frequency and time dimensions, respectively. The spec-
trogram is partitioned into a sequence of N square patches
S ∈ RN×p×p, with p denoting the side length of each
patch and N calculated as N = (F/p) × (T/p). Each
individual patch Si is subsequently flattened into a one-
dimensional vector Si ∈ Rp2

, and through a linear projec-
tion, it is embedded into a D-dimensional space, yielding
Ei ∈ RD. This process is facilitated by the patch embed-
ding layer. Afterward, a special learnable classification to-

ken, denoted as CLS ∈ RD, is inserted into the middle
of the sequence, leading to an augmented embedding se-
quence E ∈ R(N+1)×D. To encode the position of each
element within the sequence, learnable positional embed-
dings P ∈ R(N+1)×D are added, resulting in the token se-
quence T ∈ R(N+1)×D. This token sequence is then pro-
cessed by the Audio Mamba encoder which consists of L
stacked blocks, each of which retains the dimensionality of
its input. Thus, the encoder transforms T into an output se-
quence T ′ ∈ R(N+1)×D. The modified representation of
the classification token T ′

N/2 is then conveyed to the classi-
fication head.

2.2. Architecture Details

Aiming to establish itself as a generic architecture, AuM
shares several similarities with the AST [10]. However,
AuM distinguishes itself through distinct components and
strategic design decisions that highlight its unique architec-
tural and operational characteristics, to be a self-attention-
free model.
Preliminaries. State space models (SSMs) are linear time-
invariant systems that aim to model a continuous system
which maps a time dependent D dimensional input se-
quence x(t) ∈ R to an output y(t) ∈ R through maintaining
a hidden state h(t) ∈ RN . Such a system could be repre-
sented with the following equation:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t).
(1)

where A ∈ RN×N , B ∈ RN×D and C ∈ RD×N . With the
primary goal of adapting the model to deep learning algo-
rithms, a discretization process is applied, which transforms
the continuous parameters A and B through a discretization
rule into Ā and B̄, respectively. These discretized parame-
ters are then substituted for A and B, leading to the follow-
ing discretized formulation of the system:

ht = Āht−1 + B̄xt,

yt = Cht.
(2)

Such a linear time-invariant system could be computed both
as a linear recurrence or through a global convolution, en-
abling efficient processing [13]. Despite its efficiency, such
a system has limitations in modeling certain types of data
due to its time-invariant parameterization. Mamba upgrades
existing works based on such models by converting the
time-invariant parameters into a time-variant format, en-
abling efficient derivation of parameters from time-varying
inputs. Specifically, inside the Forward SSM module of a
Mamba block (Fig. 1 (a)), the algorithm utilizes the input
sequence x ∈ RL×D that has been convolved through a
Forward Conv1D before, to convert each time-invariant pa-
rameter A, B, and ∆ in eq. (2) into specific corresponding



ones A′
i, B

′
i, and ∆′

i for each element xi of the sequence.
Mamba then utilizes these parameters by adopting a modern
hardware-oriented scanning method that processes the input
sequence from beginning to end in a unidirectional manner.
More details can be seen in [13]. This enables the model to
selectively update its hidden state by capturing relevant in-
formation from the input sequence through these converted
parameters.
Bidirectional Mamba Encoder. Even though Mamba’s
unidirectional scan of the sequence offers promising bene-
fits for modeling causal sequential data, its application to
learning from 2D data benefits from processing in mul-
tiple directions [19, 32, 33]. For instance, in learning
from visual data, an existing Mamba-based architecture,
ViM [33], modifying the original Mamba block in Fig. 1
(a) to Fig. 1 (c) by introducing another direction for fea-
ture extraction (Backward Conv1D) or scanning (Backward
SSM) of the input sequence, enabling multi-directional and
spatial-aware processing. Similarly, AuM adopts the design
strategy shown in Fig. 1 (b) by adding an extra backward
scanning direction to the original Mamba block. This ap-
proach utilizes the same convolved features while adapting
both the forward and backward SSM parameters into their
time-variant (input-dependent) versions for scanning. Like-
wise ViM, this enables AuM to model the global context in
a spatial aware manner, mirroring the functionality of self-
attention mechanism in transformers for modeling global
context.
Classification Token. Unlike transformers in their pure
form, which are permutation invariant when processing the
input sequence, AuM block is sensitive to the order of the
input sequence because both feature extraction (Conv1D)
and SSMs are input-order-sensitive operations. Conse-
quently, in addition to scanning directions, the placement
of the classification token within the input sequence be-
comes critical for the learning process. Similarly to ViM,
AuM strategically positions the classification token at the
midpoint of the input sequence, immediately after the patch
embedding layer. This setup has shown improved perfor-
mance in bidirectional processing setup, as demonstrated in
ViM, and the ablation study conducted in Section 3.

3. Experiments

3.1. Datasets and Evaluation Metrics

Datasets. Our experiments utilize: (1) Audioset Full
/ Balanced, (2) VGGSound, (3) VoxCeleb, (4) Speech
Commands-V2, and (5) EPIC-SOUNDS datasets. Au-
dioSet [9] is an expansive dataset with a wide array of au-
dio samples, each marked with a set of labels. It includes
over 2 million 10 seconds long audio clips with a total of
527 distinct labels. The balanced set on the other hand is
curated from the full set, consisting of 20K samples. VG-

GSound [4] contains nearly 200k video clips of 10 seconds
each, annotated with 309 diverse sound categories. Vox-
Celeb [22] is a dataset focused on audio-visual representa-
tions of human speech, featuring 1,251 speakers and around
145k speech instances. Speech Commands-V2 [28] com-
prises approximately 105k audio recordings, each with a
duration of 1 second, and includes 35 widely recognized
speech commands. Finally, EPIC-SOUNDS [17], part
of EPIC-KITCHENS-100 [6], comprises 75.9k audio seg-
ments from egocentric videos, labeled across 44 classes, fo-
cusing on actions discernible by sound, such as object col-
lisions with material annotations.
Evaluation metrics. We utilize mean average precision
(mAP) for Audioset experiments due to the existence of
multiple labels per sample. For the remaining datasets, we
show the top-1 classification accuracy (Acc) as the samples
have a single label.

3.2. Comparison to AST on Standard Benchmarks

In this section, we conduct a comparative analysis of
our Audio Mamba (AuM) against the Audio Spectrogram
Transformer (AST) model. Both models use base back-
bones, AuM-B/16 and AST-B/16. As discussed in the im-
plementation details, we follow the same training and ex-
perimental settings as the AST model to ensure a fair com-
parison, which are detailed at section 5. It is worth high-
lighting that in this experiment, neither AuM nor AST uti-
lized pretraining weights from other models (AST is initial-
ized with weights from the Vision Transformer (ViT) model
pretrained on ImageNet in the original paper [10]) to en-
sure a pure comparison of these two different architectures.
We repeat each experiment three times with the same setup
but different random seeds and report the results with the
mean and standard deviation in Table 1. Our proposed AuM
generally achieves better performance in this experimental
setup. This indicates that AuM, with its pure setting, is a
potential alternative to the AST model, without relying on
self-attention, which leads to better efficiency in computa-
tional resources.

3.3. Comparison to AST on Efficiency

Transformer-based audio classification models are compu-
tationally demanding (quadratic complexity), particularly
with lengthy audio and high-dimensional data. SSM-based
models stand out for their computational and memory ef-
ficiency. In this section, we compare AuM to AST from
an efficiency perspective. A single A6000 GPU is used
for this experiment. We feed audios with corresponding
lengths for every given token number to the models to simu-
late the speed and GPU memory comparison. We visualize
the speed and memory consumption of these models in Fig-
ure 2. AuM demonstrates clear computation and memory
efficiency. For example, the AuM-Base model that uses 20



Model AudioSet AS-20K VGGSound VoxCeleb Speech Comm. V2 Epic-Sounds
(mAP) (mAP) (Acc.) (Acc.) (Acc.) (Acc.)

AST-B/16 29.10± 0.07 10.41 ± 0.32 37.25 ± 0.31 22.44 ± 0.19 85.27 ± 1.07 44.76 ± 0.20

AuM-B/16 32.43 ± 0.31 (+3.33) 13.28 ± 1.07 (+2.87) 42.58 ± 0.28 (+5.33) 28.34 ± 3.38 (+5.90) 91.58 ± 3.17 (+6.32) 44.17 ± 0.58 (-0.60)

Table 1. Results of from-scratch training of AST and AuM base models across various datasets.
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Figure 2. Empirical evaluation of memory and time consumption for AST and AuM small/base models.

Setting AS-20K (mAP) VGGSound (Acc.)

Head Mid End Head Mid End

Fo-Fo (a) 0.48± 0.00 11.73± 0.47 11.90± 1.05 0.33± 0.00 35.05± 0.80 39.09± 0.56

Fo-Bi (b) 13.57± 0.09 13.81± 0.32 12.35± 0.33 40.91± 0.47 42.58± 0.28 40.41± 0.15

Bi-Bi (c) 4.97± 0.13 9.69± 0.43 11.11± 0.66 34.22± 0.26 36.48± 0.46 41.09± 0.16

Table 2. Results of ablation on the design choices. Architectural
choices (under the settings column) refer to the block types in Fig.
1, the location of the classification token is indicated through the
columns: Head, Mid and End per dataset.

seconds of audio (1024 tokens) for training consumes as lit-
tle GPU memory as the AST-Small model. Additionally,
while AuM-B can be trained with 80 seconds, AST-B will
run out of memory in the setting that uses only 20 seconds
audios. Moreover, AuM is 1.6 times faster in the inference
stage than AST at 4096 number of tokens, with a growing
rate as the token count increases. All these results indicate
that AuM exhibits a trend of linear scaling with respect to
sequence length.

3.4. Ablation Study on Design Choices

We conduct a series of experiments to verify our design
choices and perform further analysis. We study the follow-
ing strategies in terms of the direction of SSM modules and
conv1Ds:
AuM-ForwardConv1D-ForwardSSM: This choice, which
is the default Mamba block, directly applies the AuM Block
with only a forward SSM (refer to Figure 1 (a)).
AuM-ForwardConv1D-BiDirectionalSSM: This is the de-
sign of our final model, which applies an additional back-
ward SSM to the previous design choice (refer to Figure 1
(b)).

AuM-BiDirectionalConv1D-BiDirectionalSSM: In this
variant, we add another Conv1D in the backward direction
to feed the output of this module to the backward SSM,
making each SSM module a separate stream. A similar
design is adopted in Vision Mamba (ViM) as the default
choice (refer to Figure 1 (c)).
Moreover, the position of class tokens is ablated for each
variant above. To save computational time and resources,
we primarily conduct ablation studies by training our model
on AudioSet Balanced (AS-20K) and VGGSound. Results
are in Table 2.
Impact of bidirectional SSM. To understand the impact of
the directions of SSM modules, we analyze the performance
of the variants of our model with different directional SSM
modules. As the results demonstrate, the bidirectional vari-
ants (forward and backward SSM modules together) over-
all show better performance (especially in the large dataset
VGGSound) than the forward-only variant.
Impact of direction of conv1D. Here, we conduct a
controlled experiment between two bidirectional methods:
AuM-Fo-Bi and AuM-Bi-Bi, where the only difference is
the presence of an additional backward Conv1D. As shown
in Table 2, our design choice, which omits the backward
Conv1D, generally yields better performance. We hypothe-
size that processing a single input sequence (the output from
only the forward Conv1D) is more effective and natural for
scanning in both forward and backward directions to under-
stand entire context, compared to providing separate inputs
to each directional SSM module and scanning in only one
direction according to the input.
Impact of the class token position. Our extensive experi-
ments reveal that positioning the class token in the middle
of the sequence is the most suitable choice for our design.



Model AudioSet AS-20K VGGSound VoxCeleb Speech Comm. V2 Epic-Sounds
(mAP) (mAP) (Acc.) (Acc.) (Acc.) (Acc.)

AST-S 40.32 ± 0.08 29.20 ± 0.11 49.51 ± 0.06 39.70 ± 1.83 97.38 ± 0.07 52.42 ± 0.11

AuM-S (c) 39.68 ± 0.06 (-0.64) 28.89 ± 0.20 (-0.31) 49.43 ± 0.18 (-0.07) 40.58 ± 1.11 (+0.89) 97.51 ± 0.08 (+0.13) 52.90 ± 0.40 (+0.48)

Table 3. Results of Imagenet pretrained initializations of AST and AuM small models across various datasets. Note that the setup of
AuM-S is (c) in Fig. 1 due to the unavailability of the ViM weights for our preferred setup (b).

Model VGGSound VoxCeleb Speech Comm. V2 Epic-Sounds
(Acc.) (Acc.) (Acc.) (Acc.)

AST-B/16 44.17 ± 0.14 46.25 ± 1.08 90.37 ± 0.06 46.62 ± 0.04

AuM-B/16 46.61 ± 0.18 (+2.44) 40.72 ± 1.11 (-5.53) 94.78 ± 0.04 (+4.41) 48.18 ± 0.13 (+1.57)

Table 4. Results of Audioset pretrained initializations of AST
and AuM base models across various datasets.

However, it is important to note that the position of the class
token is a crucial decision, as each variant exhibits a differ-
ent optimal location for its use, which greatly impacts per-
formance. An additional observation is that a forward-only
SSM collapses when the class token is placed at the begin-
ning of the sequence (head class token). This outcome is
expected, as the information in the sequence following the
class token is not incorporated into the class token.

3.5. Impact of Pre-Training

Out-of-domain pre-training. Initializing audio models
with ImageNet pre-trained weights has become popular for
audio classification [5, 10]. Specifically, AST demonstrates
a significant performance improvement over training from
scratch by utilizing the weights of a Supervised ImageNet
pretrained ViT model. As presented in Table 1, our main
results exclude models with pretraining (weight initializa-
tion) to provide a clear comparison between these two ar-
chitectures. One might question why such results are not
displayed. To the best of our knowledge, no released Vision
Mamba Base model weights, comparable to ViT weights for
the AST model, are available in the literature, preventing us
from conducting this experiment directly. However, we aim
to analyze both AuM and AST when initialized with out-of-
domain pre-training weights. In this context, we utilize the
only available Vision Mamba model, the small-sized ViM-
S, to compare AuM-S and AST-S models. Despite the dif-
ferences in architectural design with Vision Mamba, high-
lighted in Sections 2 and 3.4, where we note that the AuM-
Bi-Bi variant is not the ideal choice for our AuM, the find-
ings presented in Table 3 reveal that both models perform
similarly. We believe that with the right weight initializa-
tion, our model could outperform AST, just as it does in sce-
narios without the use of vision domain pretrained weights.
From-scratch audio-only pre-training. After comparing

AST and AuM by initializing them with weights from Im-
ageNet pre-trained vision models, we also explore using
AudioSet-trained weights of base models (from Table 1) as
in-domain pre-training to initialize both AuM-B and AST-
B. Here, unlike in the previous section, our model uses
weights from a model that is architecturally identical to
ours. The results, shown in Table 4, indicate that in-domain
pre-training benefits both models, enhancing their perfor-
mance. In this setting, AuM outperforms AST, except on
the VoxCeleb dataset.

4. Conclusion
In this work, we introduce Audio Mamba (AuM), the first
architecture for audio classification that is free from self-
attention and purely based on state space models (SSM).
Our extensive experiments highlight AuM’s efficiency in
terms of computational and memory use, as well as its
competitive performance against the well-established Au-
dio Spectrogram Transformers (AST). Considering its simi-
larity to AST structure regarding patchifying the input spec-
trogram, adding positional embeddings, and processing the
information sequentially but without costly self-attention, it
shows great potential to become an alternative generic audio
backbone. With the elimination of reliance on costly self-
attention and the high efficiency of AuM in processing long
sequence inputs, we believe that AuM brings an important
contribution to the audio field for future potential applica-
tions. The ability to handle lengthy audio is increasingly
crucial, especially with the rise of self-supervised multi-
modal learning [1, 2, 21] and generation that leverages in-
the-wild data and Automatic Speech Recognition. Further-
more, AuM could be employed in self-supervised learn-
ing setups like Audio Masked Auto Encoders [3, 16] or
multimodal learning tasks such as Audio-Visual pretrain-
ing [11, 12, 21] or Contrastive Language-Audio Pretrain-
ing [24, 29, 30].
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data-efficient image transformers & distillation through at-
tention. In Proc. ICML, 2021. 1

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1

[28] Pete Warden. Speech Commands: A dataset for
limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018. 2, 3

[29] Ho-Hsiang Wu, Prem Seetharaman, Kundan Kumar, and
Juan Pablo Bello. Wav2clip: Learning robust audio repre-
sentations from clip. In Proc. ICASSP, 2022. 1, 5

[30] Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor
Berg-Kirkpatrick, and Shlomo Dubnov. Large-scale con-
trastive language-audio pretraining with feature fusion and
keyword-to-caption augmentation. In Proc. ICASSP, 2023.
1, 5

[31] Zhaohu Xing, Tian Ye, Yijun Yang, Guang Liu, and
Lei Zhu. Segmamba: Long-range sequential modeling
mamba for 3d medical image segmentation. arXiv preprint
arXiv:2401.13560, 2024. 1

[32] Yijun Yang, Zhaohu Xing, and Lei Zhu. Vivim: a video
vision mamba for medical video object segmentation. arXiv
preprint arXiv:2401.14168, 2024. 3

[33] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang,
Wenyu Liu, and Xinggang Wang. Vision mamba: Efficient
visual representation learning with bidirectional state space
model. arXiv preprint arXiv:2401.09417, 2024. 1, 2, 3



Audio Mamba: Bidirectional State Space Model for Audio Representation
Learning

Supplementary Material

Setting Audioset AS-20K VGGSound VoxCeleb Speech Comm. V2 Epic Sounds
Optimizer Adam(wd=5e-7,betas=(0.95, 0.999))

Patch Size / Stride 16 x 16 / (16, 16)

Batch Size 12

Weighted Average No

Ensembling No

Loss Function BCE CE

Multilabel Yes No

Balanced Sampling Yes No

Warm-up Duration 1000 steps 2 Epochs

Spectrogram Size 128x1024 128x128 128x1024

SpecAug (time / freq.) 48 / 192 48 / 48 48 / 192

Mixup 0.5 0 0.6 0.2

Epochs 5 25 20 30

LR Sched. Type MultiStepLR(start / step / decay)
LambdaLR*

LR Sched. Params 2 / 1 / 0.5 10 / 5 / 0.5 5 / 2 / 0.75 5 / 1 / 0.85

Dataset Mean for Norm. -4.268 5.077 -3.761 -6.846
No

Dataset Std. for Norm. 4.569 4.453 4.201 5.565

Base LR 1e-5 5e-5 1e-5 2.5e-4 1e-5

Table 5. Training setup comparison across different datasets. Here, ”*” indicates that we follow the official learning rate scheduler
presented in the Epic Sounds paper.

5. Training Setup
We train all the models (AuM and AST) of all sizes (Base
and Small) across six different datasets by following the
training setup shown in Table 5.
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