GEE! Grammar Error Explanation with Large Language Models

Anonymous ACL submission

Abstract

Existing grammatical error correction tools do not provide natural language explanations of the errors that they correct in user-written text. However, such explanations are essential for helping users learn the language by gaining a deeper understanding of its grammatical rules (DeKeyser, 2003; Ellis et al., 2006).

To address this gap, we propose the task of grammar error explanation, where a system needs to provide one-sentence explanations for each grammatical error in a pair of erroneous and corrected sentences. The task is not easily solved by prompting LLMs: we find that, using one-shot prompting, GPT-4 only correctly explains 40.6% of the errors and does not even attempt to explain 39.8% of the errors.

Since LLMs struggle to identify grammar errors, we develop a two-step pipeline that leverages fine-tuned and prompted large language models to perform structured atomic token edit extraction, followed by prompting GPT-4 to explain each edit. We evaluate our pipeline on German and Chinese grammar error correction data. Our atomic edit extraction achieves an F1 of 0.93 on German and 0.91 on Chinese. Human evaluation of generated explanations reveals that 93.9% of German errors and 96.4% of Chinese errors are correctly detected and explained. To encourage further research in this area, we will open-source our data and code.

Figure 1: An illustration of the two-step pipeline of grammar error explanation (GEE). Given a pair of sentences with corrected errors, the GEE system first extracts linguistically meaningful edit units as errors. The extracted errors are then paired with the sentences as the input for GEE generation. Note: The error in *einen* can be caused by gender or case or both. Without guessing the mental state of a language user, both are offered as the reasons in the explanation.

1 Introduction

Grammatical error correction (GEC) is a practical and valuable application of natural language processing that facilitates both proofreading of text and language learning. Recent advances in large language models (LLMs) have significantly improved the capabilities of GEC systems (Wang et al., 2021; Bryant et al., 2023); however, they are unable to explain errors in natural language alongside providing correction. Error explanation is crucial to language learning and teaching (Ellis, 2010); while corrections are a form of implicit feedback, they are not as impactful as explicit feedback (DeKeyser, 2003; Ellis et al., 2006), which involves pointing out errors and providing meta-linguistic information to the user (e.g., rules of writing well-formed phrases or sentences).

In this work, we propose a new task—grammar error explanation (GEE)—for which a model must explain errors in natural language alongside providing correction. Error explanation is crucial to language learning and teaching (Ellis, 2010); while corrections are a form of implicit feedback, they are not as impactful as explicit feedback (DeKeyser, 2003; Ellis et al., 2006), which involves pointing out errors and providing meta-linguistic information to the user (e.g., rules of writing well-formed phrases or sentences).

In this work, we propose a new task—grammar error explanation (GEE)—for which a model must explain errors in natural language alongside providing correction. Error explanation is crucial to language learning and teaching (Ellis, 2010); while corrections are a form of implicit feedback, they are not as impactful as explicit feedback (DeKeyser, 2003; Ellis et al., 2006), which involves pointing out errors and providing meta-linguistic information to the user (e.g., rules of writing well-formed phrases or sentences).

In this work, we propose a new task—grammar error explanation (GEE)—for which a model must explain errors in natural language alongside providing correction. Error explanation is crucial to language learning and teaching (Ellis, 2010); while corrections are a form of implicit feedback, they are not as impactful as explicit feedback (DeKeyser, 2003; Ellis et al., 2006), which involves pointing out errors and providing meta-linguistic information to the user (e.g., rules of writing well-formed phrases or sentences).

1 Prompts and human annotations will be made publicly available.
to generate an explanation for each corrected grammar error. Given the capabilities of modern LLMs, one might ask whether LLMs can solve this task simply via prompting. We show in Section 3 that one-shot GPT-4 (OpenAI, 2023) prompting detects only 60.2% of the true errors and correctly explains only 67.5% of the errors it does detect.

Given this result, we develop a pipeline for GEE generation that features an essential intermediate step—atomic token edit extraction. As shown in Figure 1, given an erroneous sentence and its corrected counterpart (source and target), we first extract atomic edits at the token level by prompting or fine-tuning LLMs such as GPT-4, which also label the edits with one of four operation-level edit types: insert, delete, replace, and relocate. In the second step, we append the extracted edits to the source and target sentences and use them as the input to a GEE system. We utilize the few-shot learning ability of LLMs (Brown et al., 2020) to generate error explanations using carefully crafted language-specific prompts.

We validate our GEE pipeline on German and Chinese, two very different languages (fusional vs. analytical). We also recruit language teachers to evaluate the correctness of the explanations. For the first step in the pipeline, our atomic edit method extracts 92.3% of the true edits for German, which is 32.1% higher than the one-shot approach in Section 3. For the final GEE outputs in German, 93.9% of the generated explanations are judged as correct by two German teachers. Similar performance is observed in Chinese with a 96.4% correctness rate, suggesting that our two-step pipeline together with carefully crafted language-specific prompts generalizes well for the two different languages.

In summary, our contributions are the following. First, we propose a new task on grammar error explanation to enhance the utility of current grammatical error correction systems. Second, we propose a two-step pipeline and study its performance in German and Chinese with detailed error analysis. Third, we publicly release our atomic edit extraction datasets for German and Chinese as well as all LLM-generated GEE outputs with the goal of enabling future research on GEE and facilitating the development of more effective GEE systems.

2 GEE task definition

While most GEC models provide viable grammar error corrections (Bryant and Ng, 2015; Bryant et al., 2023), they do not provide natural language explanations alongside the corrections, which are critical for language learners in mastering grammar (Ellis et al., 2006; Ellis, 2010). In this section, we propose and define the task of grammar error explanation, which aims to fill this gap. We assume that a GEE model has access to the outputs of an existing GEC model, which produces the corrected form of an ungrammatical input sentence.

2.1 Formalizing the GEE task

The input to a GEE model is a pair of sentences in which one has (potentially multiple) grammar errors and the other is corrected. Concretely, let X_{error} be a sentence written by a user which contains grammatical errors. Then, $X_{correct} = GEC(X_{error})$ is the grammatically correct version of X_{error} produced by a GEC system. Following common practice in GEC research (Bryant et al., 2017; Lee et al., 2018; Rao et al., 2020), we assume that an error can be corrected in four ways: insert, delete, replace, and relocate. Let $c_1^X, c_2^X, \ldots, c_n^X$ be a list of corrections made by the GEC system to X_{error} through one of these four types of edits. Then, the goal of GEE is to generate single-sentence explanations in natural language $s_1^X, s_2^X, \ldots, s_n^X$ corresponding to each of $c_1^X, c_2^X, \ldots, c_n^X$ (example in Figure 1). Concretely,

Input: $X_{error}, X_{correct}$

Output: $s_1^X, s_2^X, \ldots, s_n^X$

2.2 Atomic edits as foundation of GEE

The quality of error explanation depends on how the correction list $c_1^X, c_2^X, \ldots, c_n^X$ is defined. Consider the corrections in (1). One way to define the correction list is through a string-based transformation (i.e., replace *machen ein termin* with *einen Termin machen*). However, an instructor explaining the corrections would naturally break them down into smaller units to facilitate understanding, for example, “*machen* must be moved to the end”, “*ein* should be changed to *einen* to match gender and case”, and so on. On the other hand, for the corrections in (2), an instructor would naturally explain the change as a single edit involving the movement of a phrase; breaking down the explanation

2These types describe a general relationship between the source and target rather than precise edit operation of the source.

3In principle, the inputs could also be documents, but we restrict our work to sentence-level GEE.
into multiple word movements would not help the writer to understand why the edit was made.

(1) S: Ich möchte machen ein termin.
T: Ich möchte einen Termin machen.
(2) S: I with my puppy go to the store.
T: I go to the store with my puppy.

When explaining a corrected sentence, we argue, experts will identify the smallest individual errors that are linguistically meaningful (i.e., “atomic errors”) and provide roughly one explanation per atomic error. Doing so allows learners to follow and understand explanations better, especially when there are contiguous errors in the input. This requires a process of atomic error extraction, such as the one described intuitively for (1) and (2), which naturally uses the conventions of grammar, spelling, and language usage.

We treat each atomic error as an atomic edit and give a working definition of how to identify it. Using (1) as an example, an edit (machen ein termin) should be divided into smaller edits (machen, ein, and termin) if an expert would explain the whole edit as merely the concatenation of explanations for the smaller edits. These smaller edits are then atomic edits (i.e., each of which has its own distinct explanation). Similarly, if an expert would explain an edit with multiple words using one explanation that cannot be separated into the concatenation of several explanations, then that multi-word operation is one atomic edit (e.g., the relocation of with my puppy in (2)).

Our working definition of atomic edits provides guidance for extracting linguistically meaningful edits. However, language-specific decisions are needed for individual languages. We discuss such details for German and Chinese in Section 4 and Appendix C.

2.3 Evaluation of GEE

We evaluate two critical aspects of GEE: error coverage and explanation quality.

Error coverage evaluation can be facilitated by forcing a model to generate position information of explained errors or to describe the edits being done. The evaluation is conducted by measuring (1) whether an explained error is indeed an error in the source and being corrected in the target; and (2) whether an error that is corrected in the target has an associated correct explanation. An automatic evaluation through string overlap can give a quick estimate of error coverage when gold references are available. We also do manual evaluation to better understand the behavior of models.

Explanation quality evaluation is challenging because errors can be explained in multiple ways. To reliably evaluate GEE outputs automatically, multi-reference metrics such as METEOR (Banerjee and Lavie, 2005) and benchmarks with multiple references for each error are needed. However, collecting such datasets is costly and requires expertise in second language teaching. Without such datasets being available, leveraging human experts is the only reliable way to evaluate. In our work, we recruit language teachers for the evaluation described in Section 6.2. Language teachers, with their expertise in second language teaching, can reliably judge whether an explanation is correct and informative.

3 Has GPT-4 already solved GEE?

A natural question one might ask is whether state-of-the-art LLMs can solve the GEE task in an end-to-end manner. This section demonstrates that GPT-4 in its current form is error-prone. It has low error coverage and hallucinates frequently. Based on this observation, we experiment with an approach which provides GPT-4 a with a list of manually-extracted gold atomic edits. Results show that access to this gold edit list improves the performance greatly, indicating substantial headroom with more structured prompting as we describe in Section 4.

One-shot prompting of GPT-4. We run an experiment using German grammar error correction data (details in Section 5). We randomly sample 30 data points and generate explanations using the one-shot prompt in Appendix A.

GPT-4 struggles to identify and explain errors. To get a better sense of what mistakes GPT-4 makes, we manually classify each edit as true positive, false positive, or false negative, depending on whether they are correctly mentioned in the generated explanations. Our evaluation shows that GPT-4 mentioned 120 edits (compared to 90 manually extracted edits), achieving recall 0.602, precision 0.675 and F1 0.636. Among the correctly de-
tected errors, GPT-4 only correctly explains 67.5% of them. Such outputs are not useful for learners.

GPT-4 makes mistakes even in short sentences. As the example in Table 1 shows, GPT-4 hallucinates that ‘Sie’ is relocated. It also groups two errors together and omit the explanation of one error. The unorganized output format makes it hard to track the errors and follow the explanations.

<table>
<thead>
<tr>
<th>Source: Bitte antworten sreiben Sie?</th>
</tr>
</thead>
<tbody>
<tr>
<td>The word ‘sreiben’ is replaced by ‘schreiben’ because there was a spelling mistake in the word.</td>
</tr>
<tr>
<td>Error type: spelling</td>
</tr>
<tr>
<td>The word ‘Sie’ is relocated after ‘antworten’ and the word ‘und’ is inserted between ‘antworten’ and ‘schreiben’ because these are separate actions and should be connected with a conjunction.</td>
</tr>
<tr>
<td>Error type: word order and conjunction</td>
</tr>
</tbody>
</table>

Table 1: An example of GPT-4’s GEE output with the one-shot prompt. The second explanation hallucinates that ‘Sie’ is relocated and does not give an explanation why it is relocated. The explanation also groups the relocation of ‘Sie’ with the insertion of ‘und’.

What if GPT-4 was provided with gold edits in the prompt? To measure the headroom for improvement, we prompt GPT-4 in the same way but provide gold atomic edits extracted manually in the input prompt. As a results, the F1 of the errors coverage is increased to 0.968. Also, 82% of the true errors receive an appropriate explanation.

Hence, offering a good atomic edit list to GPT-4 is an important intermediate step. This observation motivates our proposed pipeline in Section 4, where we augment GPT-4 prompts with automatically extracted atomic edits.

4 Pipeline for generating GEE

In Section 3, we observed that including a gold list of atomic edits to GPT-4’s prompt greatly improves error coverage. We thus propose a two-step pipeline for GEE that uses atomic edit extraction as the intermediate step. The pipeline is illustrated in Figure 1. Given an input sentence pair defined in Section 2.1, we first extract atomic edits from the pair following Section 2.2. The edits are then appended to the sentences to form the input for the final step, where GPT-4 is prompted to generate an explanation and an error type.

4.1 Atomic edit extraction

As discussed in Section 2.2, we define an atomic edit as the smallest individual modification that requires one explanation. Each edit belongs to one of the four operation types: replace, insert, delete, and relocate.

Previous work on edit extraction. The ERRANT system of Bryant et al. (2017) approaches edit extraction via a linguistic rule-based approach, but it has its limitations. For example, ERRANT does not account for relocated words. It is also only designed for English. Adapting it to other languages requires great effort (Korre et al., 2021; Uz and Eryiğit, 2023). Further limitations of ERRANT are discussed in Appendix B. As such, we decide to use LLMs for atomic edit extraction.

Desired LLM output format. To facilitate the evaluation of edit extraction and (later) GEE generation, we restrict atomic edit extraction outputs to a template [operation type, original token(s), target token(s)]. An example with all four edit types is given in (3).

(3) möchte machen ein Termine?
Ich möchte einen Termine machen.
[insert, , Ich]
[relocate, machen, machen]
[replace, ein, einen]
[delete, ?,]

While being useful for GEE, the edit type relocate occasionally reduces the model performance because models tends to label a relocated token as deletion plus insertion. Relocation can also be challenging for human to decide because a relocated word should be a word order error but have the same dependency in a sentence before and after relocation. We discuss details in Appendix C.

Atomic edit extraction with LLMs. To build an atomic edit extractor, we choose to prompt Claude-2, GPT-3.5-turbo-0613, and GPT-4 (via Azure’s 2023-03-15-preview), as well as fine-tune Llama2-7B and GPT-3.5-turbo. For prompting, we use the carefully designed few-shot prompts in Appendix D for German and Chinese. For fine-tuning, we use Llama2-7B and GPT-3.5-turbo as the base models. We noticed that the models have a low

8Accessed in November 2023. anthropic.com/index/introducing-claude

You are given a pair of (language) sentences and a list of atomic edits. An edit is an error in the first sentence, which is corrected in the second one. Generate a succinct explanation for each error using the template. After each explanation, give the error a type.

Example:
Ich habe zwei Bananen für meine Katze gekauft. Ich habe zwei Bananen für meine Katze gekauft.

Edits:
[replace, "mein", "meine"]
[replace, "Katz", "Katze"]

Explanation:
The word 'Katz' is replaced by 'Katze' because 'Katze' is the correct spelling.

Error type: spelling

Below is the sentence pair for you to work on. Focus on the given edit and do not add other atomic edits. Start with the explanation directly.

Template: The word X is deleted/inserted/replaced by Y relocated because ...

[src]
[trg]

[edit]

Explanation:

Figure 2 gives a shortened example of the German grammar error explanation given an input defined in Section 2. The prompt consists of: (1) task description, (2) generic explanation template, (3) few-shot examples, and (4) current input. The full prompts for German and Chinese are in Appendix E.

recall when only sentence pairs are provided. To improve on that, we split sentences into a list of tokens and extract rough string-based edits which are the longest contiguous matching subsequences. These rough edits are appended to sentence pairs as inputs. For all models, prompted or fine-tuned, we set temperature to 0 because the task does not require creativity.

4.2 GEE generation

Having extracted atomic edits, we are now ready to generate GEE. Given that each sentence pair may contain multiple errors, we investigated whether generating explanations for one error at a time or all explanations simultaneously would yield better results. In the prompt designing stage, we observed no significant difference in performance between the two approaches. Hence, we choose the latter strategy as it is efficient and cost-effective.

Figure 2 gives a shortened example of the German GEE prompt. Edits are incorporated into the input to provide context and guidance for the model. The full prompts for German and Chinese are in Appendix E. The prompts consists of four parts. The first part is the **task description**, which is followed by a generic **template** of explanations. Below the template are few-shot **examples**. In the examples, we aim to offer both meta-linguistic and meaning-oriented explanations whenever it is possible as they help L2 users improve their language skills (i.e., using languages accurately and fluently) (Lyster and Saito, 2010). At the end of the prompt, we provide GPT-4 the **sentence pair with a list of atomic edits** and ask the model to generate one explanation with an error type for each edit. The generated outputs have the following format:

* [edit description] because [edit reason] Error type: [error type]

The edit description describes how a word in the source sentence is edited in the target sentence. The edit reason explains why such an edit is made.

5 German and Chinese datasets

This section introduces the datasets that are used in our experiments. Statistics of the sampled data subsets are reported in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>German</th>
<th>Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># of data</td>
<td># of edits</td>
</tr>
<tr>
<td>Fine-tune</td>
<td>500</td>
<td>1598</td>
</tr>
<tr>
<td>Test</td>
<td>50</td>
<td>186</td>
</tr>
<tr>
<td>GEE</td>
<td>1122</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 2: Number of sentence pairs and gold edits in each data subset in German and Chinese. We do not manually annotate the data for GEE, hence no gold edit count is reported.

5.1 German Merlin and Falko

For German GEE, we use the data from the German L2 learner corpora Falko EssayLv2.3 (Lueding et al., 2008; Reznicek et al., 2010) and Merlin (Boyd et al., 2014). Both datasets consist of essays written by German users whose proficiency ranges from beginners to advanced users. The datasets provide corrections of errors. The datasets are preprocessed as described in Appendix F.1.

From the preprocessed dataset, we sample two subsets without overlaps between them. First, we sample 550 data points and manually annotate them for gold atomic edits. The 550 data points are split into 500 for fine-tuning and 50 for testing, each containing 1598 and 186 gold edits. Second, for GEE generation, we sample all A1 data points (146) and randomly sample 200 data points from other CEFR levels (A2–C2). We manually remove sentence pairs that are misaligned. At the end, we obtain 1122 sentence pairs in German for GEE.

We use Spacy for German and Jieba for Chinese.
5.2 Chinese CGED2017

We conduct the Chinese GEE experiment on the training split of Chinese Grammatical Error Diagnosis (CGED) 2017 (Rao et al., 2020), which are from the writing task of the Hanyu Shuiping Kaoshi (Test of Chinese Level) (Cui and Zhang, 2011; Zhang and Cui, 2013). Error corrections are provided but there is no learner proficiency level information. Data are preprocessed as in Appendix F.2. We sampled 520 and 60 data points for fine-tuning/prompting edit extraction models and testing performance respectively. We sample another 970 data points for generating error explanations. After cleaning, we have 496 data points for fine-tuning, 53 for testing, and 970 for explanation generation. Edit counts are in Table 2.

6 Experimental results

This section presents the results of the GEE pipeline in German and Chinese. We first present the results of the fine-tuned and prompted models on atomic edit extraction in Table 3 and 4. We find that the fine-tuned GPT-3.5-turbo achieved the best performance on edit extraction for German but GPT-4 works the best for Chinese. Section 6.2 presents the human evaluation results of German and Chinese GEE outputs generated by GPT-4. Among the German GEE outputs, 93.9% are judged as correct by two German teachers. For Chinese GEE outputs, 96.4% of the outputs are correct according to two German teachers.

6.1 Atomic edit extraction results

We first describe our experimental setup before diving into the performance of fine-tuned and prompted models. Results are presented in Tables 3 and 4 for German and Chinese, respectively.

Experiment setup. We few-shot prompt Claude-2, GPT-3.5-turbo, and GPT-4 with the prompt for German in Appendix D.1. For fine-tuning, we use Llama2-7B and GPT-3.5-turbo as the base models and fine-tune them on the 500 training data points in Table 2. Details of the fine-tuning process are in Appendix G. At inference time, the temperature of all models is set to 0. We employ simple heuristics to post-process model outputs to remove low-level false positive errors, such as replacement edits that have the same original and edited tokens.

Evaluation. While automatic evaluation is fast, we evaluate the test data manually because there can be multiple ways to get to a target sentence from a source sentence. Concretely, we compare model edits against the manually extracted gold edits one by one. When there is a discrepancy, if the model outputs are linguistically meaningful and can reach the same target, we treat them as true positives.

Results on German: fine-tuned GPT-3.5 is most effective at atomic edit extraction. The results for German edit extraction in terms of precision, recall, and F1 are in Table 3. All models have reasonable performance but the fine-tuned GPT-3.5-turbo outperforms all others. It achieves 0.923 in recall, 0.939 in precision, and 0.931 in F1. We use it as the atomic edit extractor in the next step in German GEE generation.

Results on Chinese: prompted GPT-4 is the most effective edit extractor. The results are reported in Table 4. Unlike German, the prompted GPT-4 returns the best performance. Because of the variance in the GPT-4 outputs, we verify its performance by running the experiment three times. All three runs of GPT-4 return the highest scores. The best results of GPT-4 are recall 0.884, precision 0.933, and F1 score 0.908. We hypothesize that the reason of the prompted GPT-4 performing well on Chinese is that each Chinese sentence pair has less edits on average (see Table 2). The same reason leads to the fact that there are less edits in the training data, which might cause the fine-tuned models perform worse than the ones in German.

6.2 Human evaluation of GEE

To evaluate the performance of our GEE pipeline, we recruited two German teachers and two Chinese
teachers. This section provides quantitative results from the human evaluations of GPT-4 on the generated GEEs for German and Chinese. Detailed qualitative analysis is in Appendix I.

The results indicate that our GEE pipeline generates explanations of which 93.9% and 96.4% are correct for German and Chinese, respectively. However, we find that GPT-4 occasionally produces low-level errors such as formatting issues. For Chinese, when it comes to word choice errors, GPT-4 does not always provide clear contrast between two words. It also produces overly general error types.

6.2.1 Human evaluation of German GEE

German GEE generation. Using the best performing edit extractor from Section 6.1, we extract atomic edits from the 1122 sentence pairs described in Section 5. The extracted edits are paired with the source and target sentences to prompt GPT-4 using the few-shot prompt in Appendix E.1. We use the default hyperparameters offered by the OpenAI API (i.e., temperature = 1 and top p = 1) for some creativity in the explanations.

German GEE evaluation setting. The annotation interface is shown in Figure 4. We collected annotations on error explanations of 596 unique German sentence pairs. To assess the agreement between the teachers, 96 pairs are annotated by both of them. A total of 692 sentence pairs were annotated for this study. The two teachers’ agreement rate is 89.6%. Details of the agreement assessment and evaluation instructions are in Appendix H.

Human annotation protocol for evaluating GEE. For each sentence pair, we present the explanations generated by GPT-4 to the teachers, who are asked to check for four types of mistakes:

- Hallucinated error: an error in an explanation that does not exist in the source sentence. Such a mistake can be made by considering a correct word/punctuation as an error, or it can be a word that does not exist in the sentences at all.
- Missing error: an error in the source which is edited in the target but not explained.
- Wrong error type: an error type that is not related to the explained error.
- Wrong error explanation: wrong edit description, wrong edit reason, or both.

German GEE using edit-driven GPT-4 prompts has high quality. The counts of each mistake type are reported in Table 5. The results show that GPT-4 generates correct explanations 93.9% of the time. The occurrences of inappropriate error types and hallucinated errors are both below 1%. Among the 94 wrong error explanations, 65 are wrong in the edit description but correct in edit reason. Among those 65 edit description mistakes, as many as 31 are because GPT-4 describes inserted and deleted edits as The word ‘ ‘ is inserted/deleted because ... without mentioning the word itself. Among the 15 hallucinated errors, 12 are caused by wrong atomic edit extraction and 3 are hallucinated by GPT-4 in the process of generating explanations.

Remaining issues. To gain a deeper understanding of GPT-4’s limitations, we look into its mistakes in detail and notice that GPT-4 does not consider a context that is sufficiently large for certain errors, especially when it comes to prepositions. For example, when explaining the error in mit 2 Zimmer vs. mit 2 Zimmern, GPT-4 only says that the dative case is needed here. It does not consider the close-by preposition mit which requires a dative case of its complement. We provide a detailed analysis of other errors in the GPT-4 outputs in Appendix I.

6.2.2 Human evaluation of Chinese GEE

To understand how generalizable our pipeline is to different types of languages, we evaluate its performance on Chinese using the CGED2017 data.

<table>
<thead>
<tr>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully correct</td>
<td>1865</td>
</tr>
<tr>
<td>Wrong error explanation</td>
<td>94</td>
</tr>
<tr>
<td>Wrong error type</td>
<td>12</td>
</tr>
<tr>
<td>Hallucinated error</td>
<td>15</td>
</tr>
<tr>
<td>Total explanation count</td>
<td>1986</td>
</tr>
<tr>
<td>Total annotated items</td>
<td>692</td>
</tr>
<tr>
<td>Missing error</td>
<td>67</td>
</tr>
</tbody>
</table>

Table 5: Results of human evaluation on German GEE by two German teachers. 692 sentence pairs with 1986 explanations are annotated. GPT-4 generates fully correct edit description, edit reason, and error type 93.9% of the time. There are 4.7% wrong error explanation mistakes. The count of missing errors by the teachers is the lower bound of the actual ones.

Both German teachers give classes 15 to 20 hours per week. One Chinese teacher teaches 4 classes a week and the other 22-28 hour a week.

There are 2082 edits extracted from 692 sentence pairs, but GPT-4 only generates explanations for 1986 of them.

We call grammar errors in sentences as errors and errors made by GPT-4 as mistakes.
described in Section 5. Two Chinese teachers evaluated Chinese GEE outputs on 356 sentence pairs with 523 explanations. The annotation task is set up in the same way as German. The agreement rate is 92.9% (see Appendix H).

<table>
<thead>
<tr>
<th></th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully correct</td>
<td>504</td>
<td>96.37%</td>
</tr>
<tr>
<td>Wrong error explanation</td>
<td>10</td>
<td>1.91%</td>
</tr>
<tr>
<td>Wrong error type</td>
<td>9</td>
<td>1.72%</td>
</tr>
<tr>
<td>Hallucinated error</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Total explanation count</td>
<td>523</td>
<td>100%</td>
</tr>
<tr>
<td>Total annotated items</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>Missing error</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Results of human evaluation on Chinese GEE by two Chinese teachers. 96.37% of the generated explanations are judged as correct. 356 sentence pairs with 523 explanations are annotated. The evaluation criteria are the same as for German.

Positive findings. Among the 356 annotated explanations, 96.37% are judged as correct by the Chinese teachers. GPT-4 has low mistake rates in all four mistake types. This shows that the proposed pipeline is effective and adaptable for very different languages like German and Chinese.

Remainder issues. While GPT-4 achieves high correctness rate in Chinese GEE, there are three caveats. First, during the data annotation for gold atomic edits, we notice that most of the edits are simple and can be readily extracted by a string-based tool. The reason is that each sentence pair on average has fewer edits than in the German data (see Table 2). Second, GPT-4 often generate generic error types. For example, it considers idiomatic expression errors as simply word choice errors. Third, for true word choice errors, GPT-4 does not always give a clear comparison of word meanings. For example, in (4), GPT-4 only explains what 严重 (serious) means but not why 严重的问题 (serious problem) is good but 严重性的问题 (seriousness problem) is not.

(4) 严重性的问题 → 严重的问题
The word '严重性' is replaced with '严重' because '严重' is the correct word for 'serious' when describing the severity of a problem.

Because word choice is a prevalent problem in Chinese grammar errors (see Table 12 for error types generated by GPT-4), such clear comparison should be enforced in an explanation so that language learners can draw inferences about other cases from the current error.

7 Related work
This section reviews related work on GEC and feedback generation. Details are in Appendix J.

Bryant and Ng (2015); Zhang et al. (2022); Xu et al. (2022) investigate GEC with multi-reference. In GEE, a capable system should generate well-suited explanations for any valid error corrections, which requires reasoning of word relations and recovering correction rationales. Such ability also need to go beyond the sentence level. Wang et al. (2022) has shown that even when only one sentence is used as the context, a GEC model’s performance can be significantly boosted. If some errors can only be better corrected in context, they can be better explained in context as well. Fei et al. (2023) find that adding evidence words into a GEC model significantly increases its performance on English GEC. For the GEE task, it is an interesting direction to explore whether adding those extra information can improve its explanations’ usefulness.

On the side of explanation generation, Nagata et al. (2021) proposed a shared task called feedback comment generation for language learners (FCG). The task differs from our GEE task in three important aspects. First, the inputs in FCG are erroneous sentences only, which have spans marked as errors. Hence, the FCG task does not need to extract meaningful atomic edits. Second, the FCG task focuses solely on preposition words, which are a closed set of function words whose occurrences and usages are limited. Third, the FCG task focuses on generating comments as hints for language learners to correct errors themselves.

8 Conclusion
We present a new task grammar error explanation to provide natural language explanations to grammatical errors. We develop a pipeline approach using LLMs and atomic token edit extraction. Our LLM-based pipeline gets a high score of 93.9% in German and 96.37% in Chinese error explanation.

While we assume a grammar error correction system as the foundation of our GEE system, further work are encouraged to explore GEE generation alongside GEC.
Limitations

We acknowledge two limitations of our current work. First, our grammar error explanation system only considers sentence level inputs. However, certain error types (e.g., word choice and coreference) can benefit from a larger context. Second, because the Chinese data used in our work are from the HSK test (Test of Chinese Level), the covered topics are limited. It also does not include data from learners from all proficiency levels. Hence, the error types might not be representative for all levels of Chinese learners.

Ethical Considerations

Overall, our project had a small computational cost since we used QLoRA (Dettmers et al., 2023) for efficient model fine-tuning on one RTX8000. Although we do not know how GPT-3.5-turbo fine-tuning is done, each round of GPT-3.5-turbo fine-tuning took about 30 minutes. All fine-tuning and inference experiments in this paper can be completed within a day.

For the annotation work, we estimated that each annotated item on average would take one minute. As a result, we paid annotators $15 per hour. Additional bonus are paid for reasonable extra time spent on the task.

References

Christopher Bryant and Hwee Tou Ng. 2015. How far are we from fully automatic high quality grammatical error correction? In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 697–707, Beijing, China. Association for Computational Linguistics.

OpenAI. 2023. GPT-4 technical report.

The word *Katze*, which is feminine and accusative, should agree with the gender and case of the word *Bananen*. The word *Bananen* is plural and should be replaced by *Bananen* to agree with the feminine singular noun *Katze*. The corrected sentence is: *Ich habe zwei Bananen für meine Katze gekauft.*
B Reasons of not using ERRANT

ERRANT (Bryant et al., 2017) is an effort to standardize datasets for GEC, reduce annotators’ burden, and offer feedback to instructors and learners. It does so by offering a tool that automatically extracts and labels edits in the format of operation: linguistic feature.

ERRANT would have been ideal for our purpose. Concretely, this would have been ideal for the edit extraction in Step 1 and error type tagging in Step 2. However, ERRANT has several shortcomings for our purpose.

First, ERRANT is designed only for English and its error type tagging process is based on a English rule-based framework. Extending it to another language will take great effort (Korre et al., 2021; Uz and Eryiğit, 2023).

Second, there is ambiguity in ERRANT’s error type names. For example, R:ADV is a possible error type in ERRANT in which R stands for replacement and ADV stands for adverb. But it is not clear, as it stands, whether it represents only an adverb being replaced by another adverb, or it could be the case that a word of other category is replaced by an adverb.

Third, Korre and Pavlopoulos (2020) show that ERRANT can falsely or ambiguously tag errors. In their work, they use ERRANT to tag the errors in the FCE dataset (Yannakoudakis et al., 2011). They then sample 100 sentence pairs to whose errors ERRANT assigned the type other. They examine those sentence pairs and found that up to 30% of the data point could have been assigned a more precise label.

Fourth, ERRANT’s underlying edit extractor does not account for non-local token relocation (Felice et al., 2016). The extractor aligns the tokens in the erroneous and correct sentences and assigns one of the following labels to spans: M(atch), I(nsersion), D(letion), S(substitution), and T(ransposition). For a relatively locally relocated token, the extractor assigns the label T to the span as in (1). However, for a less local token relocation such as (2), the extractor treats it as being deleted then inserted.

(1) Ich0 möchte1 einen2 Apfel3 haben4 -5

(2) Ich0 möchte1 haben2 einen3 roten4 Apfel5 -6

Relocation of tokens would be a useful label to have for word order errors, which are prevalent in elementary L2 German and Chinese learners. With this label, we could explain why a token is relocated rather than explaining why it is deleted first then explaining why it is inserted.

C Guidelines for manual edit extraction

Annotation

To prepare the data for fine-tuning models to extract atomic edits in German and Mandarin Chinese, we manually annotated 500 data points for each language. In this section, we discuss the challenges in extracting atomic edits and how we handle them.

The first step is to tokenize sentences. For German, it is straightforward because of white spaces. We use SpaCy for tokenizing German sentences which can single out punctuation marks. For Chinese, sentences cannot be tokenized into words by simply separating characters because many words are not monosyllabic. We choose to use Jieba, which is a fast and accurate Chinese word segmentation module implemented in Python.

The second step is to use SequenceMatcher from difflib to extract longest edited spans from sentence pairs, which is later used as part of the input for atomic edits. We found that adding rough edits into the input increases the recall of the prompted models. It also accelerates and eases the process of manual annotation.

The third and last step is to get atomic edits. There are four types of edits: replacement,
deletion, insertion, and relocate. The challenge lies in how to align words in sentence pairs and extract edits.

For German, replacement mostly happens between tokens which have similar spelling (e.g., wolle and will, meaning want to) or the same categories (e.g., zu and nach, meaning to). Deletion and insertion can happen to individual tokens or a phrase. When more than one consecutive tokens, for example, X and Y, are deleted or inserted, we determine whether to count them as separate edits or one as a whole depending on whether X and Y form a linguistic constituent (for example, a prepositional phrase by train). The edit type relocation is inspired by a common error made by elementary German learners: placing finite verbs or adverbial phrases in the wrong position. To emphasize that the usage of a word is not wrong but its position in a sentence is wrong, tagging such an edit as relocated is more intuitive than tagging it as a deletion followed by an insertion (or an insertion followed by a deletion).

The introduction of the relocation edit type is not at no cost. It reduces model performance because models tend to predict a relocated token/phrase as deletion plus insertion. It is also challenging because the relocated word should be just placed in a wrong position and have the same dependency in a sentence before and after being relocated. For example, for the sentences in (5), it is illogical to say that the first sentence is corrected by relocating for to the first underline and insert to in the original place of for. This is because the verb talk requires a preposition but the language user mistakenly used for instead of to. It is not the case that the language user mistakenly put the for that should have been before me after talking. So, it should be the case that for is inserted to the position of the blank underline and the for after talking is replaced by to. The correct edits for (5) are given in (6) and the wrong edits are in (7).

(5) S: This job is exciting me because I like talking for different people.
T: This job is exciting for me because I like talking to different people.

(6) Good edit extraction

(7) Bad edit extraction

On the other hand, the word essen in (8) is more naturally a relocated token because its relation with the finite modal verb möchte (would like to) and the direct object vierzig Bananen (forty bananas) remains unchanged. It is only the position of the word that is changed.

(8) S: Ich möchte essen vierzig Bananen.
T: Ich möchte vierzig Bananen essen.

For Chinese, deletion and insertion work similarly as in German. Relocation is also useful in Chinese for cases like misplacement of an adverbial phrase or a function word (e.g., 了). However, replacement is not as straightforward in Chinese as in German. For example, verbs in Chinese often come with a resultative complement (e.g., 到, 完, or 过) or other function words to express different states of a verb (e.g., 过). If only the function word is changed but the verb is not, how should the edit be extracted? We experimented with both ways (with and without verbs) and found that, in either case, GPT-4 included the verb when explaining the meaning difference. Hence, for those cases, we always include the unchanged verbs, as in (9). Similarly, for cases in which a function word is not changed but the verb that the function word is attached to is changed, the edit includes both the verb and the function word (e.g., [‘replace’, ‘完成’, ‘当’]).

(9) S: 我看了一整天读完了这本书。
T: 我看了一整天读完了这本书。

Other situations in which we always take longer phrases as edits rather than only the parts being changed are idioms (e.g., [‘replace’, ‘心急如焚’], formulaic expressions (e.g., [‘replace’, ‘总上所述’, ‘综上所述’]), and de (的)+ noun as in (in an emergency situation).

German is a verb second language, whose verb second constraint does not hold in embedded clauses. In main clauses, the finite verb occurs in the second position and non-finite verbs occur towards the end of a sentence. In embedded clauses, the finite verb usually appears at the end, after all the non-finite verbs. 14

For Chinese, deletion and insertion work similarly as in German. Relocation is also useful in Chinese for cases like misplacement of an adverbial phrase or a function word (e.g., 了). However, replacement is not as straightforward in Chinese as in German. For example, verbs in Chinese often come with a resultative complement (e.g., 到, 完, or 过) or other function words to express different states of a verb (e.g., 过). If only the function word is changed but the verb is not, how should the edit be extracted? We experimented with both ways (with and without verbs) and found that, in either case, GPT-4 included the verb when explaining the meaning difference. Hence, for those cases, we always include the unchanged verbs, as in (9). Similarly, for cases in which a function word is not changed but the verb that the function word is attached to is changed, the edit includes both the verb and the function word (e.g., [‘replace’, ‘看成’, ‘当’]).

Other situations in which we always take longer phrases as edits rather than only the parts being changed are idioms (e.g., [‘replace’, ‘心急如焚’], formulaic expressions (e.g., [‘replace’, ‘总上所述’, ‘综上所述’]), and de (的)+ noun as in (in an emergency situation).

14 German is a verb second language, whose verb second constraint does not hold in embedded clauses. In main clauses, the finite verb occurs in the second position and non-finite verbs occur towards the end of a sentence. In embedded clauses, the finite verb usually appears at the end, after all the non-finite verbs.

15 了 is a multi-functional function word and a heteronym. It can express the completion or ongoiness of an action (among its other functions). Its meaning changes based on the position in a sentence it occurs.
D Prompts for atomic edit extraction

We use the prompts presented below for atomic edit extraction in German and Chinese. The prompt contains the task instruction followed by possible edit types as well as examples. Special instructions are given to the relocation edit type where the relocated tokens should be the same before and after the edit. In the examples, we demonstrate different edit types and their combinations, showing the models how to deal with a sentence pair with multiple edits.

D.1 Extraction prompt for German

This is an atomic edit extraction task. Given a pair of German sentences and the edits applied to the first sentence to get the second sentence, your task is to break down the edits to the atomic level (i.e., token level) and assign the edit a label. Pay attention to punctuation marks and relocated tokens. Pay attention to phonetic similarity when aligning tokens.

Labels:
1. [replace, original_token, edited_token]
2. [delete, original_token, ””]
3. [insert, ””, edited_token]
4. [relocate, original_token, edited_token]: pay attention to tokens that are deleted then added again; the relocated token must be the same before and after the edit.

Examples:
Wie oben schon erwähnt ist die Chance erwischt zu werden zwar gering, aber sie ver handen.
Die relocated token should be the same before and after the edit. In the examples, we demonstrate different edit types as well as examples. Special instructions are given to the relocation edit type where the relocated tokens should be the same before and after the edit.

D.2 Extraction prompt for Chinese

You are a Mandarin Chinese teacher. Given a pair of Mandarin Chinese sentences and the edits applied to the input sentence to get the output sentence, your task is to break down the edits to the atomic level (i.e., token level) and assign the edit a label. Pay attention to punctuation marks and relocated tokens.

Labels:
1. [replace, original_token, edited_token]
2. [delete, original_token, ””]
3. [insert, ””, edited_token]
4. [relocate, original_token, edited_token]: pay attention to tokens that are deleted then added again; the relocated token must be the same before and after the edit.

Examples:
我去市菜场水果买，
我去菜市场买水果。

Edits:
("replace", "市菜场水果买", "菜市场买水果")

Atomic edits:
["replace", "市菜场", "菜市场"]
["relocate", "水果", "水果"]
["insert", "今天", "sport"]

Atomic edits:
["replace", "今天", "sport"]
["delete", "水果", "水果"]
We use the following prompts for generating grammar error explanations in German and Chinese.

E.1 Explanation prompt for German

In the prompt for German grammar error explanation, we provide a wide range of error examples, including errors that can only be explained in grammatical terms (e.g., gender/case/number agreement), errors that can be assigned a meaning (e.g., accusative case for time expressions), and errors that are related to collocations (e.g., am Ende instead of im Ende).

You are given a pair of German sentences and a list of atomic edits. An edit is an error in the first sentence, which is corrected in the second one. Generate a succinct explanation for each error using the template. After each explanation, give the error a type.

Template: The word X is deleted/inserted/replaced by Y/relocated because ...

Example:
Ich habe zwei Bananen für mein Katz gekauft.
Ich habe zwei Bananen für meine Katze gekauft.

Edits:
["replace", "Katz", "Katze"]
["replace", "mein", "meine"]

Explanation:
The word 'Katz' is replaced by 'Katze' because 'Katze' is the correct spelling.
Error type: spelling

The word 'mein' is replaced by 'meine' because it should agree with the gender and case of the word Katze, which is feminine and accusative.
Error type: gender and case

Er fliegt nächster Monat Deutschland.
Er fliegt nächstn Monat nach Deutschland.

Edits:
["replace", "nächster", "nächsten"]
["replace", "Deutschland", "Deutschland"]

Explanation:
The word 'nächster' is replaced by 'nächsten' because German uses accusative case for time expressions.
Error type: case

Ich gehe in die Schule.
Ich gehe in die Schule.

Edits:
["replace", "die", "die"]

Explanation:
The word 'der' is replaced by 'die' because the preposition 'in' requires the accusative case of a noun when expressing a direction or destination.
Error type: case

Ich kann heute joggen gehen.
Ich kann heute joggen gehen.

Edits:
["replace", "jogge", "joggen"]
["replace", "gehe", "gehen"]

Explanation:
The word 'jogge' is replaced by 'joggen' because the verb "gehen" requires an infinitive form of the verb "joggen".
Error type: infinitive

Ich muss mich an die neue Umgebung gewöhnen.
Ich muss mich an die neue Umgebung gewöhnen.

Edits:
["replace", "an", "an"]
["insert", "", "die"]
["replace", "neuen", "neue"]

Explanation:
The word "zur" is replaced by "am" because the verb "gewöhnen" requires the preposition "an".
Error type: preposition

Es ist im Ende des Flusses.
Es ist am Ende des Flusses.

Error type: preposition
E.2 Explanation generation prompt for Chinese

In the few-shot prompt for Chinese GEE, we cover the following types of errors, which are commonly seen when we manually annotate the training data for fine-tuning: Function word errors, such as 了，们，的/地/得，and measure words; Mis-written words/phrases, such as 苹果 vs. 苹果和市菜场 vs. 菜市场; Word collocation errors, such as 傻错误 vs. 犯错误; Word choice errors, such as 查找 vs. 寻找。

Mandarin Chinese does not have abundant agreement between words in sentences as German or English. Many errors made by learners are word choice errors. For example, 查找 and 寻找 both have the core meaning of looking for but the former emphasizes a systematic and methodological search for data or information while the latter suggests a more intangible search with a sense of exploration.

In the example of the word choice error, we show GPT-4 that it should explain the meaning of the two words and why one is better than the other in the context. Without such an example, GPT-4 returns a generic explanation “The word X is replace by Y because Y is the correct word to use in the context.” which is not helpful for language learners.

Here begins the prompt:

You are given a pair of Mandarin Chinese sentences and a list atomic edits. An edit is an error in the first sentence, which is corrected in the second one. Generate a succinct explanation for each error using the template. After each explanation, give the error a type.

16We call them as mis-written words instead of misspelling because there is no letters or spelling in Chinese writing. Such mistakes can be made by a language user who confuses characters with the same/similar pronunciation, with similar meaning, with similar strokes, or simply remembers the wrong character order in a word.
The word ‘个’ is inserted because a measure word is needed between the numeral and the noun and ‘个’ is the correct measure word for ‘错误’.

Error type: measure word
The word ‘差误’ is replaced with ‘错误’ because ‘差误’ is not a word in Chinese and ‘错误’ is the correct word for ‘mistake’.

Error type: mis-written character/word
我在查找我的知音。
我在寻找我的知音。

Edits:
["replace", "查找", "寻找"]

Explanation:
The word ‘查找’ is replaced with ‘寻找’ because ‘查找’ suggests a systematic and methodological search. It usually means searching for information or data. On the other hand, ‘寻找’ suggests a more intangible search with a sense of exploration. ‘寻找’ fits the context better.

Error type: word choice
Below is the sentence pair for you to work on. Focus on the given edit and do not add other atomic edits. Start with the explanation directly.

{src}
{trg}
Edits:
{edit}

Explanation:
F Data preprocess for German and Chinese
This section describes how the datasets in German and Chinese are preprocessed.

F.1 Preprocess German data
The Falko dataset (Ludeling et al., 2008; Reznicek et al., 2010) contains essays written by German learners whose proficiency levels range from A1 to C1 according to the Common European Framework of Reference for Languages (CEFR). The Merlin dataset (Boyd et al., 2014) is a collection of essays written by advanced German speakers from different countries with both native and non-native background. We use Merlin as C2 data.

Both Falko and Merlin offer two types of grammar error corrections, target hypothesis 1 and target hypothesis 2. Target hypothesis 1 performs minimal correction at the morpho-syntactic level while target hypothesis 2 modifies semantic and pragmatic aspects (e.g., information structure or word choice) of the input text, aiming for a more advanced paraphrase-type correction. For our purpose, we use target hypothesis 1 of each corrected sentence.

To prepare the datasets, we first split the paragraphs in Falko and Merlin into sentences by adapting the paragraph alignment algorithm in Thai et al. (2022) for sentence alignment. We then screened out sentence pairs that: (1) have short sentences (less than 3 tokens); (2) contain “incomp” or “unreadable” tokens; and (3) have two sentences in the source and one sentence in the target, or vice versa, that are not merged or split.

F.2 Preprocess Chinese data
The data for Chinese GEE is the training split of CGED2017 Rao et al. (2020). Texts are split into sentences at the end of sentence punctuation (e.g., periods and question marks) and aligned.

We tokenized the sentence pairs using Jieba and show the length distribution of sentences in Figure 3. Clearly, most of the data points have 2 to 50 tokens. Each token has an average 1.8 characters. The overly long sentences (over 170 tokens) exist because of the abusive use of commas. For the experiment, we select sentences of length between 5 and 50 tokens. We also remove pairs with the same source and target.

G Fine-tune atomic edit extraction models
For German we use Llama2-7B and GPT-3.5-turbo as the base models and fine-tune them on the 500 training data points in Table 2. The results show that fine-tuning GPT-3.5-turbo through the OpenAI fine-tuning API with 2 epochs and using temperature = 0 at the inference time returns the best performance. It took around 30 mins for fine-tuning. For Llama2-7B, we fine-tune the model with QLoRA for 1000 steps using the parameters suggested in Dettmers et al. (2023) on one RTX8000. The fine-tuning takes about five hours. Checkpoints are saved every 250 steps. At the inference time, the checkpoint saved at 750 steps with
temperature = 0.01 performs the best.20 The best performance are reported in Table 3.

For Chinese, we fine-tune Llama2-7B and GPT-3.5-turbo in the same way as for German. Llama2-7B checkpoints are saved every 100 steps. It achieves the best performance at 400 steps. Fine-tuning GPT-3.5-turbo for two epochs returns a better performance than one epoch. The best performance of the fine-tuned models are reported in Table 4.

H Details on human evaluation

We provide further details in addition to the ones discussed in Section 6.2. Figure 4 shows the annotation interface for the German and Chinese teachers. The teachers are given detailed instructions for the German (link) and Chinese (link) tasks.

In the annotation task, the teachers are asked to check for four types of mistakes. Concerning missing error mistakes, they should be marked either in the source sentence for deleted, replaced, and relocated tokens or in the target sentence for inserted ones. Other mistakes should be marked in the explanations. We asked the annotators not to mark imprecise explanation/error type as wrong but leave a comment on how they can be improved.

A special note on the Chinese evaluation is that, originally, each teacher annotated 200 sentence pairs, among which 100 were annotated by both. Hence, there were 400 total and 300 unique annotation items. However, there are sentence pairs whose target is judged as nonsensical or corrects errors in a wrong way. We removed those sentence pairs and report the results on the remaining items.

H.1 German annotator agreement

To evaluate the agreement, we compare the annotations of the commonly annotated 96 sentence pairs and classify them into three categories. **Fully agree**: if the teachers agree on no mistakes or the same set of mistakes. **Disagree on missing errors**: if teachers agree on other mistakes but not on missing errors. **Disagree on other mistakes**: if teachers also disagree on mistakes other than missing errors. Counts of each category are reported in Table 7.

Among the 96 commonly annotated items, the German teachers agree on 81.3\% of the time, the teachers agree on the overall quality (error coverage and explanation quality), and 89.6\% of the time, the teachers agree on the quality of the generated edit reasons (sum of the first and second row in Table 7).

H.2 Chinese annotator agreement

We evaluate the agreement between the two Chinese teachers on the annotation items that are anno-
user used *die* as the definite article of *Hauspreise*, which shows that they did not consider the case of the determiner phrase as dative. Moreover, they used *Hauspreise* as part of the subject of the sentence, which further reduces the likelihood that they meant to use *Hauspreise* in its dative case because it is very rare to have a dative determiner phrase as a subject. Hence, the error type should be plural or number. In the second case with *Menschen*, it is clearly not a plural error because *jeder* (every) takes singular nouns and *bei* only takes dative nouns. The error type should be case because the word *Mensch* belongs to the *n*-declination which takes the -(e)n suffix in the dative case. Further work should add examples in the prompt or training data to enhance the model ability in distinguishing such nuances.

Misspelling vs. Conjugation While GPT-4 judges the errors under this type in Table 9 as conjugation errors, our German teachers judged them as misspelling. These three cases beg for an answer to the question: where is the border line between general misspelling due to an oversight and genuinely lack of knowledge of a grammar point (e.g., misspelling vs. conjugation)? While we do not have an answer to the question, we suggest that error types should always be the more specific one when an error is on the border line. For a language learner, if an error is made by oversight, they can easily ignore the explanation and error type. If an error is made by lacking of relevant knowledge, they should be reminded by an explanation. Since we do not know why a language learner made such an error, providing the more specific error type is more beneficial.

<table>
<thead>
<tr>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully agree</td>
<td>78</td>
</tr>
<tr>
<td>Disagree on missing errors</td>
<td>0</td>
</tr>
<tr>
<td>Disagree on other mistakes</td>
<td>6</td>
</tr>
<tr>
<td>Sum</td>
<td>84</td>
</tr>
</tbody>
</table>

Table 8: Agreement between two Chinese teachers on 84 sentence pairs. Among the 78 annotated items on which the teachers fully agree with each other, 3 have mistakes that are not missing error and 75 have no mistakes.

1 Qualitative analysis of German GEE

In this section, we look into the mistakes made by GPT-4 and provide detailed analysis of two of them: *wrong error type* and *wrong error explanation*.

I.1 Mistakes in wrong error type

Although there are only 12 wrong error type mistakes marked by the German teachers, they present cases where careful design decisions need to be made. We categorize them into six types and discuss two of them here. Examples and their categories are in Table 9.

Case vs. Plural The explanations and error types in the two cases indicate that, given the prompt we used, GPT-4 is weak at distinguishing certain nuances in German grammar because it does not leverage the larger context while generating explanations and error types.

In German, the suffix *-n* may occur in two cases (among others): in the plural form of certain nouns or at the end of the dative plural form of a noun if the noun’s plural form does not already end in *-n*. In the first case with *Hauspreise*, the language...
numbers but because the preposition *mit* assigns the noun in the preposition phrase a dative case.

The second reason that causes GPT-4 to generate four wrong explanations is that it does not have precise knowledge of German verb position. As in the third example in Table 10, the word *entwickelt* is relocated not because of the reason in the explanation but because a finite verb in an embedded clause should be at the end of it (see Footnote 14).

I.3 Overall quality of German GEE

In the annotation task, the German teachers were told not to mark correct but imprecise explanations/error types as wrong and leave a comment on how they can be improved. In the annotated results, we see only one such comment. That does not mean that the teachers did not leave enough comments. There are abundant comments pointing out errors in the source sentences that are not corrected in the target sentences, comments pointing out that some corrections done in the target sentences are not correct, or comments on how to modify a wrong error explanation. The first author, as a German second language learner with level C1, has also gone through all the annotated data and found the correct explanations informative and useful. Hence, we can say that the German error explanations generated by GPT-4 are judged as fully correct by our German teachers 93.9% of the time.

J More on the related work

Our GEE task is built upon the actively studied GEC task. The task is often formulated as a neural machine translation task, with the source being a piece of text with grammar errors and the target being the grammar-error-free text (Boyd, 2018; Bryant et al., 2023; Yuan and Bryant, 2021; Zhang et al., 2022). Researchers in the GEC domain have explored various aspects of the task. We identify two of them which the GEE task can be built on and benefit from. We also compare our task to a related task, feedback comment generation (FCG), and show how GEE is different from it.

GEC with multi-reference and context.

Research has been building GEC models on data which have one gold reference for each source input. However, there is an urge to use multiple references for source inputs (Bryant and Ng, 2015; Zhang et al., 2022; Xu et al., 2022). In the context of GEE, a capable model should generate well-suited explanations for any valid error corrections, which requires reasoning of word relations and recovering correction rationales, not just memorize grammar rules. Such ability of GEE models also need to go beyond the sentence level. Wang et al. (2022) has shown that even when only one sentence is added to the input as the context, a GEC model’s performance can be significantly boosted. If some errors can only be better corrected in context, they can only be better explained in context as well.

GEC with auxiliary grammar information.

There are works that have shown improvement of GEC models by adding edit types, dependency information, or grammatical error type into the training process (Omelianchuk et al., 2020; Ma et al., 2022; Yang et al., 2023). Fei et al. (2023) study the influence of adding evidence words for errors and error types into the pipeline of GEC. They found that such information can significantly increase model performance in English GEC. For the GEE task, it is an interesting direction to explore whether adding those extra information to a GEE system can improve its explanations’ usefulness.

Feedback alongside grammar error detection.

On the side of explanation in GEC, Nagata et al. (2021) proposed a generative shared task called feedback comment generation for language learners (FCG). It is based on the ICNALE Learner Essays with Feedback Comments Dataset (Nagata et al., 2020). The task differs from our GEE task in three important aspects. First, the FCG task is built on the grammar error detection task which does not correct errors. The inputs in FCG are erroneous sentences only, which have spans marked as errors. Hence, the FCG task does not need to handle the problem of extracting errors in a linguistically informed way. Second, the FCG task focuses only on preposition words, which are a closed set of function words whose occurrences and usages are limited. In our task, the involved error types have a wide range, as listed in Table 12 for German and Table 11 for Chinese. Third, while the FCG task focuses on generating comments as hints for language learners to correct errors themselves, our task aims to enhance learners’ knowledge by showing them the corrected sentences, the underlying grammar rules, and a comparison with errors and corrected words when necessary.

Footnote 14: An example comment given in Nagata et al. (2021) is “‘Agree’ requires a preposition since it is an <intransitive verb>. Look up the appropriate preposition in a dictionary.”
Table 9: Twelve cases in which error types are judged as wrong by the German teachers. For each sentence pair, only the explanations with a wrong error type are listed. All grammar errors in the target sentences are from the corpora.
Mistakes that can be traced back to a wrongly extracted edit

Source: Dir möchte ich nächsten monat nach Amsterdam fahren.

Target: Ich möchte nächsten Monat nach Amsterdam fahren.

Atomic edits:
- ['replace', 'Dir', 'Ich'], ['replace', 'ich', 'nächsten'], ['replace', 'nächten', 'Monat']

Explanation:
- The word ‘Dir’ is replaced by ‘Ich’ because the subject of the sentence should be ‘Ich’ to express one’s own desire to travel.
- Error type: pronoun
- The word ‘ich’ is replaced by ‘nächsten’ because the correct word order is ‘nächsten Monat’ for ‘next month’.
- Error type: word order
- The word ‘nächten’ is replaced by ‘Monat’ because ‘nächsten’ should be followed by the noun ‘Monat’ to form the time expression ‘nächsten Monat’.
- Error type: word order

Mistakes due to insufficient consideration of bigger context

Source: Ich brauchen ca. 75 m² Wohnung mit 2 Zimmer, Bad, Küche, toilette und garage.

Target: Ich brauche ca. 75 m² — eine Wohnung mit 2 Zimmern, Bad, Küche, Toilette und Garage.

Explanation:
- The word ‘Zimmer’ is replaced by ‘Zimmern’ because in German, the dative case is needed for indicating the number of rooms in this context.
- Error type: case

Mistakes due to imprecise knowledge of verb position in German

Source: in dem Sinn, möchte ich dazu sagen, dass integrationsprozes entwickelt sich schneller, wenn man das Gastland nicht als „fremd“ empfindet.

Target: In dem Sinn möchte ich dazu sagen, dass ein Integrationsprozess sich schneller entwickelt, wenn man das Gastland nicht als fremd” empfindet.

Explanation:
- The word ‘entwickelt’ is relocated because the verb should be positioned after the subject in a German sentence.
- Error type: word order

Mistakes due to other reasons

Source: Schauen Sie zuerst ihre Auswahl, sprechen Sie direkt mit dem Verkäufer.

Target: Schauen Sie zuerst ihre Auswahl an, sprechen Sie direkt mit dem Verkäufer.

Atomic edit:
- ['insert', '', 'an']

Explanation:
- The word ‘an’ is inserted because the verb ‘schauen’ requires the preposition ‘an’ when it means ‘to look at’ something.
- Error type: preposition

Table 10: Examples of wrong error explanations due to different reasons. For each sentence pair, only the explanations with a wrong error explanation are listed. All grammar errors in the target sentences are from the corpora.
Works on feedback comment generation.

Among the work in feedback generation, Hanawa et al. (2021) is probably the most similar one to our GEE task because it aims to provide feedback comments to both preposition and general errors. However, its setting is the same as Nagata et al. (2021) and aims to offer feedback comments for a language user to correct their own errors. As a result, the feedback may not directly point out the correct usage of a word or a correct collocation. Other works in FCG solely focus on preposition words. Coyne (2023) and Coyne et al. (2023) work on the FCG task and develop a typology for learning feedback, including abstract types (e.g., tone and idiom) and grammatical pattern types (e.g., comparative and causative). However, their work is in an early stage with no human or automatic evaluation on the comment quality. Behzad et al. (2023) present a strong baseline for the FCG task but points out that, at the current stage, many feedback comments are generic (e.g., Look up the use of the <verb> X in a dictionary and rewrite the sentence using the appropriate structure.) Stahl and Wachsmuth (2023), Jimichi et al. (2023), and Ueda and Komachi (2023) approach the FCG task via fine-tuning language models such as T5 (Raffel et al., 2020) or BART (Lewis et al., 2020). However, for the GEE task, especially when there are restricted annotated resources for fine-tuning, it is unclear whether such an approach can work. Lastly, these works evaluate model output with BLEU (Papineni et al., 2002) and lack careful human evaluation.

K Error types generated by GPT-4

Table 11 and Table 12 list the frequent error types generated by GPT-4 in the German and Chinese GEE task.
<table>
<thead>
<tr>
<th>Error Type</th>
<th>Count</th>
<th>Percent</th>
<th>Error Type</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>punctuation</td>
<td>520</td>
<td>16.48</td>
<td>abbreviation</td>
<td>8</td>
<td>0.25</td>
</tr>
<tr>
<td>spelling</td>
<td>470</td>
<td>14.89</td>
<td>compound noun</td>
<td>8</td>
<td>0.25</td>
</tr>
<tr>
<td>capitalization</td>
<td>353</td>
<td>11.19</td>
<td>noun form</td>
<td>7</td>
<td>0.22</td>
</tr>
<tr>
<td>gender and case</td>
<td>175</td>
<td>5.54</td>
<td>extra word</td>
<td>6</td>
<td>0.19</td>
</tr>
<tr>
<td>preposition</td>
<td>163</td>
<td>5.16</td>
<td>syntax</td>
<td>6</td>
<td>0.19</td>
</tr>
<tr>
<td>word order</td>
<td>157</td>
<td>4.97</td>
<td>adjective</td>
<td>6</td>
<td>0.19</td>
</tr>
<tr>
<td>case</td>
<td>119</td>
<td>3.77</td>
<td>adverb</td>
<td>6</td>
<td>0.19</td>
</tr>
<tr>
<td>determiner</td>
<td>100</td>
<td>3.17</td>
<td>word form</td>
<td>6</td>
<td>0.19</td>
</tr>
<tr>
<td>adjective inflection</td>
<td>71</td>
<td>2.25</td>
<td>verb tense</td>
<td>6</td>
<td>0.19</td>
</tr>
<tr>
<td>verb conjugation</td>
<td>62</td>
<td>1.96</td>
<td>noun</td>
<td>5</td>
<td>0.16</td>
</tr>
<tr>
<td>conjunction</td>
<td>59</td>
<td>1.87</td>
<td>spelling and capitalization</td>
<td>5</td>
<td>0.16</td>
</tr>
<tr>
<td>pronoun</td>
<td>39</td>
<td>1.24</td>
<td>tense</td>
<td>5</td>
<td>0.16</td>
</tr>
<tr>
<td>conjugation</td>
<td>33</td>
<td>1.05</td>
<td>comparative</td>
<td>5</td>
<td>0.16</td>
</tr>
<tr>
<td>verb form</td>
<td>30</td>
<td>0.95</td>
<td>formatting</td>
<td>5</td>
<td>0.16</td>
</tr>
<tr>
<td>word choice</td>
<td>30</td>
<td>0.95</td>
<td>word formation</td>
<td>5</td>
<td>0.16</td>
</tr>
<tr>
<td>redundancy</td>
<td>30</td>
<td>0.95</td>
<td>possessive pronoun</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>plural</td>
<td>29</td>
<td>0.92</td>
<td>preposition and case</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>infinitive</td>
<td>29</td>
<td>0.92</td>
<td>time expression</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>unnecessary word</td>
<td>26</td>
<td>0.82</td>
<td>possessive</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>vocabulary</td>
<td>26</td>
<td>0.82</td>
<td>auxiliary verb</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>subject-verb agreement</td>
<td>25</td>
<td>0.79</td>
<td>demonstrative pronoun</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>article</td>
<td>22</td>
<td>0.70</td>
<td>idiomatic expression</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>verb</td>
<td>20</td>
<td>0.63</td>
<td>missing subject</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>adjective agreement</td>
<td>20</td>
<td>0.63</td>
<td>past participle</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>reflexive pronoun</td>
<td>19</td>
<td>0.60</td>
<td>spacing</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>gender</td>
<td>16</td>
<td>0.51</td>
<td>separable verb</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>expression</td>
<td>13</td>
<td>0.41</td>
<td>negation</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>subject</td>
<td>13</td>
<td>0.41</td>
<td>modal verb</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>compound word</td>
<td>12</td>
<td>0.38</td>
<td>terminology</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>missing word</td>
<td>11</td>
<td>0.35</td>
<td>relative pronoun</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>adjective form</td>
<td>11</td>
<td>0.35</td>
<td>singular/plural</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>plural form</td>
<td>11</td>
<td>0.35</td>
<td>gender agreement</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>subject omission</td>
<td>10</td>
<td>0.32</td>
<td>compound verb</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>verb choice</td>
<td>10</td>
<td>0.32</td>
<td>verb agreement</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>missing verb</td>
<td>8</td>
<td>0.25</td>
<td>spelling and inflection</td>
<td>4</td>
<td>0.13</td>
</tr>
<tr>
<td>translation</td>
<td>8</td>
<td>0.25</td>
<td>compound separation</td>
<td>4</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 11: A distribution over error types in German grammatical error explanations (3156 total points, types with 4 or more datapoints considered). Overall, we observe a wide variety of error types.
<table>
<thead>
<tr>
<th>Error Type</th>
<th>Count</th>
<th>Percent</th>
<th>Error Type</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>word choice</td>
<td>588</td>
<td>39.65</td>
<td>extraneous word</td>
<td>7</td>
<td>0.47</td>
</tr>
<tr>
<td>redundancy</td>
<td>120</td>
<td>8.09</td>
<td>unnecessary “的”</td>
<td>7</td>
<td>0.47</td>
</tr>
<tr>
<td>word order</td>
<td>101</td>
<td>6.81</td>
<td>preposition usage</td>
<td>7</td>
<td>0.47</td>
</tr>
<tr>
<td>missing word</td>
<td>55</td>
<td>3.71</td>
<td>subject omission</td>
<td>6</td>
<td>0.40</td>
</tr>
<tr>
<td>miswritten character/word</td>
<td>52</td>
<td>3.51</td>
<td>‘们’</td>
<td>5</td>
<td>0.34</td>
</tr>
<tr>
<td>usage of ‘了’</td>
<td>44</td>
<td>2.97</td>
<td>missing particle</td>
<td>5</td>
<td>0.34</td>
</tr>
<tr>
<td>"de" particles</td>
<td>31</td>
<td>2.09</td>
<td>redundant character</td>
<td>5</td>
<td>0.34</td>
</tr>
<tr>
<td>preposition</td>
<td>24</td>
<td>1.62</td>
<td>redundant ‘的’</td>
<td>5</td>
<td>0.34</td>
</tr>
<tr>
<td>redundant word</td>
<td>22</td>
<td>1.48</td>
<td>emphasis</td>
<td>5</td>
<td>0.34</td>
</tr>
<tr>
<td>conjunction</td>
<td>21</td>
<td>1.42</td>
<td>particle usage</td>
<td>4</td>
<td>0.27</td>
</tr>
<tr>
<td>omission</td>
<td>20</td>
<td>1.35</td>
<td>redundant phrase</td>
<td>4</td>
<td>0.27</td>
</tr>
<tr>
<td>verb-object collocation</td>
<td>19</td>
<td>1.28</td>
<td>auxiliary verb</td>
<td>4</td>
<td>0.27</td>
</tr>
<tr>
<td>word omission</td>
<td>18</td>
<td>1.21</td>
<td>modal verb</td>
<td>4</td>
<td>0.27</td>
</tr>
<tr>
<td>unnecessary word</td>
<td>17</td>
<td>1.15</td>
<td>missing verb</td>
<td>4</td>
<td>0.27</td>
</tr>
<tr>
<td>sentence structure</td>
<td>15</td>
<td>1.01</td>
<td>unnecessary particle</td>
<td>4</td>
<td>0.27</td>
</tr>
<tr>
<td>usage of ‘的’</td>
<td>14</td>
<td>0.94</td>
<td>conjunction/connective</td>
<td>3</td>
<td>0.20</td>
</tr>
<tr>
<td>extra word</td>
<td>11</td>
<td>0.74</td>
<td>missing words</td>
<td>3</td>
<td>0.20</td>
</tr>
<tr>
<td>grammar</td>
<td>9</td>
<td>0.61</td>
<td>idiomatic expression</td>
<td>3</td>
<td>0.20</td>
</tr>
<tr>
<td>missing information</td>
<td>9</td>
<td>0.61</td>
<td>aspect particle</td>
<td>3</td>
<td>0.20</td>
</tr>
<tr>
<td>conjunction usage</td>
<td>8</td>
<td>0.54</td>
<td>unnecessary character</td>
<td>3</td>
<td>0.20</td>
</tr>
<tr>
<td>missing subject</td>
<td>8</td>
<td>0.54</td>
<td>adverb usage</td>
<td>3</td>
<td>0.20</td>
</tr>
<tr>
<td>measure word</td>
<td>8</td>
<td>0.54</td>
<td>expression</td>
<td>3</td>
<td>0.20</td>
</tr>
<tr>
<td>negation</td>
<td>8</td>
<td>0.54</td>
<td>unnecessary use of ‘的’</td>
<td>3</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Table 12: A distribution over error types in Chinese grammatical error explanations (1483 total points, types with 3 or more datapoints considered). Overall, we observe a wide variety of error types.