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Abstract

This paper introduces a new benchmark, the Cross-environment Hyperparameter1

Setting Benchmark, that allows comparison of RL algorithms across environments2

using only a single hyperparameter setting, encouraging algorithmic development3

which is insensitive to hyperparameters. We demonstrate that the benchmark is4

robust to statistical noise and obtains qualitatively similar results across repeated5

applications, even when using a small number of samples. This robustness makes6

the benchmark computationally cheap to apply, allowing statistically sound insights7

at low cost. We provide two example instantiations of the CHS, on a set of six8

small control environments (SC-CHS) and on the entire DM Control suite of 289

environments (DMC-CHS). Finally, to demonstrate the applicability of the CHS to10

modern RL algorithms on challenging environments, we provide a novel empirical11

study of an open question in the continuous control literature. We show, with12

high confidence, that there is no meaningful difference in performance between13

Ornstein-Uhlenbeck noise and uncorrelated Gaussian noise for exploration with14

the DDPG algorithm on the DMC-CHS.15

1 Introduction16

One of the major benefits of the Atari suite is the focus on more general reinforcement learning agents.17

Numerous agents have been shown to exhibit learning across many games with a single architecture18

and a single set of hyperparameters. To a lesser extent, OpenAI Gym (Brockman et al., 2016) and DM19

control suite (Tassa et al., 2018) are used in the same way—though at times not all environments are20

used, raising the possibility of cherry-picking. As the ambitions of the community have grown, Atari21

and OpenAI Gym tasks have been combined into larger problem suites, with subsets of environments22

chosen to test algorithms. In many ways we are back to where we started with Cartpole, Mountain23

Car and the like: where environment-specific hyperparameter tuning and problem subselection is24

prominent. Instead of proposing a new and bigger challenge suite, we explore a challenging new25

benchmark and empirical methodology for comparing agents across a given set of environments,26

complementing the existing empirical toolkit for investigating the scalability of deep RL algorithms.27

In order to make progress towards impactful applications of reinforcement learning and the broader28

goals of AGI, we need benchmarks that clearly highlight the generality and stability of learning29

algorithms. Empirical work in Atari, Mujoco, and simulated 3D worlds typically use networks with30

millions of parameters, dozens of GPUs, and up to billions of samples (Beattie et al., 2016; Espeholt31

et al., 2018). Many results are demonstrative, meaning that the primary interest is not the stability32

and sensitivity, nor what was required to achieve the result, rather that the result could be achieved.33

It is infeasible to combine these large scale experiments with hyperparameter studies and enough34

independent runs to support statistically significant comparisons. More evidence is emerging that35

such state of the art systems (1) rely on environment-specific design choices that are sensitive to36

minor changes to hyperparameters (Henderson et al., 2018; Engstrom et al., 2019), (2) are less data37
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efficient and stable compared with simple baselines (van Hasselt et al., 2019; Taïga et al., 2019),38

and (3) cannot solve simple toy tasks without extensive re-engineering (Obando-Ceron and Castro,39

2021; Patterson et al., 2021). It is abundantly clear that modern RL methods can be adapted to a40

broader spectrum of challenging tasks—well beyond what was possible with linear methods and41

expert feature design. However, we must now progress to phase two of empirical deep RL research:42

focusing on generality and stability.43

There is a growing movement to increase the standards of empirical work in RL. Noisy results,44

inconsistent evaluation practices, and divergent code bases have fueled calls for more open-sourcing45

of agent architecture code, experiment checklists, and doing more than three independent evaluations46

in our experiments (Henderson et al., 2018; Pineau et al., 2020). Digging deeper, recent work has47

highlighted our poor usage of basic statistics, including confidence intervals and hypothesis tests48

(Colas et al., 2018). Long before the advent of deep networks, researchers called out the environment49

overfitting that is rampant in RL and proposed sampling from parameterized variants of classic50

control domains to emphasize general methods (Whiteson et al., 2009). Finally, and most related to51

our work, Jordan et al. (2020) proposed a methodology to better characterize the performance of an52

algorithm across environments, evaluated with randomly sampled hyperparameters. We build on this53

direction, but focus on a simpler and more computationally frugal evaluation that examines the single54

best hyperparameter setting across environments, rather than a randomly sampled one, and allows for55

a smaller number of runs per environment.56

Table 1: Chance of incorrect claims
3 runs 10 30 100

Acrobot 47% 31% 22% 1%
Cartpole 7% 0% 0% 0%
CliffWorld 54% 19% 14% 0%
LunarLander 16% 7% 1% 0%
MountainCar 22% 9% 7% 0%
PuddleWorld 18% 16% 8% 0%

One reason we focus on computational efficiency is57

that computational limitations seems to be the pri-58

mary culprit for misleading or incorrect claims in RL59

experiments. Experiments with many runs, many hy-60

perparameters, and many environments can be com-61

putationally prohibitive. The typical trade-off is to62

use a smaller number of runs. Such a choice, how-63

ever, can lead to incorrect conclusions. Table 1 shows64

the empirical probability of incorrectly ordering four65

reasonable RL algorithms across several domains often considered too small to draw meaningful con-66

clusions. We ran each of the four algorithms 250 times on every domain and for every hyperparameter67

setting in an extensive sweep to get a high confidence approximation of the correct ordering between68

algorithms. We then used bootstrap sampling to simulate 10k papers—each using a small number of69

random seeds—and counted the frequency that incorrect algorithm orderings were reported. Even70

with 30 runs in these small domains, incorrect rankings were not uncommon. Further details are71

described in Section 5.72

Another critical issue for algorithm evaluation is the difficulty in hyperparameters selection. Modern73

RL algorithms require tuning an increasing number of hyperparameters, greatly impacting the74

outcome of an experimental trial. As more hyperparameters are introduced, the computational75

burden of tuning grows exponentially. To combat this, several strategies have emerged in the literature76

including relying on default hyperparameter values (Schaul et al., 2016; Wang et al., 2016; Van Hasselt77

et al., 2016), tuning hyperparameters on a subset of domains (Bellemare et al., 2013), or eroding78

standards of sufficient statistical power for publication (Henderson et al., 2018; Colas et al., 2018).79

Our new benchmark is designed to (1) standardize the selection of hyperparameters, (2) evaluate80

stability over runs, (3) be computationally cheap to run, and (4) be easy to use. We propose the Cross-81

environment Hyperparameter Setting Benchmark (CHS). The basic idea is simple: an algorithm is82

evaluated on a set of environments, using the best hyperparameter setting across those environments,83

rather than per-environment. Though conceptually simple, this methodology is not widely used.84

We first address some of the nuances in the CHS, namely how to standardize performance across85

environments to allow for aggregation, how to allow for robust measures of performance, and finally86

how to reduce computation to make it more feasible to use the CHS. We evaluate the effectiveness of87

the CHS itself by examining the stability of the conclusions from the CHS under different numbers88

of runs. We then demonstrate that the CHS can result in different conclusions about algorithms89

compared to the conventional per-environment tuning approach and the more recent approach of90

using a subset of environments for tuning. We conclude with a larger demonstration of the CHS on91

DM Control Suite.92

2



150k150k200k150k150k150k

-100

-100 500 0 200 -100 0

0200
Across-environment tuning

500 0 -100

Per-environment tuning

Figure 1: An example experiment comparing four algorithms across six different environments. Each
learning curve shows the mean and standard error of 250 independent runs for each algorithm and
environment. Hyperparameters are selected using three runs of every algorithm, environment, and
hyperparameter setting. Top shows the learning curves when the best hyperparameters are chosen for
each environment individually. Bottom shows the learning curves when hyperparameters are chosen
according to our benchmark, the CHS.

2 Contrasting Across-Environment versus Per-Environment Tuning93

In this section, we introduce the basic procedure for the CHS and provide an experiment showing94

how it can significantly change empirical outcomes compared to the conventional per-environment95

tuning approach. We provide specific details for each step later and here focus on outlining the basic96

idea and its utility.97

The CHS consists of the following four steps summarized in the inset figure below. We assume we98

are given a set of environments and a set of hyperparameters for the algorithm we are evaluating.99

Env1

hyper1

EnvN EnvN

Env1 Env1

Env2 Env2

EnvN EnvN

Env1

Env2

EnvN

Env1

Env2

EnvN

 nruns

<latexit sha1_base64="Dah5LPMa9QEVrKQ5+1rFMfY4sPk=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoJVgETyWRih6LXjxWsB/QhrDZbtqlm03YnRVryC/x4kERr/4Ub/4bt20O2vpg4PHeDDPzwpQzBa77bZXW1jc2t8rblZ3dvf2qfXDYUYmWhLZJwhPZC7GinAnaBgac9lJJcRxy2g0nNzO/+0ClYom4h2lK/RiPBIsYwWCkwK6KIBsAfYRMaqHyPLBrbt2dw1klXkFqqEArsL8Gw4TomAogHCvV99wU/AxLYITTvDLQiqaYTPCI9g0VOKbKz+aH586pUYZOlEhTApy5+nsiw7FS0zg0nTGGsVr2ZuJ/Xl9DdOVnTKQaqCCLRZHmDiTOLAVnyCQlwKeGYCKZudUhYywxAZNVxYTgLb+8Sjrnda9Rv7hr1JrXRRxldIxO0Bny0CVqolvUQm1EkEbP6BW9WU/Wi/VufSxaS1Yxc4T+wPr8AfFNk+8=</latexit>

nruns

<latexit sha1_base64="Dah5LPMa9QEVrKQ5+1rFMfY4sPk=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoJVgETyWRih6LXjxWsB/QhrDZbtqlm03YnRVryC/x4kERr/4Ub/4bt20O2vpg4PHeDDPzwpQzBa77bZXW1jc2t8rblZ3dvf2qfXDYUYmWhLZJwhPZC7GinAnaBgac9lJJcRxy2g0nNzO/+0ClYom4h2lK/RiPBIsYwWCkwK6KIBsAfYRMaqHyPLBrbt2dw1klXkFqqEArsL8Gw4TomAogHCvV99wU/AxLYITTvDLQiqaYTPCI9g0VOKbKz+aH586pUYZOlEhTApy5+nsiw7FS0zg0nTGGsVr2ZuJ/Xl9DdOVnTKQaqCCLRZHmDiTOLAVnyCQlwKeGYCKZudUhYywxAZNVxYTgLb+8Sjrnda9Rv7hr1JrXRRxldIxO0Bny0CVqolvUQm1EkEbP6BW9WU/Wi/VufSxaS1Yxc4T+wPr8AfFNk+8=</latexit>

  seeds per combination

✓1

<latexit sha1_base64="5TRFZFCtt932DJ7/WyGtfEgCHvA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGnf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fja/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms+fJQGjOUE4soUwLeythI6opQxtRyYbgLb+8SloXVa9WvbyvVeo3eRxFOIFTOAcPrqAOd9CAJjCQ8Ayv8OY8Oi/Ou/OxaC04+cwx/IHz+QPP/4/U</latexit>

✓2

<latexit sha1_base64="6yse2MOFpmEjicoTMixnycTW0oM=">AAAB73icbVBNS8NAEN34WetX1aOXxSJ4Kkmp6LHoxWMF+wFtKJvtpF262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxvZ377CbQRsXrASQJ+xIZKhIIztFKnhyNA1q/2S2W34s5BV4mXkzLJ0eiXvnqDmKcRKOSSGdP13AT9jGkUXMK02EsNJIyP2RC6lioWgfGz+b1Tem6VAQ1jbUshnau/JzIWGTOJAtsZMRyZZW8m/ud1Uwyv/UyoJEVQfLEoTCXFmM6epwOhgaOcWMK4FvZWykdMM442oqINwVt+eZW0qhWvVrm8r5XrN3kcBXJKzsgF8cgVqZM70iBNwokkz+SVvDmPzovz7nwsWtecfOaE/IHz+QPRg4/V</latexit>

✓k

<latexit sha1_base64="wISys9wgYGFI1+rDgRBKMzdJJy8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGl/3C9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+75ScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZs+TgdCcoZxYQpkW9lbCRlRThjaikg3BW355lbQuql6tenlfq9Rv8jiKcAKncA4eXEEd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wcn9pAO</latexit>

✓1

<latexit sha1_base64="5TRFZFCtt932DJ7/WyGtfEgCHvA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGnf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fja/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms+fJQGjOUE4soUwLeythI6opQxtRyYbgLb+8SloXVa9WvbyvVeo3eRxFOIFTOAcPrqAOd9CAJjCQ8Ayv8OY8Oi/Ou/OxaC04+cwx/IHz+QPP/4/U</latexit>

✓2

<latexit sha1_base64="6yse2MOFpmEjicoTMixnycTW0oM=">AAAB73icbVBNS8NAEN34WetX1aOXxSJ4Kkmp6LHoxWMF+wFtKJvtpF262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxvZ377CbQRsXrASQJ+xIZKhIIztFKnhyNA1q/2S2W34s5BV4mXkzLJ0eiXvnqDmKcRKOSSGdP13AT9jGkUXMK02EsNJIyP2RC6lioWgfGz+b1Tem6VAQ1jbUshnau/JzIWGTOJAtsZMRyZZW8m/ud1Uwyv/UyoJEVQfLEoTCXFmM6epwOhgaOcWMK4FvZWykdMM442oqINwVt+eZW0qhWvVrm8r5XrN3kcBXJKzsgF8cgVqZM70iBNwokkz+SVvDmPzovz7nwsWtecfOaE/IHz+QPRg4/V</latexit>

✓k

<latexit sha1_base64="wISys9wgYGFI1+rDgRBKMzdJJy8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGl/3C9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+75ScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZs+TgdCcoZxYQpkW9lbCRlRThjaikg3BW355lbQuql6tenlfq9Rv8jiKcAKncA4eXEEd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wcn9pAO</latexit>

✓1

<latexit sha1_base64="5TRFZFCtt932DJ7/WyGtfEgCHvA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGnf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fja/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms+fJQGjOUE4soUwLeythI6opQxtRyYbgLb+8SloXVa9WvbyvVeo3eRxFOIFTOAcPrqAOd9CAJjCQ8Ayv8OY8Oi/Ou/OxaC04+cwx/IHz+QPP/4/U</latexit>

✓2

<latexit sha1_base64="6yse2MOFpmEjicoTMixnycTW0oM=">AAAB73icbVBNS8NAEN34WetX1aOXxSJ4Kkmp6LHoxWMF+wFtKJvtpF262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxvZ377CbQRsXrASQJ+xIZKhIIztFKnhyNA1q/2S2W34s5BV4mXkzLJ0eiXvnqDmKcRKOSSGdP13AT9jGkUXMK02EsNJIyP2RC6lioWgfGz+b1Tem6VAQ1jbUshnau/JzIWGTOJAtsZMRyZZW8m/ud1Uwyv/UyoJEVQfLEoTCXFmM6epwOhgaOcWMK4FvZWykdMM442oqINwVt+eZW0qhWvVrm8r5XrN3kcBXJKzsgF8cgVqZM70iBNwokkz+SVvDmPzovz7nwsWtecfOaE/IHz+QPRg4/V</latexit>

✓k

<latexit sha1_base64="wISys9wgYGFI1+rDgRBKMzdJJy8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGl/3C9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+75ScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZs+TgdCcoZxYQpkW9lbCRlRThjaikg3BW355lbQuql6tenlfq9Rv8jiKcAKncA4eXEEd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wcn9pAO</latexit>

✓j

<latexit sha1_base64="x1yK6JirrTxwZzzNenQPEQWh/2Y=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDbbTbt2s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFjd4zjhfkQHSoSCUbRSu4tDjrT30CtX3Ko7A1kmXk4qkKPeK391+zFLI66QSWpMx3MT9DOqUTDJJ6VuanhC2YgOeMdSRSNu/Gx274ScWKVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMps+TvtCcoRxbQpkW9lbChlRThjaikg3BW3x5mTTPqt559eLuvFK7zuMowhEcwyl4cAk1uIU6NICBhGd4hTfn0Xlx3p2PeWvByWcO4Q+czx8mcpAN</latexit>

✓j

<latexit sha1_base64="x1yK6JirrTxwZzzNenQPEQWh/2Y=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDbbTbt2s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFjd4zjhfkQHSoSCUbRSu4tDjrT30CtX3Ko7A1kmXk4qkKPeK391+zFLI66QSWpMx3MT9DOqUTDJJ6VuanhC2YgOeMdSRSNu/Gx274ScWKVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMps+TvtCcoRxbQpkW9lbChlRThjaikg3BW3x5mTTPqt559eLuvFK7zuMowhEcwyl4cAk1uIU6NICBhGd4hTfn0Xlx3p2PeWvByWcO4Q+czx8mcpAN</latexit>

✓j

<latexit sha1_base64="x1yK6JirrTxwZzzNenQPEQWh/2Y=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDbbTbt2s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFjd4zjhfkQHSoSCUbRSu4tDjrT30CtX3Ko7A1kmXk4qkKPeK391+zFLI66QSWpMx3MT9DOqUTDJJ6VuanhC2YgOeMdSRSNu/Gx274ScWKVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMps+TvtCcoRxbQpkW9lbChlRThjaikg3BW3x5mTTPqt559eLuvFK7zuMowhEcwyl4cAk1uIU6NICBhGd4hTfn0Xlx3p2PeWvByWcO4Q+czx8mcpAN</latexit>

 hundreds of seeds 
per combination

Preliminary sweep Re-evaluation

Normalize & 
hyper selection Normalize

& aggregate

Step 1 (Preliminary Sweep) Run the algorithm100

for all hyperparameters and all environments,101

for nruns runs (i.e., nruns < 30) and record the102

performance of every combination. The perfor-103

mance could be online average return per step.104

Step 2 (Normalization) Normalize the scores105

across environments to be in [0, 1]. We use CDF106

normalization, which is described in Section 4.107

Step 3 (Hyperparameter Selection) Select the108

hyperparameter setting with the highest score averaged across environments.109

Step 4 (Re-evaluation) With the single best hyperparameter setting, use many more runs in each110

environment (e.g. 100) to produce a more accurate estimate of performance.111

The last step is more lightweight than it appears since only a single hyperparameter setting is used112

for all environments. Executing 100 or more runs for every hyperparameter setting would likely be113

prohibitive. The trick is to use a small nruns in the Preliminary Sweep, saving compute, and a larger114

number of runs in the Re-evaluation step. This contrasts the conventional per-environment tuning115

approach of choosing hyperparameter settings which maximize performance on each environment116

individually, which can be more sensitive when nruns is small.117

We now show an experiment comparing the CHS and this conventional approach in Figure 1. The118

per-environment tuning approach highlights the ideal behavior of an algorithm per environment,119

whereas the CHS highlights the (in)sensitivity of an algorithm across environments. Experimental120

details can be found in Section 5. The environments are relatively simple (most coming from the121

classic control suite of OpenAI Gym (Brockman et al., 2016)) but difficult enough for our purposes:122

no one algorithm could reach near optimal performance in all environments.123

The CHS does not rank the algorithms differently than with per-environment tuning, but CHS124

does alert us to potential catastrophic failure of some algorithms. The neural network DeepQ125

agent performs terribly in Cliffworld and Lunar Lander under CHS, but appears reliable under126

the per-environment approach. What is going on? Forced to select only one hyperparameter127

3



across environments, the best outcome is to sacrifice performance in Cliffworld and Lunar Lander—128

achieving worse performance than a uniform random policy.129

3 Performance Distributions130

In this section, we describe the distribution and random variables underlying an RL experiment. This131

formalism allows us to reason about the summary statistics we consider for the CHS in the next132

section. We also visualize these distributions to provide intuition on the properties of the summary133

statistics of these distributions and the implications for the single performance numbers used in RL.134

In an RL experiment, we seek to describe the performance distribution of an algorithm for each135

hyperparameter setting θ ∈ Θ, denoted as P(G,E | θ) where G is a random variable indicating136

the performance of an algorithm on a given environment, E ∈ E . Most commonly, we report137

an estimate of the average performance conditioned on environment and hyperparameter setting,138

g(E, θ) u E[G | E, θ] using a sample average and some measure of uncertainty about how accurately139

g(E, θ) approximates E[G | E, θ].140

The environment can be seen as a random variable for many RL experiments. The most common141

case is to specify a set of MDPs that the authors believe represent the important applications of their142

new algorithm. If results are uniformly aggregated across these environments, then this corresponds143

to assuming a uniform distribution over this set of environments. Other times, random subsets of144

environments from environment suites are chosen; the performance estimate on this subset provides145

an estimate of performance across the entire suite. The idea of evaluating algorithms over a random146

sample of MDPs has been studied explicitly previously. For example, the parameters determining147

the physics of classical control domains were randomized and sampled to avoid domain overfitting148

(Whiteson et al., 2009), and randomly generated MDPs (Archibald et al., 1995) have been used to149

evaluate new algorithmic ideas (Seijen and Sutton, 2014; Mahmood et al., 2014; White and White,150

2016). If we subselect after running the algorithms, then we bias the distribution over environments151

towards those with higher performance.152

Figure 2: Performance
distribution P(G | E, θ)
on Cartpole with hyper-
parameter stepsize=2−9.

Let us look at an example of these performance distributions to gain some153

intuition for estimating statistics like the expected performance. Con-154

sider the action-value nonlinear control method DQN, using the Adam155

optimizer (Mnih et al., 2013; Kingma and Ba, 2015), on Cartpole (Barto156

et al., 1983). We fix the hyperparameter setting θ to the default values157

from Raffin et al. (2019). For this fixed environment, all randomness158

is due to sampling algorithm performance on this environment, namely159

sampling G according to P(G | E, θ). The performance, G, is the average160

episodic return over all episodes completed during 100k learning steps.161

This environment is considered solved for G > 400. We repeat this pro-162

cedure for 250 independent trials to estimate the distribution P(G | E, θ),163

shown in Figure 2, with x-axis possible outcomes of G and y-axis the164

probability density. The vertical solid line denotes mean performance,165

and the vertical dotted line denotes mean performance of a random policy.166

Figure 2 is a typical example of the performance of an RL algorithm over multiple independent167

trials. In this case, DQN is more likely to fail than to learn a policy which solves this relatively168

simple environment. It is common practice to run an RL algorithm for some number of random169

seeds—effectively drawing samples of performance from this distribution—then reporting the mean170

over those samples (solid vertical line).171

There are two implications from observing this bimodal performance distribution. First, using the172

expected value of this distribution as the summary statistic does not aptly demonstrate that the poor173

performance of DQN on Cartpole is due to occasional catastrophic failure—performing worse than174

or equivalent to a random policy. Instead, mean performance might lead us to wrongly conclude that175

DQN on Cartpole usually finds a sub-optimal, yet better than random, policy. An alternative might176

be to consider percentile statistics or, if the goal is to evaluate mean performance, to avoid drawing177

strong conclusions about individual runs.178

If the goal is to report mean performance, then a second issue arises. Estimating the mean of these179

non-normal performance distributions can be challenging. In Figure 2, approximately 70% of the180
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density is around a mode centered at 20 return, and the remaining 30% is around a mode centered at181

250 return. As a result, sample means constructed with only three runs are varied and skewed.182

Further, to report the average performance of the best performing hyperparameter—that is183

maxθ∈Θ E[G | θ,E]—we must first reliably estimate the conditional expected performance for184

each hyperparameter. Computing this expectation can require a large number of samples to obtain a185

reasonable estimate for each hyperparameter. This results in a tradeoff between measuring sensitivity186

and stability: between the breadth of hyperparameter settings that can be studied and the accuracy to187

with which we can feasibly evaluate each hyperparameter.188

The summary statistic used to select hyperparameters also interacts189

with the form of the performance distribution. In the inset figure on the190

left we show the performance distribution across four different choices191

of stepsize parameter of DQN in Cartpole. If we are interested only in192

the highest best case performance, then 2−10 is preferred. However, if193

we are particularly concerned with reducing the chances of catastrophic194

failure (i.e., highest worst case performance), then a stepsize 2−7 is195

preferred. The most common case is to report results for the stepsize196

with the highest average performance. In this case, a stepsize of 2−9197

would be preferred.198

These performance distributions can also look quite different for differ-199

ent environments, even with the same algorithm. For Cartpole (above),200

the distribution is increasingly long-tailed with smaller stepsizes. For201

Puddle World, shown in the inset figure on the right, the distributions202

are always bimodal with one mode around -600 return and a second203

mode around -200 return. With smaller stepsizes, the density around204

the better performance mode increases, shifting the mean of the distri-205

bution. Peak performance does not change; rather the probability that206

DQN has a good run is higher with small stepsizes. This analysis of207

performance distributions raises an important question: do current RL208

algorithms have consistent hyperparameter settings which perform well across many environments?209

4 The Cross-environment Hyperparameter Setting Benchmark210

In this section, we describe our new benchmark for evaluating RL algorithm across environments, the211

Cross-environment Hyperparameter Setting Benchmark (CHS). Although it seems natural to evaluate212

across environments, standard empirical practice in RL is not done this way. Understanding across-213

environment sensitivity aligns nicely with the intent of sensitivity analysis: elucidating how well an214

algorithm might perform on new environments without extensive hyperparameter tuning. We argue215

that the CHS 1) better aligns empirical practice with the goals of applied RL, 2) is computationally216

feasible even in complex environments, 3) provides novel insights on old ideas (even with small217

environments), and 4) reduces the chances of accidentally publishing incorrect conclusions due to218

statistical noise.219

We now reiterate the procedure for the CHS with more details than the high-level procedure given220

in Section 2. The first step (preliminary sweep) is to draw a small number of samples nruns from221

P(G | θ, E) for every hyperparameter setting and environment and get the summary estimate g(E, θ)222

from those samples. Typically, we compute g(E, θ) as a sample average to estimate E[NE(G) | E, θ],223

where NE : R→ R is a normalization function that we describe below. Then we aggregate across224

environments to estimate g(θ) ≈ E[E[NE(G) | E, θ]], where the outer expectation is with respect225

to environments. Then we select a single hyperparameter setting with θCHS = arg maxθ∈Θ g(θ).226

Finally, we draw a large number of samples from P(G | θCHS, E) for every environment and report227

the same summary statistics g(E, θCHS) and g(θCHS) (re-evaluation).228

In order to compute the expectation over environments we must normalize the performance measures.229

Generally, we cannot expect each environment to produce normalized performance numbers. A230

comprehensive discussion of normalization methods is given in Jordan et al. (2020). We use a lightly231

modified version of the CDF normalization method from Jordan et al. (2020), NE(G) = CDF(G,E),232

which is itself an instance of probabilistic performance profiles (Barreto et al., 2010).233
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We first collect the performance of each algorithm, environment, and hyperparameter tuple. Then,234

let PE be the pool of performance statistics g for every agent—namely a run of each algorithm and235

hyperparameter pair—for a given environment E. Our goal is to take a given agent’s performance236

x ∈ PE and return a normalized performance. The CDF normalization, for this x in this environment,237

is238

CDF(x,E) =
1

|PE |
∑
g∈PE

1(g < x)

where 1 is the indicator function. This mapping says: what percentage of performance values, across239

all runs for all algorithms and all hyperparameter settings, is lower than my performance x on this240

particular environment E? For example, if CDF(x,E) = 0.25, then this agent’s performance is241

quite low in this environment, as only 25% of other agents’ performance was worse and 75% was242

higher, across agents tested. This normalization accounts for the difficulty of the problem, and reflects243

relative performance amongst agents tested. Note that this normalization uses an empirical CDF,244

rather than the true CDF for the environment and set of hyperparameters and agents. This means245

there is a small amount of bias when estimating E[E[NE(G) | E, θ]]. This bias dissipates with an246

increasing numbers of samples and equally impacts all compared algorithms.247

Selecting hyperparameters with the CHS can require significantly fewer samples compared with248

conventional per-environment tuning. Per-environment tuning requires a sufficiently accurate estimate249

of the conditional expectation E[G | E, θ] for every θ ∈ Θ and for every E ∈ E , requiring a number250

of runs proportional to |Θ||E|. The CHS, on the other hand, requires only an accurate estimate of251

E[NE(G) | θ] = E[E[NE(G) | E, θ]] which requires a number of runs proportional only to |E|. By252

designing a process which selects hyperparameters first using a smaller number of runs, we can253

reserve more computational resources for re-evaluation. Once we select the best hyperparameters,254

the cost of collecting samples is independent of Θ, and so we can decouple the precision of our255

performance estimate from the number of hyperparameter settings that we evaluate for each algorithm.256

Finally, we can contrast this benchmark with a recent evaluation scheme that uses random hy-257

perparameter selection (Jordan et al., 2020). In order to capture variation in performance due to258

hyperparameter sensitivity, Jordan et al. (2020) treats hyperparameters as random variables and259

samples according to an experimenter-designated distribution over hyperparameters, reporting the260

mean and uncertainty with respect to this added variance, similar to the procedure used in Jaderberg261

et al. (2016). This evaluation methodology provides some insight into the difficulty of tuning, though262

requires a sensible distribution over hyperparameters to be chosen. The CHS, on the other hand, asks:263

is there a hyperparameter setting for which this algorithm can perform well across environments? It264

motivates instead identifying that single hyperparameter, and potentially fixing it in the algorithm, or265

suggesting that the algorithm needs to be improved so that such a hyperparameter could feasibly be266

found. Both of these strategies help identify algorithms that are difficult to tune, but the CHS is easier267

to use and computationally cheaper.268

5 Evaluating the Cross-environment Hyperparameter Setting Benchmark269

In this section, we evaluate the CHS by comparing four algorithms across several classic control270

environments. For this evaluation, we require environments where hundreds of independent samples271

of performance can be drawn across a large hyperparameter sweep in a computationally tractable272

way. We emphasize that this is not a general requirement of the CHS and is required only in this273

case of evaluating the CHS’s responsiveness to perturbations in the experimental process. Because274

these classic control environments are cheap to run and provide meaningful insights in differentiating275

modern RL algorithms (Obando-Ceron and Castro, 2021), we name this specific benchmark the276

Small Control CHS (SC-CHS). In Section 6 we provide a realistic demonstration of the CHS on a277

larger dataset with a more complex algorithm.1278

For the following investigations, we compare two deep RL algorithms based on DQN (Mnih et al.,279

2013) and two control algorithms based on linear function approximation using tile-coded features280

(Sutton and Barto, 2018). The deep RL algorithms, DQN and DeepQ, differ only in their loss: DQN281

uses a clipped loss and DeepQ uses a mean squared error. For the two tile-coding agents, QLearning282

is off-policy and bootstraps using the greedy action, while ESARSA is on-policy and bootstraps using283

an expectation over actions. Further details on the algorithms can be found in Appendix C.284

1All code can be found at https://github.com/andnp/single-hyperparameter-benchmark.

6

https://github.com/andnp/single-hyperparameter-benchmark


Figure 3: Applying the CHS to 10k simulated experiments. Error bars show 95% bootstrap confidence
intervals. Although only three runs were used to select hyperparameters, conclusions about algorithm
ranking using the CHS are perfectly consistent across all 10k experiments.

The SC-CHS consists of a suite of classic control environments commonly used in RL: Acrobot285

(Sutton, 1996), Cartpole (Barto et al., 1983; Brockman et al., 2016), Cliff World (Sutton and Barto,286

2018), Lunar Lander (Brockman et al., 2016), Mountain Car (Moore, 1990; Sutton, 1996), and Puddle287

World (Sutton, 1996). We used a discount factor of γ = 0.99 and a maximum episode length of 500288

steps (except in Cliff World which had a maximum length of 50 steps). We ran all algorithms for289

200k learning steps on each environment except Lunar Lander, where we used 250k learning steps to290

ensure all algorithms have reliably converged. Further details motivating this choice of environments291

can be found in Appendix C.1.292

We swept over several hyperparameter settings. For all algorithms we swept eight stepsize values,293

α ∈ {2−12, 2−11, . . . , 2−5} for the deep RL algorithms and α ∈ {2−9, 2−8, . . . , 2−2} for the tile-294

coded algorithms. The deep RL algorithms used experience replay and target networks, so we swept295

over replay buffer sizes of {2000, 4000} and target network refresh rates of {1, 8, 32} steps where a296

one step refresh indicates target networks are not used. The algorithms with tile-coding learn online297

from the most recent sample; we select number of tiles in each tiling in {2, 4, 8} and number of tilings298

in {8, 16, 32}. More details on the other hyperparameters and design decisions are in Appendix C.299

Variance over simulated experiments. Here we demonstrate that the CHS provides low variance300

conclusions over 10k simulated experiments using the benchmark. We use bootstrap sampling301

to compute 10k sample means over three random seeds for every algorithm, environment, and302

hyperparameter to first select hyperparameters using the CHS. We then evaluate the performance303

of each algorithm on each environment with 250 independent runs for the selected hyperparameter304

settings and compare the conclusions for each of the 10k simulated experiments.305

Figure 3 demonstrates the consistency of conclusions made using the CHS across 10k simulated306

experiments. Using the CHS we would rank algorithms from best to worst ESARSA, QLearning,307

DeepQ, and DQN on this benchmark, and this ranking was successfully detected in every experiment.308

Conclusions on individual environments are less consistent. This is because selecting one hyperpa-309

rameter across all these environments was difficult. In some runs, performance in one environment310

was sacrificed for the performance in the others; in another run, it was a different environment.311

We provide more insight into the difficulty of selecting a single hyperparameter across problems, in312

Appendix B.1. We additionally show that the distribution of selected hyperparameters with the CHS is313

narrow and consistent over simulated experiments, unlike parameters chosen independently for each314

environment. Because conclusions are often drawn by aggregating results over environments—either315

formally as in the CHS or informally by counting the number of environments where an algorithm316

outperforms others—reporting results over a consistent and narrow distribution of hyperparameters317

leads towards lower variance claims and greater reproducibility. We include results selecting hyperpa-318

rameters according to the worst-case performance across environments in Appendix B.4; the results319

are highly similar, albeit slightly lower variance.320

The cost of running a single experiment represented in Figure 3 is quite low. The deep RL algorithms321

test 48 hyperparameter settings at a cost of 20 minutes per run, while the tile-coded algorithms test322

72 settings at the cost of two minutes per run. Timings are with respect to a modern 2.1Ghz Intel323

Xeon processor. This comes out to a total of 1762 hours of CPU time to complete three runs for324

hyperparameter selection and 250 runs for evaluation, cheaper than the experiment using 10 runs and325

conventional per-environment tuning shown in Table 1 which cost approximately 2208 hours. The326
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Figure 4: The change in performance for each algorithm on every environment when using the CHS
versus conventional per-environment tuning. A larger drop in performance indicates a larger degree
of environment overfitting when results are reported with per-environment tuning. Error bars show
95% confidence intervals over 10k bootstrap samples.

CHS successfully detected the correct ordering of algorithms in every trial, while the conventional327

per-environment tuning experiment failed to detected the correct ordering with surprising frequency.328

The CHS is a less optimistic measure of performance. A motivating factor for the CHS is providing329

a more challenging benchmark to test across-environment insensitivity to selection of hyperparameters.330

Because algorithms are limited to selecting a single champion hyperparameter setting—as opposed331

to selecting a new hyperparameter setting for every environment—we expect a considerable drop in332

performance under the CHS. We evaluate the extent of this performance drop for our four algorithms333

by first computing near optimal parameters θ∗ ∈ Θ for each environment using the full 250 random334

seeds to obtain high confidence estimates of average performance E[NE(G) | E, θ∗]. We then apply335

the CHS to select hyperparameters for each algorithm using three random seeds for 10k simulated336

experiments. We report sample estimates of E[NE(G) | E, θ∗]− E[NE(G) | E, θCHS].337

In Figure 4 we can see there is substantial drop in reported performance when using the CHS versus338

per-environment tuning. The variance is high, indicating that for some runs, the performance drop339

was substantial: almost 0.4 under our normalization between [0,1]. Algorithms with a large drop in340

performance indicate more environment-specific overfitting under per-environment tuning. Because341

we swept over many more hyperparameter settings for the tile-coding algorithms than for the deep342

RL algorithms—72 settings versus 48 settings—it is unsurprising that per-environment tuning led to343

far more environment overfitting in the tile-coding algorithms.344

Tuning on a subset of environments. An empirical practice that is highly related to the CHS is using345

a subset of environments to select hyperparameters, then reporting the performance of the selected346

hyperparameters across an entire suite of environments. We refer to this practice as subset-CHS.347

This practice is used in the Atari suite for example, where it was suggested to use five of the 57348

games for hyperparameter tuning (Bellemare et al., 2013). To investigate the variance of conclusions349

using the subset-CHS, we run 10k simulated experiments using two of our six environments to select350

hyperparameters. For each of the simulated experiments, we randomly select two environments to351

use for hyperparameter selection. To reduce the variance, we allow each algorithm 100 runs of every352

hyperparameter setting on every environment to perform hyperparameter selection, then evaluate the353

performance on the full 250 runs for the hyperparameter selected by the subset-CHS. More results,354

including with varying number of runs and environments used for hyperparameter selection, can be355

found in Appendix B.356

In Figure 5, we see that the ordering of algorithms is extremely high-variance—especially compared357

to Figure 3 which uses all six environments to select hyperparameters and only three runs. This358

result also illustrates large differences between individual environments, where the variance on Lunar359

Lander—especially for DQN—suggests that hyperparameters selected for other environments are360

likely to cause worse-than-random performance on Lunar Lander. At least among the four tested361

algorithms, it is clear that hyperparameter sensitivity is too high to use environment subselection to362

reduce the computational burden of hyperparameter tuning.363

Bias of the CHS. Both the CHS and conventional per-environment tuning use biased sample esti-364

mates due to the maximization over hyperparameters. The bias due to maximization over random365

samples is exaggerated both as the set Θ grows and as the number of samples used to evaluate366

E[G | E, θ] shrinks. We first estimate the true per-environment maximizing parameters θ∗ and the367

true CHS parameter θ∗CHS using 250 samples for every hyperparameter setting and environment.368
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Figure 5: Performance of each algorithm over 10k bootstrap samples, where sample means are com-
puted with 100 runs. Each bootstrap sample randomly selects two environments for hyperparameter
tuning, then evaluates the chosen hyperparameter setting on all six environments with 250 runs. Error
bars show 95% bootstrap confidence intervals.

Figure 6: Bias of the CHS vs.
per-environment tuning.

We then resample three samples per hyperparameter and envi-369

ronment to simulate an experiment using three seeds to compute370

sample averages, we select the maximizing parameter of these371

sample averages, θ̂, and we report E[G | E, θ∗] − E[G | E, θ̂].372

The corresponding procedure is used for the CHS.373

In Figure 6, we report the bias of each procedure applied to DQN374

and the small control domain suite. On the vertical axis we report375

the bias and on the horizontal axis we show the number of ran-376

dom seeds used to select hyperparameters. As both procedures377

approach a sufficiently large number of samples to select hyperpa-378

rameters, the bias of these procedures approaches zero. However379

when using few random seeds—for instance ten or fewer as is380

common in the literature—the bias of the conventional method381

is several times larger than that of the CHS. As a result of this382

overestimation bias, it is common for results in the literature to present highly optimistic results383

especially for algorithms with more hyperparameters.384

6 A Demonstrative Example of Using the CHS385

We finish with a large-scale demonstration of our benchmark across the 28 environments of the386

DMControl suite (Tassa et al., 2018), which we will call the DMC-CHS. For this comparison,387

we test an open hypothesis in the continuous control literature: does Ornstein-Uhlenbeck (OU)388

noise (Uhlenbeck and Ornstein, 1930) improve exploration over naive uncorrelated Gaussian noise?389

Autocorrelated noise for exploration was shown to be beneficial for robotics (Wawrzyński, 2015),390

inspiring the use of an OU noise process for DDPG (Lillicrap et al., 2016), where a single set of391

hyperparameters was used across 20 Mujoco environments using five seeds. Later work replaced OU392

noise with Gaussian noise, noting no difference in performance (Fujimoto et al., 2018; Barth-Maron393

et al., 2018), but without empirical support for the claim. To the best of our knowledge, no careful394

empirical investigation of this hypothesis has yet been published.395

To apply the DMC-CHS, we first evaluate 36 hyperparameter settings with three runs per environment,396

for a total of 84 runs to estimate E[NE(G) | θ] for each θ ∈ Θ. Then we use 30 runs to evaluate the397

chosen θCHS for a total of 840 runs to estimate E[NE(G) | θCHS]. We report the swept hyperparameters398

as well as the selected θCHS in Appendix B.5. We use 1k bootstrap samples to compute confidence399

intervals and report the overall findings in the table in Figure 7. We find that OU noise does not400

outperform Gaussian noise on the DMC-CHS. Considering even the extremes of the confidence401

intervals there is no meaningful difference in performance between these exploration methods,402

suggesting further runs would be unlikely to change our conclusion. We visualize the performance of403

OU noise on the complete suite, considering Gaussian noise experiments as a baseline in Figure 7.404

This visualization summarizes whether, and to what degree, OU noise improves upon Gaussian noise405

in each environment of the DMControl suite. In only 10 of the 28 environments, OU noise improves406

upon Gaussian noise, with a large improvement only in the WalkerRun environment. Additional407

results are included in Appendix B.5.408
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Figure 7: Comparing DDPG using OU noise vs. Gaussian noise across the DMControl suite. The
inset table shows the mean performance with 95% confidence interval for the two versions of DDPG
used in these experiments. Visualized in the bar plot is the performance of DDPG with OU noise, per
environment in the suite, considering DDPG with Gaussian noise as a baseline.

7 Conclusion409

In this work, we introduced a new benchmark for evaluating RL algorithms across environments,410

but perhaps more important are the insights we gained. Of the five algorithms we tested (including411

DQN and DDPG), none exhibited good performance on our CHS benchmark; aligning with the412

common view that we do not yet have generally applicable RL algorithms. The CHS benchmark413

produces reliable conclusions with only three runs in the preliminary sweep while providing a new414

challenging aspect to small computationally-cheap environments, allowing small university labs and415

tech giants alike to conduct rigorous and meaningful comparisons. Finally, prior work has disagreed416

on the benefit of using OU or Gaussian noise in DDPG on Mujoco-based environments. Perhaps417

some combination of too few runs, using default hyperparameters, or problematic environment sub-418

selection yielded conflicting results. Our results with CHS suggest there is no significant performance419

difference across a suite of 28 Mujoco environments, putting this debate to bed. The CHS benchmark420

can play a role uncovering falsehoods and resolving disputes.421

The CHS is a general procedure for evaluating performance across environments. We provide two422

example instantiations of the CHS, the SC-CHS for discrete action control on small domains and423

the DMC-CHS for continuous control on large simulated environments, however the CHS can also424

be extended to use arbitrary environment sets to allow targeted evaluation across environments with425

certain desireable properties. For example, the taxonomies of Atari games identified in Bellemare426

et al. (2016), the off-policy evaluation environments used in Sutton et al. (2009), or the taxonomy427

of exploration environments from Yasui et al. (2019) are each sets of environments that have been428

previously identified and used across the literature. Applying the CHS to any one of the environment429

sets provides a new challenge, and in some small way can push us towards generally applicable RL430

agents.431
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