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Abstract

We explore zero- and few-shot generalization001
for fact verification (FV), which aims to gener-002
alize the FV model trained on well-resourced003
domains (e.g., Wikipedia) to low-resourced do-004
mains that lack human annotations. To this end,005
we first construct a benchmark dataset collec-006
tion which contains 11 FV datasets represent-007
ing 6 domains. We conduct an empirical analy-008
sis of generalization across these FV datasets,009
finding that current models generalize poorly.010
Our analysis reveals that several factors affect011
generalization, including dataset size, length012
of evidence, and the type of claims. Finally,013
we show that two directions of work improve014
generalization: 1) incorporating domain knowl-015
edge via pretraining on specialized domains,016
and 2) automatically generating training data017
via claim generation.018

1 Introduction019

With a rise in deliberate disinformation, Fact Ver-020

ification (FV) has become an important NLP ap-021

plication. FV aims to verify given claims with022

the evidence retrieved from plain text. Rapid023

progress has been made by training large neural024

models (Zhou et al., 2019; Liu et al., 2020; Zhong025

et al., 2020) on the FEVER dataset (Thorne et al.,026

2018), containing more than 100K human-crafted027

(evidence, claim) pairs based on Wikipedia. Fact028

verification is also needed in other domains, includ-029

ing news, social media, and scientific documents.030

This has spurred the creation of a large number of031

FV datasets, such as COVID-Fact (Saakyan et al.,032

2021), SciFact (Wadden et al., 2020), and Climate-033

FEVER (Diggelmann et al., 2020).034

However, considering that human annotation is035

time-consuming, costly, and often biased, it is diffi-036

cult to collect reliable human-labeled data in every037

domain that demands fact verification. We need to038

investigate how to build a generalizable fact verifi-039

cation system that adapts to new domains with zero040

or few samples. Critically, how can we leverage 041

valuable (evidence, claim, label) annotations from 042

rich-resourced domains (e.g., Wikipedia) to aid fact 043

verification in the low-resourced ones (e.g., schol- 044

arly documents, and social media)? Although FV 045

datasets have been recently created in different do- 046

mains, little analysis has shown whether FV models 047

generalize across them and to what extent existing 048

datasets can be leveraged to improve performance 049

on these new domains. 050

In this paper, we bridge this gap by conduct- 051

ing an comprehensive investigation of zero- and 052

few-shot generalization in fact verification. By con- 053

ducting a holistic study of FV datasets to date, we 054

first carefully select 8 datasets that have artificial 055

or natural claims, human-annotated evidence, and 056

two or three-classes label for our study. We then 057

standardize their data formats as (evidence, claim, 058

label) pairs and create dataset variants with differ- 059

ent granularity of evidence, which gives us a total 060

of 11 datasets. We then conduct a thorough em- 061

pirical study of generalization and transfer across 062

these 11 datasets. We train models on a source 063

dataset, and then evaluate their performance on a 064

target dataset, either without any additional target 065

training examples (zero-shot setting) or with a few 066

additional target examples (few-shot setting). 067

We find that state-of-the-art FV models overfit 068

to the particular training set, generalizing poorly to 069

other datasets. Our in-depth analysis shows gener- 070

alization is related to several key factors, including 071

dataset size, length of evidence, and the claim type. 072

In particular, we find that Wikipedia-based artificial 073

claims (e.g., FEVER) generalizes well to natural 074

claims in real-world domains with the growth of 075

dataset size, in contrast to prior work that criticized 076

crowd-sourced claims as having strong annotation 077

bias and being unrepresentative of real-world mis- 078

information (Schuster et al., 2019). Our few-shot 079

generalization experiment further shows that fine- 080

tuning on a small amount of target training data 081
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can substantially improve performance.082

Armed with the above insights, we explore two083

ways to improve the generalization of fact veri-084

fication models. 1) Domain-specific Pretraining:085

initializing the FV model with language models086

pretrained on specialized domains, and 2) Data087

Augmentation: automatically generating training088

data for the target domain. Results show that these089

methods can noticeably improve generalization but090

still leaves unsolved challenges such as inflexibility,091

high cost, and label consistency.092

To the best of our knowledge, this is the first093

work to perform a thorough investigation of gener-094

alization and transfer in fact verification. We will095

open source our dataset collection, codes, and mod-096

els to support future research towards an universal097

and robust fact verification system.098

2 Dataset Curation099

In this section, we describe the 11 fact verification100

datasets included in our study. We first describe the101

criteria for dataset selection (§ 2.1), and then we102

introduce the dataset processing (§ 2.2). We show103

the key characteristics of the datasets in Table 1.104

2.1 Dataset Selection105

A large number of datasets have recently been in-106

troduced to study various tasks for fact checking,107

e.g., claim detection, evidence retrieval, fact verifi-108

cation, justification production, etc. Our focus, fact109

verification, in particular, takes a textual claim and110

a piece of evidence as input to predict the label for111

the claim. Let’s define these aspects:112

• Claim: Claims for fact verification are often tex-113

tual, sentence-level statements, which categorized114

into: 1) real-world natural claims crawled from115

dedicated websites, textbooks, forums, etc. 2) arti-116

ficial claims written by crowd-workers.117

• Evidence: Evidence is the relevant informa-118

tion source for validating the claim. Textual119

sources, such as news articles, academic papers,120

and Wikipedia documents, are one of the most121

commonly used types of evidence. Based on the122

granularity, we categorize the evidence in existing123

datasets into: 1) document-level evidence such as124

the Wikipedia page (Thorne et al., 2018), news125

articles (Hanselowski et al., 2019), and scientific126

papers (Wadden et al., 2020). 2) sentence-level evi-127

dence annotated by human experts in the relevant128

documents to support or refute each claim. 3) no129

evidence is given for each claim; the model needs130

to retrieve evidence from a large knowledge source. 131

• Label: The label definition for the claim 132

also varies across datasets. The most 133

common definition is the binary label, i.e., 134

supports/refutes and the three-class label, 135

i.e., supports/refutes/not enough 136

info. Some works (Wang, 2017; Augenstein 137

et al., 2019) also employ multi-class labels for 138

more fine-grained degrees of truthfulness (e.g. true, 139

mostly-true, mixture, etc), where the number of 140

labels vary greatly, ranging from 4 to 27. 141

Selection Criteria. We employ the following cri- 142

teria to select the datasets for our study. 143

• We consider both natural and artificial claims in 144

various domains. 145

• We consider the datasets with human annotated 146

document-level and sentence-level evidence. We 147

exclude datasets without evidence or which provide 148

only non-textual evidence; i.e., tables, knowledge 149

bases, etc. 150

• We only consider datasets with the binary or the 151

three-class label annotation due to the difficulty of 152

canonicalizing such multi-class labels. 153

By conducting a holistic study of fact checking 154

datasets to date, eight different data sources meet 155

our requirements. The full list of candidate datasets 156

we investigate is given in Appendix A. 157

2.2 Dataset Processing 158

We then process the selected datasets as follows. 159

1) We convert each dataset to the unified format of 160

claim-evidence-label triples (ci, ei, li)
N
i=1. The sim- 161

plicity of this format allows us to focus on out-of- 162

domain generalization, instead of other orthogonal 163

challenges of fact checking. 2) We create separate 164

dataset variants by pairing each claim with the ev- 165

idence in different granularity. This enables us to 166

study the impact of evidence length on generaliza- 167

tion. After processing, we obtain the final selection 168

of 11 datasets used. We now briefly introduce the 169

nature of each dataset and their specific processing. 170

Group I: datasets with artificial claims. These 171

are based on Wikipedia articles and are often large 172

in size. However, crowd-sourced claims are often 173

written with minimal edits to reference sentences, 174

leading to lexical biases such as the overuse of 175

explicit negation (Schuster et al., 2019). 176

• FEVER (Thorne et al., 2018) asks crowd- 177

workers to mutate sentences from Wikipedia ar- 178

ticles to create claims. We use the Wikipedia para- 179
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Dataset Domain Claim Evidence Label
# Claims Avg. # tokens

Train Test Claim Evid.

I

FEVER-sent Wikipedia artificial sent-level S (52%), R (22%), N (26%) 145,327 19,972 9.4 35.9
FEVER-para Wikipedia artificial doc-level S (52%), R (22%), N (26%) 145,327 19,972 9.4 368.7
VitaminC Wikipedia artificial sent-level S (50%), R (35%), N (15%) 370,653 63,054 12.6 29.5
FoolMeTwice Wikipedia artificial sent-level S (49%), R (51%) 10,419 1,169 15.3 37.0

II

Climate-FEVER-sent Climate natural sent-level S (25%), R (11%), N (64%) 6,140 1,535 22.8 33.8
Climate-FEVER-para Climate natural doc-level S (47%), R (19%), N (34%) 1,103 278 22.9 168.9
Sci-Fact-sent Science natural sent-level S (43%), R (22%), N (35%) 868 321 13.8 61.9
Sci-Fact-para Science natural doc-level S (43%), R (22%), N (35%) 868 321 13.8 257.3
PubHealth Health natural sent-level S (60%), R (36%), N (4%) 8,370 1,050 15.7 137.6
COVID-Fact Forum natural sent-level S (32%), R (68%) 3,268 818 12.4 82.5
FAVIQ Question natural doc-level S (50%), R (50%) 17,008 4,260 15.2 304.9

Table 1: List of the 11 fact verification datasets for our study and their characteristics.

graph associated with each claim as its document-180

level evidence to construct the FEVER-para dataset.181

We then use the sentence-level gold evidence for182

the supports and refutes claims to build the183

FEVER-sent dataset. However, since sentence-184

level evidence is not available for NEI claims, we185

use the system of Malon (2019) to retrieve the evi-186

dence sentences, following Atanasova et al. (2020).187

• VitaminC (Schuster et al., 2021) creates con-188

trastive evidence pairs for each claim, in which189

evidence pairs are nearly identical in language and190

content, with the exception that one supports a191

claim while the other does not.192

• FoolMeTwice (Eisenschlos et al., 2021) designs193

a multi-player game that leads to diverse strategies194

for crafting claims (e.g., temporal inference) based195

on Wikipedia, resulting in more complex claims196

with less lexical overlap with the evidence.197

Group II: datasets with natural claims. These198

claims are collected from the Internet and then199

manually verified by professional fact checkers.200

They represent real-world claims, and originate201

from diverse domains, such as scholarly documents,202

news articles, forums, etc. However, due to the203

difficulty and high cost of manually verifying real-204

world claims, these datasets are limited in scale.205

• Climate-FEVER (Diggelmann et al., 2020) con-206

sists of 1,535 real-life claims regarding climate-207

change collected from the Internet. The top five208

most relevant sentences from Wikipedia are re-209

trieved as the evidence. Humans then annotate each210

sentence as supporting, refuting, or not enough211

information to validate the claim. We use the212

sentence-level annotation as the evidence for each213

claim to build the Climate-FEVER-sent. We con-214

struct the document-level evidence for each claim215

by putting together all of its evidence sentences,216

which gives us the Climate-FEVER-para version.217

• Sci-Fact (Wadden et al., 2020) consists of 218

1.4K expert-written scientific claims paired with 219

evidence-containing abstracts annotated with labels 220

and sentence-level rationale. We use the annotated 221

rationale as the sentence-level evidence to build 222

the Sci-Fact-sent. We construct the Sci-Fact-para 223

version by using the evidence-containing abstract 224

as the document-level evidence for each claim. 225

• PubHealth (Kotonya and Toni, 2020) contains 226

11.8K claims accompanied by journalist crafted, 227

gold standard judgments to support/refute the 228

claims. The claims are collected from five fact- 229

checking websites, news headlines, and news re- 230

views. We use the judgement texts as the evidence 231

to pair with each claim. 232

• COVID-Fact (Saakyan et al., 2021) consists of 233

4,086 claims concerning the COVID19 pandemic 234

crawled from the r/COVID19 subreddit. We use 235

their sentence-level evidence annotated by crowd- 236

workers as the evidence. 237

• FAVIQ (Park et al., 2021) contains 26k claims 238

converted from natural ambiguous questions posed 239

by real users. The answer-containing Wikipedia 240

paragraph is provided as the document-level evi- 241

dence for each claim. 242

Many of the original datasets do not release 243

their test set. Therefore, we use their original 244

split of train/dev sets as our training and evalua- 245

tion sets. We also standardize the naming of labels 246

as supports, refutes, and NEI. We visual- 247

ize the global structure of the datasets with tSNE 248

(van der Maaten and Hinton, 2008) and analyze the 249

domain divergence in Appendix B. 250

3 Zero/Few-shot Generalization 251

We now explore the generalization ability of fact 252

verification models across the 11 datasets. We first 253

formulate the task of zero/few-shot generalization. 254
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Train↓ Test→ FEVER
-para

FEVER
-sent

VitaminC
C-FEVER

-para
C-FEVER

-sent
SciFact
-para

SciFact
-sent

PubHealth

FEVER-para — 72.81 43.87 20.83 40.90 22.09 28.10 9.05
FEVER-sent 55.57 — 62.11 44.98 48.70 44.98 56.15 21.61
VitaminC 52.04 65.32 — 42.32 44.40 44.14 50.55 21.97

C-FEVER-para 17.86 20.04 10.59 — 42.02 29.93 31.62 5.29
C-FEVER-sent 17.87 24.47 20.25 54.59 — 25.84 39.39 8.47
SciFact-para 23.96 27.09 28.37 29.85 28.63 — 44.68 6.78
SciFact-sent 16.86 24.50 29.22 20.61 32.50 29.00 — 4.49
PubHealth 35.21 34.41 30.67 34.12 24.18 40.34 42.03 —

SELF 85.58 89.28 86.76 44.61 62.54 52.25 54.27 72.10

Table 2: Macro-F1 of 3-class fact verification on the evaluation set for all datasets in a zero-shot generalization
setup. Rows correspond to the training dataset and columns to the evaluated dataset. The row SELF corresponds to
the in-domain performance (training and testing on the same target dataset).

Task Formulation. Given a claim C and a piece255

of evidence P as inputs, a fact verification model F256

predicts a label Y to verify whether C is supported,257

refuted, or can not be verified by the information258

in P . In the zero-shot generalization setting, we259

train models on one source FV dataset, and then260

evaluate its performance on a target test set, without261

any additional training data in the target dataset. In262

the few-shot generalization setting, we assume we263

have a small amount of target training examples.264

Fact Verification Model. We use the RoBERTa-265

large (Liu et al., 2019) as the benchmark model266

for our study since it has achieved state-of-the-267

art results in many FV datasets. We concatenate268

the claim and evidence ([CLS] claim [SEP]269

evidence) and use it as input for a classification270

task to predict the label of the claim.271

3.1 Zero-shot generalization results272

Table 2 shows the zero-shot generalization re-273

sults in macro-averaged F1 for the 3-class fact274

verification task on all the datasets that have275

supports/refutes/NEI labels, where we276

partition by dataset group: Group I, top; Group II,277

bottom. In general, the RoBERTa model general-278

izes poorly in this zero-shot setup. Compared with279

the in-domain performance (training and testing on280

the same dataset), the best zero-shot generalization281

performance shows a large drop of 20.80% on av-282

erage. This shows that the FV model overfits to the283

particular dataset and generalizes poorly to unseen284

datasets. This validates prior work that show the285

neural models are brittle when encountering out-of-286

distribution data. Taking a closer look, we further287

explore several research questions specific to fact288

verification behind this general trend. 289

Do artificial claims and natural claims general- 290

ize to each other? The bottom left of Table 2 291

shows that the model trained on natural claims gen- 292

eralizes badly to datasets with artificial claims, with 293

an average F1 drop of 72% relative to the in-domain 294

performance on the three artificial datasets. In con- 295

trast, with natural claims1, the model generalizes 296

better, with an average F1 drop of 56% (bottom 297

right). This observation supports the argument that 298

artificial claims and natural claims have substantial 299

differences, e.g., Wikipedia vs. real-world domains, 300

high vs. less lexical overlap, and simple vs. diverse 301

reasoning types, as discussed in § 2.2 and related 302

works (Wadden et al., 2020; Saakyan et al., 2021). 303

However, a surprising and counter-intuitive ob- 304

servation is that the model trained on artificial 305

claims generalize quite well to natural claims. As 306

shown by the top right section, the average F1 drop 307

narrows to 36.9% when generalizing from artificial 308

to natural claims, markedly better than when gen- 309

eralizing between natural claim datasets (56% av- 310

erage drop). In particular, when trained on FEVER- 311

sent, the model achieves the best generalization 312

results on 3 out of 5 datasets with natural claims. 313

However, we will show in the following that the 314

large size of artificial claims contribute a lot to its 315

good generalization performance. 316

Does generalization improve with more data? 317

To examine whether good generalization on the 318

FEVER and VitaminC datasets comes from their 319

large dataset size, we conduct an experiment con- 320

1For fair comparison, we don’t count the dataset pairs with
the same data source, e.g., (SciFact-sent, SciFact-para)
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Train↓ Test→ FEVER
-para

FEVER
-sent

VitaminC
FoolMe
Twice

C-FEVER
-para

C-FEVER
-sent

SciFact
-para

SciFact
-sent

PubHealth
COVID

-Fact
FAVIQ

FEVER-para — 94.91 71.56 72.50 77.40 76.04 72.29 75.92 44.75 56.82 55.09
FEVER-sent 89.08 — 79.79 84.02 74.71 80.21 75.12 87.37 58.25 63.99 61.64
VitaminC 84.62 94.46 — 84.57 62.80 54.59 62.37 69.31 55.32 70.32 62.98
FoolMeTwice 82.58 91.46 78.56 — 71.38 78.24 69.22 84.19 56.81 58.68 59.23

C-FEVER-para 33.37 33.72 52.56 34.15 — 56.66 39.77 40.89 38.61 25.50 33.52
C-FEVER-sent 51.33 62.00 55.91 50.69 75.85 — 66.72 72.08 55.54 43.04 36.53
SciFact-para 33.38 33.57 46.73 34.42 43.35 49.23 — 41.27 38.69 26.64 33.69
SciFact-sent 33.40 33.64 36.91 33.77 42.63 42.46 44.02 — 43.35 26.64 33.51
PubHealth 65.68 64.69 53.57 53.55 53.92 61.78 68.75 71.01 — 40.95 50.89
COVID-Fact 70.94 76.16 37.22 63.02 44.13 51.71 63.60 76.29 60.06 — 46.93
FAVIQ 74.57 73.80 59.14 59.67 64.92 60.49 59.08 52.64 40.15 50.25 —

Table 3: F1 of binary fact verification on the evaluation set for all datasets in a zero-shot generalization setup.
Rows correspond to the training dataset and columns to the evaluated dataset.

Train↓ Test→ FEVER
-sent

Vita
minC

C-FEVER
-sent

SciFact
-sent

Pub
Health

FEVER-sent — 22.20 13.66 19.64 24.57
VitaminC 16.93 — 13.78 20.04 24.98

C-FEVER-sent 16.63 8.36 — 17.24 2.51
SciFact-sent 27.43 26.80 30.50 — 13.06
PubHealth 28.60 26.69 18.04 22.22 —

Table 4: Macro-F1 of 3-class fact verification for all
datasets with sentence-level evidence in a zero-shot gen-
eralization setup. The size of training data is controlled
to 800 samples for all datasets.

trolling for data size. Here, we only take 800 ex-321

amples for each dataset to train the model. We322

show the zero-shot generalization results between323

the five datasets with sentence-level evidence in324

Table 4. The results on all datasets are shown in325

Table 10 in Appendix C.326

We find that the model trained on natural claim327

datasets (Group I) can generalize to other natural328

claims slightly better than the model trained on ar-329

tificial claim datasets (Group II) in this controlled330

setting. This confirms that dataset size contributes331

a lot to generalization ability. Tables 2 and 4 to-332

gether show that Wikipedia-based artificial claims333

still generalize well to natural claims in real-world334

domains with the growth of dataset size, although335

crowd-sourced claims have been criticized to have336

strong annotation bias and cannot represent real-337

life misinformation (Schuster et al., 2019).338

Which type of label is more difficult to verify?339

Table 5 shows the break-down of the class-wise F1340

score. For each dataset, we show the average class-341

wise F1 when training the model on other datasets342

(zero-shot) and the class-wise F1 for training on343

Dataset
Zero-shot In-domain

S R N S R N

FEVER-para 33.75 25.85 34.41 87.05 85.89 83.81
FEVER-sent 42.52 28.24 44.38 91.32 89.42 87.10
VitaminC 50.06 20.44 25.96 94.44 89.42 76.42

C-FEVER-para 34.14 24.09 47.76 68.50 13.56 51.76
C-FEVER-sent 28.29 19.72 64.00 62.27 46.40 78.96
SciFact-para 34.33 15.35 51.60 59.29 23.02 74.44
SciFact-sent 47.43 22.23 55.70 61.87 18.49 82.45
PubHealth 20.96 4.54 7.79 91.07 82.00 43.24

Table 5: Class-wise F1 of 3-class fact verification for the
zero-shot generalization setup (left) and the in-domain
training setup (right). S: supports; R: refutes; N: NEI.

the same dataset (in-domain). The results show 344

that the refutes claim has the worse prediction 345

score (in bold) almost for all datasets, in both the 346

zero-shot and the in-domain setting. The in-domain 347

results are in inline with the empirical observation 348

that (Jiang et al., 2020) it is often ambiguous to 349

differentiate between refutes and NEI claims 350

even for trained human annotators. This difficulty 351

still maintains in the zero-shot setting and harms 352

the generalization results. 353

What is the impact of evidence length? From 354

Table 2, we find that fact verification in a dataset 355

with document-level evidence is more difficult than 356

the same dataset with sentence-level evidence (an 357

average of 13.29% drop of in-domain F1). This 358

is understandable, since document-level evidence 359

requires the model to additionally filter out the 360

irrelevant information. Climate-FEVER suffers 361

the largest F1 drop of 31.86%, compared with 362

the slightly performance drop on FEVER (4.3%) 363

and SciFact (3.72%). A possible reason is that 364
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Climate-FEVER’s document-level evidence con-365

sists of different (even contradictory) evidence sen-366

tences, which requires the model to reason over367

multiple sentences instead of just selecting the most368

relevant one.369

In terms of generalization, the datasets with370

sentence-level evidence in general achieve better371

generalization results to other datasets compared to372

their doc-level versions. For example, C-FEVER-373

sent generalizes better than C-FEVER-para on 5374

of the 6 datasets excluding themselves. Models375

trained on sentence-level datasets generalize well376

to other document-level datasets; but the converse377

is not true. These results indicate that training the378

FV model on more fine-grained evidence yields379

better generalization. This is consistent with the in-380

tuition that providing fine-grained evidence is eases381

models’ learning in FV, showing the importance of382

accurate evidence retrieval.383

3.2 Zero-shot generalization for binary FV384

Many works (Jiang et al., 2020; Saakyan et al.,385

2021) do not consider NEI claims due to their am-386

biguity. To explore whether our previous observa-387

tions also hold for the task of binary fact verifica-388

tion, we evaluate the generalization results for all 11389

datasets using only the supports and refutes390

claims for training and evaluation, shown in Ta-391

ble 3. In this setting, artificial claims also gener-392

alize well to natural claims in other domains. In393

6 of the 7 datasets with natural claims, the best394

generalization score is from a model trained on395

artificial claims. This also holds for the evidence396

length: datasets with sentence-level evidence tend397

to generalize better than document-level datasets.398

Finally, compared with the three-class result in399

Table 2, generalization improves a lot on Climate-400

FEVER, SciFact, and PubHealth. The reason is401

that the model struggles in distinguishing between402

refutes and NEI claims in these datasets, as re-403

flected by Table 5. Therefore, they benefit a lot404

from removing the NEI label.405

3.3 Few-shot generalization results406

We now consider the few-shot generalization set-407

ting, assuming access to a small number of exam-408

ples from a target dataset (50 for each class in our409

experiment). We pre-train a model on a source410

dataset, and then fine-tune on the target. Our goal411

is to analyze whether pre-training improves perfor-412

mance compared to training on the target alone.413

Train↓ Test→ C-fever
-para

C-fever
-sent

SciFact
-para

SciFact
-sent

Pub
Health

FEVER-para 50.04 45.99 59.91 68.18 42.81
FEVER-sent 55.13 51.84 66.12 76.39 40.90
VitaminC 50.41 49.80 58.27 68.59 37.84

SELF-few-shot 22.74 10.75 17.24 33.38 43.62
SELF-full 44.61 62.54 52.25 54.27 72.10

Table 6: Macro-F1 of three-class fact verification for all
datasets in a few-shot generalization setup.

Table 6 shows the macro-F1 on the evaluation 414

set of all datasets. The row “SELF-few-shot” and 415

“SELF-full” show the performance of directly train- 416

ing on the 150 samples of the target dataset and 417

the full target training set, respectively (without 418

pre-training on the source dataset). In general, pre- 419

training on a source FV dataset and fine-tuning 420

to the target outperforms “SELF-few-shot” on all 421

5 datasets and “SELF-full” on 3 out of 5 datasets. 422

This shows that pre-training on a related FV dataset 423

helps to reduce the demand for human-annotated 424

training data in the target domain. 425

Second, FEVER-sent obtains good generaliza- 426

tion performance in all evaluation datasets. This 427

strengthens our finding in Section 3.1 that FEVER 428

generalizes well to datasets with natural claims in 429

real-world domains. Last, after finetuning, we see 430

dramatic improvement in performance comparing 431

to Table 2. This highlights that current models 432

over-fit to the data they are trained on, and small 433

amounts of data from the target distribution can 434

overcome this generalization gap. 435

4 Improving Generalization 436

We then investigate two ways to improve the gen- 437

eralization ability of fact verification: 1) incorpo- 438

rating domain knowledge via pretraining on spe- 439

cialized domains, and 2) automatically generating 440

training data via data augmentation. 441

4.1 Pretraining on Specialized Domains 442

In-domain knowledge is essential for fact check- 443

ing in specialised domains. For example, virology 444

background knowledge is required to verify sci- 445

entific claims regarding COVID19 (Wadden et al., 446

2020). When generalizing an FV model from one 447

domain to another, how to endow the model with 448

such in-domain knowledge is a challenging subject 449

worthy of long-term study. Here we explore one 450

simple solution: initializing the model with lan- 451

guage models pretrained on specialized domains. 452
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Model Train↓ Test→ FEVER
-para

FEVER
-sent

VitaminC
C-FEVER

-para
C-FEVER

-sent
SciFact
-para

SciFact
-sent

PubHealth

BERT
FEVER-para — 64.04 33.82 18.15 29.71 18.53 18.19 3.20
FEVER-sent 66.97 — 54.75 35.39 26.49 39.27 39.72 25.95
VitaminC 54.12 63.28 — 39.57 34.93 40.80 45.51 22.21

BioBERT
FEVER-para — 67.89 42.41 24.22 38.94 37.69 35.85 8.24
FEVER-sent 57.18 — 51.95 40.58 39.01 36.83 38.36 37.61
VitaminC 51.03 60.34 — 40.60 39.72 43.38 50.71 19.44

SciBERT
FEVER-para — 68.49 39.73 20.43 33.84 28.90 35.53 6.37
FEVER-sent 52.95 — 51.84 35.50 35.68 34.24 39.46 36.46
VitaminC 50.20 58.74 — 37.99 38.79 43.55 45.69 20.66

Table 7: Zero-shot generalization performance (macro-F1) when initialized with different pretraining models.

In Table 7, we show the zero-shot generalization453

performance when initializing the FV model with454

BioBERT (Lee et al., 2020) (pretrained on biol-455

ogy literature) and SciBERT (Beltagy et al., 2019)456

(pretrained on scholarly documents). Our goal is457

to explore whether pretraining on specialized do-458

mains helps the generalization. To eliminate the459

impact of other factors such as the model size, we460

use the BERT model (Devlin et al., 2019) as the461

baseline, since BioBERT and SciBERT are both462

based on the BERT model.463

We find that BioBERT and SciBERT both out-464

perform the BERT on the generalization scores465

in Climate-FEVER, SciFact, and PubHealth, with466

an average improvement of 21.39% and 12.69%467

in F1, respectively. However, their performance468

on Wikipedia-based datasets (FEVER and Vitam-469

inC) is relatively worse with BERT (-2.6% and470

-17.7% for BioBERT and SciBERT, respectively).471

This confirms the generalization of FV in certain472

domains (e.g., science) can be improved with the473

language models pretrained on relevant domains474

(e.g., scientific papers). We have similar observa-475

tions for the few-shot generalization setting, shown476

in Table 11 in Appendix D. Despite the positive477

results, a suitable pretraining model in certain do-478

mains (e.g., tweets) is often unavailable. Moreover,479

this requires re-training the FV model during do-480

main transfer. Therefore, how to develop a more481

accessible and less expensive way to incorporate482

in-domain knowledge required for fact checking483

still requires further investigation.484

4.2 Data Augmentation485

Another direction we explore is improving general-486

ization via data augmentation, which has recently487

shown promising results in other NLP tasks such as488

question answering (Yue et al., 2021) and machine489

translation (Cheng et al., 2020). We first train a 490

claim generation model based on the BART (Lewis 491

et al., 2020), using the (evidence, claim, label) 492

triples in the source domain as training data. 493

We use the format [LABEL] label [NER] 494

NERs [EVIDENCE] evidence as the input, 495

and use the claim as the target output for training, 496

where NERs are the entities appearing in the claim 497

(we add NERs to guide the model to generate more 498

specific claims). We then apply the trained model 499

to generate claims with different labels in the tar- 500

get domain by separately assigning supports, 501

refutes, NEI as the label prefix of the evidence, 502

and we randomly assign an entity from the evi- 503

dence as the NERs2 to guide the claim generation. 504

We name this method as BART-gen. 505

We train BART-gen on the FEVER-sent dataset 506

and generate synthetic training (evidence, claim, 507

label) triples for other datasets. For each evidence 508

in the target domain, we generate six claims with 509

different (label, NERs) combinations. Table 8 510

shows the zero- and few-shot generalization results 511

for BART-gen and other baselines: 1) FEVER-full: 512

the model is trained on the original FEVER-sent 513

dataset; 2) FEVER-control: the model is trained 514

on a random subset of FEVER-sent which has the 515

same amount of data with the generated data; 3) 516

BART-gen: the model is trained on the generated 517

data. For the few-shot setting, the model is further 518

fine-tuned with 150 in-domain samples. 519

From Table 8, we find that in the zero-shot set- 520

ting, BART-gen consistently improve the general- 521

ization performance compared with FEVER-full 522

(+24.9% in average) and FEVER-control (+47.4% 523

in average). The results show that training with 524

generated target data is in general more effective 525

2Since no ground-truth claim is available for the target
domain, the entity cannot come from the claim.
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Method↓ Test→ C-fever
-para

C-fever
-sent

SciFact
-para

SciFact
-sent

Pub
Health

Zero-shot setting
FEVER-full 44.98 48.70 44.98 56.15 21.61
FEVER-control 37.14 45.64 32.42 47.57 20.69
BART-gen 46.51 51.67 47.80 54.63 69.82

Few-shot setting
FEVER-full 55.13 51.84 66.12 76.39 40.90
FEVER-control 37.17 48.13 62.72 77.41 47.03
BART-gen 46.94 52.80 50.10 59.00 70.45

Table 8: Macro-F1 of three-class fact verification with
data augmentation (BART-gen) and other baselines.

than directly generalizing a model trained on the526

source data. This is better reflected by compar-527

ing BART-gen with FEVER-control in which the528

data amount is the same. The improvement is espe-529

cially noticeable for PubHealth, probably because530

it lacks the NEI claims in its original training set.531

Data augmentation addresses this by generating a532

sufficient balanced number of claims for each label.533

However, our human evaluation in Appendix E534

shows that around 30% of generated claims suffer535

the label inconsistency problem, i.e., the BART-gen536

often generates a fluent claim that does not match537

our desired label (for example, we want to generate538

a refutes claim, but the generated claim is actu-539

ally NEI). Label inconsistency may introduce con-540

flicting information between the pretraining and541

fine-tuning stages, which we hypothesize is the542

cause for the lower level of improvement in fine-543

tuning the model on the generated data, compared544

with fine-tuning the model on FEVER. Therefore,545

although data augmentation is a promising direc-546

tion to improve generalization, it remains a chal-547

lenging problem regarding how to generate high548

quality claims with consistent label.549

5 Related Work550

To overcome the proliferation of misinformation,551

a great amount of progress has been made in the552

area of automated fact verification. For model-553

ing, pretraining-based models (Nie et al., 2019;554

Stammbach and Neumann, 2019; Zhao et al., 2020;555

Soleimani et al., 2020) have been used for better556

text representation and have achieved promising557

performance. Graph-based models (Zhou et al.,558

2019; Liu et al., 2020; Zhong et al., 2020) are used559

to facilitate the reasoning over multiple pieces of560

evidence. However, most existing models rely on561

large-scale in-domain training data, which is of-562

ten unrealistic for every domain that demand fact563

checking. In this paper, we aim to address this by 564

working towards a generalizable fact verification 565

system that can adapt to different domains with 566

zero or few samples in the target domain. 567

For datasets, various fact-checking datasets rep- 568

resenting different real-world domains are pro- 569

posed, including both naturally occurring (Au- 570

genstein et al., 2019; Gupta and Srikumar, 2021; 571

Saakyan et al., 2021) and human-crafted (Thorne 572

et al., 2018; Sathe et al., 2020; Schuster et al., 2021) 573

fact-checking claims. While these FV datasets fo- 574

cus on different domains, there is still a substantial 575

overlap in the abilities required to verify claims 576

across these datasets. However, little analysis has 577

been done on whether they generalize to one an- 578

other, and the extent to which existing datasets can 579

be leveraged for improving performance on new 580

ones. Similar studies have been done in other NLP 581

tasks (Talmor and Berant, 2019; Hardalov et al., 582

2021), while it is less investigated in fact verifi- 583

cation. In this paper, we bridge this gap by con- 584

ducting a comprehensive study of generalization 585

and transfer across existing FV datasets, revealing 586

several key factors for better generalization. 587

6 Conclusion and Future Work 588

In this work, we perform a thorough empirical in- 589

vestigation of zero- and few-shot generalization 590

over 11 fact verification datasets. Moreover, we 591

conduct an exhaustive analysis and highlight the 592

most important factors influencing the generaliza- 593

tion performance. We further empirically explore 594

two ways to improve generalization in fact verifica- 595

tion. We highlight several practical takeaways: 596

• Overall, the FV model generalizes poorly to un- 597

seen datasets compared with in-domain evaluation. 598

However, performance is largely improved by fine- 599

tuning on the target data. 600

• Artificial claims can also generalize well to natu- 601

ral claims with an increase of dataset size. 602

• Model trained on sentence-level evidence gener- 603

alize better than document-level evidence. 604

• The refutes claims are the most difficult to 605

verify among the three labels. 606

• Domain-specific pretraining and data augmenta- 607

tion consistently improves generalization perfor- 608

mance, but they also leave unsolved challenges. 609

In future work, we plan to experiment with more 610

datasets, including non-English ones. We will also 611

explore the generalization of other sub-tasks in fact 612

checking, e.g., claim detection, evidence retrieval. 613
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Dataset Domain Claim
Doc-level
evidence

Sent-level
evidence

NEI
claims

Publicly
available

FEVER (Thorne et al., 2018) Wikipedia artificial ! ! ! !

WikiFactCheck (Sathe et al., 2020) Wikipedia artificial ! ! !

HOVER (Jiang et al., 2020) Wikipedia artificial ! ! !

VitaminC (Schuster et al., 2021) Wikipedia artificial ! ! ! !

Fool Me Twice (Eisenschlos et al., 2021) Wikipedia artificial ! ! !

CREAK (Onoe et al., 2021) Commonsense artificial ! !

CreditAccess (Popat et al., 2016) News natural ! ! !

Emergent (Ferreira and Vlachos, 2016) Emergent natural ! ! ! !

MultiFC (Augenstein et al., 2019) Multiple natural ! !

Snopes (Hanselowski et al., 2019) News natural ! ! !

Climate-FEVER (Diggelmann et al., 2020) Climate natural ! ! ! !

SciFact (Wadden et al., 2020) Scientific natural ! ! ! !

PubHealth (Kotonya and Toni, 2020) Health natural ! ! ! !

COVID-Fact (Saakyan et al., 2021) Forum natural ! ! !

X-Fact (Gupta and Srikumar, 2021) Multiple natural ! ! !

FaVIQ (Park et al., 2021) Forum natural ! ! !

Table 9: A list of candidate fact verification datasets.

COVID-Fact

C-FEVER-para

C-FEVER-sent

FAVIQ

FEVER-para

FEVER-sent

FoolMeTwice

PUBHEALTH
SciFact-para

SciFact-sent

VitaminC

Figure 1: tSNE plot of [CLS] representations of each
dataset; highlighted points denote cluster centroids.

A A List of Fact Verification Datasets824

In Table 9 we provide a comprehensive list of can-825

didate datasets that we consider for our study, in-826

cluding those are not selected in our benchmark in827

the end. The candidate list does not include the fact828

checking datasets without providing evidence for829

the claim (e.g., FakeNewsNet (Shu et al., 2020)), or830

focusing on non-textual evidence such as table (e.g.,831

FEVEROUS (Aly et al., 2021) and TabFact (Chen832

et al., 2020)).833

Afterward, we exclude some datasets from the 834

candidate list, mainly because of the lack of clean 835

evidence, the small scale in size, non-English 836

claims, and unavailability. For example, we ex- 837

clude Emergent (Ferreira and Vlachos, 2016) since 838

it only contains 300 claims. We exclude X- 839

Fact (Gupta and Srikumar, 2021) since it is a 840

multi-lingual dataset that mainly focus on non- 841

English languages. Snopes (Hanselowski et al., 842

2019) is not included since it is not publicly avail- 843

able. We also exclude CREAK (Onoe et al., 2021), 844

HOVER (Jiang et al., 2020), and MultiFC (Au- 845

genstein et al., 2019) since their evidence is either 846

coarse-grained (e.g., the whole Wikipedia page) 847

or noisy (e.g., the original webpage in certain fact 848

checking website). 849

B Domain Divergence Analysis 850

Following Hardalov et al. (2021), we plot the 11 851

datasets in a latent vector space to visualize the 852

global structure of the datasets. We proportionally 853

sample 82K (10%) examples, and we pass them 854

through a RoBERTa-large (Liu et al., 2019) model 855

without any training. The input has the follow- 856

ing form: [CLS] claim [SEP] evidence. 857

Next, we take the [CLS] token representations, 858

and we plot them in Figure 1 using tSNE (van der 859

Maaten and Hinton, 2008). We can see that datasets 860

with natural claims are grouped top-right, clearly 861
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Train↓ Test→ FEVER
-para

FEVER
-sent

VitaminC
C-FEVER

-para
C-FEVER

-sent
SciFact
-para

SciFact
-sent

PubHealth

FEVER-para — 31.98 27.58 32.83 25.22 25.36 30.72 18.82
FEVER-sent 16.68 — 22.20 21.78 13.66 20.01 19.64 24.57
VitaminC 16.70 16.93 — 22.01 13.78 20.04 20.04 24.98

C-FEVER-para 17.15 18.00 27.51 — 31.44 17.24 18.19 5.04
C-FEVER-sent 16.63 16.63 8.36 17.51 — 17.24 17.24 2.51
SciFact-para 30.66 30.66 28.30 33.46 31.36 — 42.40 12.15
SciFact-sent 28.37 27.43 26.80 27.93 30.50 24.51 — 13.06
PUBHEALTH 26.77 28.60 26.69 28.25 18.04 22.80 22.22 —

SELF 32.35 16.68 29.53 36.12 26.14 53.33 50.72 52.05

Table 10: Macro-F1 of 3-class fact verification on the evaluation set for all datasets in a zero-shot generalization
setup. The size of training data is controlled to 800 samples for all datasets. Rows correspond to the training dataset
and columns to the evaluated dataset. The row SELF corresponds to the in-domain performance (training and testing
on the same target dataset).

separated from those with artificial claims. The862

clusters of real-world domain datasets do not over-863

lap, which highlights the rich diversity of our se-864

lected datasets. We also notice that datasets with865

sentence-level evidence have little overlap with866

their paragraph-level counterparts (e.g., Climate-867

FEVER-sentence v.s. Climate-FEVER-paragraph).868

To sum up, Figure 1 confirms that there exists di-869

vergence between different domains and datasets.870

C Full Results of Controlled Size871

Generalization872

Table 10 shows the full results of the controlled ex-873

periment in Section 3.1 where we only take 800 ex-874

amples for each dataset to train the model. We find875

that the model trained on artificial claim datasets876

generalize slightly worse to natural claims com-877

pared with the model trained on artificial claim878

datasets in the controlled size setting. Compared879

with the good generalization results from artificial880

claims to natural claims in Table 2, it shows that881

the size of the source dataset contributes a lot to882

generalization ability of fact verification.883

D Full Results of Few-shot Generalization884

In Table 11, we show the few-shot generalization885

performance of FV model pretrained on specialized886

domains. After finetuning, we observe dramatic887

improvement in performance comparing to Ta-888

ble 7 (+14.31% for BERT, +11.84% for BioBERT,889

+15.29% for SciBERT). Under few-shot setting,890

we find that BioBERT and SciBERT still outper-891

form the BERT on the generalization scores in all892

datasets except Climate-FEVER-sentence.893

E Human Evaluation of Generated 894

Claims 895

We conduct the human evaluation on the claims 896

generated by BART-gen on four datasets: Climate- 897

FEVER-sentence, Sci-Fact-sentence, PubHealth, 898

and COVID-Fact. We randomly sample 90 gener- 899

ated claims for each dataset with a balanced desired 900

label distribution. To be specific, 30/30/30 of their 901

desired labels, i.e., the type of claim we expect the 902

model to generate (by appending the correspond- 903

ing label prefix) are supports/refutes/NEI. 904

We ask two expert human annotators to annotate 905

the actual label for each claim, i.e., whether the 906

generated claim is supported, refuted, or cannot be 907

verified by the evidence. If the generated claim is 908

an incomplete or unreadable sentence, we label it 909

as Unclassified. 910

Figure 2 shows the confusion matrix for the de- 911

sired labels and the actual labels. We find that in all 912

four datasets, around 30% of the generated claims 913

suffer from the label inconsistency problem, i.e., 914

the actual label of the claim is not the desired label. 915

Specially, the confusion between the refutes 916

and NEI claim is the major type of error, showing 917

that refutes and NEI claims are the hardest for 918

the model to generate. 919

We also observe that around 5% of the generated 920

claims are incomplete or unreadable. Moreover, 921

most generated claims are short and simple (e.g., 922

“Gilbert Rothschild was a person”), which do not 923

require complex reasoning to verify. It is therefore 924

worthy to investigate how to obtain high-quality 925

claims in data augmentation for better generaliza- 926

tion in the future study. 927
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Model Train↓ Test→ C-FEVER
-para

C-FEVER
-sent

SciFact
-para

SciFact
-sent

PubHealth

BERT
FEVER-para 41.24 42.68 42.74 43.42 15.57
FEVER-sent 43.84 45.09 50.23 55.65 33.45
VitaminC 45.94 43.38 57.25 58.12 33.69

BioBERT
FEVER-para 46.22 43.06 61.45 59.19 33.47
FEVER-sent 47.64 43.43 48.59 53.17 39.44
VitaminC 44.16 40.48 54.52 61.62 32.29

SciBERT
FEVER-para 47.92 40.46 53.12 56.83 34.39
FEVER-sent 43.92 40.94 56.53 60.49 42.14
VitaminC 46.23 40.16 60.95 61.04 37.37

Table 11: Few-shot generalization performance (macro-F1) when initialized with different pretraining models.
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(a) Climate-FEVER-sentence
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(b) SciFact-sentence
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(c) PubHealth
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Figure 2: Confusion matrices (normalized over columns) of generated claims on four datasets. The desired label
is the input label for our claim generation model (BART-gen) and the actual label is the human-annotated label.
“Unclassified” means that the generated claim is incomplete or unreadable.
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