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Abstract

We explore zero- and few-shot generalization
for fact verification (FV), which aims to gener-
alize the FV model trained on well-resourced
domains (e.g., Wikipedia) to low-resourced do-
mains that lack human annotations. To this end,
we first construct a benchmark dataset collec-
tion which contains 11 FV datasets represent-
ing 6 domains. We conduct an empirical analy-
sis of generalization across these FV datasets,
finding that current models generalize poorly.
Our analysis reveals that several factors affect
generalization, including dataset size, length
of evidence, and the type of claims. Finally,
we show that two directions of work improve
generalization: 1) incorporating domain knowl-
edge via pretraining on specialized domains,
and 2) automatically generating training data
via claim generation.

1 Introduction

With a rise in deliberate disinformation, Fact Ver-
ification (FV) has become an important NLP ap-
plication. FV aims to verify given claims with
the evidence retrieved from plain text. Rapid
progress has been made by training large neural
models (Zhou et al., 2019; Liu et al., 2020; Zhong
et al., 2020) on the FEVER dataset (Thorne et al.,
2018), containing more than 100K human-crafted
(evidence, claim) pairs based on Wikipedia. Fact
verification is also needed in other domains, includ-
ing news, social media, and scientific documents.
This has spurred the creation of a large number of
FV datasets, such as COVID-Fact (Saakyan et al.,
2021), SciFact (Wadden et al., 2020), and Climate-
FEVER (Diggelmann et al., 2020).

However, considering that human annotation is
time-consuming, costly, and often biased, it is diffi-
cult to collect reliable human-labeled data in every
domain that demands fact verification. We need to
investigate how to build a generalizable fact verifi-
cation system that adapts to new domains with zero

or few samples. Critically, how can we leverage
valuable (evidence, claim, label) annotations from
rich-resourced domains (e.g., Wikipedia) to aid fact
verification in the low-resourced ones (e.g., schol-
arly documents, and social media)? Although FV
datasets have been recently created in different do-
mains, little analysis has shown whether FV models
generalize across them and to what extent existing
datasets can be leveraged to improve performance
on these new domains.

In this paper, we bridge this gap by conduct-
ing an comprehensive investigation of zero- and
few-shot generalization in fact verification. By con-
ducting a holistic study of FV datasets to date, we
first carefully select 8 datasets that have artificial
or natural claims, human-annotated evidence, and
two or three-classes label for our study. We then
standardize their data formats as (evidence, claim,
label) pairs and create dataset variants with differ-
ent granularity of evidence, which gives us a total
of 11 datasets. We then conduct a thorough em-
pirical study of generalization and transfer across
these 11 datasets. We train models on a source
dataset, and then evaluate their performance on a
target dataset, either without any additional target
training examples (zero-shot setting) or with a few
additional target examples (few-shot setting).

We find that state-of-the-art FV models overfit
to the particular training set, generalizing poorly to
other datasets. Our in-depth analysis shows gener-
alization is related to several key factors, including
dataset size, length of evidence, and the claim type.
In particular, we find that Wikipedia-based artificial
claims (e.g., FEVER) generalizes well to natural
claims in real-world domains with the growth of
dataset size, in contrast to prior work that criticized
crowd-sourced claims as having strong annotation
bias and being unrepresentative of real-world mis-
information (Schuster et al., 2019). Our few-shot
generalization experiment further shows that fine-
tuning on a small amount of target training data



can substantially improve performance.

Armed with the above insights, we explore two
ways to improve the generalization of fact veri-
fication models. 1) Domain-specific Pretraining:
initializing the FV model with language models
pretrained on specialized domains, and 2) Data
Augmentation: automatically generating training
data for the target domain. Results show that these
methods can noticeably improve generalization but
still leaves unsolved challenges such as inflexibility,
high cost, and label consistency.

To the best of our knowledge, this is the first
work to perform a thorough investigation of gener-
alization and transfer in fact verification. We will
open source our dataset collection, codes, and mod-
els to support future research towards an universal
and robust fact verification system.

2 Dataset Curation

In this section, we describe the 11 fact verification
datasets included in our study. We first describe the
criteria for dataset selection (§ 2.1), and then we
introduce the dataset processing (§ 2.2). We show
the key characteristics of the datasets in Table 1.

2.1 Dataset Selection

A large number of datasets have recently been in-
troduced to study various tasks for fact checking,
e.g., claim detection, evidence retrieval, fact verifi-
cation, justification production, etc. Our focus, fact
verification, in particular, takes a textual claim and
a piece of evidence as input to predict the label for
the claim. Let’s define these aspects:

e Claim: Claims for fact verification are often tex-
tual, sentence-level statements, which categorized
into: 1) real-world natural claims crawled from
dedicated websites, textbooks, forums, etc. 2) arti-
ficial claims written by crowd-workers.

e Evidence: Evidence is the relevant informa-
tion source for validating the claim. Textual
sources, such as news articles, academic papers,
and Wikipedia documents, are one of the most
commonly used types of evidence. Based on the
granularity, we categorize the evidence in existing
datasets into: 1) document-level evidence such as
the Wikipedia page (Thorne et al., 2018), news
articles (Hanselowski et al., 2019), and scientific
papers (Wadden et al., 2020). 2) sentence-level evi-
dence annotated by human experts in the relevant
documents to support or refute each claim. 3) no
evidence is given for each claim; the model needs

to retrieve evidence from a large knowledge source.
e Label: The label definition for the claim
also varies across datasets. The most
common definition is the binary label, i.e.,
supports/refutes and the three-class label,
ie., supports/refutes/not enough
info. Some works (Wang, 2017; Augenstein
et al., 2019) also employ multi-class labels for
more fine-grained degrees of truthfulness (e.g. true,
mostly-true, mixture, etc), where the number of
labels vary greatly, ranging from 4 to 27.

Selection Criteria. We employ the following cri-
teria to select the datasets for our study.

e We consider both natural and artificial claims in
various domains.

e We consider the datasets with human annotated
document-level and sentence-level evidence. We
exclude datasets without evidence or which provide
only non-textual evidence; i.e., tables, knowledge
bases, etc.

e We only consider datasets with the binary or the
three-class label annotation due to the difficulty of
canonicalizing such multi-class labels.

By conducting a holistic study of fact checking
datasets to date, eight different data sources meet
our requirements. The full list of candidate datasets
we investigate is given in Appendix A.

2.2 Dataset Processing

We then process the selected datasets as follows.
1) We convert each dataset to the unified format of
claim-evidence-label triples (c¢;, €;, ll)f\; 1- The sim-
plicity of this format allows us to focus on out-of-
domain generalization, instead of other orthogonal
challenges of fact checking. 2) We create separate
dataset variants by pairing each claim with the ev-
idence in different granularity. This enables us to
study the impact of evidence length on generaliza-
tion. After processing, we obtain the final selection
of 11 datasets used. We now briefly introduce the
nature of each dataset and their specific processing.

Group I: datasets with artificial claims. These
are based on Wikipedia articles and are often large
in size. However, crowd-sourced claims are often
written with minimal edits to reference sentences,
leading to lexical biases such as the overuse of
explicit negation (Schuster et al., 2019).

e FEVER (Thorne et al., 2018) asks crowd-
workers to mutate sentences from Wikipedia ar-
ticles to create claims. We use the Wikipedia para-



Dataset Domain Claim | Evidence Label # Fflalms AV“?' # tOkef]S
Train Test | Claim Evid.

FEVER-sent Wikipedia | artificial | sent-level | S (52%), R (22%), N (26%) | 145,327 19,972 94 359

I FEVER-para Wikipedia | artificial | doc-level | S (52%), R (22%), N (26%) | 145,327 19,972 9.4 368.7
VitaminC Wikipedia | artificial | sent-level | S (50%), R (35%), N (15%) | 370,653 63,054 12,6 295
FoolMeTwice Wikipedia | artificial | sent-level | S (49%), R (51%) 10,419 1,169 153 370
Climate-FEVER-sent Climate natural | sent-level | S (25%), R (11%), N (64%) 6,140 1,535 22.8 33.8
Climate-FEVER-para | Climate natural | doc-level | S (47%), R (19%), N (34%) 1,103 278 229 168.9
Sci-Fact-sent Science natural | sent-level | S (43%), R (22%), N (35%) 868 321 13.8 619

II  Sci-Fact-para Science natural | doc-level | S (43%), R (22%), N (35%) 868 321 13.8 2573
PubHealth Health natural | sent-level | S (60%), R (36%), N (4%) 8,370 1,050 157 137.6
COVID-Fact Forum natural | sent-level | S (32%), R (68%) 3,268 818 124 825
FAVIQ Question | natural | doc-level | S (50%), R (50%) 17,008 4,260 152 304.9

Table 1: List of the 11 fact verification datasets for our study and their characteristics.

graph associated with each claim as its document-
level evidence to construct the FEVER-para dataset.
We then use the sentence-level gold evidence for
the supports and refutes claims to build the
FEVER-sent dataset. However, since sentence-
level evidence is not available for NEI claims, we
use the system of Malon (2019) to retrieve the evi-
dence sentences, following Atanasova et al. (2020).
e VitaminC (Schuster et al., 2021) creates con-
trastive evidence pairs for each claim, in which
evidence pairs are nearly identical in language and
content, with the exception that one supports a
claim while the other does not.

e FoolMeTwice (Eisenschlos et al., 2021) designs
a multi-player game that leads to diverse strategies
for crafting claims (e.g., temporal inference) based
on Wikipedia, resulting in more complex claims
with less lexical overlap with the evidence.

Group II: datasets with natural claims. These
claims are collected from the Internet and then
manually verified by professional fact checkers.
They represent real-world claims, and originate
from diverse domains, such as scholarly documents,
news articles, forums, etc. However, due to the
difficulty and high cost of manually verifying real-
world claims, these datasets are limited in scale.

e Climate-FEVER (Diggelmann et al., 2020) con-
sists of 1,535 real-life claims regarding climate-
change collected from the Internet. The top five
most relevant sentences from Wikipedia are re-
trieved as the evidence. Humans then annotate each
sentence as supporting, refuting, or not enough
information to validate the claim. We use the
sentence-level annotation as the evidence for each
claim to build the Climate-FEVER-sent. We con-
struct the document-level evidence for each claim
by putting together all of its evidence sentences,
which gives us the Climate-FEVER-para version.

e Sci-Fact (Wadden et al., 2020) consists of
1.4K expert-written scientific claims paired with
evidence-containing abstracts annotated with labels
and sentence-level rationale. We use the annotated
rationale as the sentence-level evidence to build
the Sci-Fact-sent. We construct the Sci-Fact-para
version by using the evidence-containing abstract
as the document-level evidence for each claim.

e PubHealth (Kotonya and Toni, 2020) contains
11.8K claims accompanied by journalist crafted,
gold standard judgments to support/refute the
claims. The claims are collected from five fact-
checking websites, news headlines, and news re-
views. We use the judgement texts as the evidence
to pair with each claim.

e COVID-Fact (Saakyan et al., 2021) consists of
4,086 claims concerning the COVID19 pandemic
crawled from the r/COVID19 subreddit. We use
their sentence-level evidence annotated by crowd-
workers as the evidence.

e FAVIQ (Park et al., 2021) contains 26k claims
converted from natural ambiguous questions posed
by real users. The answer-containing Wikipedia
paragraph is provided as the document-level evi-
dence for each claim.

Many of the original datasets do not release
their test set. Therefore, we use their original
split of train/dev sets as our training and evalua-
tion sets. We also standardize the naming of labels
as supports, refutes, and NEI. We visual-
ize the global structure of the datasets with tSNE
(van der Maaten and Hinton, 2008) and analyze the
domain divergence in Appendix B.

3 Zero/Few-shot Generalization

We now explore the generalization ability of fact
verification models across the 11 datasets. We first
formulate the task of zero/few-shot generalization.



Train), Test— FEVER FEVER VitaminC C-FEVER C-FEVER SciFact SciFact PubHealth
-para -sent -para -sent -para -sent
FEVER-para — 72.81 43.87 20.83 40.90 22.09 28.10 9.05
FEVER-sent 55.57 — 62.11 44.98 48.70 4498  56.15 21.61
VitaminC 52.04 6532 — 42.32 44.40 44.14  50.55 21.97
C-FEVER-para | 17.86  20.04 10.59 — 42.02 2993  31.62 5.29
C-FEVER-sent | 17.87 24.47 20.25 54.59 — 2584  39.39 8.47
SciFact-para 2396  27.09 28.37 29.85 28.63 — 44.68 6.78
SciFact-sent 16.86  24.50 29.22 20.61 32.50 29.00 — 4.49
PubHealth 35.21 34.41 30.67 34.12 24.18 40.34  42.03 —
SELF 85.58 89.28 86.76 44.61 62.54 5225 5427 72.10

Table 2: Macro-F1 of 3-class fact verification on the evaluation set for all datasets in a zero-shot generalization
setup. Rows correspond to the training dataset and columns to the evaluated dataset. The row SELF corresponds to
the in-domain performance (training and testing on the same target dataset).

Task Formulation. Given a claim C and a piece
of evidence P as inputs, a fact verification model F
predicts a label ) to verify whether C is supported,
refuted, or can not be verified by the information
in P. In the zero-shot generalization setting, we
train models on one source FV dataset, and then
evaluate its performance on a target test set, without
any additional training data in the target dataset. In
the few-shot generalization setting, we assume we
have a small amount of target training examples.

Fact Verification Model. We use the RoBERTa-
large (Liu et al., 2019) as the benchmark model
for our study since it has achieved state-of-the-
art results in many FV datasets. We concatenate
the claim and evidence ([CLS] claim [SEP]

evidence) and use it as input for a classification
task to predict the label of the claim.

3.1 Zero-shot generalization results

Table 2 shows the zero-shot generalization re-
sults in macro-averaged F1 for the 3-class fact
verification task on all the datasets that have
supports/refutes/NEI labels, where we
partition by dataset group: Group I, top; Group II,
bottom. In general, the RoOBERTa model general-
izes poorly in this zero-shot setup. Compared with
the in-domain performance (training and testing on
the same dataset), the best zero-shot generalization
performance shows a large drop of 20.80% on av-
erage. This shows that the FV model overfits to the
particular dataset and generalizes poorly to unseen
datasets. This validates prior work that show the
neural models are brittle when encountering out-of-
distribution data. Taking a closer look, we further
explore several research questions specific to fact

verification behind this general trend.

Do artificial claims and natural claims general-
ize to each other? The bottom left of Table 2
shows that the model trained on natural claims gen-
eralizes badly to datasets with artificial claims, with
an average F1 drop of 72% relative to the in-domain
performance on the three artificial datasets. In con-
trast, with natural claims!, the model generalizes
better, with an average F1 drop of 56% (bottom
right). This observation supports the argument that
artificial claims and natural claims have substantial
differences, e.g., Wikipedia vs. real-world domains,
high vs. less lexical overlap, and simple vs. diverse
reasoning types, as discussed in § 2.2 and related
works (Wadden et al., 2020; Saakyan et al., 2021).

However, a surprising and counter-intuitive ob-
servation is that the model trained on artificial
claims generalize quite well to natural claims. As
shown by the top right section, the average F1 drop
narrows to 36.9% when generalizing from artificial
to natural claims, markedly better than when gen-
eralizing between natural claim datasets (56% av-
erage drop). In particular, when trained on FEVER-
sent, the model achieves the best generalization
results on 3 out of 5 datasets with natural claims.
However, we will show in the following that the
large size of artificial claims contribute a lot to its
good generalization performance.

Does generalization improve with more data?
To examine whether good generalization on the
FEVER and VitaminC datasets comes from their
large dataset size, we conduct an experiment con-

'For fair comparison, we don’t count the dataset pairs with
the same data source, e.g., (SciFact-sent, SciFact-para)



Train| Test—> FEVER FEVER VitaminC Fool.Me C-FEVER C-FEVER SciFact SciFact PubHealth COVID FAVIQ
-para  -sent Twice -para -sent -para - -Fact

FEVER-para — 9491 7156 7250 | 7740 76.04 7229 7592 4475 56.82 55.09
FEVER-sent 89.08 — 79.79 84.02 | 74.71 80.21 75.12 87.37 58.25 63.99 61.64
VitaminC 84.62 94.46 — 84.57 | 62.80 54.59  62.37 69.31 55.32 70.32 62.98
FoolMeTwice | 82.58 9146  78.56 — 71.38 7824  69.22 84.19  56.81 58.68 59.23
C-FEVER-para| 33.37 33.72 5256 34.15 — 56.66  39.77 40.89  38.61 25.50 3352
C-FEVER-sent| 51.33 62.00 5591  50.69 75.85 — 66.72 72.08 5554  43.04 36.53
SciFact-para 33.38 3357 46.73 3442 | 43.35 49.23 — 4127  38.69 26.64 33.69
SciFact-sent 3340 33.64 36091 33.77 | 42.63 4246 4402 — 43.35 26.64 33.51
PubHealth 65.68 64.69 53.57 53.55 53.92 61.78  68.75 71.01 — 40.95 50.89
COVID-Fact 7094 76.16 3722 63.02 | 44.13 51.71 63.60 7629  60.06 — 4693
FAVIQ 74.57 73.80 59.14  59.67 64.92 60.49  59.08 52.64  40.15 5025 —

Table 3: F1 of binary fact verification on the evaluation set for all datasets in a zero-shot generalization setup.

Rows correspond to the training dataset and columns to the evaluated dataset.

. FEVER Vita |C-FEVER SciFact Pub

Train] Test— .
-sent minC -sent -sent Health

FEVER-sent — 22.20| 13.66 19.64 24.57
VitaminC 16.93 — 13.78 20.04 24.98
C-FEVER-sent| 16.63 8.36 — 17.24 251
SciFact-sent 2743 26.80| 30.50 — 13.06
PubHealth 28.60 26.69| 18.04 22.22 —

Table 4: Macro-F1 of 3-class fact verification for all
datasets with sentence-level evidence in a zero-shot gen-
eralization setup. The size of training data is controlled
to 800 samples for all datasets.

trolling for data size. Here, we only take 800 ex-
amples for each dataset to train the model. We
show the zero-shot generalization results between
the five datasets with sentence-level evidence in
Table 4. The results on all datasets are shown in
Table 10 in Appendix C.

We find that the model trained on natural claim
datasets (Group I) can generalize to other natural
claims slightly better than the model trained on ar-
tificial claim datasets (Group II) in this controlled
setting. This confirms that dataset size contributes
a lot to generalization ability. Tables 2 and 4 to-
gether show that Wikipedia-based artificial claims
still generalize well to natural claims in real-world
domains with the growth of dataset size, although
crowd-sourced claims have been criticized to have
strong annotation bias and cannot represent real-
life misinformation (Schuster et al., 2019).

Which type of label is more difficult to verify?
Table 5 shows the break-down of the class-wise F1
score. For each dataset, we show the average class-
wise F1 when training the model on other datasets
(zero-shot) and the class-wise F1 for training on

Dataset Zero-shot In-domain
S R N S R N

FEVER-para |33.75 25.85 34.41|87.05 85.89 83.81
FEVER-sent [42.52 28.24 44.38|91.32 89.42 87.10
VitaminC 50.06 20.44 25.96|94.44 89.42 76.42
C-FEVER-para |34.14 24.09 47.76|68.50 13.56 51.76
C-FEVER-sent [28.29 19.72 64.00|62.27 46.40 78.96
SciFact-para  |34.33 15.35 51.60(59.29 23.02 74.44
SciFact-sent 47.43 22.23 55.70(61.87 18.49 82.45
PubHealth 20.96 4.54 7.79 |91.07 82.00 43.24

Table 5: Class-wise F1 of 3-class fact verification for the
zero-shot generalization setup (left) and the in-domain
training setup (right). S: supports; R: refutes; N: NEL

the same dataset (in-domain). The results show
that the refutes claim has the worse prediction
score (in bold) almost for all datasets, in both the
zero-shot and the in-domain setting. The in-domain
results are in inline with the empirical observation
that (Jiang et al., 2020) it is often ambiguous to
differentiate between refutes and NEI claims
even for trained human annotators. This difficulty
still maintains in the zero-shot setting and harms
the generalization results.

What is the impact of evidence length? From
Table 2, we find that fact verification in a dataset
with document-level evidence is more difficult than
the same dataset with sentence-level evidence (an
average of 13.29% drop of in-domain F1). This
is understandable, since document-level evidence
requires the model to additionally filter out the
irrelevant information. Climate-FEVER suffers
the largest F1 drop of 31.86%, compared with
the slightly performance drop on FEVER (4.3%)
and SciFact (3.72%). A possible reason is that



Climate-FEVER’s document-level evidence con-
sists of different (even contradictory) evidence sen-
tences, which requires the model to reason over
multiple sentences instead of just selecting the most
relevant one.

In terms of generalization, the datasets with
sentence-level evidence in general achieve better
generalization results to other datasets compared to
their doc-level versions. For example, C-FEVER-
sent generalizes better than C-FEVER-para on 5
of the 6 datasets excluding themselves. Models
trained on sentence-level datasets generalize well
to other document-level datasets; but the converse
is not true. These results indicate that training the
FV model on more fine-grained evidence yields
better generalization. This is consistent with the in-
tuition that providing fine-grained evidence is eases
models’ learning in FV, showing the importance of
accurate evidence retrieval.

3.2 Zero-shot generalization for binary FV

Many works (Jiang et al., 2020; Saakyan et al.,
2021) do not consider NET claims due to their am-
biguity. To explore whether our previous observa-
tions also hold for the task of binary fact verifica-
tion, we evaluate the generalization results for all 11
datasets using only the supports and refutes
claims for training and evaluation, shown in Ta-
ble 3. In this setting, artificial claims also gener-
alize well to natural claims in other domains. In
6 of the 7 datasets with natural claims, the best
generalization score is from a model trained on
artificial claims. This also holds for the evidence
length: datasets with sentence-level evidence tend
to generalize better than document-level datasets.
Finally, compared with the three-class result in
Table 2, generalization improves a lot on Climate-
FEVER, SciFact, and PubHealth. The reason is
that the model struggles in distinguishing between
refutes and NEI claims in these datasets, as re-
flected by Table 5. Therefore, they benefit a lot
from removing the NET label.

3.3 Few-shot generalization results

We now consider the few-shot generalization set-
ting, assuming access to a small number of exam-
ples from a target dataset (50 for each class in our
experiment). We pre-train a model on a source
dataset, and then fine-tune on the target. Our goal
is to analyze whether pre-training improves perfor-
mance compared to training on the target alone.

. C-fever C-fever SciFact SciFact Pub
Train| Test—

-para  -sent -para  -sent Health
FEVER-para 50.04 4599 5991 68.18 4281
FEVER-sent 55.13 51.84 66.12 76.39 40.90
VitaminC 5041 49.80 5827 68.59 37.84
SELF-few-shot 22.74 10.75 17.24 33.38 43.62
SELF-full 44.61 62.54 5225 5427 7210

Table 6: Macro-F1 of three-class fact verification for all
datasets in a few-shot generalization setup.

Table 6 shows the macro-F1 on the evaluation
set of all datasets. The row “SELF-few-shot” and
“SELF-full” show the performance of directly train-
ing on the 150 samples of the target dataset and
the full target training set, respectively (without
pre-training on the source dataset). In general, pre-
training on a source FV dataset and fine-tuning
to the target outperforms “SELF-few-shot” on all
5 datasets and “SELF-full” on 3 out of 5 datasets.
This shows that pre-training on a related FV dataset
helps to reduce the demand for human-annotated
training data in the target domain.

Second, FEVER-sent obtains good generaliza-
tion performance in all evaluation datasets. This
strengthens our finding in Section 3.1 that FEVER
generalizes well to datasets with natural claims in
real-world domains. Last, after finetuning, we see
dramatic improvement in performance comparing
to Table 2. This highlights that current models
over-fit to the data they are trained on, and small
amounts of data from the target distribution can
overcome this generalization gap.

4 Improving Generalization

We then investigate two ways to improve the gen-
eralization ability of fact verification: 1) incorpo-
rating domain knowledge via pretraining on spe-
cialized domains, and 2) automatically generating
training data via data augmentation.

4.1 Pretraining on Specialized Domains

In-domain knowledge is essential for fact check-
ing in specialised domains. For example, virology
background knowledge is required to verify sci-
entific claims regarding COVID19 (Wadden et al.,
2020). When generalizing an FV model from one
domain to another, how to endow the model with
such in-domain knowledge is a challenging subject
worthy of long-term study. Here we explore one
simple solution: initializing the model with lan-
guage models pretrained on specialized domains.



Model  Train| Test— FEVER FEVER VitaminC C-FEVER C-FEVER SciFact SciFact PubHealth
-para -sent -para -sent -para  -sent
FEVER-para — 64.04 33.82 18.15 29.71 18.53 18.19 3.20
BERT FEVER-sent | 66.97 — 54.75 35.39 26.49 39.27 39.72 25.95
VitaminC 5412  63.28 — 39.57 34.93 40.80 45.51 22.21
FEVER-para — 67.89 4241 24.22 38.94 37.69 35.85 8.24
BioBERT FEVER-sent | 57.18 — 51.95 40.58 39.01 36.83 38.36 37.61
VitaminC 51.03  60.34 — 40.60 39.72 43.38  50.71 19.44
FEVER-para — 68.49 39.73 20.43 33.84 28.90 35.53 6.37
SciBERT FEVER-sent | 52.95 — 51.84 35.50 35.68 3424 3946 36.46
VitaminC 50.20 58.74 — 37.99 38.79 43.55 45.69 20.66

Table 7: Zero-shot generalization performance (macro-F1) when initialized with different pretraining models.

In Table 7, we show the zero-shot generalization
performance when initializing the FV model with
BioBERT (Lee et al., 2020) (pretrained on biol-
ogy literature) and SciBERT (Beltagy et al., 2019)
(pretrained on scholarly documents). Our goal is
to explore whether pretraining on specialized do-
mains helps the generalization. To eliminate the
impact of other factors such as the model size, we
use the BERT model (Devlin et al., 2019) as the
baseline, since BIoBERT and SciBERT are both
based on the BERT model.

We find that BioBERT and SciBERT both out-
perform the BERT on the generalization scores
in Climate-FEVER, SciFact, and PubHealth, with
an average improvement of 21.39% and 12.69%
in F1, respectively. However, their performance
on Wikipedia-based datasets (FEVER and Vitam-
inC) is relatively worse with BERT (-2.6% and
-17.7% tor BioBERT and SciBERT, respectively).
This confirms the generalization of FV in certain
domains (e.g., science) can be improved with the
language models pretrained on relevant domains
(e.g., scientific papers). We have similar observa-
tions for the few-shot generalization setting, shown
in Table 11 in Appendix D. Despite the positive
results, a suitable pretraining model in certain do-
mains (e.g., tweets) is often unavailable. Moreover,
this requires re-training the FV model during do-
main transfer. Therefore, how to develop a more
accessible and less expensive way to incorporate
in-domain knowledge required for fact checking
still requires further investigation.

4.2 Data Augmentation

Another direction we explore is improving general-
ization via data augmentation, which has recently
shown promising results in other NLP tasks such as
question answering (Yue et al., 2021) and machine

translation (Cheng et al., 2020). We first train a
claim generation model based on the BART (Lewis
et al., 2020), using the (evidence, claim, label)
triples in the source domain as training data.
We use the format [LABEL] label [NER]
NERs [EVIDENCE] evidence as the input,
and use the c1aim as the target output for training,
where NERs are the entities appearing in the claim
(we add NERs to guide the model to generate more
specific claims). We then apply the trained model
to generate claims with different labels in the tar-
get domain by separately assigning supports,
refutes, NET as the label prefix of the evidence,
and we randomly assign an entity from the evi-
dence as the NERs? to guide the claim generation.
We name this method as BART-gen.

We train BART-gen on the FEVER-sent dataset
and generate synthetic training (evidence, claim,
label) triples for other datasets. For each evidence
in the target domain, we generate six claims with
different (1abel, NERs) combinations. Table 8
shows the zero- and few-shot generalization results
for BART-gen and other baselines: 1) FEVER-full:
the model is trained on the original FEVER-sent
dataset; 2) FEVER-control: the model is trained
on a random subset of FEVER-sent which has the
same amount of data with the generated data; 3)
BART-gen: the model is trained on the generated
data. For the few-shot setting, the model is further
fine-tuned with 150 in-domain samples.

From Table 8, we find that in the zero-shot set-
ting, BART-gen consistently improve the general-
ization performance compared with FEVER-full
(+24.9% in average) and FEVER-control (+47.4%
in average). The results show that training with
generated target data is in general more effective

%Since no ground-truth claim is available for the target
domain, the entity cannot come from the claim.



C-fever C-fever SciFact SciFact Pub

Method} Test— -para  -sent -para  -sent Health
Zero-shot setting

FEVER-full 4498 4870 4498 56.15 21.61

FEVER-control 37.14 45.64 3242 47.57 20.69

BART-gen 46.51 51.67 47.80 5463 69.82
Few-shot setting

FEVER-full 5513 51.84 66.12 7639 40.90
FEVER-control 37.17 48.13 62.72 77.41 47.03

BART-gen 46.94 52.80 50.10 59.00 70.45

Table 8: Macro-F1 of three-class fact verification with
data augmentation (BART-gen) and other baselines.

than directly generalizing a model trained on the
source data. This is better reflected by compar-
ing BART-gen with FEVER-control in which the
data amount is the same. The improvement is espe-
cially noticeable for PubHealth, probably because
it lacks the NET claims in its original training set.
Data augmentation addresses this by generating a
sufficient balanced number of claims for each label.

However, our human evaluation in Appendix E
shows that around 30% of generated claims suffer
the label inconsistency problem, i.e., the BART-gen
often generates a fluent claim that does not match
our desired label (for example, we want to generate
a refutes claim, but the generated claim is actu-
ally NET). Label inconsistency may introduce con-
flicting information between the pretraining and
fine-tuning stages, which we hypothesize is the
cause for the lower level of improvement in fine-
tuning the model on the generated data, compared
with fine-tuning the model on FEVER. Therefore,
although data augmentation is a promising direc-
tion to improve generalization, it remains a chal-
lenging problem regarding how to generate high
quality claims with consistent label.

5 Related Work

To overcome the proliferation of misinformation,
a great amount of progress has been made in the
area of automated fact verification. For model-
ing, pretraining-based models (Nie et al., 2019;
Stammbach and Neumann, 2019; Zhao et al., 2020;
Soleimani et al., 2020) have been used for better
text representation and have achieved promising
performance. Graph-based models (Zhou et al.,
2019; Liu et al., 2020; Zhong et al., 2020) are used
to facilitate the reasoning over multiple pieces of
evidence. However, most existing models rely on
large-scale in-domain training data, which is of-
ten unrealistic for every domain that demand fact

checking. In this paper, we aim to address this by
working towards a generalizable fact verification
system that can adapt to different domains with
zero or few samples in the target domain.

For datasets, various fact-checking datasets rep-
resenting different real-world domains are pro-
posed, including both naturally occurring (Au-
genstein et al., 2019; Gupta and Srikumar, 2021;
Saakyan et al., 2021) and human-crafted (Thorne
et al., 2018; Sathe et al., 2020; Schuster et al., 2021)
fact-checking claims. While these FV datasets fo-
cus on different domains, there is still a substantial
overlap in the abilities required to verify claims
across these datasets. However, little analysis has
been done on whether they generalize to one an-
other, and the extent to which existing datasets can
be leveraged for improving performance on new
ones. Similar studies have been done in other NLP
tasks (Talmor and Berant, 2019; Hardalov et al.,
2021), while it is less investigated in fact verifi-
cation. In this paper, we bridge this gap by con-
ducting a comprehensive study of generalization
and transfer across existing FV datasets, revealing
several key factors for better generalization.

6 Conclusion and Future Work

In this work, we perform a thorough empirical in-
vestigation of zero- and few-shot generalization
over 11 fact verification datasets. Moreover, we
conduct an exhaustive analysis and highlight the
most important factors influencing the generaliza-
tion performance. We further empirically explore
two ways to improve generalization in fact verifica-
tion. We highlight several practical takeaways:

e Overall, the FV model generalizes poorly to un-
seen datasets compared with in-domain evaluation.
However, performance is largely improved by fine-
tuning on the target data.

e Artificial claims can also generalize well to natu-
ral claims with an increase of dataset size.

e Model trained on sentence-level evidence gener-
alize better than document-level evidence.

e The refutes claims are the most difficult to
verify among the three labels.

e Domain-specific pretraining and data augmenta-
tion consistently improves generalization perfor-
mance, but they also leave unsolved challenges.

In future work, we plan to experiment with more
datasets, including non-English ones. We will also
explore the generalization of other sub-tasks in fact
checking, e.g., claim detection, evidence retrieval.
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Doc-level Sent-level NEI Publicly

Dataset Domain Claim evidence evidence claims available
FEVER (Thorne et al., 2018) Wikipedia artificial v v v v
WikiFactCheck (Sathe et al., 2020) Wikipedia artificial v/ v v
HOVER (Jiang et al., 2020) Wikipedia artificial v/ v v
VitaminC (Schuster et al., 2021) Wikipedia artificial v/ v v v
Fool Me Twice (Eisenschlos et al., 2021) Wikipedia artificial v v v
CREAK (Onoe et al., 2021) Commonsense artificial v v
CreditAccess (Popat et al., 2016) News natural v v v
Emergent (Ferreira and Vlachos, 2016) Emergent natural v v v v
MultiFC (Augenstein et al., 2019) Multiple  natural v v
Snopes (Hanselowski et al., 2019) News natural v v v
Climate-FEVER (Diggelmann et al., 2020) Climate natural v v v v
SciFact (Wadden et al., 2020) Scientific ~ natural v/ v v v
PubHealth (Kotonya and Toni, 2020) Health natural v v v v
COVID-Fact (Saakyan et al., 2021) Forum natural v v v
X-Fact (Gupta and Srikumar, 2021) Multiple natural v v v
FaVIQ (Park et al., 2021) Forum natural v v v

Table 9: A list of candidate fact verification datasets.

Figure 1: tSNE plot of [CLS] representations of each
dataset; highlighted points denote cluster centroids.

A A List of Fact Verification Datasets

In Table 9 we provide a comprehensive list of can-
didate datasets that we consider for our study, in-
cluding those are not selected in our benchmark in
the end. The candidate list does not include the fact
checking datasets without providing evidence for
the claim (e.g., FakeNewsNet (Shu et al., 2020)), or
focusing on non-textual evidence such as table (e.g.,
FEVEROUS (Aly et al., 2021) and TabFact (Chen
et al., 2020)).
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Afterward, we exclude some datasets from the
candidate list, mainly because of the lack of clean
evidence, the small scale in size, non-English
claims, and unavailability. For example, we ex-
clude Emergent (Ferreira and Vlachos, 2016) since
it only contains 300 claims. We exclude X-
Fact (Gupta and Srikumar, 2021) since it is a
multi-lingual dataset that mainly focus on non-
English languages. Snopes (Hanselowski et al.,
2019) is not included since it is not publicly avail-
able. We also exclude CREAK (Onoe et al., 2021),
HOVER (Jiang et al., 2020), and MultiFC (Au-
genstein et al., 2019) since their evidence is either
coarse-grained (e.g., the whole Wikipedia page)
or noisy (e.g., the original webpage in certain fact
checking website).

B Domain Divergence Analysis

Following Hardalov et al. (2021), we plot the 11
datasets in a latent vector space to visualize the
global structure of the datasets. We proportionally
sample 82K (10%) examples, and we pass them
through a RoBERTa-large (Liu et al., 2019) model
without any training. The input has the follow-
ing form: [CLS] claim [SEP] evidence.
Next, we take the [CLS] token representations,
and we plot them in Figure 1 using tSNE (van der
Maaten and Hinton, 2008). We can see that datasets
with natural claims are grouped top-right, clearly



Train| Test— FEVER FEVER VitaminC C-FEVER C-FEVER  SciFact  SciFact PubHealth
-para -sent -para -sent -para -sent
FEVER-para — 31.98 27.58 32.83 25.22 25.36 30.72 18.82
FEVER-sent 16.68 — 22.20 21.78 13.66 20.01 19.64 24.57
VitaminC 16.70 16.93 — 22.01 13.78 20.04 20.04 24.98
C-FEVER-para 17.15 18.00 27.51 — 31.44 17.24 18.19 5.04
C-FEVER-sent 16.63 16.63 8.36 17.51 — 17.24 17.24 2.51
SciFact-para 30.66 30.66 28.30 33.46 31.36 — 42.40 12.15
SciFact-sent 28.37 27.43 26.80 27.93 30.50 24.51 — 13.06
PUBHEALTH 26.77 28.60 26.69 28.25 18.04 22.80 2222 —
SELF ‘ 32.35 16.68 29.53 ‘ 36.12 26.14 53.33 50.72 52.05

Table 10: Macro-F1 of 3-class fact verification on the evaluation set for all datasets in a zero-shot generalization
setup. The size of training data is controlled to 800 samples for all datasets. Rows correspond to the training dataset
and columns to the evaluated dataset. The row SELF corresponds to the in-domain performance (training and testing

on the same target dataset).

separated from those with artificial claims. The
clusters of real-world domain datasets do not over-
lap, which highlights the rich diversity of our se-
lected datasets. We also notice that datasets with
sentence-level evidence have little overlap with
their paragraph-level counterparts (e.g., Climate-
FEVER-sentence v.s. Climate-FEVER-paragraph).
To sum up, Figure 1 confirms that there exists di-
vergence between different domains and datasets.

C Full Results of Controlled Size
Generalization

Table 10 shows the full results of the controlled ex-
periment in Section 3.1 where we only take 800 ex-
amples for each dataset to train the model. We find
that the model trained on artificial claim datasets
generalize slightly worse to natural claims com-
pared with the model trained on artificial claim
datasets in the controlled size setting. Compared
with the good generalization results from artificial
claims to natural claims in Table 2, it shows that
the size of the source dataset contributes a lot to
generalization ability of fact verification.

D Full Results of Few-shot Generalization

In Table 11, we show the few-shot generalization
performance of FV model pretrained on specialized
domains. After finetuning, we observe dramatic
improvement in performance comparing to Ta-
ble 7 (+14.31% for BERT, +11.84% for BioBERT,
+15.29% for SciBERT). Under few-shot setting,
we find that BioBERT and SciBERT still outper-
form the BERT on the generalization scores in all
datasets except Climate-FEVER-sentence.
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E Human Evaluation of Generated
Claims

We conduct the human evaluation on the claims
generated by BART-gen on four datasets: Climate-
FEVER-sentence, Sci-Fact-sentence, PubHealth,
and COVID-Fact. We randomly sample 90 gener-
ated claims for each dataset with a balanced desired
label distribution. To be specific, 30/30/30 of their
desired labels, i.e., the type of claim we expect the
model to generate (by appending the correspond-
ing label prefix) are supports/refutes/NEI.
We ask two expert human annotators to annotate
the actual label for each claim, i.e., whether the
generated claim is supported, refuted, or cannot be
verified by the evidence. If the generated claim is
an incomplete or unreadable sentence, we label it
asUnclassified.

Figure 2 shows the confusion matrix for the de-
sired labels and the actual labels. We find that in all
four datasets, around 30% of the generated claims
suffer from the label inconsistency problem, i.e.,
the actual label of the claim is not the desired label.
Specially, the confusion between the refutes
and NETI claim is the major type of error, showing
that refutes and NETI claims are the hardest for
the model to generate.

We also observe that around 5% of the generated
claims are incomplete or unreadable. Moreover,
most generated claims are short and simple (e.g.,
“Gilbert Rothschild was a person’), which do not
require complex reasoning to verify. It is therefore
worthy to investigate how to obtain high-quality
claims in data augmentation for better generaliza-
tion in the future study.



Model Train] Test— C-FEVER C-FEVER SciFact SciFact PubHealth
-para -sent -para -sent
FEVER-para 41.24 42.68 42.74 43.42 15.57
BERT FEVER-sent 43.84 45.09 50.23 55.65 33.45
VitaminC 45.94 43.38 57.25 58.12 33.69
FEVER-para 46.22 43.06 61.45 59.19 33.47
BioBERT FEVER-sent 47.64 43.43 48.59 53.17 39.44
VitaminC 44.16 40.48 54.52 61.62 32.29
FEVER-para 47.92 40.46 53.12 56.83 34.39
SciBERT FEVER-sent 43.92 40.94 56.53 60.49 42.14
VitaminC 46.23 40.16 60.95 61.04 37.37

Table 11: Few-shot generalization performance (macro-F1) when initialized with different pretraining models.

1.0 1.0
1] %]
5 5
® 083 0.10 0.00 s 0.03 0.10 0.00
3 0.8 3 0.8
%] %]
2 2
T 5- 007 0.77 0.17 0.00 T 5- 013 0.13 0.00
K 0.6 32 0.6
© o © o
- -}
T T
2 2
<T- 007 0.00 0.30 0.00 0.4 <T- o013 0.20 0.00 - 0.4
el el
£ -0.2 & -0.2
%- 003 0.13 0.03 0.00 8- 013 0.00 0.03 0.00
9] 9]
f=s C
=) 1 1 1 1 - 00 = 1 1 1 1 - 00
Supports  Refutes NEI  Unclassified Supports  Refutes NElI  Unclassified
Desired Label Desired Label
(a) Climate-FEVER-sentence (b) SciFact-sentence
1.0 1.0
(%] %]
5 5
- 0.77 0.23 0.20 0.00 R 073 0.30 0.30 0.00
I 0.8 a 0.8
%] %]
2 2
g2- 007 n 0.10 0.00 0.6 ga- 013 “ 0.10 0.00 0.6
© o © o
- |
T T
2 2
<T- o010 0.13 0.67 0.00 -04 <T- o007 0.17 0.57 0.00 -04
el el
& -0.2 & -0.2
%- 007 0.03 0.03 0.00 #- 007 0.03 0.03 0.00
IS] ]
=4 =4
=] 1 1 1 1 - 0.0 =] 1 1 1 1 - 00
Supports  Refutes NEI  Unclassified Supports  Refutes NEI  Unclassified
Desired Label Desired Label
(c) PubHealth (d) COVID-Fact

Figure 2: Confusion matrices (normalized over columns) of generated claims on four datasets. The desired label
is the input label for our claim generation model (BART-gen) and the actual label is the human-annotated label.
“Unclassified” means that the generated claim is incomplete or unreadable.
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