
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DBELLQUANT: BREAKING THE BELL WITH DOUBLE-
BELL TRANSFORMATION FOR LLMS POST TRAINING
BINARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) demonstrate remarkable performance but face sub-
stantial computational and memory challenges that limit their practical deployment.
Quantization has emerged as a promising solution; however, its effectiveness is
often limited by quantization errors arising from weight distributions that are not
quantization-friendly and the presence of activation outliers. To address these chal-
lenges, we introduce DBellQuant, an innovative post-training quantization (PTQ)
framework that achieves nearly 1-bit weight compression and 6-bit activation
quantization with minimal performance degradation. DBellQuant uses learnable
transformation to map single-bell weight distribution to dual-bell distribution to
reduce binarization error and smooth activations using inverse transformation.
DBellQuant sets a new state-of-the-art by preserving superior model performance
under aggressive weight and activation quantization. For example, on the Wikitext2
dataset, DBellQuant achieves a perplexity of 14.39 on LLaMA2-13B with nearly
1-bit weight and 6-bit activation quantization, significantly outperforming BiLLM’s
21.35 without activation quantization, underscoring its potential in compressing
LLMs for real-world edge applications.

1 INTRODUCTION

In recent years, the rapid advancement of large language models (LLMs) demonstrate exceptional
performance in a variety of complex tasks that involve natural language understanding and generation
(Achiam et al., 2023; Dubey et al., 2024). However, these models often comprise hundreds of billions
of parameters, posing significant challenges for their deployment in real-world edge applications
because of the substantial computational and memory requirements (e.g. a 70B model requires around
150GB GPU memory), resulting in huge operational costs and unacceptable inference latency.

OPT-1.3B OPT-2.7BLlama-2-7B Llama-2-13B Llama-2-70B

pe
rp
le
xi
ty

70

60

50

40

30

20

10

Figure 1: Performance on Wikitext2
dataset. DBellQunat outperforms
weight-only quantization method under
8-bit activation setting.

Quantization is a compelling route to LLM compression,
and weight binarization is especially attractive for sharply
reducing model size (Wang et al., 2024; Yu et al., 2024).
Recent PTQ methods– e.g., PB-LLM and BiLLM– mit-
igate binarization error with finer-grained treatment of
salient weights (Shang et al., 2023; Huang et al., 2024a).
However, activation outliers remain a major obstacle to si-
multaneously quantizing activations (Sun et al., 2024), un-
dercutting memory and latency gains. Scale-redistribution
techniques (Xiao et al., 2023; Shao et al., 2023) and
Hadamard-based transforms (Ashkboos et al., 2024; Liu
et al., 2024; Sun et al., 2025; Lin et al., 2024) help at
higher weight precisions, but no PTQ weight binarization
method concurrently achieves effective activation quanti-
zation. This is because pushing weights to 1-bit increases sensitivity to activation outliers, while
existing fixes shift the difficulty back to the weights or require higher-bit activations for accuracy.
Quantization-aware training (QAT) approaches such as BitNet can reach 1-bit weights with low-
bit activations (Wang et al., 2024), but at the cost of heavy retraining. Thus, there is a need for
post-training weight binarization that preserves accuracy while also enabling activation quantization.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 10-10

𝑿 𝑾

outliers

hard to quantize
0 1-1

hard to binarize 𝑿#
0 5-5

easier to quantize 𝑾$
0 2-2

easier to binarize
(a) Activation and weight distribution before DBellQuant (b) Activation and weight distribution after DBellQuant

Figure 2: (a) Before applying DBellQuant, activations exhibit significant outliers, making quantization
challenging, while the single-bell-shaped weight distribution hinders binarization. (b) After applying
DBellQuant, activations are smoothed with substantially fewer outliers, facilitating easier quantization.
Weight distribution is transformed to dual-bell form, which is more conducive to binarization.

To this end, we begin by revisiting the distribution characteristics of activations and weights in
LLMs (Fig. 2(a)). We observe that the unimodal nature of weight distributions leads to substantial
quantization errors, particularly in the case of low 1-bit quantization. Ideally, a dual-bell-shaped
weight distribution (Fig. 2(b)) can effectively reduce binarization errors. In addition, activation
distribution suffer from outliers and thus large quantization errors, which demands a narrower
distribution. This motivates a key question: Is it possible to transform weights into a dual-bell
shape distribution while simultaneously addressing activation outliers to facilitate both activation
quantization and weight binarization?

Building on these observations, we propose DBellQuant, a novel weight-activation quantization
framework for efficient post-training quantization (PTQ). DBellQuant enables activation quantization
while achieving near 1-bit weight compression with minimal accuracy loss. The core mechanism is a
learnable, equivalence-preserving transformation that maps each layer’s weight distribution toward
a dual-bell shape; its inverse is applied to the input activations to keep the computation unchanged.
We analyze the feasibility of dual-bell transformations for binarization and propose a lightweight
algorithm, Learnable Transformation for Dual-Bell (LTDB), which initializes the transform and
optimizes it with a custom objective that drives weights to cluster around two modes, with early
stopping to ensure stability. By doing so, weights originally exhibiting unimodal distributions–
challenging for binarization– are mapped into near-symmetric dual-bell distributions (Fig. 2(b)),
significantly reducing binarization error. Moreover, as discussed in Sec. 3.4, experiments show
that applying the inverse transform to inputs consistently contracts activation ranges and suppresses
outliers, making activations more amenable to quantization (Fig. 2(b)).

Experimental results demonstrate that the equivalent transformation strategy of DBellQuant signifi-
cantly reduces the loss caused by weight binarization. For the first time under PTQ conditions, it
achieves near 1-bit weight compression while simultaneously compressing activations to 6 bits.Across
various LLMs and evaluation metrics, DBellQuant consistently achieves state-of-the-art results. For
instance, on the Wikitext2 benchmark, we achieves a perplexity of 14.39 on LLaMA2-13B using
only 6-bit activations (Fig. 1), significantly surpassing the performance of BiLLM, a method that
only quantizes weights, which achieves a perplexity of 21.35.

2 RELATED WORK

Quantization for Large Language Models The massive parameter size of LLMs poses significant
challenges in terms of memory consumption and computational efficiency. Therefore, quantization is
crucial to compress these models, reducing resource requirements while preserving performance for
practical deployment. LLMs quantization have introduced a variety of innovative techniques to en-
hance efficiency while maintaining accuracy. Works like GPTQ (Frantar et al., 2022) and OBQ (Fran-
tar et al., 2023b) minimizes reconstruction error by adjusting the remaining unquantized parameters
in the block to compensate for the accuracy loss caused by quantization. LLM.int8()(Dettmers et al.,
2022a) and ZeroQuant(Yao et al., 2022) improve quantization accuracy by introducing additional
grouping labels for customized quantization blocks. Other works like SmoothQuant(Xiao et al.,
2023) and OmniQuant (Shao et al., 2023) addresses activation outliers by redistributing scaling
factors between weights and activations, migrating the quantization difficulty from activation to
weights. Additionally, recent approaches leverage Hadamard transformations to suppress activation
outliers (Ashkboos et al., 2024; Liu et al., 2024; Sun et al., 2025), while incoherence processing and
non-linear transformation have been proposed for effective low-bit quantization (Chee et al., 2024;
Tseng et al., 2024; Zhang et al., 2024). Collectively, these advancements demonstrate that quantiza-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

𝐖!"#$#% 𝐖&

(a) Origin weights (b) Activation-aware Initialization (d) Output weights(c) Learnable Transformation for Dual-Bell Transformation

𝝏𝑳𝑫𝑻𝑵𝑷
𝝏𝑻

!!!

𝑳𝑫𝑻𝑴𝑫	𝑪𝒖𝒓𝒗𝒆

stop training

𝑋

𝑊

𝑇% =
max	( 𝑋 )
max	( 𝑊 )

𝑻𝒌
Single-bell

weight distribution
Double-bell

weight distribution

bi
na

riz
ed

 ta
rg

et

bi
na

riz
ed

 ta
rg

et

⊗ ⊗⊗

⊗

0

bi
na

riz
ed

 ta
rg

et

bi
na

riz
ed

 ta
rg

et

⊗

𝝏𝑳𝑫𝑻𝑵𝑷
𝝏𝑻

𝝏𝑳𝑫𝑻𝑵𝑷
𝝏𝑻0

optimization objective of
𝑳𝑫𝑻𝑵𝑷, 𝑳𝑫𝑻𝑴𝑫

0

Figure 3: DBellQuant Framework Overview: (a)First, we can see that the origin weight distribution
is single-bell. (b)We utilize Activation-aware initialization to generate origin transformation matrix.
(c)We employ the LTDB algorithm for iterative training of the transformation matrix, applying the
proposed Dual-Transformation Loss in two ways: for training and as the termination criterion for the
training process. (d)The weight distribution after transformation will be double-bell.

tion techniques can be scaled to multi-billion-parameter models, achieving substantial reductions in
memory consumption and inference latency without compromising model performance.

Binary Quantization Binary quantization, an extreme low-bit quantization technique that reduces
model weights and activations to binary values (e.g., -1 and +1 or 0 and 1), has gained significant
attention for its ability to drastically cut memory usage and computational complexity, making it ideal
for resource-constrained devices and efficient deployment of large-scale models. However, applying
binary quantization to LLMs presents substantial challenges due to their sensitivity to precision
loss, particularly in attention mechanisms and large embedding layers. BinaryBERT (Bai et al.,
2020) explored binary quantization for BERT, proposing selective preservation of critical weights
in higher precision to mitigate performance degradation. In another direction, PB-LLM (Shang
et al., 2023) introduced a partially-binarized approach for LLMs, retaining a small fraction of salient
weights in higher precision while binarizing the rest, enabling extreme low-bit quantization without
sacrificing linguistic reasoning capabilities. Recent advancements include structural binarization
techniques that leverage novel sparsity forms and standardized importance metrics to selectively
binarize and sparsify LLM weights (Dong et al., 2024), as well as strategies like alternating refined
binarization and column-group bitmap methods to effectively reduce quantization error and address
column deviations (Li et al., 2024). These innovations collectively advance the feasibility of binary
quantization for LLMs, pushing the boundaries of efficiency without compromising performance.

3 METHOD

We begin by exploring the process of binarization, analyzing and theoretically proving the weight
distributions suitable for binarization in Sec. 3.1. Based on our analysis, we propose the Learnable
Transformation for Dual-Bell (LTDB) algorithm in Sec. 3.2. After investigating the potential of
utilizing a learnable transformation matrix to achieve the objective, we redesigned an efficient
learnable transformation along with a reasonable activation-aware initialization method, taking into
account training difficulty and task complexity. An overview of the algorithm is included in Fig. 3.

3.1 BINARIZATION-FRIENDLY WEIGHT REDISTRIBUTION

By utilizing the sign function, binarization can convert weights in LLMs into binary values. The
per-channel binarization and de-binarization process is as follows:

β =
1

n

n∑
i=1

Wi,j , W̃ = Sign(W − β), α =
1

n

n∑
i=1

|Wi,j − βj | (1)

Sign(Wi,j) =

{
+1, if Wi,j > 0,

−1, if Wi,j ≤ 0,
, Wdeq = W̃ · α+ β (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where β is the shifting factor and α is the scaling factor for binarization. Previous studies (Huang
et al., 2024b) have shown that neural network weights exhibit structured distributions along the
channel dimension, with certain channels being more salient. The overall weight distribution typically
follows a quasi-Gaussian pattern (Dettmers et al., 2022b), as does the channel-wise distribution (Fig.
7). Binarizing such weight matrices introduces significant quantization errors, which can severely
degrade model performance.

In LLM binarization, a dual-bell distribution is theoretically more advantageous than a single-bell
distribution due to its natural separation into two distinct clusters, which aligns well with binary
quantization levels (e.g., -1 and 1), thereby minimizing quantization error. In contrast, single-bell
distributions, concentrated around a single peak, often cause significant overlap when mapped to
binary values, reducing representation accuracy (see Appendix A.16 for detailed analysis). However,
LLM weight distributions typically exhibit single-bell characteristics, and conventional PTQ methods
fail to effectively transform them for binarization. While QAT can reshape weight distributions into a
dual-bell form through its learning objectives (Wang et al., 2023), it requires substantial computational
resources and prolonged training. To address this, we propose a more efficient PTQ method that
rapidly converts single-bell distributions into dual-bell ones, optimizing binary quantization without
the need for resource-intensive retraining.

3.2 LEARNABLE TRANSFORMATION FOR DUAL-BELL QUANTIZATION

Learnable Transformation with Auxilary Matrix As mentioned before, double-bell distributions
are advantageous for binarization. However, the key question lies in how to transform a weight matrix
that originally follows a single-bell distribution into a double-bell one and ensures the computational
results remain unchanged. In this section, we first explore the feasibility of achieving such a
transformation through the application of an auxiliary matrix:

Theorem 1. Let W ∈ Rn×m be a weight matrix where each channel wi (for i ∈ {1, 2, . . . , n}) is
sampled from a single-bell Gaussian distribution wi ∼ N (µi, σ

2
i ). There exists a learnable matrix

T ∈ Rm×m, such that the channels of the transformed matrix W ′ = WT follow a double-bell
distribution, specifically a mixture of two Gaussians:

w′
i ∼ πN (µ1, σ

2
1) + (1− π)N (µ2, σ

2
2),

where π ∈ (0, 1) is the mixing coefficient, and µ1, µ2, σ
2
1 , σ

2
2 are parameters of the doubel-bell

distribution. More detailed proof is shown in Appendix. A.15.

Theorem 1 demonstrates that transforming weight distributions from single-bell to double-bell can be
achieved by introducing an auxiliary matrix T . However, this approach presents several significant
challenges. First, in LLMs, weight matrices typically have extremely high dimensionalities, such
as (4096, 4096), meaning that the auxiliary matrix T would also be of similarly large dimensions,
making it computationally expensive and difficult to learn. Second, to maintain computational
consistency, it is necessary to simultaneously apply T−1 to the activations, which raises a critical
issue regarding the invertibility of T . Ensuring strict invertibility introduces additional constraints
and complex design steps, further complicating the process. Third, even if T is strictly invertible, it
remains uncertain whether this design effectively facilitates activation quantization, as there are no
explicit mechanisms in the current approach to optimize activation quantization. These limitations
highlight the need for a more efficient and robust design to address the computational and practical
challenges associated with auxiliary matrix-based transformations.

Learnable Equivalent Transformation To address these challenges, we propose a simpler and
more efficient method for achieving the transformation. In this approach, the matrix T ∈ R1×Cin to
be learned is reduced to a 1×Cin matrix. Compared to the matrix introduced above, this significantly
reduces the dimensionality of T to compared to its original size, making it substantially easier to
learn.

Furthermore, this approach allows for straightforward transformations to ensure computational
consistency without introducing additional complexity as follows:

Y = X ∗W = X ∗ (T−1 ∗ T ) ∗W =
(
X ⊙ T−1) ∗ (T ⊙W ) (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where X ∈ RN×Cin is the input matrix, N is the token length and Cin is the input channel size.
w ∈ RCin×Cout is the weight matrix, where Cout is the output channel size. ⊙ denotes elementwise
multiplication.Moreover, this equivalent transformation matrix T will be directly fused into the Lay-
erNorm weights and the corresponding linear weights, without introducing any additional parameters.
However, directly solving this matrix is highly challenging. To address this, we propose a learnable
approach to train and derive the matrix effectively.

Here we introduce the way to initialize the learnable transformation matrix T using the following
equation:

Tj =
max(|Xj |)ϵ

max(|Wj |)1−ϵ
(4)

where ϵ is a hyperparameter. This initialization strategy provides significant advantages for both
weight binarization and activation smoothing. For weight quantization, specifically, when max(|Wj |)
is particularly small, it indicates that the absolute value of weights are relatively small, resulting in a
large value of 1

max(|Wj |) which corresponds to scaling up these smaller weights. Conversely, when
max(|Wj |) is particularly large, it reflects larger absolute value weights, which lead to a smaller
value of 1

max(|Wj |) , which will scale down the larger weights. All values can be shifted closer to
two central points through these two processes, and it will reduce the quantization error shown in
Appendix. A.16. Regarding activation quantization, the initialization explicitly accounts for outliers
in the activation matrix, making it inherently activation-aware. This ensures that even without further
optimization of activation quantization during subsequent training, it supports near 1-bit weight
quantization while effectively reducing activations to a low bit-width.

3.3 DUAL-TRANSFORMATION OPTIMIZING OBJECTIVES

Dual-Target Minimum Deviation Loss Our learning objective is to encourage all weight values to
move closer to the two mean centers calculated by Eq. 2, ultimately forming a double-bell distribution
with these two values as its peaks. During the binarization process, we denote these two points as m1

and m2 respectively. The simple way to set loss function is as follows:

LDTMD =
λDTMD

n

n∑
i=1

min (|W ∗ Ti −m1,i| , |W ∗ Ti −m2,i|) (5)

where λDTMD represents the coefficient of LDTMD. However, employing this type of loss function to
train the transformation matrix introduces an issue. Specifically, we observed that the transformation
matrix tends to shrink progressively during training, contrary to the intended effect of scaling up
the originally smaller absolute values. This unintended behavior results in a significant problem: it
effectively shifts the quantization challenge from the weights to the activations.

Dual-Target Normalized Proportional Loss As discussed before, DTMD alone is not enough to
train a better weights distribution for binarization. So we introduce a new loss function as follows:

LDTNP =
λDTNP

n

n∑
i=1


|W∗Ti−m1,i|

|m1,i| , if |W ∗ Ti − m1,i| < |W ∗ Ti − m2,i|

|W∗Ti−m2,i|
|m2,i| , otherwise.

(6)

0.0050

0.0030

0.0040

0.0020

0.0010
0

0.0030

0.0020

0.0025

0.0015

0.0010
0

0.0030

0.0020

0.0025

0.0015

0.0010

0

0.0040

0.0030

0.0035

0.0025

0.0020

0

(a) q_proj 500 (b) k_proj

500 500(c) v_proj (d) o_proj

500

minimum minimum

minimum minimum

Figure 4: Dual-Target Minimum Deviation Loss
value over iterations across different layers.

where λDTNP represents the coefficient of Lossrel.
By leveraging the dual-target normalized propor-
tional objective, the transformation matrix can be
effectively trained to meet the desired behavior,
scaling down larger absolute values and scaling
up smaller absolute values to approach a double-
bell-shaped distribution. Since our target values
have been transformed into |W ∗Ti−mi|

|mi| , the final
convergence values might not align with our de-
sired results. Furthermore, we propose an early

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

stopping mechanism to prevent the function from converging to an undesired solution that deviates
from our intended objective. We observe that by using this loss to train, DTMD drops quickly first
and then slowly grow as shown in Fig. 4. Therefore, we introduce an early stop mechanism and
DTMD is utilized as a condition for stopping the training.

3.4 IMPACT OF THE INVERSE OF LEARNABLE TRANSFORMATION MATRIX ON ACTIVATION
SMOOTHING

1 1

𝑇 𝑇!"

(a) The distribution of values in 
the transformation matrix 𝑇

(b) The distribution of values in 
the transformation matrix 𝑇!"

Figure 5: Visualization of distribution of
values in T and T−1 of Llama2-7B.

Through the use of DTNP for training, we understand
that the transformation matrix T drives all values in the
weights closer to the two mean centers calculated by Eq. 2.
Prior research has shown that the distribution of weights
tends to approximate a quasi-Gaussian distribution, with
the majority of values being extremely small and close to
zero, while only a very small fraction exhibit relatively
large absolute values (Dettmers et al., 2022b). Theoreti-
cally, this implies that T will contain many values greater
than 1 to amplify the numerous near-zero absolute values,

bringing them closer to the mean centers. At the same time, very few values of T will be less than
1. In fact, when we visualize T after training as shown in Fig. 5, we observe that less than 5% of
its values are below 1. Consequently, the corresponding T−1, which is multiplied with activations,
has over 95% of its values below 1. This effectively narrows the distribution of activation, making
quantization easier. Visualization results can be seen in Appendix. A.13 and we also provide quantita-
tive analysis of activation outliers in Appendix. A.14. As a result, this approach smooths activation
quantization.

3.5 ALGORITHM

The process of Learnable Transformation for Dual-Bell Transformation Algorithm is shown in
Algorithm. 1, which can be seen in Appendix. A.4 and can adjust the full-precision weight matrix
W using an activation-aware initialization transformation matrix T over N epochs. The algorithm
iteratively minimizes dual-target loss functions to guide W toward a dual-bell distribution while
employing an early stopping mechanism based on the DTMD.

4 EXPERIMENTS

4.1 SETTINGS

All experimental procedures were executed utilizing the PyTorch (Paszke et al., 2019) framework in
conjunction with the Huggingface library (Paszke et al., 2019). Models with parameters smaller than
8B are running on a single NVIDIA A30 GPU equipped with 24GB of memory, others are running
on a single NVIDIA A100 GPU equipped with 80GB of memory. Consistent with methodologies
outlined by Frantar et al. (Frantar et al., 2023a) and Huang et al. (Huang et al., 2024a), a calibration
dataset comprising 128 samples sourced from the C4 collection (Raffel et al., 2020) was employed.

Models and Datasets Comprehensive evaluations were carried out across several large language
model families, including LLaMA, LLaMA-2, and LLaMA-3 (Touvron et al., 2023) and the OPT
series (Zhang et al., 2022). The efficacy of the developed DBellQuant was assessed by calculating
the perplexity of the models’ generated text on standard benchmarks: WikiText2 (Merity et al.,
2017), and a subset of the C4 data (Raffel et al., 2020). Furthermore, the models’ performance was
evaluated based on accuracy across five zero-shot question-answering tasks: ARC-c (Clark et al.,
2018), ARC-e (Clark et al., 2018), Hellaswag (Zellers et al., 2019), PIQA (Bisk et al., 2020), and
Winogrande (Sakaguchi et al., 2020).

Comparison Methods The primary benchmark for comparison for our DBellQuant approach is
BiLLM (Huang et al., 2024a), which represents the current baseline PTQ technique for binary large
language models. Additionally, we include other contemporary PTQ algorithms in our comparison,
namely Round-to-Nearest (RTN), GPTQ (Frantar et al., 2023a), PB-LLM (Shang et al., 2023) and
the current state-of-the-art PTQ technique ARB-LLM (Li et al., 2024).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, ARB-LLMX and our methods on OPT and
LLaMA family. The columns represent the perplexity results on WikiText2 datasets with different
model sizes.

Method Activation
Bits OPT-1.3B OPT-2.7B OPT-6.7B LLaMA-1-7B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

Full Precision 16 14.62 12.47 10.86 5.68 5.47 4.88 3.32

RTN 16 17165.72 36516.69 11550.91 168388.00 157058.34 47902.32 160389.91
GPTQ 16 14844.73 14114.58 10622.81 267001.72 115905.67 9387.80 14219.35
PB-LLM 16 265.52 124.35 105.16 102.36 69.20 151.09 28.37
BiLLM 16 69.97 49.55 35.36 35.04 32.48 21.35 13.32
ARB-LLMX 16 45.40 34.37 20.07 21.81 21.61 14.86 7.88
DBellQuant 16 43.42 31.47 18.89 15.34 17.91 12.79 6.84
BiLLM 8 88.95 68.60 166.46 40.13 33.23 22.55 14.72
DBellQuant 8 44.98 30.39 18.88 14.74 18.65 13.11 6.88
BiLLM 6 9537 18405.85 28123.58 71.65 42.41 30.20 18.65
DBellQuant 6 61.50 47.33 21.12 16.66 21.69 14.39 7.56

Figure 6: Top: Visualization of single-bell weights distribution from different blocks of different
layers before applying DBellQuant. Bottom: Visualization of dual-bell weights distribution from
different blocks of different layers after applying DBellQuant.

4.2 MAIN RESULTS

LLMs across different activation quantization bit-widths and model sizes, deploying DBellQuant
with a block size of 128. As shown in Tab. 1, we compare the WikiText2 perplexity of the OPT and
Llama families across different model sizes. The results demonstrate that DBellQuant significantly
outperforms the state-of-the-art ARB-LLMX when only quantizing weights, achieving up to a 42.18%
reduction in perplexity. Moreover, when activations are quantized to lower bit-widths like 6-bit,
DBellQuant achieves up to a 76.66% reduction in perplexity for the LLaMA family compared
to BiLLM. It is noteworthy that for OPT family, the model outputs under the BiLLM methods
have already collapsed when quantizing the activation to 6 bit, whereas DBellQuant still maintains
reasonable linguistic output capabilities. In terms of average accuracy on QA datasets, DBellQuant
also significantly surpasses previous methods and increase the average accuracy up to 42.48%, as
detailed in Tab. 2. Here, we only compare with ARB-LLMX because we share the same quantization
format. Additionally, Fig. 7 visualizes the transformation of weight distributions across different
layers, clearly illustrating the shift from a single-bell to a double-bell distribution. These results
highlight the effectiveness of DBellQuant in enabling robust low-bit quantization while preserving
model performance. More results can be seen in Appendix. A.12.

4.3 ABLATION EXPERIMENTS

Effectiveness of LTDB algorithm To validate the effectiveness of our advanced LTDB algorithm,
we compare them with the vanilla initialization without LTDB. We can observe that under different
bitwidths of activation quantization, the models utilizing the proposed LTDB method consistently

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Accuracy of PIQA, ARC-e, ARC-c, HellaSwag, Winogrande and average accuracy of all
datasets with BiLLM and our methods on OPT and LLaMA family.

Model Method Activation
Bits PIQA ARC-e Arc-c HellaSwag Winogrande Avg.

- 16 76.33 65.61 30.55 50.51 65.35 57.67

BiLLM 16 59.63 36.83 17.06 30.14 51.30 38.99
ARB-LLMX 16 69.75 55.47 24.32 37.78 58.64 49.19
DBellQuant 16 70.29 55.76 24.72 37.81 58.71 49.46

OPT-6.7B BiLLM 8 54.30 31.02 20.05 26.66 50.90 36.59
DBellQuant 8 69.10 54.63 24.91 38.19 57.38 48.84
BiLLM 6 53.43 20.08 20.22 25.80 47.67 33.44
DBellQuant 6 68.12 52.44 23.38 37.04 57.30 47.65
- 16 78.40 67.34 38.14 56.45 67.01 61.46

BiLLM 16 61.92 38.93 21.58 32.78 53.67 41.77
ARB-LLMX 16 67.23 49.13 23.98 39.21 58.69 47.64
DBellQuant 16 67.74 49.37 24.23 39.55 58.80 47.94

LLaMA-1-7B BiLLM 8 61.86 37.88 21.76 32.09 51.62 41.04
DBellQuant 8 67.41 47.31 26.19 38.89 58.80 47.72
BiLLM 6 57.45 31.06 20.65 29.78 53.04 38.40
DBellQuant 6 65.29 46.46 25.77 37.28 54.85 45.94
- 16 78.40 69.28 40.02 56.69 67.25 62.32

BiLLM 16 60.34 36.87 21.59 30.24 51.62 40.13
ARB-LLMX 16 63.33 42.35 21.25 34.51 55.56 43.4
DBellQuant 16 63.98 42.85 23.89 34.82 56.27 44.36

LLaMA-2-7B BiLLM 8 59.74 36.95 21.42 30.96 53.75 40.56
DBellQuant 8 62.56 42.42 23.03 34.44 54.38 43.37
BiLLM 6 56.81 28.32 20.05 29.33 52.17 37.33
DBellQuant 6 61.10 37.5 22.18 31.94 53.85 41.32
- 16 79.65 80.09 50.51 60.18 72.77 68.64

BiLLM 16 57.51 33.75 18.52 31.63 53.12 38.90
ARB-LLMX 16 63.73 42.75 21.79 34.41 55.89 43.71
DBellQuant 16 64.15 44.11 22.02 34.73 56.36 44.27

LLaMA-3-8B BiLLM 8 60.55 37.96 18.34 32.60 51.78 40.24
DBellQuant 8 61.70 40.95 18.40 32.95 55.09 41.82
BiLLM 6 56.09 33.92 16.72 31.75 51.85 38.06
DBellQuant 6 58.00 37.63 18.77 31.83 51.92 39.64

Bit-width LTDB
Algorithm WikiText2 ↓ C4 ↓

16 ✗ 24.41 27.69
16 ✓ 17.91 21.83
8 ✗ 27.39 30.91
8 ✓ 18.65 23.80
6 ✗ 32.74 42.48
6 ✓ 21.69 30.24

Table 3: Performance w/o LTDB Algorithm.

Method Activation
Bits

Block
Size WikiText2 ↓ C4 ↓

BiLLM 16 64 20.12 24.46
DBellQuant 8 64 13.67 16.99
DBellQuant 6 64 15.65 19.71
BiLLM 16 128 32.48 40.52
DBellQuant 8 128 18.65 23.02
DBellQuant 6 128 21.69 25.91
BiLLM 16 256 43.69 43.21
DBellQuant 8 256 22.34 23.37
DBellQuant 6 256 24.68 28.52

Table 4: Performance of different block size.

(a) Performance of different loss function.

Method Loss Function Activation Bits WikiText2 ↓ C4 ↓
DBellQuant L2 8 18.90 24.11
DBellQuant L1 8 18.65 23.02
DBellQuant L2 6 22.26 26.41
DBellQuant L1 6 21.69 25.91

(b) Performance of different ϵ

Method ϵ WikiText2 ↓ C4 ↓
DBellQuant 0.75 19.57 22.92
DBellQuant 0.8 18.66 22.81
DBellQuant 0.85 17.91 21.83
DBellQuant 0.9 18.29 22.52

Table 5: Ablation study on LLaMA-2-7B,results are measured by perplexity.

outperform those relying on vanilla initialization as shown in Tab. 3. This demonstrates that the
proposed LTDB method can effectively reduce quantization errors.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method 2 bit 1.1 bit
QuaRot+RTN inf inf
QuaRot+GPTQ 22.07 Inf
DBellQuant - 17.91

Table 6: Llama-2-7B results.

Method 2 bit 1.1 bit
QuaRot+RTN inf inf
QuaRot+GPTQ 10.41 Inf
DBellQuant - 12.79

Table 7: Llama-2-13B results.

Method wikitext2 C4
DBellQuant 17.91 21.83
DBellQuant+QuaRot 62.37 76.59

Table 8: Combination results

Method wikitext2 C4
BiLLM 38.42 40.81
DBellQuant 30.47 35.02

Table 9: Qwen-2-7B results.

Method wikitext2 C4
BiLLM 41.74 53.07
DBellQuant 33.47 43.18

Table 10: Qwen-2.5-7B results.

Loss Function wikitext2 C4
DTMD+DTNP 17.91 21.83
only DTNP 28.74 31.42

Table 11: Loss Function results

Optimization Objective In the definition of DTNP, we adopted L1 loss as the objective function,
as it consistently outperformed L2 loss in our experiments. Additionally, we introduced the hyperpa-
rameter ϵ during the activation-aware initialization process and found that all tested values surpassed
prior algorithms, with ϵ = 0.85 achieving the best performance for LLaMA-2-7B as shown in Tab. 5.
Detailed parameter settings are provided in the Appendix. A.5.

Impact of Block Size We evaluated the impact of block size on DBellQuant’s quantization per-
formance using block sizes ranging from 64 to 256 columns, as shown in Tab. 4. Similar to other
PTQ methods, smaller block sizes achieve lower perplexity but increase quantization diversity and
weighting overhead. In previous experiments, we used a block size of 128, as it balances bit-width
and quantization performance effectively. Notably, our method consistently outperforms baseline
approaches across all block sizes, highlighting its robustness and generalizability.

Activation Bit-width Comparisons We compared model performance across different activation
bit-widths, as shown in Fig. 8. When activations are quantized to 8 bits, perplexity remains nearly
unchanged or even improves, demonstrating our method’s ability to mitigate activation quantization
challenges. Even with lower-bit quantization, such as 6-bit, the performance remains largely intact,
with minimal perplexity increases. Notably, for large-scale models like LLaMA-2 13B and 70B,
perplexity degradation is negligible, underscoring the effectiveness of our approach for models with
substantial parameters.

Effectiveness of DTMD and DTNP Loss With DTMD loss, T tends to shrink toward zero, leading
to a ”loss hack” effect that prevents the desired transformation. To address this, we introduce the
DTNP loss to ensure a smooth transition. However, using DTNP alone creates a new issue, as its
convergence direction can conflict with DTMD. As shown in Tab. 11, using DTNP alone drives the
model toward a direction misaligned with DTMD, resulting in degraded performance.

Comparison and Combination with Rotation-based Methods Rotation-based PTQ methods,
such as QuaRot with Hadamard-based transforms, effectively reduce outliers in weights and ac-
tivations. We compared low-bit quantization using these methods alone and in combination with
our approach. As shown in Tab.6 and Tab.7, rotation-based PTQ methods experience significant
performance degradation when weight precision is reduced below 4-bit. Therefore, we focus on
comparisons with state-of-the-art methods for near-1-bit weight quantization. Additionally, we
evaluated the combination of DBellQuant and Hadamard-based transforms, such as QuaRot, on
the Llama-2-7B model, but this combination performed worse than DBellQuant alone, as shown in
Tab. 8. A possible explanation is that DBellQuant transforms the original unimodal distribution into a
binarization-friendly bimodal distribution, while Hadamard-based transforms disrupt this structure,
negatively impacting quantization performance.

Implementation on Qwen Family Models The Qwen model has recently attracted significant
attention for its strong performance. We conducted preliminary evaluations of quantization methods
on Qwen-2-7B and Qwen-2.5-7B, with results presented in Tab.9 and Tab.10. These results show
that DBellQuant outperforms BiLLM on both Qwen models, demonstrating its adaptability and
effectiveness not only on OPT and LLaMA models but also on more advanced LLMs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Method MathQA LogiQA2
fp16 44.96 ± 0.91 29.58 ± 1.15
GPTQ 2bit 20.51 ± 0.82 14.65 ± 1.53
BiLLM 1.1bit 24.99 ± 0.79 20.42 ± 1.87
DBellQuant 1.1bit 27.65 ± 0.75 22.78 ± 1.48

Table 12: DeepSeek-R1-Distill-Qwen-7B results.

Method TextVQA ChartQA MME-Per
fp16 84.9 87.3 1695
GPTQ 2bit 0 0 319
BiLLM 1.1bit 26.3 3.7 638
DBellQuant 1.1bit 28.4 5.2 742

Table 13: Qwen-2.5-VL-7B results.

Method Model mins ↓ WikiText2 ↓
BiLLM LLaMA-1-7B 35 35.04
ARB-LLMX LLaMA-1-7B 88 21.81
DBellQuant LLaMA-1-7B 47 15.34
BiLLM LLaMA-2-7B 37 32.48
DBellQuant LLaMA-2-7B 49 17.91

Table 14: Training time comparison.

Method Bit-width ↓ Model Size ↓ Perplexity ↓
FP16 16 13.5GB 5.47
RTN 2 2.31GB 1e5
GPTQ 2 2.31GB 60.45
PB-LLM 1.7 2.08GB 69.20
BiLLM 1.08 1.98GB 32.48
DBellQuant 1.15 2.04GB 17.91

Table 15: Bit-width and model size comparison.

Implementation on Reasoning and Multi-modal Models For the reasoning model, we used
DeepSeek-R1-Distill-Qwen-7B and evaluated it on MathQA and LogiQA2. As shown in Tab.12,
while performance drops noticeably when quantized to near 1-bit, our method still outperforms GPTQ
2-bit and BiLLM, highlighting its advantage in ultra-low-bit quantization. For multi-modal large
models, we evaluated Qwen-2.5-VL-7B on TextVQA, ChartQA, and MME, with results presented
in Tab.13. Although performance decreases significantly at near 1-bit quantization, our method
consistently outperforms GPTQ 2-bit, where some tasks produce invalid outputs (e.g., gibberish),
leading to zero scores. Additionally, our approach surpasses BiLLM, further demonstrating its
effectiveness in ultra-low-bit quantization.

4.4 TIME AND MEMORY ANALYSIS

Model 4096×4096 4096×11008 11008×4096
FP16 0.79463 1.73942 1.82653
BiLLM 0.36842 0.38744 0.43906
ARB-LLMX 0.33180 0.35539 0.36792
DBellQuant 0.27694 0.30085 0.31860

Table 16: Actual inference speed comparison on
various linear layers in LLaMA-2-7B.

Time Comparison We clarify that the addi-
tional training step introduced by LDTB incurs
minimal overhead while yielding substantial
performance gains. Specifically, compared to
BiLLM, optimizing the learnable T matrix for
the LLaMA2-7B model requires only 12 addi-
tional minutes on an A100 80G GPU as shown
in Tab. 14, a negligible cost given the perfor-
mance improvements achieved, reducing the
perplexity on WikiText2 from 32.48 to 17.91.
Moreover, compared to ARB-LLMX, our approach not only achieves lower perplexity but also
reduces training time. More results can be seen in Appendix. A.9. The actual inference speedup is
shown in Tab. 16 and more details are in Appendix. A.11.

Memory Comparison We include a detailed comparison of bitwidth and model size across different
settings. Our method reduces the model size to approximately 1/7 to 1/6 of the original FP16 model,
with only a minimal increase in perplexity. Compared to other ultra-low-bit PTQ methods such as
BiLLM and PB-LLM, our approach achieves comparable bitwidth and model size, while yielding
significantly lower perplexity as shown in Tab. 15. More results can be seen in Appendix. A.10.

5 CONCLUSION

We propose DBellQuant, an efficient PTQ method enabling simultaneous weight binarization and
activation quantization for LLMs. By leveraging weight distributions suited for binarization, we
design the Learnable Transformation for Dual-Bell algorithm. This includes two customized loss
functions and an early stopping mechanism to achieve the dual-bell transformation. This transforma-
tion enhances activation quantization, enabling near 1-bit weight compression and 6-bit activation
quantization with minimal performance loss—achieving this milestone for the first time in a PTQ
framework. Experiments on open-source LLMs demonstrate that DBellQuant significantly advances
the performance of SOTA binary PTQ methods.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. Binarybert: Pushing the limit of bert quantization. arXiv preprint arXiv:2012.15701, 2020.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 7432–7439, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. Quip: 2-bit quantization
of large language models with guarantees, 2024. URL https://arxiv.org/abs/2307.
13304.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022a.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix
multiplication for transformers at scale, 2022b. URL https://arxiv.org/abs/2208.
07339.

Peijie Dong, Lujun Li, Yuedong Zhong, Dayou Du, Ruibo Fan, Yuhan Chen, Zhenheng Tang, Qiang
Wang, Wei Xue, Yike Guo, and Xiaowen Chu. Stbllm: Breaking the 1-bit barrier with structured
binary llms, 2024. URL https://arxiv.org/abs/2408.01803.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. In International Conference on Learning
Representations, 2023a.

Elias Frantar, Sidak Pal Singh, and Dan Alistarh. Optimal brain compression: A framework for
accurate post-training quantization and pruning, 2023b. URL https://arxiv.org/abs/
2208.11580.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pp. 19984–20007. PMLR, 21–27 Jul 2024a.

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Xianglong Liu, Luca Benini, Michele Magno,
and Xiaojuan Qi. Slim-llm: Salience-driven mixed-precision quantization for large language
models. arXiv preprint arXiv:2405.14917, 2024b.

Zhiteng Li, Xianglong Yan, Tianao Zhang, Haotong Qin, Dong Xie, Jiang Tian, zhongchao shi,
Linghe Kong, Yulun Zhang, and Xiaokang Yang. Arb-llm: Alternating refined binarizations for
large language models, 2024. URL https://arxiv.org/abs/2410.03129.

11

https://arxiv.org/abs/2307.13304
https://arxiv.org/abs/2307.13304
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2408.01803
https://arxiv.org/abs/2208.11580
https://arxiv.org/abs/2208.11580
https://arxiv.org/abs/2410.03129


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger
quantized llms, 2024. URL https://arxiv.org/abs/2406.01721.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017. URL https://
openreview.net/forum?id=Byj72udxe.

OpenAI. Introducing GPT-5. https://openai.com/index/introducing-gpt-5/, aug
2025. Accessed: 2025-09-21.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 8713–8721, 2020.

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen Dong. Pb-llm: Partially binarized large language
models. arXiv preprint arXiv:2310.00034, 2023.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137, 2023.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu,
Lu Hou, Chun Yuan, Xin Jiang, Wulong Liu, and Jun Yao. Flatquant: Flatness matters for llm
quantization, 2025. URL https://arxiv.org/abs/2410.09426.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks, 2024. URL
https://arxiv.org/abs/2402.04396.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models,
2023. URL https://arxiv.org/abs/2310.11453.

Hongyu Wang, Shuming Ma, and Furu Wei. Bitnet a4. 8: 4-bit activations for 1-bit llms. arXiv
preprint arXiv:2411.04965, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

12

https://arxiv.org/abs/2406.01721
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2410.09426
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2310.11453


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mengxia Yu, De Wang, Qi Shan, and Alvin Wan. The super weight in large language models. arXiv
preprint arXiv:2411.07191, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4791–4800, 2019.

Aozhong Zhang, Naigang Wang, Yanxia Deng, Xin Li, Zi Yang, and Penghang Yin. Magr: Weight
magnitude reduction for enhancing post-training quantization, 2024. URL https://arxiv.
org/abs/2406.00800.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

13

https://arxiv.org/abs/2406.00800
https://arxiv.org/abs/2406.00800


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we exclusively used large language models—GPT-5 (OpenAI, 2025)—to
refine grammar, flow, and tone at the sentence and paragraph levels. These tools were not used to
generate ideas, design experiments, or draw conclusions. All technical content, methodologies, and
interpretations were independently authored, rigorously verified, and approved by the authors. To
prevent factual inaccuracies or citation errors, every model-edited sentence was reviewed by the
authors, and all references were meticulously cross-checked with their original sources. The authors
take full responsibility for the accuracy and integrity of this work.

A.2 LIMITATIONS

Currently, our work only supports quantizing activations to 6 bits. When attempting to quantize
activations to lower bit-widths, the model collapses, resulting in a significant drop in performance.
However, some recent studies have demonstrated the ability to quantize activations to 4 bits while
maintaining competitive model performance. Inspired by these advancements, we aim to adopt similar
approaches to further optimize our models. Specifically, we seek to not only binarize weights but also
quantize activations to even lower bit-widths, enabling easier deployment and faster computation.

A.3 BROADER IMPACTS

Our work demonstrates the feasibility of simultaneously binarizing weights and quantizing activations
to 6 bits in LLMs while maintaining competitive performance. This approach significantly reduces the
computational and memory overhead associated with LLM deployment, making them more accessible
for resource-constrained environments. By enabling efficient inference, our method contributes to
the democratization of advanced AI technologies, reducing the environmental impact of large-scale
model deployment. Furthermore, it opens new avenues for research in ultra-low-bit quantization,
fostering innovation in model efficiency and scalability.

A.4 ALGORITHM

The detailed algorithm is shown in Algorithm. 1.

Algorithm 1 Learnable Transformation for Dual-Bell Transformation (LTDB)

1: function LTDB(W ,T, N )
2: Input: W ∈ Rn×m - a full-precision weight matrix.
3: T ∈ R1×m - an activation-aware initialization transformation matrix.
4: N - the total number of epochs.
5: Output: W̃ ∈ Rn×m - the transformed weight matrix.
6: for iter = 1, 2, . . . , N do
7: W̃ ← T⊙W ▷ Perform element-wise multiplication
8: LDTMD,LDTNP ← LossFunc(W̃ ) ▷ Compute the two dual-target losses for W̃
9: LDTNP.backward() ▷ Use Dual-Target Normalized Proportional Loss for training

10: if LDTMD > LDTMD-Minimum then
11: break ▷ Stop training based on Dual-Target Minimum Deviation Loss
12: end if
13: LDTMD-Minimum ← LDTMD
14: end for
15: return W̃
16: end function

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 7: Top: Visualization of single-bell weights distribution from different blocks of different
layers before applying DBellQuant. Bottom: Visualization of dual-bell weights distribution from
different blocks of different layers after applying DBellQuant.

A.5 HYPERPARAMETER SETTING IN TRAINING

Our method involves a few key hyperparameters, including the loss coefficient , the number of training
epochs, and the learning rate. These were initially determined by validating on the LLaMA2-7B
model, where we used a loss coefficient of 100, 200 epochs, and a learning rate of 0.01.

For the smooth parameter ϵ , we followed the strategy of SmoothQuant, testing values of 0.75, 0.80,
0.85, and 0.90. The differences in performance were marginal, with 0.85 yielding the best results, and
thus selected as the default. The stopping criterion is based on LTDB loss mentioned in Section. 3.3.

Importantly, we found that these hyperparameters generalize well across different architectures and
scales—including both the LLaMA and OPT model families—without requiring re-tuning. This
demonstrates that our method is robust and not sensitive to hyperparameter choices.

A.6 VISUALIZATION OF THE TRANSFORMATION OF WEIGHT DISTRIBUTIONS ACROSS
DIFFERENT LAYERS

The visualization of weights distribution before and after our proposed method DBellQuant is shown
in Fig. 7.

A.7 DETAILED APPLICATION OF TRANSFORMATION

To preserve computational consistency and avoid introducing additional parameters, we apply the
transformation T between the LayerNorm and the q/k/v projection layers, as well as between the
LayerNorm and the up/gate projection layers. This placement mirrors that of SmoothQuant, ensuring
the transformed inputs are compatible with quantization while maintaining the model’s architecture.

For o proj, although it is theoretically possible to insert a transformation T between v proj and
o proj to complete the symmetry, we found that this leads to conflicting transformations on v proj,
degrading performance. Therefore, we do not apply any transformation to o proj in practice.

Similarly, for down proj, the presence of activation functions (e.g., GeLU) makes it non-trivial to
apply transformations without disrupting the computation graph or introducing inconsistencies. As a
result, we do not insert transformations in this part either.

But we need to clarify that both o proj and down proj’s weight are binarized in DBellQuant. To
clarify, for these two layers, o proj and down proj, we did not learn a T-transformation to modify
their weights. However, we still applied the original binarization in BiLLM to process these two
layers, making our approach a w1a6 method.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

pe
rp
le
xi
ty

60

50

40

30

20

16bit

pe
rp
le
xi
ty

14

10

6

18

22

8bit 6bit 16bit 8bit 6bit

Figure 8: Performance of different activation bit-widths.

A.8 PERFORMANCE OF DIFFERENT ACTIVATION BIT-WIDTHS

The performance of different activation bit-widths across different models is shown in Fig. 8.

A.9 RESULTS ABOUT TRAINING OF DIFFERENT METHODS

Detailed training time and perplexity of different methods across various models are shown in Tab. 17.

Table 17: Traininig Time and Performance Comparison

OPT-1.3B OPT-2.3B OPT-6.7B LLaMA-1-7B LLaMA-2-7B
mins ppl mins ppl mins ppl mins ppl mins ppl

BiLLM 7 69.97 13 49.55 34 35.36 35 35.04 37 32.48
ARB-LLMX – – – – – – 88 21.81 – –
DBellQuant 9 43.42 17 31.47 45 18.89 47 15.34 49 17.91

A.10 RESULTS ABOUT BIT-WIDTH, MODEL SIZE AND PERPLEXITY OF DIFFERENT METHODS

Detailed bit-width, model size and perplexity of different methods across various models are shown
in Tab. 18, Tab. 19 and Tab. 20.

Table 18: Bit-width, Model Size and Performance Comparison for OPT-6.7B

Methods bit-width model size ppl
FP16 16 12.5GB 10.86
RTN 2 2.15GB 2e4
GPTQ 2 2.15GB 50.19
PB-LLM 1.7 1.95GB 105.16
BiLLM 1.11 1.84GB 35.36
DBellQuant 1.18 1.89GB 18.89

A.11 RESULTS ABOUT COMPUTATION SPEEDUP

To quantify computational speedup, we follow the benchmarking strategy of ARB-LLM and utilize
the BitBLAS codebase, which supports mixed-precision GEMM operations for low-bit weights. We
benchmark the latency (in milliseconds) of linear layers in LLaMA2-7B using input sequences of
length 2048. The results are shown in Tab. 21. Our findings are as follows:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 19: Bit-width, Model Size and Performance Comparison for LLaMA-1-7B

Methods bit-width model size ppl
FP16 16 13.5GB 5.68
RTN 2 2.25GB 1e5
GPTQ 2 2.25GB 152.31
PB-LLM 1.7 2.05GB 102.36
BiLLM 1.09 1.97GB 35.04
DBellQuant 1.15 2.02GB 15.34

Table 20: Bit-width, Model Size and Performance Comparison for LLaMA-2-7B

Methods bit-width model size ppl
FP16 16 13.5GB 5.47
RTN 2 2.31GB 1e5
GPTQ 2 2.31GB 60.45
PB-LLM 1.7 2.08GB 69.20
BiLLM 1.08 1.98GB 32.48
DBellQuant 1.15 2.04GB 17.91

1)Weight binarization significantly reduces inference latency compared to FP16 models, thanks to
faster memory access and bitwise computation

2)DBellQuant supports 8-bit activation quantization, enabling efficient INT8 inference. This not only
accelerates runtime but also yields better perplexity compared to prior binary weight methods like
BiLLM and ARB-LLMX.

Table 21: Computation Speed Comparison

Model 4096×4096 4096×11008 11008×4096
FP16 0.79463 1.73942 1.82653
BiLLM 0.36842 0.38744 0.43906
ARB-LLMX 0.33180 0.35539 0.36792
DBellQuant 0.27694 0.30085 0.31860

A.12 PERPLEXITY ON C4 DATASET

As shown in Tab.22, we compare the perplexity of the OPT and LLaMA families across different
model sizes on C4 dataset.

A.13 VISUALIZATION OF DISTRIBUTION OF ACTIVATION BEFORE AND AFTER DBELLQUANT

In this section, we present the changes in the distribution of activation values before and after
applying DBellQuant as shown in Fig.9. It is evident that the extreme values in the activation have
been significantly reduced by a factor of 5 to 10; for instance, the maximum value decreases from
approximately 3 to around 0.4. Previous studies have highlighted that one of the primary challenges
in low-bit quantization of activations lies in the presence of large outliers, which expand the activation
range and, consequently, amplify quantization errors. By applying DBellQuant, the activation range is
effectively compressed from [-3, 3] to [-0.4, 0.4], dramatically alleviating the difficulty of quantization.
This reduction in range establishes highly favorable conditions for further exploration of lower-bit
quantization, such as 8-bit or even 6-bit implementations.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 22: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, ARB-LLMX and our methods on OPT and
LLaMA family. The columns represent the perplexity results on C4 datasets with different model
sizes.

Method Activation
Bits OPT-1.3B OPT-2.7B OPT-6.7B LLaMA-1-7B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

Full Precision 16 16.07 14.34 12.71 7.34 7.26 6.73 5.71

RTN 16 9999.56 23492.89 9617.07 194607.78 115058.76 46250.21 314504.09
GPTQ 16 6364.65 6703.36 5576.82 186229.5 67954.04 19303.51 13036.32
PB-LLM 16 168.12 222.15 104.78 76.63 80.69 184.67 NAN
BiLLM 16 64.14 44.77 42.13 46.96 39.38 25.87 17.30
ARB-LLMX 16 47.60 34.97 22.54 22.73 28.02 19.82 11.85
DBellQuant 16 42.57 32.89 21.78 17.60 21.83 15.14 9.49
BiLLM 8 74.56 61.99 40.91 47.13 40.91 21.45 17.72
DBellQuant 8 44.60 32.52 21.56 18.16 23.80 15.56 9.61
BiLLM 6 7348 13445.21 63.41 61.65 63.41 37.66 19.43
DBellQuant 6 57.14 45.24 23.12 19.80 30.24 17.84 10.12

A.14 ANALYSIS OF RELATIVE ERROR OF THE ACTIVATION

To further validate our method, we conducted experiments demonstrating its effectiveness in reducing
the relative error of activations. Specifically, we randomly sampled 128 data points from the C4 dataset
and extracted the qproj inputs from the LLaMA2-7B model using both BiLLM (without applying the
inverse transform on activations) and our proposed DBellQuant (with the inverse transform applied).

We evaluated the relative error using two metrics: the Z-score, as you suggested, and the relative
deviation error. The formulas are as follows:

• Z-score:
Z =

x− µ

σ
where x is the value, µ is the mean, and σ is the standard deviation.

• Relative Deviation Error:

Relative Deviation Error =
x− u

u

where u is the mean value of the corresponding row.

These metrics allowed us to comprehensively assess the relative error and validate the robustness of
our proposed method. The computation results are shown in Tab. 23.

Z-score Relative Deviation Error
BiLLM 0.1584 33.78
DBellQuant 0.1401 30.72

Table 23: Comparison of Z-score and Relative Deviation Error between BiLLM and DBellQuant.

Our method demonstrates its effectiveness not only in reducing the absolute error of activations but
also in minimizing outliers from a relative distance perspective, as verified by DBellQuant.

A.15 PROOF FOR THEOREM. 1

Proof. Problem Setup: By assumption, the rows of the original weight matrix W are sampled
independently from Gaussian distributions:

wi ∼ N (µi, σ
2
i ), where µi ∈ R and σi > 0 for all i.

We aim to learn a transformation matrix T ∈ Rm×m such that the rows of the resulting matrix
W′ = WT follow a bimodal distribution.

Learnable Transformation Definition: The transformed matrix is defined as:

W′ = WT,

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a)Distribution of values of activation before DBellQuant for q_proj and k_proj

(b)Distribution of values of activation after DBellQuant for q_proj and k_proj

(c)Distribution of values of activation before DBellQuant for gate_proj and up_proj

(d)Distribution of values of activation after DBellQuant for gate_proj and up_proj

Figure 9: Visualization results of distribution of activation before and after DBellQuant across
different blocks.

where T is a learnable matrix that modulates the distribution of each row w′
i of W′. Since the rows

of W are Gaussian-distributed, the linear transformation by T initially results in a new Gaussian
distribution for each row:

w′
i ∼ N (µ′

i, σ
′2
i ),

where µ′
i = µiT and σ′2

i = T⊤ΣiT, with Σi = diag(σ2
i ) being the covariance of wi.

Inducing a Bimodal Distribution: To map the Gaussian-distributed rows w′
i into a bimodal

distribution, we note that a bimodal distribution can be expressed as a Gaussian mixture model:

g(x) = πN (x;µ1, σ
2
1) + (1− π)N (x;µ2, σ

2
2),

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where π ∈ (0, 1) is the mixing coefficient, and µ1, µ2, σ
2
1 , σ

2
2 are the parameters of the mixture

components. To achieve this, T is learned to ensure that the linear transformation WT reshapes the
original Gaussian distribution into a mixture of two Gaussians.

Parameter Optimization: The learnable matrix T is optimized using a loss function L that minimizes
the Kullback-Leibler (KL) divergence between the empirical distribution of the rows of W′ and the
target bimodal distribution:

L = KL
(
p(w′

i) ∥πN (µ1, σ
2
1) + (1− π)N (µ2, σ

2
2)
)
.

The optimization process adjusts the entries of T to align the transformed rows w′
i with the desired

bimodal distribution.

Conclusion: The existence of such a learnable matrix T ensures that the rows of the transformed
matrix W′ = WT can follow a bimodal distribution. This completes the proof.

A.16 ANALYSIS OF THE REASONS DOUBLE-BELL DISTRIBUTION MORE SUITABLE FOR
BINARIZATION COMPARED TO A SINGLE-BELL DISTRIBUTION.

Directly proving that a dual-bell distribution is more suitable for binarization compared to a single-bell
distribution can be challenging, as it requires setting numerous additional conditions. However, this
problem becomes significantly simpler when approached from the perspective of value adjustments.
By reducing the magnitude of larger absolute values and increasing smaller absolute values in a
bimodal distribution, all values can be shifted closer to two central points, effectively creating a
double-bell-like distribution. We can demonstrate that this approach reduces the quantization loss
introduced by binarization, thereby supporting the suitability of double-bell distributions for this
purpose.
Theorem 2. Given an input calibration activation x ∈ Rn×1 and a weight vector w ∈ Rn×1, where
wi is extracted from the weight matrix W ∈ Rn×n along a specific channel, we define the weight
vector w as the union of two sets: - A set of several outliers with large absolute values, denoted
as Uo = {o∗1, o∗2, . . . , o∗k}, where |o∗i | ≫ 0 for i ∈ {1, . . . , k}; - A set of normal values with small
absolute values, denoted as Un = {n1, n2, . . . , nn−k}, where |nj | ≈ 0 for j ∈ {1, . . . , n − k}.
w = Uo ∪ Un. We now define a new weight vector wnew as follows:

• wnew = [n1, n2, . . . , γo
∗
1, γo

∗
2, . . . , γo

∗
k, . . . , nn−k], where γ ∈ ( 12 , 1).

• Alternatively, wnew = [ηn1, ηn2, . . . , o
∗
1, o

∗
2, . . . , o

∗
k, . . . , ηnn−k], where η ∈ (1, 2).

Then, the quantization error induced by wnew, defined as ∥x ·w − x · binarized(wnew)∥, is strictly
smaller than the original quantization error ∥x ·w − x · binarized(w)∥ in both cases.

Proof. A.16.1 SCALING UP SMALL VALUES REDUCES QUANTIZATION ERROR

Consider the scenario where the input vector is X = [2, 2, 2, . . . , 2]n. Assume the weights in a
single channel, W , are given by [α1, α2, ..., αk, β1, β2, β3, . . . , βn−k], where [αi ∈ U1] is the set of
values with very large absolute magnitudes, satisfying

∑k
i=1 αi = A and [βi ∈ U2] are values with

magnitudes close to zero, satisfying
∑n−k

i=1 βi = 0. W = U1 ∪ U2. This structure is common in
practice, as weight distributions in neural networks often exhibit a few dominant values and many
small ones. As we observe, the distribution of weights along the channel dimension is mostly not
symmetric around zero. Instead, it tends to be biased, with the majority leaning either towards positive
or negative values. Consequently, the extreme values are predominantly either entirely positive or
entirely negative, so we assume αi > 0.

The product of the input X and the weight vector W is:

X ·WT = 2(α1 + α2 + · · ·+ αk + β1 + β2 + · · ·+ βn−k) = 2(α1 + α2 + · · ·+ αk) = 2A (7)

since the sum of the βi is zero.

According to the quantization function, the mean value M is:

M =
α1 + α2 + · · ·+ αk + β1 + β2 + · · ·+ βn−k

n
=

A

n
(8)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The absolute mean value, AbsMean, is defined as:

AbsMean =
|α1 − A

n |+ |α2 − A
n |+ · · ·+ |αk − A

n |+ |β1 − A
n |+ |β2 − A

n |+ · · ·+ |βn−k − A
n |

n
(9)

Given that [β1, β2, . . . , βn−1] are all very small in magnitude compared to α
n , we can simplify the

above as:

AbsMean =
(α1 − A

n ) + (α2 − A
n ) + · · ·+ (αk − A

n ) + (An − β1) + (An − β2) + · · ·+ (An − βn−k)

n

=
A+ (n− 2k)An − (β1 + β2 + · · ·+ βn−k)

n

=
A+ (n− 2k)An

n

=
2(A− kA

n )

n
(10)

Here, the sum of the βi vanishes due to their zero sum constraint.

Therefore, the dequantized value for α is:

AbsMean+M =
2(A− 2kA

n )

n
+

A

n
(11)

and for each βi:

−AbsMean+M = −
2(A− 2kA

n )

n
+

A

n
(12)

To reduce the quantization error associated with the small-magnitude weights, we can scale
them up by a factor m > 1, while correspondingly scaling down the input. Specifi-
cally, we multiply each βi by m and divide the associated input elements by m. The
new input becomes Xnew = [2, 2, . . . , 2, 2

m , 2
m , . . . , 2

m ]n, and the new weights are Wnew =
[α1, α2, ..., αk,mβ1,mβ2, . . . ,mβn−k].

The output remains unchanged:

Xnew ·WT
new = 2(α1 + α2 + · · ·+ αk) +

2

m
·mβ1 +

2

m
·mβ2 + · · ·+

2

m
·mβn−k = 2A (13)

This invariance is crucial: the scaling operation does not affect the original computation, but it can
impact the quantization error.

For the new weights, the mean value is:

Mnew =
α1 + α2 + · · ·+ αk +mβ1 +mβ2 + · · ·+mβn−k

n
=

A+m(β1 + β2 + · · ·+ βn−k)

n
=

A

n
(14)

since the sum of the βi is zero.

The new absolute mean value is:

AbsMeannew =
|α1 − A

n |+ |α2 − A
n |+ · · ·+ |αk − A

n |+ |mβ1 − α
n |+ |mβ2 − α

n |+ · · ·+ |mβn−k − α
n |

n
(15)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

If m is chosen such that α
n remains larger than all mβi, the simplification proceeds as before:

AbsMeannew =
(α1 − A

n ) + (α2 − A
n ) + · · ·+ (αk − A

n ) + (An −mβ1) + (An −mβ2) + · · ·+ (An −mβn−k)

n

=
A+ (n− 2k)An −m(β1 + β2 + · · ·+ βn−k)

n

=
A+ (n− 2k)An

n

=
2(A− kA

n )

n
(16)

Thus, AbsMeannew and Mnew are identical to AbsMean and M , and the dequantized values are
unchanged. This demonstrates that scaling up the small weights does not affect the mean or absolute
mean, but it can improve the quantization error, as we analyze next.

Let us now analyze the quantization error. The original output is 2α. For convenience, let N =
(n− k)(−AbsMean+M). The quantized output is a sum of the dequantized values for all weights.

A > 0 Both before and after scaling, the quantization output contains the term:

2k(AbsMean+M) = 2k

(
2(A− kA

n )

n
+

A

n

)
(17)

For n typically greater than 100 and k ≪ n it holds that:

0 < 2k(AbsMean+M) < 2A (18)

This is because the quantized value is always less than the original due to the averaging effect.

For the term −AbsMean+M :

−AbsMean+M = −
2(A− kA

n )

n
+

A

n

= −A

n
+

2kA

n2

=
A

n

(
2k

n
− 1

) (19)

Since n > 100 ,A > 0 and k ≪ n this value is negative and its magnitude is small.

The quantization output before scaling is 2k(AbsMean + M) + 2N , and after scaling is
2k(AbsMean+M) +N . Because N < 0 and 2(AbsMean+M) < 2A, we have:

2k(AbsMean+M) + 2N < 2k(AbsMean+M) +N < 2A (20)

This shows that scaling up the small weights reduces the quantization error, as the quantized output
moves closer to the original value.

if αi < 0, the proof is similar.

In summary, scaling up the small weights (and correspondingly scaling down the input) does not
change the original computation, but it systematically reduces the quantization error by making the
quantized output more faithful to the original.

A.16.2 SCALING DOWN LARGE VALUES REDUCES QUANTIZATION ERROR

Now, let us consider the scenario where we scale down the large-magnitude weight. Let the input
X = [1, 1, 1, . . . , 1]n, and the weights W = [mα1,mα2, ...,mαk, β1, β2, β3, . . . , βn−k], where
α1, α2, . . . , αk are large values, satisfying

∑k
i=1 αi = A and αi > 0, [β1, . . . , βn−k] are small, and∑n−k

i=1 βi = 0.

The output is:

X ·WT = m(α1 + α2 + · · ·+ αk + β1 + β2 + · · ·+ βn−k = mA (21)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The mean value is:

M =
mα1 +mα2 + · · ·+mαk + β1 + β2 + · · ·+ βn−k

n
=

mA

n
(22)

The absolute mean is:

AbsMean =
|mα1 − mA

n |+ |mα2 − mA
n |+ · · ·+ |mαk − mA

n |+ |β1 − mA
n |+ |β2 − mA

n |+ · · ·+ |βn−k − mA
n |

n
(23)

Since mA
n is much larger than the βi, we can simplify:

AbsMean =
(mα1 − mA

n ) + (mα2 − mA
n ) + · · ·+ (mαk − mA

n ) + (mA
n − β1) + (mA

n − β2) + · · ·+ (mA
n − βn−k)

n

=
m(α1 + α2 + · · ·+ αk) + (n− 2k)mA

n − (β1 + β2 + · · ·+ βn−1)

n

=
mA+ (n− 2k)mA

n

n

=
2m(A− kA

n )

n
(24)

The dequantized value for mα is:

AbsMean+M =
2m(A− kA

n )

n
+

mA

n
=

3mA− 2mkA
n

n
(25)

and for each βi:

−AbsMean+M = −
2m(A− A

n )

n
+

mA

n
=
−mA+ 2mkA

n

n
(26)

To scale down the large value mα, we divide it by m (m > 1) and multiply the corresponding
input element by m. The new input is Xnew = [m, 1, 1, . . . , 1]n, and the new weights are Wnew =
[α1, α2, . . . , αk, β1, β2, . . . , βn−k].

The output remains unchanged:

Xnew ·WT
new = m(α1 + α2 + · · ·+ αk) + β1 + β2 + · · ·+ βn−k = mA (27)

For the new weights, the mean is:

Mnew =
α1 + α2 + · · ·+ αk + β1 + β2 + · · ·+ βn−k

n
=

A

n
(28)

The new absolute mean is:

AbsMeannew =
|α1 − A

n |+ |α2 − A
n |+ · · ·+ |αk − A

n |+ |β1 − A
n |+ |β2 − A

n |+ · · ·+ |βn−1 − A
n |

n
(29)

With appropriate m, we have:

AbsMeannew =
(α1 − A

n ) + (α2 − A
n ) + · · ·+ (αk − A

n ) + (αn − β1) + (αn − β2) + · · ·+ (αn − βn−k)

n

=
(α1 + α2 ++ · · ·+ αk) + (n− 2k)An − (β1 + β2 + · · ·+ βn−1)

n

=
A+ (n− 2k)An

n

=
2(A− kA

n )

n
(30)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The dequantized value for αi is:

AbsMeannew +Mnew =
2(A− kA

n )

n
+

A

n
=

3A− 2kA
n

n
(31)

and for each βi:

−AbsMeannew +Mnew = −
2(A− kA

n )

n
+

A

n
=
−A+ 2kA

n

n
(32)

Let us now examine the quantization error. The original output is mα. The quantization output before
scaling is:

k(AbsMean+M) + (n− k)(−AbsMean+M)

= k
3mA− 2mkA

n

n
+ (n− k)

−mA+ 2mkA
n

n

(33)

The quantization output after scaling is:

km(AbsMeannew +Mnew) + (n− k)(−AbsMeannew +Mnew)

= km
3A− 2kA

n

n
+ (n− k)

−A+ 2kA
n

n

= k
3mA− 2mkA

n

n
+ (n− k)

−A+ 2kA
n

n

(34)

Because A > 0, for n > 100 ,α > 0 and k ≪ n it holds that:

0 < k
3mA− 2mkA

n

n
< mA (35)

and
−A+ 2kA

n

n
=

A

n

(
2k

n
− 1

)
< 0 (36)

Comparing the quantization outputs, we see:

k
3mA− 2mkA

n

n
+m(n− k)

−A+ 2kA
n

n

< k
3mA− 2mkA

n

n
+ (n− k)

−A+ 2kA
n

n
< mA

(37)

If αi < 0, the proof is similar.

24


	Introduction
	Related Work
	Method
	Binarization-Friendly Weight Redistribution
	Learnable Transformation for Dual-Bell Quantization
	Dual-Transformation Optimizing Objectives
	Impact of the Inverse of Learnable Transformation Matrix on Activation Smoothing 
	Algorithm

	Experiments
	Settings
	Main Results
	Ablation Experiments
	Time and Memory Analysis

	Conclusion
	Appendix
	Use of Large Language Models
	Limitations
	Broader Impacts
	Algorithm
	Hyperparameter setting in training
	Visualization of the transformation of weight distributions across different layers
	Detailed application of Transformation
	Performance of different activation bit-widths
	Results about training of different methods
	Results about bit-width, model size and perplexity of different methods
	Results about Computation Speedup
	Perplexity on C4 dataset
	Visualization of distribution of activation before and after DBellQuant
	Analysis of relative error of the activation
	Proof for Theorem. 1
	Analysis of the reasons double-bell distribution more suitable for binarization compared to a single-bell distribution.
	Scaling Up Small Values Reduces Quantization Error
	Scaling Down Large Values Reduces Quantization Error



