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ABSTRACT

Large language models (LLMs) demonstrate remarkable performance but face sub-
stantial computational and memory challenges that limit their practical deployment.
Quantization has emerged as a promising solution; however, its effectiveness is
often limited by quantization errors arising from weight distributions that are not
quantization-friendly and the presence of activation outliers. To address these chal-
lenges, we introduce DBellQuant, an innovative post-training quantization (PTQ)
framework that achieves nearly 1-bit weight compression and 6-bit activation
quantization with minimal performance degradation. DBellQuant uses learnable
transformation to map single-bell weight distribution to dual-bell distribution to
reduce binarization error and smooth activations using inverse transformation.
DBellQuant sets a new state-of-the-art by preserving superior model performance
under aggressive weight and activation quantization. For example, on the Wikitext2
dataset, DBellQuant achieves a perplexity of 14.39 on LLaMA2-13B with nearly
1-bit weight and 6-bit activation quantization, significantly outperforming BiLLM’s
21.35 without activation quantization, underscoring its potential in compressing
LLMs for real-world edge applications.

1 INTRODUCTION

In recent years, the rapid advancement of large language models (LLMs) demonstrate exceptional
performance in a variety of complex tasks that involve natural language understanding and generation
(Achiam et al., 2023; Dubey et al., 2024). However, these models often comprise hundreds of billions
of parameters, posing significant challenges for their deployment in real-world edge applications
because of the substantial computational and memory requirements (e.g. a 70B model requires around
150GB GPU memory), resulting in huge operational costs and unacceptable inference latency.
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Figure 1: Performance on Wikitext2
dataset. DBellQunat outperforms
weight-only quantization method under
8-bit activation setting.

Quantization is a compelling route to LLM compression,
and weight binarization is especially attractive for sharply
reducing model size (Wang et al., 2024; Yu et al., 2024).
Recent PTQ methods– e.g., PB-LLM and BiLLM– mit-
igate binarization error with finer-grained treatment of
salient weights (Shang et al., 2023; Huang et al., 2024a).
However, activation outliers remain a major obstacle to si-
multaneously quantizing activations (Sun et al., 2024), un-
dercutting memory and latency gains. Scale-redistribution
techniques (Xiao et al., 2023; Shao et al., 2023) and
Hadamard-based transforms (Ashkboos et al., 2024; Liu
et al., 2024; Sun et al., 2025; Lin et al., 2024) help at
higher weight precisions, but no PTQ weight binarization
method concurrently achieves effective activation quanti-
zation. This is because pushing weights to 1-bit increases sensitivity to activation outliers, while
existing fixes shift the difficulty back to the weights or require higher-bit activations for accuracy.
Quantization-aware training (QAT) approaches such as BitNet can reach 1-bit weights with low-
bit activations (Wang et al., 2024), but at the cost of heavy retraining. Thus, there is a need for
post-training weight binarization that preserves accuracy while also enabling activation quantization.
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0 2-2

easier to binarize
(a) Activation and weight distribution before DBellQuant (b) Activation and weight distribution after DBellQuant

Figure 2: (a) Before applying DBellQuant, activations exhibit significant outliers, making quantization
challenging, while the single-bell-shaped weight distribution hinders binarization. (b) After applying
DBellQuant, activations are smoothed with substantially fewer outliers, facilitating easier quantization.
Weight distribution is transformed to dual-bell form, which is more conducive to binarization.

To this end, we begin by revisiting the distribution characteristics of activations and weights in
LLMs (Fig. 2(a)). We observe that the unimodal nature of weight distributions leads to substantial
quantization errors, particularly in the case of low 1-bit quantization. Ideally, a dual-bell-shaped
weight distribution (Fig. 2(b)) can effectively reduce binarization errors. In addition, activation
distribution suffer from outliers and thus large quantization errors, which demands a narrower
distribution. This motivates a key question: Is it possible to transform weights into a dual-bell
shape distribution while simultaneously addressing activation outliers to facilitate both activation
quantization and weight binarization?

Building on these observations, we propose DBellQuant, a novel weight-activation quantization
framework for efficient post-training quantization (PTQ). DBellQuant enables activation quantization
while achieving near 1-bit weight compression with minimal accuracy loss. The core mechanism is a
learnable, equivalence-preserving transformation that maps each layer’s weight distribution toward
a dual-bell shape; its inverse is applied to the input activations to keep the computation unchanged.
We analyze the feasibility of dual-bell transformations for binarization and propose a lightweight
algorithm, Learnable Transformation for Dual-Bell (LTDB), which initializes the transform and
optimizes it with a custom objective that drives weights to cluster around two modes, with early
stopping to ensure stability. By doing so, weights originally exhibiting unimodal distributions–
challenging for binarization– are mapped into near-symmetric dual-bell distributions (Fig. 2(b)),
significantly reducing binarization error. Moreover, as discussed in Sec. 3.4, experiments show
that applying the inverse transform to inputs consistently contracts activation ranges and suppresses
outliers, making activations more amenable to quantization (Fig. 2(b)).

Experimental results demonstrate that the equivalent transformation strategy of DBellQuant signifi-
cantly reduces the loss caused by weight binarization. For the first time under PTQ conditions, it
achieves near 1-bit weight compression while simultaneously compressing activations to 6 bits.Across
various LLMs and evaluation metrics, DBellQuant consistently achieves state-of-the-art results. For
instance, on the Wikitext2 benchmark, we achieves a perplexity of 14.39 on LLaMA2-13B using
only 6-bit activations (Fig. 1), significantly surpassing the performance of BiLLM, a method that
only quantizes weights, which achieves a perplexity of 21.35.

2 RELATED WORK

Quantization for Large Language Models The massive parameter size of LLMs poses significant
challenges in terms of memory consumption and computational efficiency. Therefore, quantization is
crucial to compress these models, reducing resource requirements while preserving performance for
practical deployment. LLMs quantization have introduced a variety of innovative techniques to en-
hance efficiency while maintaining accuracy. Works like GPTQ (Frantar et al., 2022) and OBQ (Fran-
tar et al., 2023b) minimizes reconstruction error by adjusting the remaining unquantized parameters
in the block to compensate for the accuracy loss caused by quantization. LLM.int8()(Dettmers et al.,
2022a) and ZeroQuant(Yao et al., 2022) improve quantization accuracy by introducing additional
grouping labels for customized quantization blocks. Other works like SmoothQuant(Xiao et al.,
2023) and OmniQuant (Shao et al., 2023) addresses activation outliers by redistributing scaling
factors between weights and activations, migrating the quantization difficulty from activation to
weights. Additionally, recent approaches leverage Hadamard transformations to suppress activation
outliers (Ashkboos et al., 2024; Liu et al., 2024; Sun et al., 2025), while incoherence processing and
non-linear transformation have been proposed for effective low-bit quantization (Chee et al., 2024;
Tseng et al., 2024; Zhang et al., 2024). Collectively, these advancements demonstrate that quantiza-
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(a) Origin weights (b) Activation-aware Initialization (d) Output weights(c) Learnable Transformation for Dual-Bell Transformation
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Figure 3: DBellQuant Framework Overview: (a)First, we can see that the origin weight distribution
is single-bell. (b)We utilize Activation-aware initialization to generate origin transformation matrix.
(c)We employ the LTDB algorithm for iterative training of the transformation matrix, applying the
proposed Dual-Transformation Loss in two ways: for training and as the termination criterion for the
training process. (d)The weight distribution after transformation will be double-bell.

tion techniques can be scaled to multi-billion-parameter models, achieving substantial reductions in
memory consumption and inference latency without compromising model performance.

Binary Quantization Binary quantization, an extreme low-bit quantization technique that reduces
model weights and activations to binary values (e.g., -1 and +1 or 0 and 1), has gained significant
attention for its ability to drastically cut memory usage and computational complexity, making it ideal
for resource-constrained devices and efficient deployment of large-scale models. However, applying
binary quantization to LLMs presents substantial challenges due to their sensitivity to precision
loss, particularly in attention mechanisms and large embedding layers. BinaryBERT (Bai et al.,
2020) explored binary quantization for BERT, proposing selective preservation of critical weights
in higher precision to mitigate performance degradation. In another direction, PB-LLM (Shang
et al., 2023) introduced a partially-binarized approach for LLMs, retaining a small fraction of salient
weights in higher precision while binarizing the rest, enabling extreme low-bit quantization without
sacrificing linguistic reasoning capabilities. Recent advancements include structural binarization
techniques that leverage novel sparsity forms and standardized importance metrics to selectively
binarize and sparsify LLM weights (Dong et al., 2024), as well as strategies like alternating refined
binarization and column-group bitmap methods to effectively reduce quantization error and address
column deviations (Li et al., 2024). These innovations collectively advance the feasibility of binary
quantization for LLMs, pushing the boundaries of efficiency without compromising performance.

3 METHOD

We begin by exploring the process of binarization, analyzing and theoretically proving the weight
distributions suitable for binarization in Sec. 3.1. Based on our analysis, we propose the Learnable
Transformation for Dual-Bell (LTDB) algorithm in Sec. 3.2. After investigating the potential of
utilizing a learnable transformation matrix to achieve the objective, we redesigned an efficient
learnable transformation along with a reasonable activation-aware initialization method, taking into
account training difficulty and task complexity. An overview of the algorithm is included in Fig. 3.

3.1 BINARIZATION-FRIENDLY WEIGHT REDISTRIBUTION

By utilizing the sign function, binarization can convert weights in LLMs into binary values. The
per-channel binarization and de-binarization process is as follows:

β =
1

n

n∑
i=1

Wi,j , W̃ = Sign(W − β), α =
1

n

n∑
i=1

|Wi,j − βj | (1)

Sign(Wi,j) =

{
+1, if Wi,j > 0,

−1, if Wi,j ≤ 0,
, Wdeq = W̃ · α+ β (2)
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where β is the shifting factor and α is the scaling factor for binarization. Previous studies (Huang
et al., 2024b) have shown that neural network weights exhibit structured distributions along the
channel dimension, with certain channels being more salient. The overall weight distribution typically
follows a quasi-Gaussian pattern (Dettmers et al., 2022b), as does the channel-wise distribution (Fig.
7). Binarizing such weight matrices introduces significant quantization errors, which can severely
degrade model performance.

In LLM binarization, a dual-bell distribution is theoretically more advantageous than a single-bell
distribution due to its natural separation into two distinct clusters, which aligns well with binary
quantization levels (e.g., -1 and 1), thereby minimizing quantization error. In contrast, single-bell
distributions, concentrated around a single peak, often cause significant overlap when mapped to
binary values, reducing representation accuracy (see Appendix A.16 for detailed analysis). However,
LLM weight distributions typically exhibit single-bell characteristics, and conventional PTQ methods
fail to effectively transform them for binarization. While QAT can reshape weight distributions into a
dual-bell form through its learning objectives (Wang et al., 2023), it requires substantial computational
resources and prolonged training. To address this, we propose a more efficient PTQ method that
rapidly converts single-bell distributions into dual-bell ones, optimizing binary quantization without
the need for resource-intensive retraining.

3.2 LEARNABLE TRANSFORMATION FOR DUAL-BELL QUANTIZATION

Learnable Transformation with Auxilary Matrix As mentioned before, double-bell distributions
are advantageous for binarization. However, the key question lies in how to transform a weight matrix
that originally follows a single-bell distribution into a double-bell one and ensures the computational
results remain unchanged. In this section, we first explore the feasibility of achieving such a
transformation through the application of an auxiliary matrix:

Theorem 1. Let W ∈ Rn×m be a weight matrix where each channel wi (for i ∈ {1, 2, . . . , n}) is
sampled from a single-bell Gaussian distribution wi ∼ N (µi, σ

2
i ). There exists a learnable matrix

T ∈ Rm×m, such that the channels of the transformed matrix W ′ = WT follow a double-bell
distribution, specifically a mixture of two Gaussians:

w′
i ∼ πN (µ1, σ

2
1) + (1− π)N (µ2, σ

2
2),

where π ∈ (0, 1) is the mixing coefficient, and µ1, µ2, σ
2
1 , σ

2
2 are parameters of the doubel-bell

distribution. More detailed proof is shown in Appendix. A.15.

Theorem 1 demonstrates that transforming weight distributions from single-bell to double-bell can be
achieved by introducing an auxiliary matrix T . However, this approach presents several significant
challenges. First, in LLMs, weight matrices typically have extremely high dimensionalities, such
as (4096, 4096), meaning that the auxiliary matrix T would also be of similarly large dimensions,
making it computationally expensive and difficult to learn. Second, to maintain computational
consistency, it is necessary to simultaneously apply T−1 to the activations, which raises a critical
issue regarding the invertibility of T . Ensuring strict invertibility introduces additional constraints
and complex design steps, further complicating the process. Third, even if T is strictly invertible, it
remains uncertain whether this design effectively facilitates activation quantization, as there are no
explicit mechanisms in the current approach to optimize activation quantization. These limitations
highlight the need for a more efficient and robust design to address the computational and practical
challenges associated with auxiliary matrix-based transformations.

Learnable Equivalent Transformation To address these challenges, we propose a simpler and
more efficient method for achieving the transformation. In this approach, the matrix T ∈ R1×Cin to
be learned is reduced to a 1×Cin matrix. Compared to the matrix introduced above, this significantly
reduces the dimensionality of T to compared to its original size, making it substantially easier to
learn.

Furthermore, this approach allows for straightforward transformations to ensure computational
consistency without introducing additional complexity as follows:

Y = X ∗W = X ∗ (T−1 ∗ T ) ∗W =
(
X ⊙ T−1) ∗ (T ⊙W ) (3)

4
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where X ∈ RN×Cin is the input matrix, N is the token length and Cin is the input channel size.
w ∈ RCin×Cout is the weight matrix, where Cout is the output channel size. ⊙ denotes elementwise
multiplication.Moreover, this equivalent transformation matrix T will be directly fused into the Lay-
erNorm weights and the corresponding linear weights, without introducing any additional parameters.
However, directly solving this matrix is highly challenging. To address this, we propose a learnable
approach to train and derive the matrix effectively.

Here we introduce the way to initialize the learnable transformation matrix T using the following
equation:

Tj =
max(|Xj |)ϵ

max(|Wj |)1−ϵ
(4)

where ϵ is a hyperparameter. This initialization strategy provides significant advantages for both
weight binarization and activation smoothing. For weight quantization, specifically, when max(|Wj |)
is particularly small, it indicates that the absolute value of weights are relatively small, resulting in a
large value of 1

max(|Wj |) which corresponds to scaling up these smaller weights. Conversely, when
max(|Wj |) is particularly large, it reflects larger absolute value weights, which lead to a smaller
value of 1

max(|Wj |) , which will scale down the larger weights. All values can be shifted closer to
two central points through these two processes, and it will reduce the quantization error shown in
Appendix. A.16. Regarding activation quantization, the initialization explicitly accounts for outliers
in the activation matrix, making it inherently activation-aware. This ensures that even without further
optimization of activation quantization during subsequent training, it supports near 1-bit weight
quantization while effectively reducing activations to a low bit-width.

3.3 DUAL-TRANSFORMATION OPTIMIZING OBJECTIVES

Dual-Target Minimum Deviation Loss Our learning objective is to encourage all weight values to
move closer to the two mean centers calculated by Eq. 2, ultimately forming a double-bell distribution
with these two values as its peaks. During the binarization process, we denote these two points as m1

and m2 respectively. The simple way to set loss function is as follows:

LDTMD =
λDTMD

n

n∑
i=1

min (|W ∗ Ti −m1,i| , |W ∗ Ti −m2,i|) (5)

where λDTMD represents the coefficient of LDTMD. However, employing this type of loss function to
train the transformation matrix introduces an issue. Specifically, we observed that the transformation
matrix tends to shrink progressively during training, contrary to the intended effect of scaling up
the originally smaller absolute values. This unintended behavior results in a significant problem: it
effectively shifts the quantization challenge from the weights to the activations.

Dual-Target Normalized Proportional Loss As discussed before, DTMD alone is not enough to
train a better weights distribution for binarization. So we introduce a new loss function as follows:

LDTNP =
λDTNP

n

n∑
i=1


|W∗Ti−m1,i|

|m1,i| , if |W ∗ Ti − m1,i| < |W ∗ Ti − m2,i|

|W∗Ti−m2,i|
|m2,i| , otherwise.

(6)
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Figure 4: Dual-Target Minimum Deviation Loss
value over iterations across different layers.

where λDTNP represents the coefficient of Lossrel.
By leveraging the dual-target normalized propor-
tional objective, the transformation matrix can be
effectively trained to meet the desired behavior,
scaling down larger absolute values and scaling
up smaller absolute values to approach a double-
bell-shaped distribution. Since our target values
have been transformed into |W ∗Ti−mi|

|mi| , the final
convergence values might not align with our de-
sired results. Furthermore, we propose an early
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stopping mechanism to prevent the function from converging to an undesired solution that deviates
from our intended objective. We observe that by using this loss to train, DTMD drops quickly first
and then slowly grow as shown in Fig. 4. Therefore, we introduce an early stop mechanism and
DTMD is utilized as a condition for stopping the training.

3.4 IMPACT OF THE INVERSE OF LEARNABLE TRANSFORMATION MATRIX ON ACTIVATION
SMOOTHING

1 1

𝑇 𝑇!"

(a) The distribution of values in 
the transformation matrix 𝑇

(b) The distribution of values in 
the transformation matrix 𝑇!"

Figure 5: Visualization of distribution of
values in T and T−1 of Llama2-7B.

Through the use of DTNP for training, we understand
that the transformation matrix T drives all values in the
weights closer to the two mean centers calculated by Eq. 2.
Prior research has shown that the distribution of weights
tends to approximate a quasi-Gaussian distribution, with
the majority of values being extremely small and close to
zero, while only a very small fraction exhibit relatively
large absolute values (Dettmers et al., 2022b). Theoreti-
cally, this implies that T will contain many values greater
than 1 to amplify the numerous near-zero absolute values,

bringing them closer to the mean centers. At the same time, very few values of T will be less than
1. In fact, when we visualize T after training as shown in Fig. 5, we observe that less than 5% of
its values are below 1. Consequently, the corresponding T−1, which is multiplied with activations,
has over 95% of its values below 1. This effectively narrows the distribution of activation, making
quantization easier. Visualization results can be seen in Appendix. A.13 and we also provide quantita-
tive analysis of activation outliers in Appendix. A.14. As a result, this approach smooths activation
quantization.

3.5 ALGORITHM

The process of Learnable Transformation for Dual-Bell Transformation Algorithm is shown in
Algorithm. 1, which can be seen in Appendix. A.4 and can adjust the full-precision weight matrix
W using an activation-aware initialization transformation matrix T over N epochs. The algorithm
iteratively minimizes dual-target loss functions to guide W toward a dual-bell distribution while
employing an early stopping mechanism based on the DTMD.

4 EXPERIMENTS

4.1 SETTINGS

All experimental procedures were executed utilizing the PyTorch (Paszke et al., 2019) framework in
conjunction with the Huggingface library (Paszke et al., 2019). Models with parameters smaller than
8B are running on a single NVIDIA A30 GPU equipped with 24GB of memory, others are running
on a single NVIDIA A100 GPU equipped with 80GB of memory. Consistent with methodologies
outlined by Frantar et al. (Frantar et al., 2023a) and Huang et al. (Huang et al., 2024a), a calibration
dataset comprising 128 samples sourced from the C4 collection (Raffel et al., 2020) was employed.

Models and Datasets Comprehensive evaluations were carried out across several large language
model families, including LLaMA, LLaMA-2, and LLaMA-3 (Touvron et al., 2023) and the OPT
series (Zhang et al., 2022). The efficacy of the developed DBellQuant was assessed by calculating
the perplexity of the models’ generated text on standard benchmarks: WikiText2 (Merity et al.,
2017), and a subset of the C4 data (Raffel et al., 2020). Furthermore, the models’ performance was
evaluated based on accuracy across five zero-shot question-answering tasks: ARC-c (Clark et al.,
2018), ARC-e (Clark et al., 2018), Hellaswag (Zellers et al., 2019), PIQA (Bisk et al., 2020), and
Winogrande (Sakaguchi et al., 2020).

Comparison Methods The primary benchmark for comparison for our DBellQuant approach is
BiLLM (Huang et al., 2024a), which represents the current baseline PTQ technique for binary large
language models. Additionally, we include other contemporary PTQ algorithms in our comparison,
namely Round-to-Nearest (RTN), GPTQ (Frantar et al., 2023a), PB-LLM (Shang et al., 2023) and
the current state-of-the-art PTQ technique ARB-LLM (Li et al., 2024).

6
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Table 1: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, ARB-LLMX and our methods on OPT and
LLaMA family. The columns represent the perplexity results on WikiText2 datasets with different
model sizes.

Method Activation
Bits OPT-1.3B OPT-2.7B OPT-6.7B LLaMA-1-7B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

Full Precision 16 14.62 12.47 10.86 5.68 5.47 4.88 3.32

RTN 16 17165.72 36516.69 11550.91 168388.00 157058.34 47902.32 160389.91
GPTQ 16 14844.73 14114.58 10622.81 267001.72 115905.67 9387.80 14219.35
PB-LLM 16 265.52 124.35 105.16 102.36 69.20 151.09 28.37
BiLLM 16 69.97 49.55 35.36 35.04 32.48 21.35 13.32
ARB-LLMX 16 45.40 34.37 20.07 21.81 21.61 14.86 7.88
DBellQuant 16 43.42 31.47 18.89 15.34 17.91 12.79 6.84
BiLLM 8 88.95 68.60 166.46 40.13 33.23 22.55 14.72
DBellQuant 8 44.98 30.39 18.88 14.74 18.65 13.11 6.88
BiLLM 6 9537 18405.85 28123.58 71.65 42.41 30.20 18.65
DBellQuant 6 61.50 47.33 21.12 16.66 21.69 14.39 7.56

Figure 6: Top: Visualization of single-bell weights distribution from different blocks of different
layers before applying DBellQuant. Bottom: Visualization of dual-bell weights distribution from
different blocks of different layers after applying DBellQuant.

4.2 MAIN RESULTS

LLMs across different activation quantization bit-widths and model sizes, deploying DBellQuant
with a block size of 128. As shown in Tab. 1, we compare the WikiText2 perplexity of the OPT and
Llama families across different model sizes. The results demonstrate that DBellQuant significantly
outperforms the state-of-the-art ARB-LLMX when only quantizing weights, achieving up to a 42.18%
reduction in perplexity. Moreover, when activations are quantized to lower bit-widths like 6-bit,
DBellQuant achieves up to a 76.66% reduction in perplexity for the LLaMA family compared
to BiLLM. It is noteworthy that for OPT family, the model outputs under the BiLLM methods
have already collapsed when quantizing the activation to 6 bit, whereas DBellQuant still maintains
reasonable linguistic output capabilities. In terms of average accuracy on QA datasets, DBellQuant
also significantly surpasses previous methods and increase the average accuracy up to 42.48%, as
detailed in Tab. 2. Here, we only compare with ARB-LLMX because we share the same quantization
format. Additionally, Fig. 7 visualizes the transformation of weight distributions across different
layers, clearly illustrating the shift from a single-bell to a double-bell distribution. These results
highlight the effectiveness of DBellQuant in enabling robust low-bit quantization while preserving
model performance. More results can be seen in Appendix. A.12.

4.3 ABLATION EXPERIMENTS

Effectiveness of LTDB algorithm To validate the effectiveness of our advanced LTDB algorithm,
we compare them with the vanilla initialization without LTDB. We can observe that under different
bitwidths of activation quantization, the models utilizing the proposed LTDB method consistently

7
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Table 2: Accuracy of PIQA, ARC-e, ARC-c, HellaSwag, Winogrande and average accuracy of all
datasets with BiLLM and our methods on OPT and LLaMA family.

Model Method Activation
Bits PIQA ARC-e Arc-c HellaSwag Winogrande Avg.

- 16 76.33 65.61 30.55 50.51 65.35 57.67

BiLLM 16 59.63 36.83 17.06 30.14 51.30 38.99
ARB-LLMX 16 69.75 55.47 24.32 37.78 58.64 49.19
DBellQuant 16 70.29 55.76 24.72 37.81 58.71 49.46

OPT-6.7B BiLLM 8 54.30 31.02 20.05 26.66 50.90 36.59
DBellQuant 8 69.10 54.63 24.91 38.19 57.38 48.84
BiLLM 6 53.43 20.08 20.22 25.80 47.67 33.44
DBellQuant 6 68.12 52.44 23.38 37.04 57.30 47.65
- 16 78.40 67.34 38.14 56.45 67.01 61.46

BiLLM 16 61.92 38.93 21.58 32.78 53.67 41.77
ARB-LLMX 16 67.23 49.13 23.98 39.21 58.69 47.64
DBellQuant 16 67.74 49.37 24.23 39.55 58.80 47.94

LLaMA-1-7B BiLLM 8 61.86 37.88 21.76 32.09 51.62 41.04
DBellQuant 8 67.41 47.31 26.19 38.89 58.80 47.72
BiLLM 6 57.45 31.06 20.65 29.78 53.04 38.40
DBellQuant 6 65.29 46.46 25.77 37.28 54.85 45.94
- 16 78.40 69.28 40.02 56.69 67.25 62.32

BiLLM 16 60.34 36.87 21.59 30.24 51.62 40.13
ARB-LLMX 16 63.33 42.35 21.25 34.51 55.56 43.4
DBellQuant 16 63.98 42.85 23.89 34.82 56.27 44.36

LLaMA-2-7B BiLLM 8 59.74 36.95 21.42 30.96 53.75 40.56
DBellQuant 8 62.56 42.42 23.03 34.44 54.38 43.37
BiLLM 6 56.81 28.32 20.05 29.33 52.17 37.33
DBellQuant 6 61.10 37.5 22.18 31.94 53.85 41.32
- 16 79.65 80.09 50.51 60.18 72.77 68.64

BiLLM 16 57.51 33.75 18.52 31.63 53.12 38.90
ARB-LLMX 16 63.73 42.75 21.79 34.41 55.89 43.71
DBellQuant 16 64.15 44.11 22.02 34.73 56.36 44.27

LLaMA-3-8B BiLLM 8 60.55 37.96 18.34 32.60 51.78 40.24
DBellQuant 8 61.70 40.95 18.40 32.95 55.09 41.82
BiLLM 6 56.09 33.92 16.72 31.75 51.85 38.06
DBellQuant 6 58.00 37.63 18.77 31.83 51.92 39.64

Bit-width LTDB
Algorithm WikiText2 ↓ C4 ↓

16 ✗ 24.41 27.69
16 ✓ 17.91 21.83
8 ✗ 27.39 30.91
8 ✓ 18.65 23.80
6 ✗ 32.74 42.48
6 ✓ 21.69 30.24

Table 3: Performance w/o LTDB Algorithm.

Method Activation
Bits

Block
Size WikiText2 ↓ C4 ↓

BiLLM 16 64 20.12 24.46
DBellQuant 8 64 13.67 16.99
DBellQuant 6 64 15.65 19.71
BiLLM 16 128 32.48 40.52
DBellQuant 8 128 18.65 23.02
DBellQuant 6 128 21.69 25.91
BiLLM 16 256 43.69 43.21
DBellQuant 8 256 22.34 23.37
DBellQuant 6 256 24.68 28.52

Table 4: Performance of different block size.

(a) Performance of different loss function.

Method Loss Function Activation Bits WikiText2 ↓ C4 ↓
DBellQuant L2 8 18.90 24.11
DBellQuant L1 8 18.65 23.02
DBellQuant L2 6 22.26 26.41
DBellQuant L1 6 21.69 25.91

(b) Performance of different ϵ

Method ϵ WikiText2 ↓ C4 ↓
DBellQuant 0.75 19.57 22.92
DBellQuant 0.8 18.66 22.81
DBellQuant 0.85 17.91 21.83
DBellQuant 0.9 18.29 22.52

Table 5: Ablation study on LLaMA-2-7B,results are measured by perplexity.

outperform those relying on vanilla initialization as shown in Tab. 3. This demonstrates that the
proposed LTDB method can effectively reduce quantization errors.
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Method 2 bit 1.1 bit
QuaRot+RTN inf inf
QuaRot+GPTQ 22.07 Inf
DBellQuant - 17.91

Table 6: Llama-2-7B results.

Method 2 bit 1.1 bit
QuaRot+RTN inf inf
QuaRot+GPTQ 10.41 Inf
DBellQuant - 12.79

Table 7: Llama-2-13B results.

Method wikitext2 C4
DBellQuant 17.91 21.83
DBellQuant+QuaRot 62.37 76.59

Table 8: Combination results

Method wikitext2 C4
BiLLM 38.42 40.81
DBellQuant 30.47 35.02

Table 9: Qwen-2-7B results.

Method wikitext2 C4
BiLLM 41.74 53.07
DBellQuant 33.47 43.18

Table 10: Qwen-2.5-7B results.

Loss Function wikitext2 C4
DTMD+DTNP 17.91 21.83
only DTNP 28.74 31.42

Table 11: Loss Function results

Optimization Objective In the definition of DTNP, we adopted L1 loss as the objective function,
as it consistently outperformed L2 loss in our experiments. Additionally, we introduced the hyperpa-
rameter ϵ during the activation-aware initialization process and found that all tested values surpassed
prior algorithms, with ϵ = 0.85 achieving the best performance for LLaMA-2-7B as shown in Tab. 5.
Detailed parameter settings are provided in the Appendix. A.5.

Impact of Block Size We evaluated the impact of block size on DBellQuant’s quantization per-
formance using block sizes ranging from 64 to 256 columns, as shown in Tab. 4. Similar to other
PTQ methods, smaller block sizes achieve lower perplexity but increase quantization diversity and
weighting overhead. In previous experiments, we used a block size of 128, as it balances bit-width
and quantization performance effectively. Notably, our method consistently outperforms baseline
approaches across all block sizes, highlighting its robustness and generalizability.

Activation Bit-width Comparisons We compared model performance across different activation
bit-widths, as shown in Fig. 8. When activations are quantized to 8 bits, perplexity remains nearly
unchanged or even improves, demonstrating our method’s ability to mitigate activation quantization
challenges. Even with lower-bit quantization, such as 6-bit, the performance remains largely intact,
with minimal perplexity increases. Notably, for large-scale models like LLaMA-2 13B and 70B,
perplexity degradation is negligible, underscoring the effectiveness of our approach for models with
substantial parameters.

Effectiveness of DTMD and DTNP Loss With DTMD loss, T tends to shrink toward zero, leading
to a ”loss hack” effect that prevents the desired transformation. To address this, we introduce the
DTNP loss to ensure a smooth transition. However, using DTNP alone creates a new issue, as its
convergence direction can conflict with DTMD. As shown in Tab. 11, using DTNP alone drives the
model toward a direction misaligned with DTMD, resulting in degraded performance.

Comparison and Combination with Rotation-based Methods Rotation-based PTQ methods,
such as QuaRot with Hadamard-based transforms, effectively reduce outliers in weights and ac-
tivations. We compared low-bit quantization using these methods alone and in combination with
our approach. As shown in Tab.6 and Tab.7, rotation-based PTQ methods experience significant
performance degradation when weight precision is reduced below 4-bit. Therefore, we focus on
comparisons with state-of-the-art methods for near-1-bit weight quantization. Additionally, we
evaluated the combination of DBellQuant and Hadamard-based transforms, such as QuaRot, on
the Llama-2-7B model, but this combination performed worse than DBellQuant alone, as shown in
Tab. 8. A possible explanation is that DBellQuant transforms the original unimodal distribution into a
binarization-friendly bimodal distribution, while Hadamard-based transforms disrupt this structure,
negatively impacting quantization performance.

Implementation on Qwen Family Models The Qwen model has recently attracted significant
attention for its strong performance. We conducted preliminary evaluations of quantization methods
on Qwen-2-7B and Qwen-2.5-7B, with results presented in Tab.9 and Tab.10. These results show
that DBellQuant outperforms BiLLM on both Qwen models, demonstrating its adaptability and
effectiveness not only on OPT and LLaMA models but also on more advanced LLMs.
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Method MathQA LogiQA2
fp16 44.96 ± 0.91 29.58 ± 1.15
GPTQ 2bit 20.51 ± 0.82 14.65 ± 1.53
BiLLM 1.1bit 24.99 ± 0.79 20.42 ± 1.87
DBellQuant 1.1bit 27.65 ± 0.75 22.78 ± 1.48

Table 12: DeepSeek-R1-Distill-Qwen-7B results.

Method TextVQA ChartQA MME-Per
fp16 84.9 87.3 1695
GPTQ 2bit 0 0 319
BiLLM 1.1bit 26.3 3.7 638
DBellQuant 1.1bit 28.4 5.2 742

Table 13: Qwen-2.5-VL-7B results.

Method Model mins ↓ WikiText2 ↓
BiLLM LLaMA-1-7B 35 35.04
ARB-LLMX LLaMA-1-7B 88 21.81
DBellQuant LLaMA-1-7B 47 15.34
BiLLM LLaMA-2-7B 37 32.48
DBellQuant LLaMA-2-7B 49 17.91

Table 14: Training time comparison.

Method Bit-width ↓ Model Size ↓ Perplexity ↓
FP16 16 13.5GB 5.47
RTN 2 2.31GB 1e5
GPTQ 2 2.31GB 60.45
PB-LLM 1.7 2.08GB 69.20
BiLLM 1.08 1.98GB 32.48
DBellQuant 1.15 2.04GB 17.91

Table 15: Bit-width and model size comparison.

Implementation on Reasoning and Multi-modal Models For the reasoning model, we used
DeepSeek-R1-Distill-Qwen-7B and evaluated it on MathQA and LogiQA2. As shown in Tab.12,
while performance drops noticeably when quantized to near 1-bit, our method still outperforms GPTQ
2-bit and BiLLM, highlighting its advantage in ultra-low-bit quantization. For multi-modal large
models, we evaluated Qwen-2.5-VL-7B on TextVQA, ChartQA, and MME, with results presented
in Tab.13. Although performance decreases significantly at near 1-bit quantization, our method
consistently outperforms GPTQ 2-bit, where some tasks produce invalid outputs (e.g., gibberish),
leading to zero scores. Additionally, our approach surpasses BiLLM, further demonstrating its
effectiveness in ultra-low-bit quantization.

4.4 TIME AND MEMORY ANALYSIS

Model 4096×4096 4096×11008 11008×4096
FP16 0.79463 1.73942 1.82653
BiLLM 0.36842 0.38744 0.43906
ARB-LLMX 0.33180 0.35539 0.36792
DBellQuant 0.27694 0.30085 0.31860

Table 16: Actual inference speed comparison on
various linear layers in LLaMA-2-7B.

Time Comparison We clarify that the addi-
tional training step introduced by LDTB incurs
minimal overhead while yielding substantial
performance gains. Specifically, compared to
BiLLM, optimizing the learnable T matrix for
the LLaMA2-7B model requires only 12 addi-
tional minutes on an A100 80G GPU as shown
in Tab. 14, a negligible cost given the perfor-
mance improvements achieved, reducing the
perplexity on WikiText2 from 32.48 to 17.91.
Moreover, compared to ARB-LLMX, our approach not only achieves lower perplexity but also
reduces training time. More results can be seen in Appendix. A.9. The actual inference speedup is
shown in Tab. 16 and more details are in Appendix. A.11.

Memory Comparison We include a detailed comparison of bitwidth and model size across different
settings. Our method reduces the model size to approximately 1/7 to 1/6 of the original FP16 model,
with only a minimal increase in perplexity. Compared to other ultra-low-bit PTQ methods such as
BiLLM and PB-LLM, our approach achieves comparable bitwidth and model size, while yielding
significantly lower perplexity as shown in Tab. 15. More results can be seen in Appendix. A.10.

5 CONCLUSION

We propose DBellQuant, an efficient PTQ method enabling simultaneous weight binarization and
activation quantization for LLMs. By leveraging weight distributions suited for binarization, we
design the Learnable Transformation for Dual-Bell algorithm. This includes two customized loss
functions and an early stopping mechanism to achieve the dual-bell transformation. This transforma-
tion enhances activation quantization, enabling near 1-bit weight compression and 6-bit activation
quantization with minimal performance loss—achieving this milestone for the first time in a PTQ
framework. Experiments on open-source LLMs demonstrate that DBellQuant significantly advances
the performance of SOTA binary PTQ methods.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we exclusively used large language models—GPT-5 (OpenAI, 2025)—to
refine grammar, flow, and tone at the sentence and paragraph levels. These tools were not used to
generate ideas, design experiments, or draw conclusions. All technical content, methodologies, and
interpretations were independently authored, rigorously verified, and approved by the authors. To
prevent factual inaccuracies or citation errors, every model-edited sentence was reviewed by the
authors, and all references were meticulously cross-checked with their original sources. The authors
take full responsibility for the accuracy and integrity of this work.

A.2 LIMITATIONS

Currently, our work only supports quantizing activations to 6 bits. When attempting to quantize
activations to lower bit-widths, the model collapses, resulting in a significant drop in performance.
However, some recent studies have demonstrated the ability to quantize activations to 4 bits while
maintaining competitive model performance. Inspired by these advancements, we aim to adopt similar
approaches to further optimize our models. Specifically, we seek to not only binarize weights but also
quantize activations to even lower bit-widths, enabling easier deployment and faster computation.

A.3 BROADER IMPACTS

Our work demonstrates the feasibility of simultaneously binarizing weights and quantizing activations
to 6 bits in LLMs while maintaining competitive performance. This approach significantly reduces the
computational and memory overhead associated with LLM deployment, making them more accessible
for resource-constrained environments. By enabling efficient inference, our method contributes to
the democratization of advanced AI technologies, reducing the environmental impact of large-scale
model deployment. Furthermore, it opens new avenues for research in ultra-low-bit quantization,
fostering innovation in model efficiency and scalability.

A.4 ALGORITHM

The detailed algorithm is shown in Algorithm. 1.

Algorithm 1 Learnable Transformation for Dual-Bell Transformation (LTDB)

1: function LTDB(W ,T, N )
2: Input: W ∈ Rn×m - a full-precision weight matrix.
3: T ∈ R1×m - an activation-aware initialization transformation matrix.
4: N - the total number of epochs.
5: Output: W̃ ∈ Rn×m - the transformed weight matrix.
6: for iter = 1, 2, . . . , N do
7: W̃ ← T⊙W ▷ Perform element-wise multiplication
8: LDTMD,LDTNP ← LossFunc(W̃ ) ▷ Compute the two dual-target losses for W̃
9: LDTNP.backward() ▷ Use Dual-Target Normalized Proportional Loss for training

10: if LDTMD > LDTMD-Minimum then
11: break ▷ Stop training based on Dual-Target Minimum Deviation Loss
12: end if
13: LDTMD-Minimum ← LDTMD
14: end for
15: return W̃
16: end function
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Figure 7: Top: Visualization of single-bell weights distribution from different blocks of different
layers before applying DBellQuant. Bottom: Visualization of dual-bell weights distribution from
different blocks of different layers after applying DBellQuant.

A.5 HYPERPARAMETER SETTING IN TRAINING

Our method involves a few key hyperparameters, including the loss coefficient , the number of training
epochs, and the learning rate. These were initially determined by validating on the LLaMA2-7B
model, where we used a loss coefficient of 100, 200 epochs, and a learning rate of 0.01.

For the smooth parameter ϵ , we followed the strategy of SmoothQuant, testing values of 0.75, 0.80,
0.85, and 0.90. The differences in performance were marginal, with 0.85 yielding the best results, and
thus selected as the default. The stopping criterion is based on LTDB loss mentioned in Section. 3.3.

Importantly, we found that these hyperparameters generalize well across different architectures and
scales—including both the LLaMA and OPT model families—without requiring re-tuning. This
demonstrates that our method is robust and not sensitive to hyperparameter choices.

A.6 VISUALIZATION OF THE TRANSFORMATION OF WEIGHT DISTRIBUTIONS ACROSS
DIFFERENT LAYERS

The visualization of weights distribution before and after our proposed method DBellQuant is shown
in Fig. 7.

A.7 DETAILED APPLICATION OF TRANSFORMATION

To preserve computational consistency and avoid introducing additional parameters, we apply the
transformation T between the LayerNorm and the q/k/v projection layers, as well as between the
LayerNorm and the up/gate projection layers. This placement mirrors that of SmoothQuant, ensuring
the transformed inputs are compatible with quantization while maintaining the model’s architecture.

For o proj, although it is theoretically possible to insert a transformation T between v proj and
o proj to complete the symmetry, we found that this leads to conflicting transformations on v proj,
degrading performance. Therefore, we do not apply any transformation to o proj in practice.

Similarly, for down proj, the presence of activation functions (e.g., GeLU) makes it non-trivial to
apply transformations without disrupting the computation graph or introducing inconsistencies. As a
result, we do not insert transformations in this part either.

But we need to clarify that both o proj and down proj’s weight are binarized in DBellQuant. To
clarify, for these two layers, o proj and down proj, we did not learn a T-transformation to modify
their weights. However, we still applied the original binarization in BiLLM to process these two
layers, making our approach a w1a6 method.
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Figure 8: Performance of different activation bit-widths.

A.8 PERFORMANCE OF DIFFERENT ACTIVATION BIT-WIDTHS

The performance of different activation bit-widths across different models is shown in Fig. 8.

A.9 RESULTS ABOUT TRAINING OF DIFFERENT METHODS

Detailed training time and perplexity of different methods across various models are shown in Tab. 17.

Table 17: Traininig Time and Performance Comparison

OPT-1.3B OPT-2.3B OPT-6.7B LLaMA-1-7B LLaMA-2-7B
mins ppl mins ppl mins ppl mins ppl mins ppl

BiLLM 7 69.97 13 49.55 34 35.36 35 35.04 37 32.48
ARB-LLMX – – – – – – 88 21.81 – –
DBellQuant 9 43.42 17 31.47 45 18.89 47 15.34 49 17.91

A.10 RESULTS ABOUT BIT-WIDTH, MODEL SIZE AND PERPLEXITY OF DIFFERENT METHODS

Detailed bit-width, model size and perplexity of different methods across various models are shown
in Tab. 18, Tab. 19 and Tab. 20.

Table 18: Bit-width, Model Size and Performance Comparison for OPT-6.7B

Methods bit-width model size ppl
FP16 16 12.5GB 10.86
RTN 2 2.15GB 2e4
GPTQ 2 2.15GB 50.19
PB-LLM 1.7 1.95GB 105.16
BiLLM 1.11 1.84GB 35.36
DBellQuant 1.18 1.89GB 18.89

A.11 RESULTS ABOUT COMPUTATION SPEEDUP

To quantify computational speedup, we follow the benchmarking strategy of ARB-LLM and utilize
the BitBLAS codebase, which supports mixed-precision GEMM operations for low-bit weights. We
benchmark the latency (in milliseconds) of linear layers in LLaMA2-7B using input sequences of
length 2048. The results are shown in Tab. 21. Our findings are as follows:
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Table 19: Bit-width, Model Size and Performance Comparison for LLaMA-1-7B

Methods bit-width model size ppl
FP16 16 13.5GB 5.68
RTN 2 2.25GB 1e5
GPTQ 2 2.25GB 152.31
PB-LLM 1.7 2.05GB 102.36
BiLLM 1.09 1.97GB 35.04
DBellQuant 1.15 2.02GB 15.34

Table 20: Bit-width, Model Size and Performance Comparison for LLaMA-2-7B

Methods bit-width model size ppl
FP16 16 13.5GB 5.47
RTN 2 2.31GB 1e5
GPTQ 2 2.31GB 60.45
PB-LLM 1.7 2.08GB 69.20
BiLLM 1.08 1.98GB 32.48
DBellQuant 1.15 2.04GB 17.91

1)Weight binarization significantly reduces inference latency compared to FP16 models, thanks to
faster memory access and bitwise computation

2)DBellQuant supports 8-bit activation quantization, enabling efficient INT8 inference. This not only
accelerates runtime but also yields better perplexity compared to prior binary weight methods like
BiLLM and ARB-LLMX.

Table 21: Computation Speed Comparison

Model 4096×4096 4096×11008 11008×4096
FP16 0.79463 1.73942 1.82653
BiLLM 0.36842 0.38744 0.43906
ARB-LLMX 0.33180 0.35539 0.36792
DBellQuant 0.27694 0.30085 0.31860

A.12 PERPLEXITY ON C4 DATASET

As shown in Tab.22, we compare the perplexity of the OPT and LLaMA families across different
model sizes on C4 dataset.

A.13 VISUALIZATION OF DISTRIBUTION OF ACTIVATION BEFORE AND AFTER DBELLQUANT

In this section, we present the changes in the distribution of activation values before and after
applying DBellQuant as shown in Fig.9. It is evident that the extreme values in the activation have
been significantly reduced by a factor of 5 to 10; for instance, the maximum value decreases from
approximately 3 to around 0.4. Previous studies have highlighted that one of the primary challenges
in low-bit quantization of activations lies in the presence of large outliers, which expand the activation
range and, consequently, amplify quantization errors. By applying DBellQuant, the activation range is
effectively compressed from [-3, 3] to [-0.4, 0.4], dramatically alleviating the difficulty of quantization.
This reduction in range establishes highly favorable conditions for further exploration of lower-bit
quantization, such as 8-bit or even 6-bit implementations.
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Table 22: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, ARB-LLMX and our methods on OPT and
LLaMA family. The columns represent the perplexity results on C4 datasets with different model
sizes.

Method Activation
Bits OPT-1.3B OPT-2.7B OPT-6.7B LLaMA-1-7B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

Full Precision 16 16.07 14.34 12.71 7.34 7.26 6.73 5.71

RTN 16 9999.56 23492.89 9617.07 194607.78 115058.76 46250.21 314504.09
GPTQ 16 6364.65 6703.36 5576.82 186229.5 67954.04 19303.51 13036.32
PB-LLM 16 168.12 222.15 104.78 76.63 80.69 184.67 NAN
BiLLM 16 64.14 44.77 42.13 46.96 39.38 25.87 17.30
ARB-LLMX 16 47.60 34.97 22.54 22.73 28.02 19.82 11.85
DBellQuant 16 42.57 32.89 21.78 17.60 21.83 15.14 9.49
BiLLM 8 74.56 61.99 40.91 47.13 40.91 21.45 17.72
DBellQuant 8 44.60 32.52 21.56 18.16 23.80 15.56 9.61
BiLLM 6 7348 13445.21 63.41 61.65 63.41 37.66 19.43
DBellQuant 6 57.14 45.24 23.12 19.80 30.24 17.84 10.12

A.14 ANALYSIS OF RELATIVE ERROR OF THE ACTIVATION

To further validate our method, we conducted experiments demonstrating its effectiveness in reducing
the relative error of activations. Specifically, we randomly sampled 128 data points from the C4 dataset
and extracted the qproj inputs from the LLaMA2-7B model using both BiLLM (without applying the
inverse transform on activations) and our proposed DBellQuant (with the inverse transform applied).

We evaluated the relative error using two metrics: the Z-score, as you suggested, and the relative
deviation error. The formulas are as follows:

• Z-score:
Z =

x− µ

σ
where x is the value, µ is the mean, and σ is the standard deviation.

• Relative Deviation Error:

Relative Deviation Error =
x− u

u

where u is the mean value of the corresponding row.

These metrics allowed us to comprehensively assess the relative error and validate the robustness of
our proposed method. The computation results are shown in Tab. 23.

Z-score Relative Deviation Error
BiLLM 0.1584 33.78
DBellQuant 0.1401 30.72

Table 23: Comparison of Z-score and Relative Deviation Error between BiLLM and DBellQuant.

Our method demonstrates its effectiveness not only in reducing the absolute error of activations but
also in minimizing outliers from a relative distance perspective, as verified by DBellQuant.

A.15 PROOF FOR THEOREM. 1

Proof. Problem Setup: By assumption, the rows of the original weight matrix W are sampled
independently from Gaussian distributions:

wi ∼ N (µi, σ
2
i ), where µi ∈ R and σi > 0 for all i.

We aim to learn a transformation matrix T ∈ Rm×m such that the rows of the resulting matrix
W′ = WT follow a bimodal distribution.

Learnable Transformation Definition: The transformed matrix is defined as:

W′ = WT,
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(a)Distribution of values of activation before DBellQuant for q_proj and k_proj

(b)Distribution of values of activation after DBellQuant for q_proj and k_proj

(c)Distribution of values of activation before DBellQuant for gate_proj and up_proj

(d)Distribution of values of activation after DBellQuant for gate_proj and up_proj

Figure 9: Visualization results of distribution of activation before and after DBellQuant across
different blocks.

where T is a learnable matrix that modulates the distribution of each row w′
i of W′. Since the rows

of W are Gaussian-distributed, the linear transformation by T initially results in a new Gaussian
distribution for each row:

w′
i ∼ N (µ′

i, σ
′2
i ),

where µ′
i = µiT and σ′2

i = T⊤ΣiT, with Σi = diag(σ2
i ) being the covariance of wi.

Inducing a Bimodal Distribution: To map the Gaussian-distributed rows w′
i into a bimodal

distribution, we note that a bimodal distribution can be expressed as a Gaussian mixture model:

g(x) = πN (x;µ1, σ
2
1) + (1− π)N (x;µ2, σ

2
2),
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where π ∈ (0, 1) is the mixing coefficient, and µ1, µ2, σ
2
1 , σ

2
2 are the parameters of the mixture

components. To achieve this, T is learned to ensure that the linear transformation WT reshapes the
original Gaussian distribution into a mixture of two Gaussians.

Parameter Optimization: The learnable matrix T is optimized using a loss function L that minimizes
the Kullback-Leibler (KL) divergence between the empirical distribution of the rows of W′ and the
target bimodal distribution:

L = KL
(
p(w′

i) ∥πN (µ1, σ
2
1) + (1− π)N (µ2, σ

2
2)
)
.

The optimization process adjusts the entries of T to align the transformed rows w′
i with the desired

bimodal distribution.

Conclusion: The existence of such a learnable matrix T ensures that the rows of the transformed
matrix W′ = WT can follow a bimodal distribution. This completes the proof.

A.16 ANALYSIS OF THE REASONS DOUBLE-BELL DISTRIBUTION MORE SUITABLE FOR
BINARIZATION COMPARED TO A SINGLE-BELL DISTRIBUTION.

Directly proving that a dual-bell distribution is more suitable for binarization compared to a single-bell
distribution can be challenging, as it requires setting numerous additional conditions. However, this
problem becomes significantly simpler when approached from the perspective of value adjustments.
By reducing the magnitude of larger absolute values and increasing smaller absolute values in a
bimodal distribution, all values can be shifted closer to two central points, effectively creating a
double-bell-like distribution. We can demonstrate that this approach reduces the quantization loss
introduced by binarization, thereby supporting the suitability of double-bell distributions for this
purpose.
Theorem 2. Given an input calibration activation x ∈ Rn×1 and a weight vector w ∈ Rn×1, where
wi is extracted from the weight matrix W ∈ Rn×n along a specific channel, we define the weight
vector w as the union of two sets: - A set of several outliers with large absolute values, denoted
as Uo = {o∗1, o∗2, . . . , o∗k}, where |o∗i | ≫ 0 for i ∈ {1, . . . , k}; - A set of normal values with small
absolute values, denoted as Un = {n1, n2, . . . , nn−k}, where |nj | ≈ 0 for j ∈ {1, . . . , n − k}.
w = Uo ∪ Un. We now define a new weight vector wnew as follows:

• wnew = [n1, n2, . . . , γo
∗
1, γo

∗
2, . . . , γo

∗
k, . . . , nn−k], where γ ∈ ( 12 , 1).

• Alternatively, wnew = [ηn1, ηn2, . . . , o
∗
1, o

∗
2, . . . , o

∗
k, . . . , ηnn−k], where η ∈ (1, 2).

Then, the quantization error induced by wnew, defined as ∥x ·w − x · binarized(wnew)∥, is strictly
smaller than the original quantization error ∥x ·w − x · binarized(w)∥ in both cases.

Proof. A.16.1 SCALING UP SMALL VALUES REDUCES QUANTIZATION ERROR

Consider the scenario where the input vector is X = [2, 2, 2, . . . , 2]n. Assume the weights in a
single channel, W , are given by [α1, α2, ..., αk, β1, β2, β3, . . . , βn−k], where [αi ∈ U1] is the set of
values with very large absolute magnitudes, satisfying

∑k
i=1 αi = A and [βi ∈ U2] are values with

magnitudes close to zero, satisfying
∑n−k

i=1 βi = 0. W = U1 ∪ U2. This structure is common in
practice, as weight distributions in neural networks often exhibit a few dominant values and many
small ones. As we observe, the distribution of weights along the channel dimension is mostly not
symmetric around zero. Instead, it tends to be biased, with the majority leaning either towards positive
or negative values. Consequently, the extreme values are predominantly either entirely positive or
entirely negative, so we assume αi > 0.

The product of the input X and the weight vector W is:

X ·WT = 2(α1 + α2 + · · ·+ αk + β1 + β2 + · · ·+ βn−k) = 2(α1 + α2 + · · ·+ αk) = 2A (7)

since the sum of the βi is zero.

According to the quantization function, the mean value M is:

M =
α1 + α2 + · · ·+ αk + β1 + β2 + · · ·+ βn−k

n
=

A

n
(8)
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The absolute mean value, AbsMean, is defined as:

AbsMean =
|α1 − A

n |+ |α2 − A
n |+ · · ·+ |αk − A

n |+ |β1 − A
n |+ |β2 − A

n |+ · · ·+ |βn−k − A
n |

n
(9)

Given that [β1, β2, . . . , βn−1] are all very small in magnitude compared to α
n , we can simplify the

above as:

AbsMean =
(α1 − A

n ) + (α2 − A
n ) + · · ·+ (αk − A

n ) + (An − β1) + (An − β2) + · · ·+ (An − βn−k)

n

=
A+ (n− 2k)An − (β1 + β2 + · · ·+ βn−k)

n

=
A+ (n− 2k)An

n

=
2(A− kA

n )

n
(10)

Here, the sum of the βi vanishes due to their zero sum constraint.

Therefore, the dequantized value for α is:

AbsMean+M =
2(A− 2kA

n )

n
+

A

n
(11)

and for each βi:

−AbsMean+M = −
2(A− 2kA

n )

n
+

A

n
(12)

To reduce the quantization error associated with the small-magnitude weights, we can scale
them up by a factor m > 1, while correspondingly scaling down the input. Specifi-
cally, we multiply each βi by m and divide the associated input elements by m. The
new input becomes Xnew = [2, 2, . . . , 2, 2

m , 2
m , . . . , 2

m ]n, and the new weights are Wnew =
[α1, α2, ..., αk,mβ1,mβ2, . . . ,mβn−k].

The output remains unchanged:

Xnew ·WT
new = 2(α1 + α2 + · · ·+ αk) +

2

m
·mβ1 +

2

m
·mβ2 + · · ·+

2

m
·mβn−k = 2A (13)

This invariance is crucial: the scaling operation does not affect the original computation, but it can
impact the quantization error.

For the new weights, the mean value is:

Mnew =
α1 + α2 + · · ·+ αk +mβ1 +mβ2 + · · ·+mβn−k

n
=

A+m(β1 + β2 + · · ·+ βn−k)

n
=

A

n
(14)

since the sum of the βi is zero.

The new absolute mean value is:

AbsMeannew =
|α1 − A

n |+ |α2 − A
n |+ · · ·+ |αk − A

n |+ |mβ1 − α
n |+ |mβ2 − α

n |+ · · ·+ |mβn−k − α
n |

n
(15)
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If m is chosen such that α
n remains larger than all mβi, the simplification proceeds as before:

AbsMeannew =
(α1 − A

n ) + (α2 − A
n ) + · · ·+ (αk − A

n ) + (An −mβ1) + (An −mβ2) + · · ·+ (An −mβn−k)

n

=
A+ (n− 2k)An −m(β1 + β2 + · · ·+ βn−k)

n

=
A+ (n− 2k)An

n

=
2(A− kA

n )

n
(16)

Thus, AbsMeannew and Mnew are identical to AbsMean and M , and the dequantized values are
unchanged. This demonstrates that scaling up the small weights does not affect the mean or absolute
mean, but it can improve the quantization error, as we analyze next.

Let us now analyze the quantization error. The original output is 2α. For convenience, let N =
(n− k)(−AbsMean+M). The quantized output is a sum of the dequantized values for all weights.

A > 0 Both before and after scaling, the quantization output contains the term:

2k(AbsMean+M) = 2k

(
2(A− kA

n )

n
+

A

n

)
(17)

For n typically greater than 100 and k ≪ n it holds that:

0 < 2k(AbsMean+M) < 2A (18)

This is because the quantized value is always less than the original due to the averaging effect.

For the term −AbsMean+M :

−AbsMean+M = −
2(A− kA

n )

n
+

A

n

= −A

n
+

2kA

n2

=
A

n

(
2k

n
− 1

) (19)

Since n > 100 ,A > 0 and k ≪ n this value is negative and its magnitude is small.

The quantization output before scaling is 2k(AbsMean + M) + 2N , and after scaling is
2k(AbsMean+M) +N . Because N < 0 and 2(AbsMean+M) < 2A, we have:

2k(AbsMean+M) + 2N < 2k(AbsMean+M) +N < 2A (20)

This shows that scaling up the small weights reduces the quantization error, as the quantized output
moves closer to the original value.

if αi < 0, the proof is similar.

In summary, scaling up the small weights (and correspondingly scaling down the input) does not
change the original computation, but it systematically reduces the quantization error by making the
quantized output more faithful to the original.

A.16.2 SCALING DOWN LARGE VALUES REDUCES QUANTIZATION ERROR

Now, let us consider the scenario where we scale down the large-magnitude weight. Let the input
X = [1, 1, 1, . . . , 1]n, and the weights W = [mα1,mα2, ...,mαk, β1, β2, β3, . . . , βn−k], where
α1, α2, . . . , αk are large values, satisfying

∑k
i=1 αi = A and αi > 0, [β1, . . . , βn−k] are small, and∑n−k

i=1 βi = 0.

The output is:

X ·WT = m(α1 + α2 + · · ·+ αk + β1 + β2 + · · ·+ βn−k = mA (21)
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The mean value is:

M =
mα1 +mα2 + · · ·+mαk + β1 + β2 + · · ·+ βn−k

n
=

mA

n
(22)

The absolute mean is:

AbsMean =
|mα1 − mA

n |+ |mα2 − mA
n |+ · · ·+ |mαk − mA

n |+ |β1 − mA
n |+ |β2 − mA

n |+ · · ·+ |βn−k − mA
n |

n
(23)

Since mA
n is much larger than the βi, we can simplify:

AbsMean =
(mα1 − mA

n ) + (mα2 − mA
n ) + · · ·+ (mαk − mA

n ) + (mA
n − β1) + (mA

n − β2) + · · ·+ (mA
n − βn−k)

n

=
m(α1 + α2 + · · ·+ αk) + (n− 2k)mA

n − (β1 + β2 + · · ·+ βn−1)

n

=
mA+ (n− 2k)mA

n

n

=
2m(A− kA

n )

n
(24)

The dequantized value for mα is:

AbsMean+M =
2m(A− kA

n )

n
+

mA

n
=

3mA− 2mkA
n

n
(25)

and for each βi:

−AbsMean+M = −
2m(A− A

n )

n
+

mA

n
=
−mA+ 2mkA

n

n
(26)

To scale down the large value mα, we divide it by m (m > 1) and multiply the corresponding
input element by m. The new input is Xnew = [m, 1, 1, . . . , 1]n, and the new weights are Wnew =
[α1, α2, . . . , αk, β1, β2, . . . , βn−k].

The output remains unchanged:

Xnew ·WT
new = m(α1 + α2 + · · ·+ αk) + β1 + β2 + · · ·+ βn−k = mA (27)

For the new weights, the mean is:

Mnew =
α1 + α2 + · · ·+ αk + β1 + β2 + · · ·+ βn−k

n
=

A

n
(28)

The new absolute mean is:

AbsMeannew =
|α1 − A

n |+ |α2 − A
n |+ · · ·+ |αk − A

n |+ |β1 − A
n |+ |β2 − A

n |+ · · ·+ |βn−1 − A
n |

n
(29)

With appropriate m, we have:

AbsMeannew =
(α1 − A

n ) + (α2 − A
n ) + · · ·+ (αk − A

n ) + (αn − β1) + (αn − β2) + · · ·+ (αn − βn−k)

n

=
(α1 + α2 ++ · · ·+ αk) + (n− 2k)An − (β1 + β2 + · · ·+ βn−1)

n

=
A+ (n− 2k)An

n

=
2(A− kA

n )

n
(30)
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The dequantized value for αi is:

AbsMeannew +Mnew =
2(A− kA

n )

n
+

A

n
=

3A− 2kA
n

n
(31)

and for each βi:

−AbsMeannew +Mnew = −
2(A− kA

n )

n
+

A

n
=
−A+ 2kA

n

n
(32)

Let us now examine the quantization error. The original output is mα. The quantization output before
scaling is:

k(AbsMean+M) + (n− k)(−AbsMean+M)

= k
3mA− 2mkA

n

n
+ (n− k)

−mA+ 2mkA
n

n

(33)

The quantization output after scaling is:

km(AbsMeannew +Mnew) + (n− k)(−AbsMeannew +Mnew)

= km
3A− 2kA

n

n
+ (n− k)

−A+ 2kA
n

n

= k
3mA− 2mkA

n

n
+ (n− k)

−A+ 2kA
n

n

(34)

Because A > 0, for n > 100 ,α > 0 and k ≪ n it holds that:

0 < k
3mA− 2mkA

n

n
< mA (35)

and
−A+ 2kA

n

n
=

A

n

(
2k

n
− 1

)
< 0 (36)

Comparing the quantization outputs, we see:

k
3mA− 2mkA

n

n
+m(n− k)

−A+ 2kA
n

n

< k
3mA− 2mkA

n

n
+ (n− k)

−A+ 2kA
n

n
< mA

(37)

If αi < 0, the proof is similar.
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