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Abstract
We address the task of machine translation001
(MT) from extremely low-resource language002
(ELRL) to English by leveraging cross-lingual003
transfer from closely-related high-resource004
language (HRL). The development of an MT005
system for ELRL is challenging because these006
languages typically lack parallel corpora and007
monolingual corpora, and their representations008
are absent from large multilingual language009
models. Many ELRLs share lexical similarities010
with some HRLs, which presents a novel011
modeling opportunity. However, existing012
subword-based neural MT models do not013
explicitly harness this lexical similarity, as they014
only implicitly align HRL and ELRL latent015
embedding space. To overcome this limitation,016
we propose a novel, CHARSPAN, approach017
based on character-span noise augmentation018
into the training data of HRL. This serves as019
a regularization technique, making the model020
more robust to lexical divergences between021
the HRL and ELRL, thus facilitating effective022
cross-lingual transfer. Our method significantly023
outperformed strong baselines in zero-shot024
settings on closely related HRL and ELRL pairs025
from three diverse language families, emerging026
as the state-of-the-art model for ELRLs.027

1 Introduction028

Recent advancements in multilingual modeling029

have expanded the coverage of Natural Language030

Processing (NLP) technologies to many LRLs031

by transferring knowledge from HRLs to LRLs.032

As a result, this progress has led to remarkable033

advancement in multiple NLP tasks, including MT,034

transliteration, natural language understanding, and035

text generation (Johnson et al., 2017; Kunchukuttan036

et al., 2018; Conneau et al., 2020; Liu et al., 2020)037

for LRLs. However, most of the existing work038

has focused on the top few hundred languages039

represented on the web (Joshi et al., 2020b). The040

availability of monolingual corpora and/or parallel041

corpora for these languages has been the driving042

  HRL (HIN):            इस सीज़न म� बीमारी के शु�आती मामले जुलाई के आ�खर म� सामने आए थे।
  ENG:                          The initial cases of the disease this season were reported in late July.

  HRL (HIN)+CSN:  ए_ सीज़न म बीमारी के __प_ मामले जुलाई के आ�खर म सामने आए _।

  ELRL1 (BHO):      ए सीजन म� ई बीमारी क पिहला मामला जुलाई क आ�खर म� सामने आ गइल रहले।

  ELRL2 (HNE):       ए सीजन म ए बीमारी के पिहला मामला जुलाई के आ�खर म सामने आए रिहस।

Figure 1: Hindi (HIN; HRL), Bhojpuri (BHO; ELRL) and Chhattisgarhi (HNE;
ELRL) parallel sentences. Additionally, the corresponding noisy Hindi example
with character-span (CSN) noise. BHO and HNE are closely related to HIN.

force behind this progress, achieved either through 043

direct training, few-shot training, or learning with 044

large multilingual language models (mLLMs). 045

This enables learning common embedding spaces 046

that facilitate cross-lingual transfer (Nguyen 047

and Chiang, 2017; Khemchandani et al., 2021). 048

However, there is a long tail of languages for which 049

no monolingual or parallel corpora are available, 050

and they are absent from mLLMs. These languages 051

are referred to as ELRLs. This paper is a step 052

toward building MT systems for ELRLs. 053

Fortunately, many of ELRLs are lexically 054

similar to some HRLs. Lexical similarity refers 055

to languages sharing words with similar form 056

(spelling and pronunciation) and meaning.1 This 057

includes cognates, lateral borrowings and loan 058

words. We explore if cross-lingual transfer can 059

be enabled or improved for ELRLs by explicitly 060

taking lexical similarity into account. In particular, 061

we explore MT from an ELRL to another language 062

(English) with transfer enabled by a related HRL 063

on the source side. Our key insight is that cognates 064

in ELRL having similar spelling to the HRL word 065

can be thought of as misspellings of the latter. For 066

example, the wordlgtA (lagta) in Hindi (HRL) is 067

spelled as lAgatA (laagata) in Bhojpuri (LRL). 068

If we make the HRL model robust to spelling 069

variations, it will improve cross-lingual transfer 070

to related ELRLs. To achieve spelling variation 071

robustness, we propose novel character-span noise 072

augmentation (CSN) in the HRLs training data. 073

A sample example is presented in Fig. 1. This 074

1https://en.wikipedia.org/wiki/
Lexical_similarity
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Figure 2: Overview of proposed CHARSPAN model

acts as a regularizer and makes the model more075

robust to perturbations in representations of words076

in closely related languages and improves model077

generalization for lexically similar languages.078

Our key contributions are: (1) We propose079

a novel model CHARSPAN: Character-Span080

noise augmentation, which considers surface081

level lexical similarity to improve cross-lingual082

transfer between closely-related HRLs and LRLs.083

The proposed approach shows a 12.5% chrF084

improvement over baseline NMT models across085

all considered ELRLs. Our model also shows086

performance improvement over various data087

augmentation baselines. (2) We show that our088

approach generalizes across three typologically089

diverse language families, comprising 6 HRLs090

and 12 ELRLs. (3) We provide detailed ablation091

and analysis to gain insights and demonstrate the092

effectiveness of our approach.093

2 Related Work094

Traditionally, character-level noise has been095

used to improve the robustness of MT systems096

to spelling mistakes and ASR errors (Sperber097

et al., 2017; Vaibhav et al., 2019; Karpukhin098

et al., 2019). However, these approaches099

are mostly investigated for their impact on100

robustness rather than for cross-lingual transfer.101

More recently, token/BPE-level general noise102

augmentation approaches such as WordDropout103

(Sennrich et al., 2016a) and SwitchOut (Wang et al.,104

2018) have been proposed, but they have limited105

cross-lingual transfer capabilities. Close to our106

work, Aepli and Sennrich (2022) and Blaschke107

et al. (2023) show that augmenting data with108

character-level noise can help cross-lingual transfer.109

The models were evaluated with NLU tasks. n110

contrast, our work focuses on MT, an NLG task,111

which is much more challenging than an NLU112

task in a zero-shot setting. Furthermore, we113

explore span noise augmentation, which considers114

larger lexical divergence (less lexical similarity115

between the HRL and ELRL) and enables better116

cross-lingual transfer. 117

On utilizing lexical similarity literature thread, 118

Patil et al. (2022) proposed OverlapBPE, which 119

takes lexical overlap between HRL and LRL while 120

learning BPE vocabulary. Provilkov et al. (2020) 121

introduced BPE-Dropout, providing on-the-fly 122

non-deterministic segmentations while training. 123

Soft Decoupled Encoding (SDE) Wang et al. (2019) 124

utilizes lexical information without pre-segmenting 125

the data by decoupling the lexical and semantic 126

representations. These models require small 127

monolingual data for modeling. In contrast, the 128

CHARSPAN model does not require any training 129

resources for ELRLs other than language alphabets. 130

3 The CHARSPAN Model 131

Figure 2 presents an overview of the proposed 132

CHARSPAN model, for ELRL to English MT task. 133

The model has two phases: supervised training with 134

noisy HRL and zero-shot generation with ELRLs. 135

Model Training and Generation: In the 136

supervised training phase, the source-side training 137

data of the HRL pair (DH) is augmented with 138

character-span noise (described later) to create 139

the augmented parallel corpus (D′
H = η(DH)), 140

where η is the noise function. η(DH) can be 141

considered as the proxy parallel data for the 142

ELRL-English translation task. Next, we learn 143

a subword vocabulary (V) using D′
H, i.e., the noise 144

is augmented before learning the vocabulary. A 145

standard encoder-decoder transformer model (M; 146

Vaswani et al. (2017)) is then trained with D′
H and 147

V from scratch in a supervised setting to obtain 148

the trained model M′
. Finally, in the zero-shot 149

generation phase, for a given source ELR language 150

L, the target English translation is obtained using 151

M′
and V in the zero-shot setting. 152

Character Span Noise (CSN) Function: The 153

noise functions serve to make the model 154

robust to spelling variations between related 155

languages. This acts as a regularizer and helps 156

improve cross-lingual representation and transfer. 157

Intuitively, the existing unigram character noise 158

might address limited lexical variations between 159

HRL and ELRLs. To address larger lexical 160

divergence, we propose a CSN where span noise is 161

augmented. Formally, for a given sentence, x ∈ X 162

from D′
H(X ,Y) with indices I = 1, 2, . . . , |x|, a 163

subset of these indices Is ⊂ I is randomly and 164

uniformly selected as the starting point for the 165

noise augmentation. Subsequently, 1-3 character 166

gram spans are iteratively sampled until the noise 167
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augmentation budget (i.e., 9% - 11% characters)168

is exhausted. We employ span deletion and169

span replacement with a single random character170

of ELRL, both with equal probability as the171

noising operations2. This CSN is inspired by172

SpanBERT (Joshi et al., 2020a)3. A formal173

algorithm is presented in the Appendix. We174

conducted experiments with all three operations175

(including insertion), with different percentages176

of noise and various other experimental setups,177

as outlined in Appendix Table 13. We found the178

presented noise augmentation configuration to be179

the most effective.180

4 Experimental Setup181

We seek answers to the following questions:182

(1) Does the augmentation of CSN improve183

cross-lingual transfer, i.e., zero-shot performance184

for related ELRLs for MT task? (2) Why does185

the model’s cross-lingual transfer improve? -186

Insights from the learned embedding space. (3)187

Is the proposed approach scalable to typologically188

diverse language families?189

4.1 Datasets and Languages190

We evaluated the performance of the proposed191

model on three language families: Indo-Aryan,192

Romance, and Malay-Polynesian. We considered193

six HRLs and twelve LRLs (two HRLs and194

several ELRLs from each family). All the ELRLs195

are lexically similar and have the same script196

with corresponding HRLs, as shown in Figure197

4 (Appendix I). Parallel training data for the198

HRLs was selected from publicly available datasets.199

The model’s performance was evaluated on the200

FLORES-200 devtest set (Costa-jussà et al., 2022).201

Dataset statistics are presented in Appendix C.202

4.2 Baselines and Evaluation Metrics203

Based on recent literature in low-resource MT, we204

compare our approach with the following strong205

baselines: (a) Vanilla NMT with BPE segmentation206

(BPE; Sennrich et al. (2016b)), (b) General data207

augmentation methods: (Sub)WordDropout and208

(Sub)WordSwitchOut, (c) Methods using lexical209

similarity: Overlap BPE, BPE-Dropout, SDE and210

unigram char-noising (Aepli and Sennrich, 2022).211

Baselines and model training details are provided212

2We explored some linguistically motivated noising
schemes, but these were not beneficial.

3SpanBERT applies denoising to subword tokens while
we apply it at the character level.

in Appendix. Following recent studies on MT 213

for ELRLs (Costa-jussà et al., 2022; Siddhant 214

et al., 2022), we use chrF (Popović, 2015) as the 215

primary evaluation metric. In addition, we also 216

report BLEU (Papineni et al., 2002) and two neural 217

metrics viz., BLEURT (Sellam et al., 2020) and 218

COMET (Rei et al., 2020) scores in Appendix E. 219

5 Results and Analyses 220

The proposed CHARSPAN and baseline models’ 221

results across different language families are 222

presented in Table 1. The following are the major 223

observations: 224

Noise vs. Baselines: All the proposed noise 225

augmentation models outperform vanilla NMT and 226

all baseline models that utilize lexical similarity 227

(i.e., OBPE, BPE-Dropout, and SDE). This trend 228

is consistent across all language families and 229

ELRLs. Moreover, existing lexical similarity-based 230

baselines do not provide any major improvement 231

in translation quality over vanilla NMT. Possible 232

reasons for this can be twofold: (1) most of 233

the ELRLs either do not have monolingual data 234

(OBPE and SDE are required) or have small data, 235

and (2) we observe that in OBPE, approximately 236

90% of vocabulary tokens are already overlapping 237

among HRLs and ELRLs, leaving little room for 238

learning additional overlapping tokens. This is 239

expected, as these two language sets are closely 240

related. The proposed CHARSPAN method also 241

outperforms general data augmentation methods 242

like (Sub)WordDropout and (Sub)WordSwitchout, 243

showing its effectiveness. 244

Unigram vs. Char-Span Noise: We are 245

first to explore unigram char noise (Aepli and 246

Sennrich, 2022) for related language MT. We 247

see that unigram char noise is beneficial for 248

the task. However, our proposed CHARSPAN 249

provides significant improvements over unigram 250

character noise. We believe our proposed 251

data augmentation is more effective in bringing 252

language representations closer. 253

When to introduce noise? To understand when 254

noise augmentation is effective, we augmented 255

noise after learning the vocabulary in the 256

baseline (BPE → CSN). This leads to improved 257

performance over all baselines. This enables 258

scalability since augmenting noise after learning 259

the vocabulary allows the application of this 260

method to large language models which have fixed 261

vocabulary. However, the results suggest that 262

applying noise prior to learning the vocabulary, 263
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Models Indo-Aryan Romance Malay-Polynesian AverageGom Bho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 26.75 39.75 46.57 27.97 30.84 39.79 48.08 46.28 33.32 53.75 31.44 32.21 38.06
WordDropout 27.01 39.57 46.19 28.13 31.91 40.31 47.37 46.48 34.20 52.21 32.03 32.52 38.16
SubwordDropout 27.91 40.11 46.26 29.46 32.56 40.99 47.91 47.43 35.09 52.28 33.38 33.47 38.90
WordSwitchOut 25.17 38.81 45.87 26.21 29.95 39.69 47.53 44.54 32.98 51.81 31.84 32.49 37.24
SubwordSwitchOut 26.08 38.84 45.84 28.19 30.81 40.19 47.28 45.93 33.26 53.71 31.24 32.06 37.78
OBPE 27.90 40.57 47.46 28.52 31.99 40.71 49.10 47.16 32.33 52.77 29.98 30.88 38.28
SDE 28.01 40.91 47.88 28.66 32.03 40.82 48.96 47.30 33.72 53.95 31.84 31.24 38.77
BPE-Dropout 28.65 40.84 46.58 28.80 31.88 40.79 47.86 47.32 34.56 55.83 32.01 32.97 39.00
unigram char-noise 28.85 42.53 49.35 29.80 34.61 42.67 50.97 49.43 43.16 54.81 35.42 36.69 41.52
BPE → CSN (our) 28.66 41.94 49.48 30.49 35.66 44.75 50.55 49.21 43.11 54.89 36.12 37.11 40.16
CHARSPAN (our) 29.71 43.75 51.69 31.40 36.52 45.84 51.90 50.55 43.51 55.46 36.24 37.31 42.82
CHARSPAN + BPE-Dropout (our) 29.91 44.02 51.86 30.88 37.15 46.52 52.99 51.34 44.93 55.87 36.97 38.09 43.37

Table 1: Zero-shot chrF scores results for ELRLs → English machine translation.

Langs. BPE Unigram Noise Char-Span Noise Sim
Guj-Deva 34.36 36.17 38.09 0.42
Pan-Deva 29.18 33.34 36.50 0.40
Ben-Deva 25.35 28.42 30.28 0.34
Tel-Deva 23.30 24.05 24.12 0.27
Tam-Deva 13.81 13.69 14.40 0.15

Table 2: Zero-shot chrF scores with additional lexically less
similar languages. HRL: hi and mr; sim: lexical similarity

as in CHARSPAN, yields slightly better results.264

Combining noise and BPE-dropout: We see265

that combining CSN with BPE-dropout gives the266

best-performing results.267

Performance on Less Similar Languages: We268

evaluate the model’s performance on languages269

that are less lexically similar to the considered270

languages and have different scripts. The languages271

are Gujarati (Guj), Punjabi (Pan), Bengali (Ben),272

Telugu (Tel), and Tamil (Tam). We first perform273

script-conversion of these languages to HRL by274

Kunchukuttan (2020)). The training setup is275

similar to the Indo-Aryan family. Table 2 shows276

that the ELRLs, which are lexically similar to277

HRLs, demonstrate a larger performance gain,278

while those with less lexical similarity show limited279

improvement. This suggests that the model’s280

effectiveness is closely tied to the lexical similarity281

of the languages in CHARSPAN.282

Impact of Cross-lingual Transfer: In283

this analysis, we investigate the encoded284

representations of the sentences to gain insights285

into how performance improves with char-span286

noise augmentation. We collected pooled287

last-layer representations of the encoder for288

HRL and LRLs across all parallel test examples289

using BPE, unigram char-noise (UCN), and290

the CharSpan models. We then calculated the291

average cosine similarity scores across the test292

set, presented in Table 3. Notably, the CharSpan293

model demonstrates high similarity, indicating294

a well-aligned embedding space for enhanced295

cross-lingual transfer.296

Importance of Selecting Right HRLs: Table297

4 presents an analysis of the impact of lexically298

Models Bho Hne San Npi Mai Mag Awa
BPE 0.761 0.793 0.701 0.744 0.762 0.809 0.792
UCN 0.853 0.888 0.765 0.821 0.849 0.897 0.883
CHARSPAN 0.871 0.909 0.789 0.858 0.868 0.913 0.901

Table 3: Average cosine similarity between representations
of source HRLs and source ELRLs for Indo-Aryan family.
Results for other families are in the Appendix L.

diverse HRLs used for training. Results indicate 299

that the CHARSPAN model demonstrates a 300

performance gain when lexically similar HRLs 301

were considered for noise injection. When the 302

HRLs are less lexically similar, a degradation in 303

performance is observed. These findings indicate 304

the importance of using lexically similar HRLs. 305

Model Hne Mag Mai Npi San
Training with Lexically Similar HRLs: Hin, Mar, Pan, Guj, Ben

BPE 43.04 45.08 39.51 31.92 29.29
Char-span Noise 45.89 45.82 41.67 34.40 30.34
Training with Lexically less similar HRLs: Hin, Tel, Tam, Mal, Ora
BPE 41.87 42.27 36.95 30.50 26.95
Char-span Noise 39.93 40.34 37.98 29.20 25.84

Table 4: Analysis experiment to show zero-shot chrF scores
with lexically diverse HRLs. Due to computational constraints,
we have considered 1 million parallel data for each HRL.

Imapct of small ELRL parallel Data: Here, we 306

combined small ELRLs parallel data with the HRLs 307

training data for BPE and CHARSPAN model. The 308

results are presented in Table 14 in the appendix K. 309

The additional data boosts both model performance, 310

and CHARSPAN still outperforms the BPE model. 311

6 Conclusion 312

This study presents a simple yet effective novel 313

character-span noise (CSN) argumentation model, 314

CHARSPAN, to facilitate better cross-lingual 315

transfer from HRLs to closely related ELRLs. The 316

approach generalizes to closely related HRL-ELRL 317

pairs from three typologically diverse language 318

families. The proposed model consistently 319

outperformed all the baselines. To the best of 320

our knowledge, we are the first to apply noise 321

augmentation for the NLG task. In the future, 322

we will extend CHARSPAN to other NLP tasks, 323

combine it with pre-trained models, and investigate 324

noise augmentation in English-to-ELRL MT task. 325
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Limitations326

The current work addresses only transfer from327

related LRLs to English. It still remains to be328

investigated if noise augmentation is beneficial for329

translation from English to extremely low-resource330

languages. We assume that the related languages331

also use the same script or scripts that can be easily332

mapped/transliterated to each other. This method333

might not be effective for transfer between related334

languages that are written in very different scripts335

e.g. Hindi is written in the Devanagari script, while336

Sindhi is written in the Perso-Arabic script.337

Ethics Statement338

This work did not involve any new data collection339

and did not employ any annotators for data340

collection. We use publicly available datasets for341

experiments reported in this work. Some of these342

datasets originate from webcrawls and we do not343

make any explicit attempt to identify any biases in344

these datasets and use them as-is.345
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A Baselines676

We compare the proposed model performance with677

the following strong baselines:678

• Vanilla NMT (BPE; Sennrich et al.679

(2016b)): Neural Machine Translation model680

training with the standard BPE algorithm.681

• WordDropout (Sennrich et al., 2016a): In682

this baseline, randomly selected words in the683

source/target sentence have their embeddings684

set to 0. We have selected 10% words in the685

source sentence as the noise augmentations686

are done in the source.687

• SubwordDropout: It is a variant of688

WordDropout baseline where we drop the689

BPE tokens instead of words.690

• WordSwitchOut (Wang et al., 2018):691

This baseline employs a data augmentation692

technique where random words in both the693

source and target sentences are replaced with694

randomly selected words from their respective695

vocabularies. We have utilized the officially696

released implementation with a 10% word697

replacement rate.698

• SubwordSwitchOut: It is a variant of699

WordSwitchOut baseline where we use the700

BPE tokens instead of words.701

• Overlap BPE (OBPE; Patil et al. (2022)):702

The approach modifies the BPE algorithm703

to encourage more shared tokens between704

high-resource and low-resource languages705

tokens in the vocabulary. This model required 706

a monolingual dataset for ELRLs. We 707

use a small monolingual dataset, based on 708

availability, for the ELRLs. Earlier work 709

applied OBPE for NLU tasks only - we are 710

the first to investigate it for MT. 711

• Soft Decoupled Encoding (SDE; (Wang 712

et al., 2019)): In the SDE approach, the 713

authors have designed a framework that 714

effectively decouples word embeddings into 715

two interacting components: representing 716

the spelling of words and capturing the 717

latent meaning of words. This modeling 718

technique has demonstrated its effectiveness 719

in improving the performance of low-resource 720

languages. In our study, we utilized the 721

officially released implementation of SDE. 722

• BPE-Dropout (Provilkov et al., 2020): 723

It utilizes the BPE algorithm to learn 724

the vocabulary and sample different 725

segmentations for input text during training 726

(on-the-fly). 727

• Unigram Character Noise (UCN; Aepli 728

and Sennrich (2022)): Inspired by the 729

UCN model, we augment character-level 730

noise (with all three operations) instead of 731

char-span, the rest of the setup is similar to 732

CHARSPAN. 733

• BPE → Char-Span Noise: In this 734

ablation, we first learn vocabulary with clean 735

HRLs. Subsequently, character-span noise 736

is augmented into training data. This will 737

demonstrate the significance of learning the 738

BPE vocab with the noisy dataset. 739

• Char-Span Noise + BPE-Dropout: In this 740

model, we train the BPE-Dropout model with 741

char-span noise augmented HRLs training 742

dataset. 743

B CHARSPAN Algorithm 744

Algorithm 1 shows the details of the character span 745

noise augmentation presented in the main paper. 746

C Dataset Details and Statistics 747

The details of all the datasets used with CHARSPAN 748

model are presented in Table 5. 749
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Algorithm 1 CHARSPAN: Character-span Noise Augmentation Algorithm
Require: [Inputs] high resource language data (DH(X ,Y)) from H-En parallel corpus, range of noise augmentation

percentage [P1, P2], set of noise augmentation candidates C (see Fig. 3), largest character n-gram size N that will
be considered for noising

Ensure: [Output] Noisy high resource language data (D
′
H)

1: Augmentation percentage (Ip) = random float(P1, P2) # find a random float value between P1 and P2
2: Augmentation factor (α) = int(Ip/N )
3: for each h in X do
4: Let sz be the number of characters in h.
5: Let Indices = {⌈(N/2)⌉, · · · , sz − ⌈(N/2)⌉} # Leaving ⌈(N/2)⌉ character indices from beginning and end
6: Randomly select S = N ∗ α character indices from Indices
7: for each k in S do
8: Span gram (SpN ) = sample character-span size uniformly from {1, 2, . . . , N} with equal probability
9: Operation (Op) = sample operations uniformly from { delete, replace } with equal probability

10: Cd ={}
11: if (Op) is replace then
12: Candidate char (c) = single sample character uniformly from C with equal probability
13: Append candidate char c in Cd

14: end if
15: if SpN == 1 then
16: Perform the operation (Op) with Cd at the index k
17: else
18: Perform the operation (Op) with Cd at the indexes from k − int((SpN − 1)/2) to k + int((SpN − 1)/2)
19: end if
20: end for
21: end for

Family Code Language Script Family Subgrouping Res. Train Dev Test Data Source

1

Hin Hindi Devanagari Indo-European Indo-Aryan High 10M 1000 2390 Ramesh et al. (2022)
Mar Marathi Devanagari Indo-European Indo-Aryan High 3.6M 1000 2390 Ramesh et al. (2022)
Bho Bhojpuri Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Gom Konkani Devanagari Indo-European Indo-Aryan Low - - 2000 ILCI4

Hne Chhattisgarhi Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
San Sanskrit Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Npi Nepali Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Mai Maithili Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Mag Magahi Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Awa Awadhi Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200

2

Spa Spanish Latin Indo-European Romance High 6.6M 670 1131 Rapp (2021)
Pot Portuguese Latin Indo-European Romance High 4.8M 681 1103 Rapp (2021)
Cat Catalan Latin Indo-European Romance Low - - 1012 FLORES-200
Glg Galician Latin Indo-European Romance Low - - 1012 FLORES-200

3

Ind Indonesian Latin Austronesian Malay-Polynesian High 0.5M 2500 3000 OPUS5

Zsm Malay Latin Austronesian Malay-Polynesian High 0.3M 1500 2000 OPUS
Jav Javanese Latin Austronesian Malay-Polynesian Low - - 1012 FLORES-200
Sun Sundanese Latin Austronesian Malay-Polynesian High - - 1012 FLORES-200

Others

Pan Panjabi Gurmukhi Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Guj Gujarati Gujarati Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Ben Bengali Bengali Indo-European Indo-Aryan High 1M* 1000* 1012 FLORES-200
Tam Tamil Tamil Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Tel Telugu Dravidian Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Mal Malayalam Malayalam Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Ora Oriya Oriya Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200

Table 5: Dataset details and Statistics. * are obtained from Ramesh et al. (2022)
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D Model Training Details750

We used the FairSeq library (Ott et al., 2019)751

to train proposed CHARSPAN and other baseline752

models. Training and implementation details are753

presented in Table 6. The best checkpoint was754

selected based on validation loss. The training755

time for the Indo-Aryan family of languages756

was approximately 8 hours; for the Romance757

languages it was approximately 7 hours, and for758

the Malay-Polynesian languages, it was less than759

1 hour. Each language inference was completed760

within a time frame of less than 5 minutes. Due761

to computational limitations, the performance of762

the model was reported based on a single run.763

During the generation process, a batch size of764

64 and a beam size of 5 were used, with the765

remaining parameters set to the default values766

provided by FairSeq. For data-pre-processing and767

script conversion for Indic languages, we use the768

Indic NLP library6.769

architecture encoder-decoder (transformers)
# encoder layers 6
# decoder layers 6
# parameters 46,956,544 shared
learning rate (lr) 5e−4

optimizer adam
dropout rate 0.2
input size 210 tokens (both side)
epochs 15
tokens per batch 32768
clip-norm 1.0
lr scheduler inverse sqrt
# GPUs 8
type of GPU V100 Nvidia
generation batch size 64
beam size 5

Table 6: Model implementation and training details

E Performance Evaluation with BLEU,770

BLEURT and COMET Metrics771

BLEU7, BLEURT and COMET scores are reported772

in Table 7, 8 and 9, respectively. We observe the773

same trends as reported in the main paper for chrF8.774

6https://github.com/anoopkunchukuttan/
indic_nlp_library

7computed with SacreBLEU BLEU signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1

8computed with SacreBLEU chrF signature:
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1

F Performance on High Resource 775

Languages 776

The high-resource language performances are 777

presented in Table 10. It can be observed that, 778

even with the inclusion of noise augmentation, the 779

proposed model exhibits only a slight decrease in 780

performance for HRLs. 781

G Candidate Alphabets 782

The candidate alphabets for noise augmentation 783

are shown in Fig. 3. For the Indo-Aryan language 784

family, the Devanagari alphabet is used, while 785

the Latin alphabet is used for the Romance and 786

Malay-Polynesian language families. 787

H Ablation Study and Different 788

Experimental Setups 789

In order to ascertain the optimal configuration 790

of the proposed model, a comprehensive set of 791

experiments, numbering approximately 200, were 792

conducted. A selection of the key evaluation scores 793

from these experiments is illustrated in Table 13. 794

I Language Similarity Histogram 795

As depicted in Fig. 4, a similarity analysis in 796

the form of a heatmap for the selected language 797

families and languages is presented. The analysis 798

shows that extremely low-resource languages 799

(ELRLs) are closely related to high-resource 800

languages (HRLs). The lexical similarity between 801

languages was measured using character-level 802

longest common subsequence ratio (LCSR) metric 803

(Melamed, 1995). Additionally, the similar head 804

map is presented for less similar languages in Fig. 805

5. These languages were used in the multiple 806

analyses. 807

J Sample Translation Examples 808

A few sample translations from the proposed 809

CHARSPAN model are shown in Fig. 6. 810

K Impact of Additional Small ELRLs 811

parallel Data 812

Here, we combined small ELRL parallel data with 813

the HRLs training data for BPE and CHARSPAN 814

model. The results are presented in Table 14. The 815

inclusion of additional data boosts both model 816

performance, and CHARSPAN still outperforms the 817

BPE model. 818
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Models Indo-Aryan Romance Malay-Polynesian AverageGom Bho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 4.36 10.62 15.76 3.43 4.36 9.36 16.7 15.6 5.23 22.99 5.74 6.02 10.01
WordDropout 4.62 11.21 15.71 4.11 5.47 9.96 16.76 16.31 6.19 22.26 5.90 6.02 10.37
SubwordDropout 4.57 9.99 14.47 3.93 5.25 9.08 15.53 16.03 5.85 20.72 4.78 4.93 09.59
WordSwitchOut 4.03 10.75 15.86 3.56 4.92 9.91 16.85 15.54 5.27 21.97 5.95 6.35 10.08
SubwordSwitchOut 4.13 10.56 15.93 3.76 4.49 9.69 16.61 16.69 5.19 23.82 6.02 6.01 10.24
OBPE 4.65 10.62 16.31 3.63 4.95 9.18 16.88 15.69 5.03 22.91 5.33 5.81 10.08
SDE 4.77 10.69 16.21 3.66 5.42 9.86 16.80 16.03 5.47 23.51 5.88 6.39 10.39
BPE-Dropout 5.24 11.33 15.64 3.71 4.94 10.00 16.62 16.63 5.94 24.07 5.79 6.65 10.54
unigram char-noise 5.21 12.62 18.29 3.81 6.55 11.29 19.47 18.95 11.82 24.09 7.35 6.87 12.19
BPE → CSN (our) 5.39 13.06 19.00 4.48 7.01 13.17 20.30 19.69 11.91 24.27 7.51 7.30 12.75
CHARSPAN (our) 5.77 13.01 19.52 4.63 7.13 13.43 20.81 20.36 12.21 24.72 7.52 7.32 13.03
CHARSPAN + BPE-Dropout (our) 5.81 13.81 21.03 4.64 8.10 14.33 22.11 21.25 12.64 25.35 7.52 7.31 13.65

Table 7: Zero-shot BLEU scores results for ELRLs → English machine translation

Models Indo-Aryan Romance Malay-Polynesian AverageGom Bho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 0.461 0.494 0.522 0.414 0.461 0.494 0.537 0.549 0.357 0.495 0.403 0.401 0.474
WordDropout 0.467 0.502 0.527 0.419 0.465 0.497 0.542 0.565 0.344 0.496 0.392 0.391 0.475
SubwordDropout 0.454 0.493 0.513 0.393 0.459 0.481 0.526 0.554 0.319 0.468 0.382 0.383 0.460
WordSwitchOut 0.456 0.501 0.528 0.395 0.445 0.497 0.552 0.551 0.309 0.477 0.381 0.381 0.464
SubwordSwitchOut 0.459 0.494 0.519 0.415 0.455 0.496 0.535 0.555 0.365 0.496 0.383 0.385 0.467
OBPE 0.466 0.496 0.518 0.419 0.459 0.491 0.537 0.551 0.431 0.428 0.396 0.381 0.464
SDE 0.486 0.499 0.515 0.511 0.496 0.542 0.543 0.553 0.440 0.481 0.406 0.405 0.489
BPE-Dropout 0.474 0.494 0.501 0.413 0.461 0.481 0.522 0.555 0.443 0.443 0.407 0.412 0.467
unigram char-noise 0.471 0.523 0.547 0.403 0.456 0.486 0.571 0.592 0.495 0.501 0.403 0.405 0.487
BPE → CSN (our) 0.469 0.528 0.553 0.400 0.459 0.491 0.579 0.595 0.499 0.511 0.405 0.413 0.491
CHARSPAN (our) 0.471 0.541 0.571 0.403 0.471 0.534 0.593 0.616 0.502 0.555 0.419 0.422 0.508
CHARSPAN + BPE-Dropout (our) 0.478 0.548 0.582 0.421 0.478 0.535 0.604 0.623 0.505 0.567 0.419 0.429 0.515

Table 8: Zero-shot BLEURT (computed with BLEURT-20 checkpoint) scores results for ELRLs → English

Models Indo-Aryan Romance Malay-Polynesian AverageGom Bho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 0.536 0.632 0.671 0.511 0.525 0.593 0.694 0.716 0.494 0.714 0.444 0.441 0.580
WordDropout 0.551 0.648 0.678 0.521 0.557 0.618 0.695 0.728 0.565 0.715 0.451 0.443 0.597
SubwordDropout 0.541 0.638 0.659 0.528 0.548 0.607 0.684 0.717 0.524 0.686 0.437 0.428 0.583
WordSwitchOut 0.544 0.647 0.681 0.522 0.563 0.621 0.706 0.719 0.529 0.702 0.453 0.452 0.594
SubwordSwitchOut 0.542 0.641 0.668 0.521 0.528 0.601 0.694 0.721 0.567 0.718 0.452 0.451 0.592
OBPE 0.541 0.629 0.667 0.504 0.527 0.589 0.691 0.715 0.492 0.721 0.363 0.611 0.587
SDE 0.549 0.636 0.666 0.513 0.529 0.591 0.697 0.735 0.513 0.731 0.357 0.618 0.594
BPE-Dropout 0.549 0.638 0.644 0.506 0.531 0.589 0.677 0.721 0.504 0.747 0.373 0.626 0.592
unigram char-noise 0.562 0.679 0.701 0.536 0.573 0.634 0.728 0.754 0.554 0.741 0.408 0.621 0.624
BPE → CSN (our) 0.557 0.676 0.706 0.542 0.581 0.651 0.724 0.755 0.561 0.751 0.403 0.622 0.627
CHARSPAN (our) 0.571 0.695 0.723 0.556 0.611 0.685 0.747 0.772 0.568 0.759 0.417 0.627 0.644
CHARSPAN + BPE-Dropout (our) 0.579 0.705 0.733 0.551 0.616 0.687 0.757 0.778 0.572 0.756 0.414 0.631 0.648

Table 9: Zero-shot COMET (computed with Unbabel/wmt22-comet-da model) scores results for ELRLs → English

Language Family Script Candidate Alphabets

Indo-Aryan Devanagari

 '◌ं', '◌ृ', 'प', '◌ॆ', '◌ु', 'ञ', 'ऐ', 'अ', '°', 'र', 'फ', 'ग', 'ह', 'इ' 'न', '◌ँ', 
 'स', 'ए', 'ऑ', 'ल', 'ध', 'ई', 'ऊ', '◌ौ', '◌া', 'ð', 'म', '◌ী', 'छ', '◌ॉ' 'ि◌', 
 'क', 'ण', 'भ', 'ट', '◌ॅ', 'ळ', 'ऋ', 'ष', 'ङ', '◌ै', 'ठ', 'ऌ', 'श', 'ब', 'ল', 
 '◌ी', 'ও', 'त', 'झ', 'ख', 'ज', 'थ', 'उ', '◌ू', '◌े', 'ओ', 'ड', '◌ീ', '◌्', 'T', 
 'ऎ', 'ॠ', '◌ो', 'ऒ', '◌ा', 'द', 'হ', '◌ॊ', 'घ', 'च', 'ढ', '◌ু', 'Ձ', 'य', 'औ', 
 'व', 'आ', 'ऍ'

Italic and Malay-
Polynesian Latin

 A, a, B, b, C, c, D, d, E, e, F, f, G, g, H, h, I, i, J, j, K, k, L, 
 l, M, m, N, n, O, o, P, p, Q, q, R, r, S, s, T, t, U, u, V, v, W, 
 w, X, x, Y, y, Z, z, ñ, ó, ã, à, ç, í, é, ñ

Figure 3: Candidate alphabets for noise augmentation, specifically for the insertion and substitution operations
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Figure 4: Lexical similarity (LCSR) heatmaps for three languages families. The Indo-Aryan languages are
considered to use the Devanagari script while the Latin script is used by the other two language families.
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XX → EN Indo-Aryan Romance Malay-Polynesian

Models BLEU chrF BLEU chrF BLEU chrF
Hin Mar Hin Mar Spa Pot Spa Pot Ind Zsm Ind Zsm

BPE 37.44 26.31 64.04 54.47 41.44 35.38 68.71 63.27 29.61 21.76 58.31 49.14

WordDropout 36.54 26.31 63.27 53.96 39.32 32.73 66.89 60.86 27.59 20.42 56.72 48.22
SubwordDropout 36.64 26.22 63.46 54.57 39.84 33.04 67.56 61.58 26.73 18.80 57.02 48.82
WordSwitchOut 34.12 23.84 60.98 51.84 35.27 30.63 63.25 58.38 27.04 19.60 55.69 46.93
SubwordSwitchOut 37.11 26.03 63.78 54.06 42.26 35.68 68.65 62.97 27.12 19.76 55.72 47.34

OBPE 37.32 26.90 64.05 55.03 41.81 36.44 68.17 63.45 28.14 21.83 57.11 49.21
SDE 37.22 26.19 63.98 55.44 41.41 35.51 68.61 62.89 29.11 21.52 58.25 48.98
BPE-Dropout 37.22 26.93 64.11 55.31 41.88 36.72 68.06 63.79 30.39 22.54 59.33 50.17

unigram char-noise 37.05 26.95 63.81 54.83 39.83 32.91 67.62 61.24 28.79 22.01 57.65 49.91
BPE → CSN (our) 36.66 26.93 63.80 54.84 39.92 32.22 66.83 61.06 27.84 22.16 57.15 50.19
CHARSPAN (our) 36.68 26.70 63.87 54.59 40.04 32.36 66.95 61.03 27.84 21.87 56.75 49.58
CHARSPAN + BPE-Dropout (our) 37.62 27.10 64.15 55.03 41.21 33.64 66.90 61.39 28.91 22.26 57.99 50.59

Table 10: BLEU and chrF Scores: High resource language performance for all three language families

XX → EN Indo-Aryan Romance Malay-Polynesian

Models BLEURT COMET BLEURT COMET BLEURT COMET
Hin Mar Hin Mar Spa Pot Spa Pot Ind Zsm Ind Zsm

BPE 0.775 0.726 0.891 0.857 0.769 0.720 0.871 0.830 0.687 0.561 0.821 0.701

WordDropout 0.774 0.725 0.891 0.854 0.755 0.701 0.86 0.814 0.681 0.555 0.815 0.693
SubwordDropout 0.773 0.725 0.889 0.854 0.757 0.691 0.861 0.806 0.672 0.548 0.803 0.683
WordSwitchOut 0.756 0.706 0.879 0.842 0.707 0.651 0.826 0.775 0.665 0.547 0.804 0.688
SubwordSwitchOut 0.776 0.724 0.892 0.855 0.771 0.721 0.872 0.833 0.663 0.548 0.801 0.687

OBPE 0.777 0.731 0.893 0.861 0.766 0.727 0.863 0.821 0.672 0.551 0.811 0.697
SDE 0.772 0.721 0.889 0.856 0.765 0.721 0.866 0.832 0.679 0.558 0.818 0.699
BPE-Dropout 0.773 0.727 0.891 0.858 0.772 0.7281 0.881 0.839 0.706 0.586 0.838 0.729

unigram char-noise 0.775 0.731 0.892 0.857 0.756 0.683 0.861 0.798 0.681 0.574 0.815 0.716
BPE → CSN (our) 0.773 0.728 0.891 0.857 0.755 0.685 0.861 0.801 0.685 0.581 0.821 0.724
CHARSPAN (our) 0.775 0.726 0.892 0.856 0.755 0.681 0.861 0.799 0.671 0.569 0.829 0.714
CHARSPAN + BPE-Dropout (our) 0.775 0.726 0.892 0.856 0.768 0.683 0.877 0.801 0.685 0.582 0.823 0.726

Table 11: BLEURT and COMET Scores: High resource language performance for all three language families
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Figure 5: Lexical similarity heatmap for additional languages used in the analysis section. Here we have shown similarity scores for Assamese (asm), Bengali (ben),
Gujrati (guj), Panjabi (pan), Hindi (him), Marathi (mar), Oriya (ory), Malayalam (mal), Kannada (kan), Tamil (tam) and Telugu (tel) languages.

L Effect of Cross-Lingual Transfer819

We did the following studies to understand why820

noise helps. The effectiveness of cross-lingual821

transfer depends on how well-aligned the822

representations of the HRL and ELRL are.823

Our hypothesis is that regularization with824

char-level noise brings the representations of825

the HRL and ELRL closer to each other, thus 826

improving cross-lingual transfer. To measure 827

these, we computed the cosine similarity of 828

encoder representations from parallel HRL and 829

ELRL sentences of 3 different models (baseline 830

BPE, Unigram character-noise, CHARSPAN). 831

The encoder representations were computed by 832

mean-pooling the token representations of the top 833
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Experimental Setup Indo-Aryan Average
Bho Hne San Npi Mai Mag Awa

ChrF Scores
CHARSPAN with Hin, Mar, Pan, Guj, Ben 38.81 45.39 30.34 34.4 41.67 45.82 43.78 40.03
CHARSPAN with Hin, Mar, Pan, Guj 37.68 43.49 28.44 32.22 39.43 44.34 42.33 38.27
CHARSPAN with Hin, Mar, Pan 33.32 38.81 25.71 29.21 54.82 39.17 26.47 35.35
CHARSPAN with Hin, Mar 29.70 33.13 23.83 26.12 31.88 33.83 33.13 30.23
CHARSPAN with Hin 20.96 21.92 15.90 17.97 20.85 22.85 21.75 20.31

BLEU Scores
CHARSPAN with Hin, Mar, Pan, Guj, Ben 10.46 15.97 4.87 7.02 11.83 16.32 14.65 11.58
CHARSPAN with Hin, Mar, Pan, Guj 9.55 14.32 3.92 5.99 9.85 14.71 13.47 10.25
CHARSPAN with Hin, Mar, Pan 7.41 10.21 2.91 4.63 7.88 11.01 9.89 7.70
CHARSPAN with Hin, Mar 5.30 7.06 2.40 3.20 5.00 7.28 6.96 5.31
CHARSPAN with Hin 2.03 2.27 0.6 0.97 1.77 2.23 2.39 1.75

Table 12: Zero-shot multilingual performance of char-span noise augmentation model. We have considered multiple
combinations of high-resource languages for a multilingual setup. Due to computational constraints, 1 million parallel training
data for each language was considered. All the languages are considered from the FLORES-200 test set.

Experimental Setups BLEU (XX → EN) chrF (XX → EN)
Gom Bho Hne Gom Bho Hne

char-noise (9%-11% + replacement with only vowels) 4.77 11.21 15.17 28.08 40.36 46.13
char-noise (9%-11%+ replacement with only consonants) 4.79 11.25 15.3 26.95 40.51 46.17
char-noise (9%-11% + replacement with char sound similarity ) 4.55 10.7 15.78 27.86 40.45 46.98
char-noise (9%-11% + with number and punctuation) 5.13 12.07 17.66 27.66 41.43 48.68

char-noise (9%-11% + only insertion) 5.04 12.3 17.81 27.50 41.87 48.74
char-noise (9%-11% + only replacement) 5.58 12.8 18.75 28.85 42.43 49.68
char-noise (9%-11%+ only deletion) 4.22 11.92 18.39 28.65 42.02 49.36

char-noise (4%-6% + all three operations + equal probability) 5.44 11.66 18.01 28.62 40.95 48.63
char-noise (14%-16% + all three operations + equal probability) 5.17 11.4 17.01 27.93 40.32 47.61
char-noise (9%-11% + all three operations + equal probability) 5.21 12.62 18.29 28.85 42.53 49.35

char-span noise (9%-11% + 1-3 grams + replacement: N random chars -> span ) 3.80 8.80 13.11 25.38 28.22 43.39
char-span noise (9%-11% + 1-3 grams + insertion: 1 random chars -> span ) 5.84 13.29 20.49 29.29 43.51 51.33
char-span noise (9%-11% + 1-3 grams + insertion: N random chars -> span ) 4.81 12.21 17.36 26.98 41.26 47.91
char-span noise (9%-11% + 1-3 grams + all three operations + equal probability) 4.01 10.41 16.33 27.99 36.66 46.13

char-span noise (9%-11% + 1-2 grams + replacement and deletion + equal probability) 5.42 12.08 18.02 29.17 42.21 49.17
char-span noise (9%-11% + 1-4 grams + replacement and deletion + equal probability) 5.79 11.85 18.02 29.71 42.41 49.74
char-span noise (9%-11% + 1-5 grams + replacement and deletion + equal probability) 5.56 11.36 17.06 24.13 26.35 29.55
char-span noise (9%-11%+ 1-3 grams + replacement and deletion +unequal probability ) 5.48 12.12 18.16 29.01 41.74 49.37

Proposed: char-span noise ( 9%-11% + 1-3 grams + replacement and deletion + equal probability) 5.81 13.81 21.03 29.71 43.75 51.69

Table 13: Ablation Study and Different Experimental Setups. Similar trends were observed for other ELRLs and
language families.

 Bhojpuri → English Source: साल 2017 के आ�खर म� िसिमनॉफ़, QVC शॉिपंग 
             टीवी चैनल पर देखाई देहलन.

Ref:   In late 2017, Siminoff appeared on shopping television channel QVC.  
Gen:  At the end of 2017, Siminauff appeared on QVC Shopping TV channel. 

 KonKani → English Source: आतां ही बंदखण एका सं�हालया�ा �पान           
              बदल�ा. 

Ref:   Now this prison has been converted into a museum. 
Gen:  Now, this prison has turned into a museum. 

 Maghai → English Source: रॉ�ी सं�ा जेतना छोट होतई, चंुबकीय उ�मण 
             के संबंध म� तारा ओतना ही कम सि�य होतई।

Ref:   The smaller the Rossby number, the less active the star with respect to magnetic reversals. 
Gen:  The smaller the number of rosbys, the less active the star with respect to magnetic evolution. 

Chhattisgarhi → English Source: रॉिबन उथ�ा ह पारी ल उ�तम स् ल र बनाया, 11
चौके अउ 2 छ�े ल मारकर केवल 41 ग�दो ंम� 70 रन बन

Ref:   Robin Uthappa made the innings highest score, 70 runs in just 41 balls by hitting 11 fours and 2 sixes. 
Gen:  Robin Uthappa made highest scored 70 off just 41 balls with 11 boundaries and 2 sixes. 

 Maithili → English Source: टेलीिवजन �रपोट्�स मे पौधा सँ उजर धुआं िनकलैल 
             देखार भए रहल अिछ।

Ref:   Television reports show white smoke coming from the plant. 
Gen:  Television reports showed smoke coming out of the plant. 

 Awadhi → English Source: द िस�संस से पिहले साइमन अलग अलग पद प 
              कई शो मा काम िकिहन रहा।

Ref:   Before The Simpsons Simon had worked on several shows in various positions. 
Gen:  Before The Simpson, Simon worked on several shows in different positions. 

 Nepali → English Source: िह�ु प�रवारको अिधकांश जीवन खुला हावामा 
              िब��ो।

Ref:   Much of the Hebrew family's life was open. 
Gen:  Most of the life of the Hebrew family happened is open. 

 Sanskrit → English Source: स�ा�य�षु एकमेव आ�य�म् The Great Pyramid 
             at Giza इित अ�ािप ��थतम् अ��।

Ref:   The Great Pyramid at Giza is the only one of the seven wonders that is still standing today. 
Gen:  The Great Pyramid at Giza is wonder one of 7 sill standing today. 

 Catalan → English Source: Inicialment, la vestimenta estava fortament 
              influïda per la cultura bizantina a orient.

Ref:   Initially, the clothing was heavily influenced by the eastern Byzantine culture. 
Gen:  The Great Pyramid at Giza is wonder one of 7 sill standing today  in the east. 

 Galician → English
Source: Ao mesmo tempo, a mariña alemá,
empregando fundamentalmente os U-boats, trataba
de deter ese tráfico.  

Ref:   At the same time, the German navy, using mainly U-boats, was trying to stop this traffic. 
Gen:  At the same time, the German maritime industry, using primarily U-boats, tried to stop this traffic. 

 Javanese → English

 Sundanese → English

Source: Anggota tim virtual asring dadi titik kontak 
             kanggo klompok fisik langsunge.

Source: Amérika di Wétan tengah keur ngahadapan
situasi anu bénten sareng rakyat Eropa atawa
Arab.

Ref:  Virtual team members often function as the point of contact for their immediate physical group. 
Gen: Virtual team members are at a direct point of contact for immediate physical group members. 

Ref:   American citizens in the Middle East might face different situations from Europeans or Arabs. 
Gen:  Americans in Middle East face a situation or benefit from European citizens or Arabs.  

Figure 6: Zero-shot Sample generations with CHARSPAN model for ELRLs.
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Setup Gom Bho Hne San Npi Mai
BPE 26.75 39.75 46.57 27.97 30.84 39.79
BPE+ELRLpar 26.54 42.66 52.52 31.88 38.09 43.22
CSN 29.71 43.75 51.69 31.40 36.52 45.84
CSN+ELRLpar 29.65 45.39 53.38 33.92 39.66 47.18

Table 14: Translation quality (chrF) with an additional 1000 ELRL-English parallel sentences (ELRLpar).

layer of the encoder. The Table -15 shows the834

results (we report average results over the test835

set). We can clearly see that the similarity of836

encoder representations significantly increases in837

noise-augmented models. Further, CHARSPAN838

provides a good improvement over unigram839

char-noise which reflects improved translation840

quality.841

M Error Analyses842

M.1 Basline Generations are Transliterated843

Fig. 7 presents a few sample examples where844

baseline models give generation error. Here, we845

look for transliteration errors. It can observed that846

many of the source words are directly transliterated847

in target generation for baseline models however848

the proposed CHARSPAN model successfully849

mitigate these error.850

M.2 Grammatical Well-Formedness851

It is often observed that the generations are852

grammatically not sound and such features are853

easily missed by the performance evaluation854

metrics like ChrF and BLEU. With this error855

analysis, we aim to investigate the grammatical856

well-formedness of generations from different857

baseline models. To score the grammatical858

well-formedness, we use L’AMBRE tool9. The859

results are reported in Table 16. For simplicity,860

we have shown results for only the Indo-Aryan861

family. The CharSpan shows better Grammatical862

formation than BPE and Unigram char-noise model863

across all ELRL.864

These error analyses further provide evidence865

that the performance gains are truly genuine for the866

CHARSPAN model.867

N Literature Review868

In this section, we presented details of three threads869

of literature review related to the proposed work.870

This is summarized in Section 2 of the main paper.871

9https://github.com/adithya7/lambre

N.1 MT for Low-resource Languages 872

Due to the unavailability of the large bi-text dataset 873

for low-resource languages, much of the existing 874

research focuses on multilingual MT. This enables 875

cross-lingual transfer (Nguyen and Chiang, 2017; 876

Zoph et al., 2016) and allows related languages to 877

learn from each other (Fan et al., 2021; Costa-jussà 878

et al., 2022; Siddhant et al., 2022). While this 879

direction has gained significant attention, the 880

performance improvement for LRLs as compared 881

to HRLs has been limited (Tran et al., 2021) and 882

remains an open area of research. In another thread, 883

efforts have been made for MT models directly 884

from the monolingual dataset (Artetxe et al., 2018; 885

Lample et al., 2018; Lewis et al., 2020). These 886

unsupervised approaches show promise, but still 887

require a large amount of monolingual data, which 888

should ideally match the domain of the HRLs 889

(Marchisio et al., 2020). However, for many LRLs, 890

monolingual datasets are not available (Artetxe 891

et al., 2020). In contrast, we propose a model that 892

does not require any bi-text/monolingual dataset 893

and is scalable to any number of LRLs/dialects. 894

N.2 Vocabulary Adaptation for MT 895

Early exploration of character-based MT showed 896

the promise (Chung et al., 2016; Lee et al., 2017) 897

with coverage and robustness (Provilkov et al., 898

2020; Libovický and Fraser, 2020). However, 899

recent modeling concludes a number of challenges 900

(Gupta et al., 2019; Libovický and Fraser, 2020) in 901

terms of training/inference times and performance 902

as compared to the subwords models. Specifically, 903

Shaham and Levy (2021) shows that character 904

MT and Byte MT (Costa-jussà et al., 2017) have 905

worse performance than the Byte Pair Encoding 906

(BPE; (Sennrich et al., 2016b)) model and limits 907

their practical usage (Libovický et al., 2022). The 908

effectiveness of the BPE algorithm (Gage, 1994) 909

is reported for NMT (Sennrich et al., 2016b) 910

and serval other NLP tasks (Liu et al., 2019). 911

Other algorithms like Sentencepiece (Kudo and 912

Richardson, 2018) and Wordpiece (Google-2018) 913
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Models Indo-Aryan Romance Malay-Polynesian AverageBho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 0.761 0.793 0.701 0.744 0.762 0.809 0.792 0.721 0.813 0.731 0.736 0.760
UCN 0.853 0.888 0.765 0.821 0.849 0.897 0.883 0.803 0.879 0.813 0.811 0.842
CHARSPAN 0.871 0.909 0.789 0.858 0.868 0.913 0.901 0.831 0.903 0.846 0.856 0.867

Table 15: Average cosine similarity between representations of source HRLs and source LRLs. UNC: Unigram
Char-Noise

Examples   Sentence Type Source/Target/Generation

BHO to
ENG

  Source Input   उ आगे कहलन,"हमनी ंके पास एगो 4-महीना क मूस बा जवन पिहल मधुमेह के बीमारी से �िसत रहल लेिकन अब ऊ ई बीमारी से मु�
बा"

  Reference Target   We now have 4-month-old mice that are non-diabetic that used to be diabetic," he added.

  BPE   "We have Ago 4-month-old Mous Ba Jawan Pahil, who is suffering from diabetes, but now get rid of
  the disease," "he added."

  UCN   "We had a 4-month-old daughter who was first suffering from diabetes, but now we are free from a 
  disease," "he added.

  CHARSPAN   We had 4-month-old mice that are non-diabetic, but now free from the diabetic," "he added."

HNE to
ENG

  हामी USOC को कथनसँग सहमत छौ ंिक िवघटन भ�ा ब� हा�ा ए��लट र �बह�को िहत र ितनीह�को खेल सायद हा�ो स� िभ�
अथ�पूण�     प�रवत�नको साथ अिघ बढेर अझ रा�ो सेवा िदन सिक�छ।

  We agree with the USOC's statement that the interests of our athletes and clubs, and their sport, may be 
  better served by moving forward with meaningful change within our organization, rather than decertification.

  Hami agreed to the USOC that dissolution Bhanda Baru Hamra Ethlite Club interested in Tiniharuko Play
  Syed Hamro Bhitra meaningful changes along with Ah Ramro Service Day Sakinch.

  Hami agrees with the USOC that dissolution Bhanda Baru Hamra Athlete Club Bahruko interested in
  Tinihruko Games Sayyid Hamro Sangha Change with Azhi Ramro Seva Day Sakinch.

  We agreed with the USOC that the dissolution would be in the interest of athletes and clubs, and their sport
  and grow a friendly, meaningful transformation and celebrate rather than decertification in organization.

  Source Input

  Reference Target

  BPE

  UCN

  CHARSPAN

Figure 7: The generation errors (transliteration) from different baseline models. The proposed CHARSPAN model successfully mitigates those errors. Colors indicate
the corresponding transliteration in a generation.

Models Indo-Aryan
Bho Hne San Npi Mai Mag Awa

BPE 0.9782 0.9813 0.9444 0.9624 0.9647 0.9784 0.9812
UCN 0.9754 0.9616 0.9504 0.9592 0.947 0.9708 0.9753
CHARSPAN 0.9856 0.9865 0.9658 0.9735 0.9802 0.9842 0.9836

Table 16: Grammatical Well-Formedness for different models with L’AMBRE

are similar to BPE. We take inspiration from914

existing works and proposed a model on BPE.915

Given the potential of the BPE model, various916

methodologies have been developed for vocabulary917

modification/generation/adaption (Provilkov et al.,918

2020; Khemchandani et al., 2021; Patil et al., 2022;919

Minixhofer et al., 2022). In particular, the work of920

Provilkov et al. (2020) utilizes the BPE algorithm921

to generate the vocabulary and sample different922

segmentations during training. Patil et al. (2022)923

introduce an extension of BPE, referred to as924

Overlapped BPE (OBPE), which takes into account925

both HRLs and LRLs tokens during vocabulary926

creation. They demonstrate the effectiveness of927

this approach in only NLU tasks. In contrast, in928

this study, we adopt the standard BPE model on929

noisy HRL data for the MT task.930

N.3 Surface/Lexical Level Noise for MT 931

Several previous studies (Sperber et al., 2017; 932

Koehn and Knowles, 2017; Karpukhin et al., 933

2019; Vaibhav et al., 2019) have examined the 934

use of noise augmentation strategies, including 935

substitution, deletion, insertion, flip, and swap, 936

at various levels of text granularity for machine 937

translation. These strategies are explored to 938

stabilize/improve the robustness of the model 939

with naturally occurring noises, such as spelling 940

mistakes. Further, these noising schemes are 941

utilized to obtain non-canonical text in adversarial 942

settings (Heigold et al., 2018). Close to ours, Aepli 943

and Sennrich (2022) proposed a character-based 944

noise model to transfer the supervision from HRLs 945

to LRLs in a zero-shot setting. They evaluated 946

the proposed model on two NLU tasks with 947
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the pre-trained model. Unlike this, we have948

trained the model from scratch for the machine949

translation task which is very different and more950

challenging than NLU tasks. Moreover, we951

explore the span-denoise which outperformed char952

denoise-based models and emerged as a desirable953

MT model for extremely low-resource languages954

and dialects.955
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