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ABSTRACT

This paper proposes an approach to enable the weights and biases of a novel neu-
ral ODE, the Lurie network, to be trained in such a manner that a generalised
concept of stability is guaranteed. This generalised stability measure is derived
through the use of k-contraction analysis, which guarantees global convergence to
a point, line or plane in the neural state-space. An unconstrained parametrisation
of this condition is derived, allowing models to be trained using standard opti-
misation algorithms, whilst limiting the search space to solutions satisfying the
k-contraction constraint. The novel stability result and parametrisation provide a
toolset for training over the space of Lurie network’s which exhibit the convergent
behaviours observed during neural computation in the brain. For example, global
convergence to one of multiple equilibrium points or limit cycles are properties
observed in associative and working memory.

1 INTRODUCTION

The brain organises its representations of the world and carries out complex functions through col-
lective interactions of simpler modules Kandel et al. (2000). Convergent dynamics in widespread
regions of the central nervous system are thought to play a crucial role in: forming some of these
representations Khona & Fiete (2022), processing information over extended periods Vogt et al.
(2022), learning Kozachkov et al. (2020); Centorrino et al. (2022), memory storage Hopfield (1982;
1984); Kozachkov et al. (2022); Pals et al. (2024) and enhancing the robustness of each of these
functions Khona & Fiete (2022). As summarised in Khona & Fiete (2022), convergent dynamics in
the brain take several forms. For example, neural circuits with multiple equilibrium points (bistable
and multi-stable) have been observed in the anterlor lateral motor cortex of a rat Piet et al. (2017) and
are conjectured to appear in the mammalian hippocampus and auditory cortex. Some theories of as-
sociative memory also believe reconstruction of a learned pattern is obtained by flow to equilibrium
points Sharma et al. (2022); Kozachkov et al. (2023). Limit cycles are another form of convergent
dynamics for which there are numerous examples within the central nervous system. These include
working memory Kozachkov et al. (2022), thought to arise from the sustained spiking of neurons
Ashwin et al. (2016), and sleep cycle generation Adamantidis et al. (2019).

The convergence and stability analysis of dynamical systems has been well-studied in the control
theoretic literature. A Lurie1 network is a popular class of nonlinear dynamical systems comprising
a linear time-invariant (LTI) component interconnected with a, potentially time-varying, nonlinear-
ity. Such systems are ubiquitous throughout the sciences Ofir et al. (2023), engineering Ofir et al.
(2024), machine learning (ML) Pauli et al. (2021); Lessard et al. (2016) and neuroscience, where
recurrent neural networks (RNNs) are commonly used as computational models Wilson & Cowan
(1972). A well-studied problem amongst the control community is the absolute stability problem:
where the nonlinearity of the Lurie network is unknown, but assumed to be sector-bounded or slope-
restricted. The goal is to find conditions on the model parameters which ensure the trajectories of
all Lurie networks, with nonlinearities in the assumed class, uphold a chosen definition of conver-
gence. Approaches to this problem can be classified as Lyapunov analysis Park (1997; 2002); Khalil
(2002); Richardson et al. (2023; 2024), Zames-Falb multipliers Zames & Falb (1968); Carrasco et al.
(2016); Turner & Drummond (2019); Drummond et al. (2024) or k-contraction analysis Zhang &
Cui (2013); Ofir et al. (2023; 2024). Lyapunov analysis and Zames-Falb multipliers are primarily
used to analyse the stability of equilibrium points. Indeed, Lyapunov analysis is regularly applied in

1Named after Anatolii Isakovich Lurie and sometimes spelt Lur’e or Lurye.
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Figure 1: Trajectories from three dynamical systems satisfying the k-contraction property. Crosses
denote the initial condition and stars denote equilibirum points.

the study of Hopfield networks Hopfield (1982); Krotov & Hopfield (2020); Ramsauer et al. (2020).
On the other hand, k-contraction analysis provides a unifying framework to study a variety of global
convergence behaviours, including convergence to (unique equilibrium) points, lines (e.g., multiple
equilibrium points) and planes (e.g., limit cycles). As a result, the same analysis could be applied to
the study of associative and working memory, along with a myriad of other neural functions.

This paper leverages the Lurie network modelling framework and k-contraction analysis tools to
simulatneously develop a toolset for: (i) studying the various convergent dynamics observed in
the brain (and other dynamical systems) by incorporating k-contraction as an inductive bias; (ii)
developing an ML framework inspired by these theoretical properties, such as the ones related to
associative memory. The technical steps include: (i) using k-contraction analysis to derive mild
constraints on the weights and biases of the Lurie network such that the absolute stability problem
is addressed; (ii) establishing unconstrained parametrisations of these conditions which allows the
Lurie network to be trained using gradient based optimisation algorithms whilst limiting the search
space to weights and biases which satisfy the k-contraction condition.

2 k-CONTRACTION ANALYSIS

k-contraction analysis Wu et al. (2022); Muldowney (1990) is the geometrical generalisation of
contraction analysis Lohmiller & Slotine (1998). Intuitively, k-contraction implies a set of initial
conditions exponentially convergence to a (k − 1)-dimensional subspace. Refer to (Bar-Shalom
et al., 2023, §7) for a formal definition. When k = 1, this reduces to standard contraction Lohmiller
& Slotine (1998), which implies that all trajectories exponentially converge to a single trajectory. For
a general time-varying dynamical system, satisfying the k-contraction property does not guarantee
stability. However, for time-invariant dynamical systems, it has been shown that for every bounded
solution: 1-contraction implies global convergence to a unique equilibrium point Lohmiller & Slo-
tine (1998), 2-contraction implies global convergence to an equilibrium point, which is not nec-
essarily unique but must be connected along a line Muldowney (1990), and 3-contraction, under
certain assumptions, implies convergence to a non-unique attractor in a 2d subspace Cecilia et al.
(2023). This includes certain types of chaotic systems; for example, Thomas’ cyclically symmetric
attractor Thomas (1999); Ofir et al. (2022). Robustness is an inherent property of these networks as
the trajectories can only converge to a finite number of long term behaviours. This is appealing for
both artificial and biological networks. Three examples of k-contracting dynamics are illustrated in
Figure 1; these examples are from a variety of domains to highlight the widespread application of
the analysis. Next, we present the fundamental Euclidean k-contraction result from Wu et al. (2022).
Refer to §A for details on the notation and §B for a summary of compound matrices.

Theorem 1 Fix k ∈ [1, n] and consider the nonlinear system ẋ = f(t, x) with f : ℜ+ ×ℜn → ℜn

continuously differentiable. If there exists η > 0 and an invertible matrix Θ ∈ ℜn×n such that

µ2,Θ(k)

(
J
[k]
f (t, x)

)
≤ −η ∀ x ∈ ℜn and t ∈ ℜ+ (1)

then the nonlinear system is k-contracting in the 2-norm w.r.t the metric P := Θ⊤Θ.

This result has two features: (i) it requires the existence of an invertible matrix P . In the simplest
case, one can expect a solution P = pIn to exist. For other systems, such simple solutions will
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not exist and more general matrices such as P ∈ Sn
+ will be required, making the proofs more

difficult; (ii) it requires the use of compound matrices. For a matrix W ∈ ℜn×m, the matrix W [k]

with k ∈ [1,min(n,m)] will have the size
(
n
k

)
×

(
m
k

)
which is typically much larger and more

computationally difficult to work with. A more technical introduction to k-contraction analysis and
compound matrices is presented in Bar-Shalom et al. (2023) with the essential results detailed in §B.
In §3.1 we derive results which verify (1) for the special case of the Lurie network (2).

3 LURIE NETWORK

A Lurie network is defined by (2) with weights A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜm×n and biases
bx ∈ ℜn, by ∈ ℜm.

ẋ(t) = Ax(t) +BΦ
(
y(t)

)
+ bx y(t) = Cx(t) + by x(0) = x0 (2)

The model has a biased linear component interconnected with a nonlinearity of the form Φ(y) :=

[ϕ1(y1) . . . ϕm(ym)]
⊤ where ϕi(yi) is assumed to be slope-restricted with an upper bound g > 0,

such that 0 ⪯ JΦ(y) ⪯ gIm. This separation of the linear and nonlinear components is useful for
analysis. Activation functions which satisfy this slope-restricted assumption include the hyperbolic
tangent (tanh) and the rectified linear unit (ReLU ). For simplicity, we assume the same scalar
nonlinearity is applied element-wise and drop the subscript.

Although the brain is subject to various external inputs, it is common to assume that, at least on the
timescale of interest, the dynamics evolve in a time-invariant manner Khona & Fiete (2022). As a
result, time-invariance of the Lurie network (2) does not prevent it from being a suitable model for
neural dynamics. Furthermore, satisfying Theorem 1 ensures the model will inherit the appealing
convergence and robustness properties stated in §2.

3.1 k-CONTRACTION ANALYSIS OF LURIE NETWORKS

A sufficient result which satisfies Theorem 1 and guarantees (2) is k-contracting is presented next.
Conditions were derived in (Ofir et al., 2024, Theorem 2) which verify Theorem 1 for a Lurie
network with A ∈ Dn and by = 0. Theorem 2 extends them to account for A ∈ ℜn×n and by ̸= 0.
Refer to §C for the proof.

Theorem 2 Consider the Lurie network (2) with Φ(y) := [ϕ1(y1) . . . ϕm(ym)]
⊤ being slope-

restricted such that 0 ⪯ JΦ(y) ⪯ gIm. Fix k ∈ [1, n] and define αk := (2k)−1
∑k

i=1 λi(A+ A⊤).
If αk < 0 and

g2
k∑

i=1

σ2
i (B)σ2

i (C) < α2
kk (3)

then (2) is k-contracting in the 2-norm w.r.t the metric P = −α−1
k In.

The additional freedom permitted by k-contraction over standard contraction is highlighted by the
summation of the eigenvalues and singular values. For a 1-contracting Lurie network, Theorem 2
requires the largest eigenvalue of (A + A⊤) to be negative. For k ∈ [2, n], this condition on A
becomes incrementally more relaxed as k is increased. Equation (3) illustrates a similar relaxation
of the constraints on B and C. Theorem 2 has several appealing features: (i) it does not require
the computation of the troublesome compound matrices; (ii) it provides a way of embedding the
k-contraction property into the structure of a Lurie network based on fairly simple unconstrained
parametrisations of the weights, as shown in §3.2; (iii) the biases are not present in the condition,
so are naturally unconstrained; (iv) the result does not rely on symmetries of the parameters. In
many Hopfield-based models of associative memory, symmetry in the parameters is needed to make
the existence of a global energy function mathematically tractable; however, this simplification is
biologically unrealistic. Furthermore, the symmetry requirement limits expressivity of the model
which is a limitation for both artificial and biological systems. The drawbacks of the result are that
only Lurie networks which are k-contracting in a scalar metric can be verified and, in the case of
2-contraction, equilibrium points are constrained to a line. Finally, it is important to highlight that
Theorem 2 applies to the class of slope-restricted nonlinearities, so this result addresses the absolute
stability problem for the k-contraction property.
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3.2 PARAMETRISATION OF k-CONTRACTING LURIE NETWORKS

To train a k-contracting Lurie network using gradient based optimisers, parametrisations which
express the constrained weights in terms of unconstrained variables must be found. To formalise
this idea, we define the set Ω2(g, k) which contains all combinations of the Lurie network’s weights
which satisfy Theorem 2. As the biases do not appear in this set, they are naturally unconstrained.

Ω2(g, k) :=
{
(Ā, B̄, C̄)

∣∣∣ αk < 0, z := g2
k∑

i=1

σ2
i (B̄)σ2

i (C̄) < α2
kk

}
(4a)

Theorem 3 presents an unconstrained parametrisation of the set Ω2(g, k). This corresponds to the k-
contracting Lurie network with hyperparameters g, k. The remaining variables listed in the heading
are trainable parameters. Refer to §D for the proof.

Theorem 3 Given g > 0, k ∈ [1, n], UA, UB , VC ∈ O(n), VB , UC ∈ O(m), ΣB ∈ Dnm
+ , ΣC ∈

Dmn
+ , YA ∈ Skew(n), ΣA1 ∈ Dk−1, GA2 > 0, GA3 ∈ Dn−k

+ and define

A :=
1

2
UAΣAU

⊤
A +

1

2
YA B := UBΣBV

⊤
B C := UCΣCV

⊤
C (5a)

ΣA := blockdiag(ΣA1,ΣA2,ΣA3) ΣA1 ∈ Dk−1 (5b)

ΣA2 := −
√
4kz −

k−1∑
i

(ΣA1)ii −GA2 ΣA3 := min(ΣA1,ΣA2)In−k −GA3 (5c)

then (A,B,C) ∈ Ω2(g, k).

Remark 1 The mapping between Skew(·) and O(·) was exploited to express the orthogonal vari-
ables as unconstrained skew-symmetric variables Lezcano-Casado & Martınez-Rubio (2019). The
remaining variables are also unconstrained or simply require positive elements, which can be ob-
tained by taking the absolute value of unconstrained elements.

The B and C matrices are unconstrained since they are simply expressed by their singular value
decomposition. The only source of conservatism in the parametrisation is introduced through the
definition of ΣA, which is determined by three matrices: one unconstrained matrix for the largest
(k − 1) eigenvalues (ΣA1); one to ensure Theorem 2 is satisfied (ΣA2); and one for ensuring the
remaining eigenvalues are less than the other k (ΣA3). As k is a hyperparameter of the model, it is
useful to note that the set Ω2(g, k − 1) intersects with Ω2(g, k) (for k ∈ [2, n]). We expect many
realistic systems to fall within this intersection; hence, if the best value of k is unknown for a given
application, then setting k = 3 allows the model to search over many of the k-contracting systems
parametrised by Theorem 3.

4 EXPERIMENTS

In Section 1, it was highlighted that convergent dynamics are thought to play a crucial role in forming
representations and enhancing robustness. In the following section, we begin to study the impact
of the k-contraction constraints in terms of these properties. Herein, we refer to (2) as the Lurie
network and Theorem 3 as the k-contracting Lurie network. Related code can be found at https:
//github.com/CR-Richardson/LurieNetwork.

4.1 FORMING REPRESENTATIONS

To test the models ability to form representations, the k-contracting Lurie network was benchmarked
on the fashion MNIST classification task Xiao et al. (2017). The k-contraction parameter was set
to its highest value, k = 3, to permit training over the three convergent behaviours illustrated in
Figure 1. Due to the superior performance of CNN’s on computer vision tasks, and their biological
inspiration, the Lurie network’s were also coupled with a small CNN (55, 744 parameters) which
pre-processed the images before feeding the output into the Lurie network via the initial condition.
Further details regarding the data, architectures and training details are included in Appendix E.

Table 1 highlights that the k-contraction constraints result in only a 3.86% drop in classification
accuracy compared to the Lurie network. This suggests the k-contraction constraints do not limit
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Table 1: Classification accuracy on Fashion-MNIST test set.
Other models were either the highest ranked or biologically-
inspired from https://paperswithcode.com/sota/fashion-mnist.

Model # Params. Acc. (%)
LR-Net 1, 028, 234 95.03
Inception v3 23, 851, 784 94.44
CNN + Wilson-Cowan RNN 5, 179, 521 91.35
Wilson-Cowan RNN - 88.39
CNN + k-Lurie Network 1, 057, 994 91.33
CNN + Lurie Network 1, 057, 994 90.95
Lurie Network 1, 853, 386 89.64
k-Lurie Network 1, 853, 386 85.78

Table 2: MSE (×10−1) on test and noisy out of distribution
data from simulated Hopfield network and simple attractor.

Model MSEHop
test MSEHop

ood MSEAtt
test MSEAtt

ood
k-Lurie Network 0.150 3.200 0.035 12.80
Lurie Network 3.600 4.400 5.100 67.90
Neural ODE 0.250 16.30 0.200 47.60

Figure 2: t-SNE plots of F-MNIST
test set (top) and output of k-
contracting Lurie network with test
set as initial conditions (bottom).

the expressivity of the Lurie network too significantly, even with the scalar metric limitation. Fig-
ure 2 shows how the k-contracting Lurie network is able to untangle the classes with a degree of
interpretability by locating similar classes, such as footwear, closer together in the latent space. The
Lurie network also achieves the highest accuracy on this task for models which do not involve a
CNN. When leveraging a small CNN to pre-process the images, the k-contracting Lurie network
achieves superior performance. This accuracy is similar to the CNN + Wilson-Cowan RNN Marino
et al. (2024) which has nearly 5× the number of parameters, only 12% of which are attributed to
the Wilson-Cowan RNN. When combined with the CNN, the k-contracting Lurie network outper-
forms the Lurie network. This is in contrast to without the CNN, where one possible explanation is
that the CNN compensates for the reduced expressivity, whilst the k-contraction constraints help to
effectively process the information over the 100 Euler integration steps (Table 4).

4.2 ROBUSTNESS

For the second experiment, two regression problems were considered. The dynamics of a Hopfield
network (Hop) and simple attractor (Att) were simulated for 2000 time steps, corresponding to a
20s period. For each dataset, 1000 trajectories were generated and 100 were held out for testing.
To study the robustness of the representations, a new dataset was simulated over a 30s period with
initial conditions sampled outside the training distribution. The initial conditions were subject to
additive noise sampled from the standard normal distribution. See Appendix F for more details.

Table 2 presents the mean squared error (MSE) between the actual and predicted trajectories on the
test and noisy out of distribution (OOD) datasets. The k-contracting Lurie network outperforms
the Lurie network on each example, indicating that the k-contraction constraints play an important
role in reducing the search space to a more generalisable region. Furthermore, the Neural ODE
is competitive on the test set, particularly for the Hopfield network; but, is less so on the noisy
OOD data. Furthermore, Figure 3 shows the k-contracting Lurie network has the most accurate
approximation of the correct long-term behaviour.

5 CONCLUSION

The Lurie network was presented as a novel neural ODE, along with a stability result and parametri-
sation which ensured only models satisfying a generalised form of stability could be optimised over.
The stability constraints include networks which converge to both multiple equilibrium points and
limit cycles, theoretical properties observed in associative and working memory. Future work will
try to overcome the scalar metric limitation and study the performance/robustness more rigorously
by considering applications such as cognitive tasks, ring attractors and recurrent modules in RL
agents.
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A NOTATION

For two integers i < j, we define [i, j] := {i, i + 1, . . . , j}. The set of non-negative real numbers
is denoted by ℜ+. Symmetric matrices of dimension n are denoted by Sn with the positive definite
subset denoted by Sn

+. All other positive definite subsets are denoted by a + subscript. Square
diagonal matrices are denoted by Dn and n×m diagonal matrices are symbolised by Dnm. The set
of n× n orthogonal and skew-symmetric matrices are respectively denoted by O(n) and Skew(n).
For W ∈ ℜn×m, the ordered singular values are represented by σ1(W ) ≥ · · · ≥ σmin(n,m)(W ) ≥ 0

and for W ∈ ℜn×n, the ordered eigenvalues are denoted by λ1(W ) ≥ · · · ≥ λn(W ). The k-
multiplicative and k-additive compound matrices of W are respectively denoted by W (k) and W [k]

(see §B). The Jacobian of a function f(t, x) is denoted by Jf (t, x). The matrix measure induced by
the scaled 2-norm w.r.t an invertible scaling matrix Θ ∈ ℜn×n is

µ2,Θ(W ) := µ2(ΘWΘ−1) = λ1

(ΘWΘ−1 + (ΘWΘ−1)⊤

2

)
B COMPOUND MATRICES

In this section, we document several known definitions and algebraic results related to compound
matrices. The results are included without proof; the interested reader should refer to Bar-Shalom
et al. (2023) for a more detailed tutorial on the topic.

Let n be a positive integer and fix k ∈ [1, n]. The ordered set of increasing sequences of k integers
from [1, n] is denoted by Q(k, n). For example: Q(3, 4) = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}.

Now consider a matrix W ∈ ℜn×m. For α ∈ Q(k, n) and β ∈ Q(k,m), the matrix W [α|β]
denotes the k × k sub-matrix obtained by taking the entries of W along the rows indexed by
α and columns indexed by β. As an example, if k = 2 and n = m = 4, then Q(2, 4) =
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. The sub-matrix W [(1, 2)|(3, 4)] would then be given by

W [(1, 2)|(3, 4)] =
[
w13 w14

w23 w24

]
The k-minors of the matrix W are defined as W (α|β) := det(W [α|β]).

Definition 1 (k-multiplicative compound) Let W ∈ ℜn×m and fix k ∈ [1,min(n,m)]. The k-
multiplicative compound of W , denoted W (k), is the

(
n
k

)
×

(
m
k

)
matrix containing all the k-minors

of W ordered lexicographically.

For example, if we have n = m = 3 and k = 2 then α, β ∈ Q(2, 3) = {(1, 2), (1, 3), (2, 3)} and

W (2) =

W (
(1, 2)|(1, 2)

)
W

(
(1, 2)|(1, 3)

)
W

(
(1, 2)|(2, 3)

)
W

(
(1, 3)|(1, 2)

)
W

(
(1, 3)|(1, 3)

)
W

(
(1, 3)|(2, 3)

)
W

(
(2, 3)|(1, 2)

)
W

(
(2, 3)|(1, 3)

)
W

(
(2, 3)|(2, 3)

)


Some important special cases include

W (1) = W W (n) = det(W ) (pIn)
(k) = pkIs W ∈ Dn → W (k) ∈ Ds (6)

with s :=
(
n
k

)
. Next, we present a series of algebraic results concerned with the k-multiplicative

compound.

Fact 1 (Cauchy-Binet Formula) If U ∈ ℜn×m, V ∈ ℜm×p and k ∈ [1,min(n,m, p)], then

(UV )(k) = U (k)V (k)

Fact 2 Fix k ∈ [1,min(n,m)]. As a consequence of Definition 1, if W ∈ ℜn×m then

(W⊤)(k) = (W (k))⊤

Fact 3 Fix k ∈ [1, n]. If W ∈ ℜn×n is non-singular, then by Theorem 1

(W−1)(k) = (W (k))−1

9
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Fact 4 Fix k ∈ [1,min(n,m, p)]. If W ∈ ℜn×n, U ∈ ℜp×n and V ∈ ℜn×p, then by Theorem 1

(UWV )(k) = U (k)W (k)V (k)

Fact 5 Fix k ∈ [1, n]. An implication of Theorem 1 is that if W ∈ ℜn×n with eigenvalues
λ1, . . . , λn, then the eigenvalues of W (k) are the

(
n
k

)
products

{ k∏
l=1

λil : 1 ≤ i1 < · · · < ik ≤ n
}

We now introduce the definition of a second compound matrix, the k-additive compound, and a set
of algebraic results related to it.

Definition 2 (k-additive compound) Let W ∈ ℜn×n and k ∈ [1, n]. The k-additive compound of
W is the

(
n
k

)
×
(
n
k

)
matrix defined by

W [k] :=
d

dϵ

(
In + ϵW

)(k)|ϵ=0

Special cases include

W [1] = W W [n] = tr(W ) (pIn)
[k] = kpIs W ∈ Dn → W [k] ∈ Ds (7)

with s :=
(
n
k

)
. Like before, we now present some useful algebraic results related to the k-additive

compound.

Fact 6 If W ∈ ℜn×n and k ∈ [1, n], then as a consequence of Definition 2

(W⊤)[k] = (W [k])⊤

Fact 7 Fix k ∈ [1, n]. For W ∈ ℜn×n with eigenvalues λ1, . . . , λn, the eigenvalues of W [k] are the(
n
k

)
sums

{
k∑

l=1

λil : 1 ≤ i1 < · · · < ik ≤ n}

An important consequence of Fact 7 is that if W is positive definite (semi-definite), then this property
is upheld by W [k]. Opposite conclusions can be drawn if W is negative definite (semi-definite).

Fact 8 Fix k ∈ [1, n]. If U, V ∈ ℜn×n, then

(U + V )[k] = U [k] + V [k]

Fact 9 Fix k ∈ [1,min(n, p)]. If W ∈ ℜn×n, U ∈ ℜp×n, V ∈ ℜn×p and UV = Ip, then

(UWV )[k] = U (k)W [k](U (k))−1

10



New Frontiers in Associative Memory workshop at ICLR 2025

C PROOF OF THEOREM 2

We aim to verify Theorem 1 for the particular case where the nonlinear system is described by the
Lurie network (2). Our proof begins with Theorem 4, which restates (Ofir et al., 2024, Theorem 1).
This result is sufficient to satisfy Theorem 1 for systems of the form (8).

Theorem 4 Fix k ∈ [1, n] and consider the system below.

ẋ = Āx(t)− B̄Ψ(t, y) y = C̄x (8)

If there exists η1, η2 > 0 and an invertible Θ ∈ ℜn×n such that

P (k)Ā[k] + (Ā[k])⊤P (k) +Θ(k)
(
(ΘB̄B̄⊤Θ)[k] + (Θ−1C̄⊤C̄Θ−1)[k]

)
Θ(k) ⪯ −η1P

(k) (9)

and (
Θ−1C̄⊤(J⊤

Ψ (t, y)JΨ(t, y)− Im)C̄Θ−1
)[k]

⪯ −η2Is ∀ t ∈ ℜ+ and y ∈ ℜm (10)

where s =
(
n
k

)
, then (8) is k-contracting in the 2-norm w.r.t the metric P := Θ⊤Θ.

We first need to express the Lurie network in the form (8). By (3) there exists γ < 0 satisfying

0 < γ2 < α2
k and g2

k∑
i=1

σ2
i (B)σ2

i (C) < γ2k (11)

Using γ, we can express (2) in the form (8) through the definitions below, where the dependence on
t has been dropped from Ψ.

Ā := A B̄ := γIn C̄ := In Ψ(x) := −γ−1BΦ(Cx+ by)− γ−1bx (12)

The next step is to verify (9). Subbing (12) into the left hand side of (9) and assuming Θ = Θ⊤

results in the first equality. Setting P := pIn with p > 0 results in the second. Now we must
leverage some of the facts presented in §B. Using the relevant special cases from (6) and (7) leads
to equality three and consequently applying Fact 6 and Fact 8 results in equality four. Re-applying
(7) and Fact 8 results in the final equality.

= P (k)A[k] + (A[k])⊤P (k) +Θ(k)
(
(γ2P )[k] + (P−1)[k]

)
Θ(k)

= (pIn)
(k)A[k] + (A[k])⊤(pIn)

(k) + (p
1
2 In)

(k)
(
(γ2pIn)

[k] + (p−1In)
[k]
)
(p

1
2 In)

(k)

= pk
(
A[k] + (A[k])⊤

)
+ k(γ2p+ p−1)pkIs

= pk
(
(A+A⊤)[k] + k(γ2p+ p−1)Is

)
= pk

(
A+A⊤ + (γ2p+ p−1)In

)[k]
If the matrix above is negative definite, then (9) is satisfied for some suitably chosen η1 > 0. This is
true when (

A+A⊤ + (γ2p+ p−1)In
)[k] ≺ 0

By Fact 7, the inequality above can be equivalently expressed as a condition on the sum of the k
largest eigenvalues of the matrix inside the k-compound operator. Leveraging (Petersen et al., 2008,
Eq. 285) allows us to separate p from the eigenvalues of the symmetric component of A, resulting
in the equality below.

k∑
i=1

λi

(
A+A⊤ + (γ2p+ p−1)In

)
= k(γ2p+ p−1) +

k∑
i=1

λi(A+A⊤) < 0

By the definition of αk in Theorem 2, this simplifies to

γ2p2 + 2αkp+ 1 < 0

For γ satisfying (11), the quadratic inequality always emits at least one solution p = −α−1
k .

11
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The final step is to verify (10). The Jacobian of Ψ, as defined in (12), is

JΨ(x) = −γ−1BJΦC

For Θ = p
1
2 In and the definitions from (12), the left hand side of (10) reduces to

=
(
p−1J⊤

ΨJΨ − p−1In
)[k]

If the matrix above is negative definite, then (10) is satisfied for some suitably chosen η2 > 0.
Repeating the same steps as above, this negative definite requirement reduces to the inequality below.

k∑
i=1

λi(p
−1J⊤

ΨJΨ)− kp−1 = p−1
k∑

i=1

σ2
i (JΨ)− kp−1 < 0

Subbing in the definition of JΨ and applying the well-known property of singular values (Horn &
Johnson, 1994, Theorem 3.3.14), then (10) is true if

γ−2
k∑

i=1

σ2
i (B)σ2

i (JΦ)σ
2
i (C) < k

By the assumption made on the slope of Φ, this inequality will always be satisfied if (3) holds. □

D PROOF OF THEOREM 3

The aim of this proof is to express the weights of the Lurie network (2) such that Theorem 2 is
always satisfied. More formally, this requires A,B,C ∈ Ω2(g, k) to always hold.

To expose the singular values of B,C, we leverage the singular value decomposition. This re-
quires the matrices UB , UC , VB , VC to be orthogonal. We can immediately use the unconstrained
parametrisation of the orthogonal class from Lezcano-Casado & Martınez-Rubio (2019) to express
these matrices as unconstrained symmetric matrices. The matrices ΣB ,ΣC contain the singular val-
ues of the respective matrix, hence ΣB ∈ Dnm

+ and ΣC ∈ Dmn
+ . We also treat these as unconstrained

sets since any element can be obtained by taking the absolute value of an unconstrained diagonal
matrix with the same shape.

To verify Theorem 2, we can combine αk < 0 and (3) into one inequality representing the intersec-
tion of the two sets.

k∑
i=1

λi(A+AT ) < −2k

√
z

k
where z := g2

k∑
i=1

σ2
i (B)σ2

i (C) (13)

Thanks to the definition of B and C, the right hand side is a function of the hyperparameters g, k
and elements of the parameters ΣB ,ΣC , so can be easily computed using sort and sum functions.

To impose this constraint directly on the eigenvalues of the symmetric component of A, we express A
as a sum of symmetric and skew-symmetric matrices. The skew-symmetric matrix is unconstrained,
so this can be left alone. Finally, we apply the eigenvalue decomposition of a symmetric matrix to
obtain (5a). This expression allows us to directly place the constraint above on the diagonal matrix
ΣA.

Defining ΣA as in (5b) guarantees both conditions of Theorem 2 will be satisfied via (13). The
definition of ΣA is split into one unconstrained block for the first (k − 1)-eigenvalues, a block for
λk(A+A⊤) which is defined to ensure (13) holds, and finally a block for the remaining eigenvalues
which must be defined to ensure the k eigenvalues involved in (13) are the largest. □

12



New Frontiers in Associative Memory workshop at ICLR 2025

E EXPERIMENTS: FORMING REPRESENTATIONS

E.1 DATA

The Fashion-MNIST dataset contains 28 × 28 grayscale images of 70, 000 fashion products, from
10 different categories. For all experiments, the images were normalised and zero-centred.

Table 3: Fashion-MNIST settings.

Parameter Value
Batch size 250
Test split 1

7

E.2 MODELS

For the Lurie network and k-contracting Lurie network, the transformed images were flattened and
directly passed into the models through the initial condition. Euler integration was used to approx-
imate the trajectory of (2) and the final state was mapped through a linear layer and followed by a
softmax layer to obtain the categorical predictions.

Table 4: k-Lurie network and Lurie network settings.

Parameter Description Value
Step size Euler integration step size 1× 10−2

Steps Number of Euler integration steps 100
Activation function - tanh
g Upper bound on slope of activation 1
n (without CNN / with CNN) dimension of x 784/576
m (without CNN / with CNN) dimension of y 784/576
k k-contraction parameter 3

Table 5: CNN settings.

Layer Convolution Activation Downsampling / Reshaping
1 2D convolution (1 input, 32

outputs, 3× 3 kernel)
ReLU 2D max pool (2× 2 kernel)

2 2D convolution (32 inputs,
64 outputs, 3× 3 kernel)

ReLU 2D max pool (2× 2 kernel)

3 2D convolution (64 inputs,
64 outputs, 3× 3 kernel)

ReLU Flatten (1D output)

E.3 TRAINING

Table 6: Training settings.

Parameter Value
Loss Cross Entropy
Optimiser Adam
Weight decay 1× 10−5

Epochs 50
Learning rate (Lurie net.) 1× 10−3

Learning rate (k-Lurie net.) 1× 10−2

Learning rate cut 0.5 at epoch 35

13
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F EXPERIMENTS: ROBUSTNESS

F.1 DATA

The data was synthetically generated by numerically integrating over the analytical models of each
dynamical system. For each dataset, 1000 trajectories were sampled every 0.01 seconds over a 20
second interval. The test sets were formed by holding out 100 trajectories.

Table 7: Hopfield network and simple attractor settings.

Parameter Value
Batch size 100
Test split 0.1

F.1.1 HOPFIELD NETWORK

This model is a variation of the Hopfield network presented in Ofir et al. (2024). It has the following
state space equations

ẋ = −2.5I3 +BΦ(x)

where

B =

[
1 1 1
1 1 1
1 1 1

]
and the tanh function is also applied element-wise. The model is 2-contracting and has two stable
equilibrium points: e1 = [0.79 0.79 0.79]

⊤, e2 = −e1; and an unstable equilibrium point
e3 = 0. Initial conditions were sampled from a uniform distribution with domain (−1,+1)3.

F.1.2 SIMPLE ATTRACTOR

This model was presented in Cecilia et al. (2023). It has the following state space equations

ẋ = Ax+BΦ(Cx)

where

A =

[
0 1 −2
−1 0 −1
0.5 0 −0.5

]
B =

[
0 0 0
0 0 0

−0.5 0 0

]
C =

[
0 0 0
0 0 0
1 0 0

]

and ϕ(z) = z3 is the nonlinearity applied element-wise. This function is not slope-restricted, so
the simple attractor does not satisfy the assumptions of the k-contracting Lurie network. The model
is 3-contracting and has several attractor states. Initial conditions were sampled from a uniform
distribution with domain (−3,+3)3.

F.2 MODELS

Table 8: k-Lurie network and Lurie network settings.

Parameter Description Value
Step size Euler integration step size 1× 10−2

Steps Number of Euler integration steps 2000
Activation function - tanh
g Upper bound on slope of activation 1
n dimension of x 3
m dimension of y 3
k k-contraction parameter 3

14
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Table 9: Neural ODE settings based on Xia et al. (2021).

Layer Output dim. Activation
1 20 ReLU
2 20 ReLU
3 3 Linear

F.3 TRAINING

Table 10: Training settings.

Parameter Value
Loss Mean squared error
Optimiser Adam
Weight decay 1× 10−5

Epochs 100
Learning rate (k-Lurie net.) 1× 10−2

Learning rate (Lurie net.) 1× 10−3

Learning rate (Neural ODE) 1× 10−3

F.4 EXTENDED RESULTS

Figure 3: Trajectories from Hopfield network (top) and simple attractor (bottom). Crosses denote
the initial condition and stars denote equilibrium points.
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