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Abstract

Leveraging the autonomous decision-making001
capabilities of large language models (LLMs)002
has demonstrated superior performance in rea-003
soning tasks. However, despite the success of004
iterative or agentic retrieval-augmented genera-005
tion (RAG) techniques, these methods are often006
constrained to a single solution space when con-007
fronted with complex problems. In this paper,008
we propose a novel thinking pattern in RAG009
that integrates autonomous strategic planning010
with efficient reasoning actions, significantly011
activating intrinsic reasoning capabilities and012
expanding the solution space of specific tasks013
via Monte Carlo Tree Search (MCTS), which014
we refer to as AirRAG. Specifically, our ap-015
proach designs five fundamental reasoning ac-016
tions, which are expanded to a broad tree-based017
reasoning space using MCTS. The approach018
also incorporates self-consistency verification019
to explore potential reasoning paths and infer-020
ence scaling law. Additionally, computation-021
ally optimal strategies are employed to allo-022
cate more inference resources to key actions,023
thereby enhancing overall performance. Ex-024
perimental results demonstrate the effective-025
ness of AirRAG, showing significant perfor-026
mance gains on complex question-answering027
datasets. Furthermore, AirRAG is flexible and028
lightweight, making it easy to integrate with029
other advanced technologies and models.030

1 Introduction031

Retrieval-Augmented Generation (RAG) has032

shown great potential in addressing the issue033

of generating factually incorrect content, espe-034

cially in domain-specific or knowledge-intensive035

tasks (Kandpal et al., 2023). However, as task com-036

plexity increases, several new challenges emerge,037

such as the inability to retrieve sufficient knowl-038

edge with a single query and the difficulty of un-039

derstanding the intricate reasoning logic inherent040
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Figure 1: Comparison of average performance across
three datasets with varying numbers of output sequences.
Ltotal represents the total number of tokens consumed
during the reasoning process. AirRAG leverages gen-
eration diversity and self-consistency to explore the po-
tential solution space, significantly enhancing overall
performance by scaling inference computation.

in the question. To tackle these challenges, it is cru- 041

cial to harness the reasoning capabilities of large 042

language models (LLMs) to improve RAG perfor- 043

mance (Jiang et al., 2023; Jeong et al., 2024; Asai 044

et al., 2024; Yu et al., 2024). 045

Previous research on complex query scenarios 046

has primarily focused on optimizing the query 047

and retrieval processes to obtain relevant informa- 048

tion (Shi et al., 2023; Zhou et al., 2023; Gao et al., 049

2023; Jiang et al., 2023; Zheng et al., 2024; Asai 050

et al., 2024; Yan et al., 2024). Iterative retrieval is 051

frequently used to improve the depth and relevance 052

of search results in information retrieval tasks. This 053

process continuously updates intermediate queries 054

and results to satisfy dynamic information needs 055

during the complex task-solving process (Jeong 056

et al., 2024; Yue et al., 2024). In addition, Li et al. 057

(2025) integrates an agentic search workflow into 058

the reasoning process, enabling dynamic retrieval 059

when LLMs encounter uncertain knowledge points. 060

The agentic LLMs are trained to learn step-by-step 061
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reasoning with search through reinforcement learn-062

ing (Chen et al., 2025; Zheng et al., 2025).063

However, these approaches face two significant064

issues. First, the single reasoning paradigm and065

the chain-like reasoning process often fail to ef-066

fectively explore the solution space, particularly067

when reasoning relies on self-exploration. This068

process is vulnerable to low-quality intermediate069

reasoning steps and is easily trapped in a narrow070

solution space. Second, the agentic search work-071

flow and guiding self-exploration become challeng-072

ing when using relatively smaller language mod-073

els (e.g., Qwen2.5-7B-Instruct (Yang et al., 2024)).074

Furthermore, trainable agentic LLMs require effi-075

cient reinforcement learning training data and are076

difficult to apply to models with hundreds of bil-077

lions of parameters.078

In response to these challenges, we propose079

AirRAG, a method that leverages autonomous080

strategic planning and reasoning capabilities and081

expands the solution space using Monte Carlo082

Tree Search (MCTS). We design five fundamen-083

tal reasoning actions: system analysis, direct an-084

swer, retrieval-answer, query transformation, and085

summary-answer. These actions are the core and086

frequently used ones in the deep search scenar-087

ios, which can effectively address a wide range088

of problems in various scenarios, including those089

that require progressive or parallel queries. Impor-090

tantly, these actions can be executed efficiently on091

LLMs of different scales. Additionally, we intro-092

duce MCTS and self-consistency to enable con-093

trollable reasoning path generation and efficient094

inference scaling. To accurately select the answer095

from multiple reasoning paths, we combine a vot-096

ing mechanism with a process-supervised reward097

model. As inference computation increases, our098

approach demonstrates significant performance im-099

provements as shown in Figure 1. Moreover, Air-100

RAG features a flexible architecture that can easily101

integrate other advanced methods into the approach102

as additional action branches. In summary, our103

main contributions are as follows:104

• We design five fundamental reasoning actions105

that can address most problem types in deep106

search scenarios, ensuring controllable reason-107

ing processes.108

• We introduce MCTS and self-consistency to109

effectively expand the solution space for com-110

plex tasks. Our approach improves generaliza-111

tion and performance through comprehensive112

inference scaling and a pluggable architecture. 113

• We show thorough experimental results that 114

AirRAG outperforms current iterative or agen- 115

tic methods, effectively activating the plan- 116

ning and reasoning capabilities of LLMs and 117

flexibly expanding the solution space. 118

2 Related Work 119

Retrieval-Augmented Generation (RAG). RAG 120

has demonstrated significant improvements in the 121

performance of LLMs in knowledge-intensive 122

tasks. Compared to vanilla RAG, optimizing the 123

query and retrieval process enhances knowledge 124

correlation and, consequently, improves reasoning 125

performance. Several methods, such as query ex- 126

pansion and transformation, have been proposed 127

to achieve better retrieval results (Zhou et al., 128

2023; Ma et al., 2023; Gao et al., 2023). How- 129

ever, as task complexity increases, retrieving suf- 130

ficient knowledge in a single query becomes in- 131

creasingly difficult. To address this, iterative re- 132

trieval techniques have been proposed to gather 133

additional contextual references. For instance, IR- 134

CoT (Trivedi et al., 2023) utilizes chain-of-thought 135

(CoT) to guide the retrieval process, refining the 136

CoT with the retrieved information. Similarly, 137

ITER-RETGEN (Shao et al., 2023) combines re- 138

trieval and generation modules to promote a deeper 139

understanding of specific tasks. 140

Autonomous Planning and Reasoning in RAG. 141

In addition to optimizing retrieval, activating the 142

planning and reasoning capabilities of LLMs can 143

significantly improve the efficiency and relevance 144

of the retrieved information. Self-RAG and its vari- 145

ants (Asai et al., 2024; Yan et al., 2024; Jeong 146

et al., 2024) adopt a self-reflection mechanism 147

that iteratively predicts reflection tokens during 148

training, enabling better control during inference. 149

Auto-RAG (Yu et al., 2024) systematically plans 150

retrievals and refines queries to acquire valuable 151

knowledge through multi-turn iterations. Iter- 152

DRAG (Yue et al., 2024) explores inference scal- 153

ing strategies in RAG, improving LLMs’ ability to 154

effectively acquire and utilize contextual informa- 155

tion. Search-o1 (Li et al., 2025) designs an agentic 156

search workflow to dynamically obtain effective 157

knowledge. ReSearch (Chen et al., 2025) and Deep- 158

Researcher (Zheng et al., 2025) train agentic LLMs 159

to reason with search using reinforcement learn- 160

ing. Despite the progress made in these methods, 161

they often struggle to explore the solution space 162
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effectively during reasoning. Self-exploration fre-163

quently leads to being trapped in a limited solu-164

tion space, hindered by low-quality reasoning steps165

even after multiple iterations. This issue is often166

attributed to the chain reasoning pattern and the167

difficulty small-scale LLMs face when handling168

overly complex tasks in a single iteration.169

Monte Carlo Tree Search (MCTS). To address170

these challenges, tree-based search algorithms, par-171

ticularly Monte Carlo Tree Search (MCTS), have172

emerged as effective tools to expand search spaces173

and enhance reasoning capabilities (Silver et al.,174

2017; Chen et al., 2024; Qi et al., 2024; Zhang175

et al., 2024). MCTS has been shown to extend176

reasoning by exploring multiple branching queries,177

thus enabling the exploration of diverse reasoning178

paths (Yao et al., 2023; Besta et al., 2024). In179

the mathematical reasoning scenario, Zhang et al.180

(2024) and Chen et al. (2024) leverage MCTS181

to achieve more efficient exploration of solution182

spaces, while Qi et al. (2024) designs rich human-183

like reasoning actions to improve reasoning tra-184

jectories. Furthermore, recent research indicates185

that inference scaling (Yue et al., 2024) and self-186

consistency (Wang et al., 2023) can lead to substan-187

tial improvements. In this context, our approach188

samples diverse reasoning paths to achieve both189

inference scaling and self-consistency verification190

during the next expansion of the action space.191

Unlike existing methods that focus on optimiz-192

ing query and retrieval processes or leveraging193

LLMs’ reasoning capabilities through iterative re-194

trieval, AirRAG uniquely integrates MCTS and195

self-consistency to systematically expand the so-196

lution space and ensure the controllability of the197

reasoning process. Simultaneously, we design five198

fundamental reasoning actions that effectively ad-199

dress a broader range of question types, particularly200

in complex tasks. In the experiment, we thoroughly201

verify the performance gains brought by the infer-202

ence scaling law and investigate how to rationally203

allocate inference resources.204

3 Methodology205

In order to effectively explore the solution space206

during reasoning, we propose a controllable tree-207

based framework of RAG. This framework com-208

bines Monte Carlo Tree Search (MCTS) with five209

distinct reasoning actions, enabling efficient and210

controlled expansion of the solution space. Mean-211

while, we further implement more comprehensive212

inference scaling strategies based on Yue et al. 213

(2024) and employ pruning techniques along with 214

computationally optimal strategies to strike a bal- 215

ance between effectiveness and efficiency. The 216

whole process is illustrated in Figure 2. 217

3.1 Define Fundamental Reasoning Actions 218

Relying solely on the autonomy of LLMs for itera- 219

tive self-exploration often results in getting trapped 220

in a solution space that is difficult to navigate, es- 221

pecially when dealing with different types of com- 222

plex questions. IterDRAG (Yue et al., 2024) uses 223

a single action type to generate the next reasoning 224

step, which can lead to ineffective space explo- 225

ration. The core of MCTS generation lies in the 226

action space, which defines the scope of tree explo- 227

ration. Based on advanced methods and reasoning 228

language models, we summarize the most com- 229

mon actions in RAG, such as query transformation 230

and retrieval answering. Meanwhile, the chain-of- 231

thought in reasoning models has demonstrated su- 232

perior performance in complex open-domain ques- 233

tion answering. Therefore, simplifying human 234

cognitive processes in complex reasoning is es- 235

sential (Jaffe et al., 2023). Inspired by this, we 236

introduce five fundamental human-like reasoning 237

actions to bridge the gap between LLM reasoning 238

and human cognition in RAG scenarios. 239

• A1: System Analysis (SAY). This action analyzes 240

the overall structure of the problem, followed 241

by its decomposition or planning. It represents 242

systematic and global thinking before problem- 243

solving. 244

• A2: Direct Answer (DA). This action leverages 245

parametric knowledge of LLMs to answer ques- 246

tions directly, without relying on any external 247

knowledge. 248

• A3: Retrieval-Answer (RA). This action retrieves 249

related knowledge from the external knowledge 250

base to support subsequent reasoning. 251

• A4: Query Transformation (QT). This action 252

transforms human questions in order to improve 253

retrieval performance. It supports various trans- 254

formations, such as rewriting, step back prompt- 255

ing, follow-up questions and multi-query re- 256

trieval. 257

• A5: Summary-Answer (SA). This action com- 258

bines intermediate reasoning steps, answers and 259

the initial questions to generate the final answer. 260
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Figure 2: The schematic diagram of our proposed AirRAG. AirRAG implements a paradigm that combines system
thinking with step-by-step reasoning. In the inference phase, we introduce MCTS and self-consistency to scaling
computation, which significantly outperforms other strong baselines.

The above five actions define a highly diverse ac-261

tion space {A1, A2, A3, A4, A5}. In the first step,262

the initial state is denoted as s0 and then MCTS263

selects the action a1 and a2 to prompt the LLM to264

generate the next reasoning steps in parallel. Sub-265

sequent actions are performed sequentially to ex-266

pand the reasoning path. It is important to note267

that there are sequential dependencies between268

different actions. For example, A1 and A2 can269

only be executed after the root question. Addi-270

tionally, we incorporate the diverse sampling of271

self-consistency (Wang et al., 2023) for each ac-272

tion to expand the reasoning paths. Specifically, an273

action is more likely to generate the correct reason-274

ing step if we sample multiple times in the current275

state. Finally, we can obtain multiple generated rea-276

soning trajectories, such as [s0 ⊕ s1:n]. To further277

improve inference efficiency, we choose the action278

{A3, A4, A5} as a simplified action space, referred279

to as AirRAG-Lite, which achieves a better balance280

between efficiency and effectiveness.281

3.2 Perform Reasoning Processes via MCTS282

3.2.1 Solution Generation283

Based on the action space defined above, we intro-284

duce MCTS to generate candidate reasoning tra-285

jectories. The initial root node, s0, represents the286

question without any reasoning steps. The pol-287

icy is directly modeled by a language model as288

π(a|s) = LM(a|s), and the state transition func-289

tion combines preceding reasoning steps with cur- 290

rent actions, i.e., si = Concat(s0:i−1, aj). Dur- 291

ing each MCTS rollout, we execute multiple steps, 292

including selection, expansion, simulations, and 293

backpropagation. Multiple rollouts are performed 294

to expand the solution space. To balance the 295

exploration and exploitation, we adopt the well- 296

known Upper Confidence Bounds applied to Trees 297

(UCT) (Kocsis and Szepesvári, 2006) for node se- 298

lection as follows: 299

UCT(s, p) =
Q(s, a)

N(s)
+ w

√
logNp(s)

N(s)
, (1) 300

where Q(s, a) is the reward value for node s and is 301

updated through backpropagation. N(s) denotes 302

the number of visits to s, p is the parent node of 303

s, and w is the weight to balance exploration and 304

exploitation. 305

When the search reaches a terminal node, de- 306

fined either by a terminal state or a predetermined 307

maximum tree depth d, we obtain a trajectory from 308

the root to the terminal node. All trajectories from 309

the rollout iterations are collected as candidate so- 310

lutions. Section 3.3 explains how we select the 311

optimal answer node from these trajectories. 312

3.2.2 Inference Scaling 313

Numerous studies have demonstrated that scaling 314

inference computation can significantly improve 315

the performance of LLMs without additional train- 316

ing (Snell et al., 2024; Yue et al., 2024). Based on 317
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the above methods, we explore strategies to lever-318

age inference computation scaling in AirRAG. One319

straightforward strategy is extending the effective320

context length (short for Lmax) during the docu-321

ment retrieval phase, allowing more related docu-322

ments to supplement the knowledge base. Addi-323

tionally, we perform multiple rollouts to thoroughly324

explore the solution space relying on the tree-based325

search. Adjusting the number of output sequences326

(n) generated during certain actions enables self-327

consistency verification and further inference scal-328

ing. These strategies provide flexibility for scaling329

inference computation in RAG, empowering LLMs330

to address complex knowledge-intensive queries331

more effectively.332

To improve efficiency and minimize redundant333

computations, we implement an early pruning strat-334

egy for state nodes and reasoning paths. Dedu-335

plication is applied to the output sequence states336

generated by each action, ensuring the diversity337

of the subsequent path. Furthermore, if multiple338

rollouts select the same state sequence, only one339

valid reasoning path is retained.340

3.2.3 Flexible Architecture341

Our tree-based architecture provides the flexibility342

to integrate other advanced approaches. We repro-343

duce the IterDRAG method based on the prompt344

design by Yue et al. (2024). Meanwhile, inspired345

by its iterative implementation, we simplify the fun-346

damental action space to {A3, A4, A5}, enabling347

a faster implementation while still achieving rel-348

atively good results. These methods serve as an349

exploratory extension of our approach and can be350

activated or deactivated as needed. Due to the351

training-free nature of our method, its generator352

LLM can be arbitrarily replaced with the strongest353

existing models for performance improvement.354

3.3 Select the Optimal Answer Node355

For common mathematical reasoning tasks, a sim-356

ple consistency-based method can efficiently se-357

lect the most precise reasoning path. For example,358

the most frequent number extracted from multiple359

candidate solutions in MATH (Hendrycks et al.,360

2021) can be chosen as the final answer. How-361

ever, extracting precise answers and performing ef-362

fective aggregation becomes more challenging for363

knowledge-intensive tasks. To address this, we de-364

sign two self-consistency verification methods for365

such problems. Jaccard similarity and text embed-366

dings are two different approaches used in natural367

language processing to measure the similarity be- 368

tween texts. We apply these methods to cluster text 369

answers and compute answer scores as follows: 370

jcdScorei =
1

N

N∑
j=1

|Ai ∩Aj |
|Ai ∪Aj |

, (2) 371

embScorei =
1

N

N∑
j=1

cos(Ei, Ej), (3) 372

where N is the number of valid answer nodes, Ai is 373

the word-level set of answer text i, and Ei denotes 374

the embedding vector of answer text i. 375

In addition, we further investigate the self-refine 376

and process-supervision reward model to iden- 377

tify the most accurate reasoning trajectory. Self- 378

refinement uses the A5 (Summary-Answer) action 379

to refine the final answer from all candidate answer 380

nodes. The reward modeling process consists of 381

two steps: data synthesis and instruction tuning. 382

• Data synthesis: We leverage MCTS to per- 383

form multiple rollouts on partial training sets. 384

Based on known ground truth, we sample pos- 385

itive and negative reasoning trajectories and 386

use Monte Carlo estimation to evaluate inter- 387

mediate state scores. 388

• Instruction tuning: Synthetic samples are 389

used to fine-tune a relatively small LLM, such 390

as Qwen2.5-14B-Instruct. 391

4 Experiments 392

In this section, we conducted experiments on com- 393

plex QA benchmarks by answering the following 394

research questions. 395

• RQ1: Does AirRAG outperform state-of-the- 396

art baselines? 397

• RQ2: How does AirRAG perform when it 398

comes to comprehensive inference scaling? 399

• RQ3: What is the performance benefit of Air- 400

RAG in optimizing the allocation of inference 401

computation? 402

• RQ4: How does AirRAG perform for various 403

verification methods for multiple candidate 404

rollouts? 405

• RQ5: What is the intuitive performance of 406

AirRAG in the reasoning process? 407
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4.1 Experimental Settings408

4.1.1 Datasets409

To evaluate the effectiveness of AirRAG, we con-410

duct experiments on various question-answering411

(QA) tasks, including both open-domain QA412

and multi-hop QA. The complex multi-hop QA413

datasets consist of HotpotQA (Yang et al., 2018),414

MuSiQue (Trivedi et al., 2022) and 2WikiMul-415

tiHopQA (2Wiki) (Ho et al., 2020). Other416

single-hop QA datasets include Natural Questions417

(NQ) (Kwiatkowski et al., 2019), TriviaQA (Joshi418

et al., 2017), PopQA (Mallen et al., 2023) and We-419

bQA (Berant et al., 2013).420

4.1.2 Implementation Details421

We use the hyperparameters reported for the exist-422

ing models whenever available. Implementation423

details are available in the Appendix A.424

4.1.3 Baselines and Metrics425

To investigate the enhancement effects of think-426

ing and planning on complex RAG tasks, we com-427

pare it with vanilla RAG, which performs only a428

single retrieval and generation process. We evalu-429

ate the naive generators of Qwen2.5 (Yang et al.,430

2024) series instruction models and Llama3-8B-431

Instruct (Grattafiori et al., 2024). In the retrieval432

phase, we employ multilingual-e5-base (Wang433

et al., 2024) as the retriever. The prompt of434

vanilla RAG are shown in the Appendix D. For435

iterative retrieval, we compare AirRAG with Iter-436

RetGen (Shao et al., 2023), Self-RAG (Asai et al.,437

2024), Auto-RAG (Yu et al., 2024), and Iter-438

DRAG (Yue et al., 2024). For agentic retrieval,439

we compare AirRAG with Search-o1 (Li et al.,440

2025), ReSearch (Chen et al., 2025), and Deep-441

Researcher (Zheng et al., 2025). To further explore442

RAG performance and inference computation scal-443

ing, we focus on a comparison with IterDRAG for444

a given budget on inference computation. For eval-445

uation metrics, we report Exact Match (EM), F1446

score (F1) and Accuracy (Acc) between the gen-447

erated summary and gold answer, where accuracy448

measures whether the gold answer is covered in the449

generated answer.450

4.2 Main Results (RQ1)451

We first evaluate the performance of AirRAG on452

various complex QA datasets. Table 1 compares453

its accuracy and F1 scores with strong baselines454

based on LLMs of different scales. The optimal455

performance exhibits consistent gains as the LLMs456

scale up. For the Qwen2.5-7b-instruct model, our 457

approach achieves the best performance, even sur- 458

passing the trainable approaches. To further vali- 459

date its effectiveness on large-scale reasoning mod- 460

els, we also conduct experiments on Qwen3-235B 461

in both the thinking mode and non-thinking mode. 462

In thinking mode, our approach achieves state-of- 463

the-art performance among all datasets. 464

4.3 Inference Scaling for RAG (RQ2) 465

Inference computation scaling can enable LLMs 466

to improve their output performance (Snell et al., 467

2024). Self-consistency can also improve the ro- 468

bustness of the reasoning process (Wang et al., 469

2023). Therefore, we carry out a comprehensive 470

experimental analysis on the inference computation 471

scaling. Specifically, we can adjust both the num- 472

ber of retrieved documents in a single retrieval and 473

the effective context length in all iterations. The av- 474

erage performance of three datasets exhibits consis- 475

tent gains in Figure 3. In subsequent experiments, 476

unless otherwise specified, the data presented repre- 477

sent the average performance across the HotpotQA, 478

MuSiQue, and 2Wiki datasets. As shown in Fig- 479

ure 1, the average performance increases with the 480

number of output sequences per action, demon- 481

strating the effectiveness of self-consistency. We 482

also investigate the number of effective reasoning 483

paths under different rollouts in Figure 4. The per- 484

formance improvement caused by the increase of 485

effective reasoning paths in the early stage is rela- 486

tively high. We provide additional dataset-specific 487

results in Appendix B. 488

4.4 Ablation Studies 489

Effect of Computationally Optimal Strategies 490

(RQ3). Extensive experiments show that the out- 491

puts of certain actions (e.g., RA, DA and SA) are 492

almost consistent when performing multiple gen- 493

erations. Therefore, we only increase the number 494

of output sequences (short for n) for the remaining 495

actions (e.g., SAY and QT), which reduces invalid 496

inference computation while maintaining good re- 497

sults. This also reflects that this kind of reasoning 498

action, which effectively activates the creativity of 499

LLMs, requires more diversified sampling strate- 500

gies. We adjust the sampling parameters (top-p=1.0 501

and temperature=1.0) to improve the diversity of 502

the model output. The complete experimental re- 503

sults in Table 2 show that the diversity of key ac- 504

tions can significantly improve performance. 505

From the aforementioned experiments, it is ob- 506
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Method NQ TriviaQA HotpotQA MuSiQue 2Wiki Average

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

Qwen2.5-7B
ZeroShot QA 38.4 37.4 57.7 56.3 36.1 34.8 9.1 7.5 45.0 44.1 37.3 36.0
Vanilla RAG 57.8 53.9 70.1 66.3 61.3 56.9 13.5 8.3 45.9 42.8 49.7 45.6
IterDRAG∗ 58.3 54.1 73.5 69.1 65.3 60.7 18.3 13.0 51.8 47.0 53.4 48.8
Search-o1∗ 57.8 54.3 72.6 69.8 57.3 54.2 20.2 18.5 56.9 53.6 53.0 50.1
ReSearch∗ 61.3 59.6 76.2 73.4 70.3 68.1 30.9 27.4 62.5 61.0 60.2 57.9
DeepResearcher 62.4 59.8 75.9 73.2 67.6 63.9 33.9 27.8 65.4 62.3 61.0 57.4

AirRAG-Lite 60.8 57.3 74.1 70.0 68.2 63.2 23.4 17.3 51.1 48.0 55.5 51.2
AirRAG 60.4 56.2 74.3 70.1 74.9 70.0 30.3 23.6 65.7 63.2 61.1 56.6

Qwen2.5-14B
ZeroShot QA 47.1 46.3 70.7 69.5 42.5 41.3 13.5 12.1 48.2 47.3 44.4 43.3
Vanilla RAG 62.0 58.2 75.2 71.2 67.0 62.0 20.0 14.4 52.0 49.4 55.2 51.0
IterDRAG∗ 58.5 53.9 76.4 72.3 71.8 66.2 23.9 17.2 57.4 54.1 57.6 52.7
Search-o1∗ 61.2 59.7 74.3 72.6 71.4 67.4 23.2 20.4 58.1 55.8 57.6 55.2

AirRAG-Lite 64.8 60.9 78.9 75.0 77.2 72.5 30.3 24.3 70.3 68.0 64.3 60.1
AirRAG 66.2 62.1 78.1 73.8 79.9 75.3 36.0 31.9 70.4 68.7 66.1 62.4

Qwen2.5-32B
ZeroShot QA 46.8 45.9 69.8 68.8 42.9 41.8 11.1 9.6 48.1 47.2 43.7 42.7
Vanilla RAG 60.6 56.7 75.4 71.6 66.5 62.5 19.5 13.8 51.8 49.6 54.7 50.8
IterDRAG∗ 61.1 56.7 76.9 73.0 72.0 67.3 23.3 17.9 58.2 55.4 58.3 54.1
Search-o1∗ 63.5 61.6 75.6 72.8 72.8 68.4 30.2 27.3 60.5 58.9 60.5 57.8
ReSearch∗ 63.8 61.2 74.6 72.3 76.2 72.6 38.3 33.4 66.8 62.8 63.9 60.5

AirRAG-Lite 65.6 61.9 75.8 71.6 79.3 74.8 33.3 32.5 72.0 70.8 65.2 62.3
AirRAG 66.5 62.7 78.9 74.6 81.1 76.1 36.5 32.7 71.9 70.6 67.0 63.3

Qwen3-235B (non-thinking)
ZeroShot QA 64.1 63.7 77.1 76.3 53.9 52.9 17.1 15.7 56.8 56.1 53.8 52.9
Vanilla RAG 66.0 65.3 78.0 76.2 69.2 67.7 20.8 19.1 53.3 52.2 57.4 56.1
IterDRAG∗ 65.7 63.3 78.8 76.9 75.5 69.7 32.2 25.2 64.8 60.8 63.4 59.2
Search-o1∗ 67.3 66.2 77.3 76.4 75.9 73.8 36.7 34.2 71.3 68.2 65.7 63.7

AirRAG-Lite 67.7 66.9 77.6 75.8 78.3 76.8 43.7 36.5 74.9 74.1 68.4 65.7
AirRAG 66.4 65.6 79.1 77.3 79.6 78.1 47.2 40.0 76.2 75.5 69.7 67.3

Qwen3-235B (thinking)
ZeroShot QA 66.1 65.6 79.3 78.6 54.2 53.5 21.3 19.9 56.6 56.3 55.5 54.8
Vanilla RAG 67.6 67.1 77.9 76.9 72.5 71.9 18.2 16.4 57.5 56.6 58.7 57.8
IterDRAG∗ 68.8 67.1 80.9 78.7 76.3 71.1 30.0 23.1 67.1 64.5 64.6 60.9
Search-o1∗ 67.2 66.4 78.1 77.5 75.2 72.4 33.4 28.9 69.2 66.3 64.6 62.3

AirRAG-Lite 73.2 72.7 81.1 80.1 86.2 85.6 44.2 37.8 76.4 75.6 72.2 70.3
AirRAG 74.3 72.8 81.4 80.1 84.7 84.0 47.5 40.3 76.8 76.2 72.9 70.7

Table 1: Overall evaluation results on the test sets of five datasets. * indicates the results reproduced by us. The best
results for each model are in bold. The number of both rollouts and output sequences is set to 1. The number of
documents for a single retrieval is set to 5.

served that the recall and accuracy of model are507

linearly correlated. Intuitively, the size of docu-508

ment database is also related to the recall score. By509

reducing the scale of the document database, we510

find a gradual improvement in model performance511

(shown in Figure 4). This observation provides512

experimental evidence for effective database parti-513

tioning in practical application.514

Effect of Verification Methods (RQ4). The larger515

search space also generates more candidate reason-516

ing trajectories. Therefore, how to select the opti-517

mal trajectory is crucial for the final performance.518

We compare multiple verification methods with the 519

average scores of all candidates in Figure 5. These 520

two self-consistency verification methods are al- 521

ways slightly better than the average score, but they 522

are not nearly as good as the SA and QwenRM 523

methods. The SA method uses the LLM to further 524

refine the final answer from all candidate rollouts, 525

which is simple and effective. Finally, the reward 526

model achieves the most competitive results due 527

to the introduction of supervised information on 528

key intermediate reasoning steps in the training pro- 529

cess. However, collecting process-supervised train- 530
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Figure 3: Impact of the retrieved document number scaling (Left) and the maximum context length scaling (Right)
on model performance (averaged Accuracy and Recall of three datasets). All methods show consistent performance
improvements as the effective inference computation scales.

Method Average

F1 Acc

Vanilla RAG 47.0 43.2
IterDRAG 49.8 45.9
AirRAG
+ nall=1 62.9 58.8
+ nall=3 63.4 62.1
+ na1,a4=3, na2,a3,a5=1 63.2 62.0
+ na1,a4=3, na2,a3,a5=1, qdiv=1.0 65.1 63.9

Table 2: Performance comparison with different compu-
tationally optimal strategies on the HotpotQA, MuSiQue
and 2Wiki datasets. nai

denotes the number of output
sequences of the action ai in a single extension. qdiv
indicates that setting top-p to 1.0 and temperature to 1.0
for query-related actions, i.e. SAY and QT, increases
the diversity of reasoning. The default sampling param-
eters top-p, top-k and temperature are set to 0.8, 50 and
0.7 respectively. Rational sampling strategies further
improve performance across multiple datasets.

ing samples requires high computational costs and531

high-quality raw data. In the practical application532

scenario, we can choose the appropriate method533

while balancing efficiency and effectiveness.534

4.5 Qualitative Analysis (RQ5)535

To make it easier to understand why our proposed536

AirRAG works, we present a qualitative analysis537

in MuSiQue. Existing iterative methods are often538

trapped in a single solution space when confronted539

with complex tasks. As illustrated in Figure 13,540

these iterative methods exhibit a key limitation that541

insufficient or ambiguous retrieval context can lead542

to repetitive follow-up queries until it reaches the543

predefined maximum depth of iterations. This inef-544

ficient iteration results in high computational cost545

and incorrect answer. In contrast, our proposed Air-546

RAG designs efficient reasoning actions to achieve547

autonomous planning and reasoning. As shown in548

Figure 14, the SAY action decomposes the original549

10e410e510e62e7
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Figure 4: Left: Performance comparison under different
size of document database. A streamlined database can
maintain a better performance. Right: Performance
comparison in increasing the number of valid rollouts.
Sampling a higher number of diverse reasoning paths
consistently improves accuracy.

query into a more rational sequence of sub-queries, 550

and then the combination of RA and QT ensures 551

the accuracy of the intermediate reasoning step. We 552

eventually leverage the efficient reasoning trajec- 553

tory to obtain the correct answer. 554

5 Conclusions 555

In this paper, we propose AirRAG, a novel RAG 556

approach to fully leverage the planning and rea- 557

soning capabilities of LLMs. AirRAG designs an 558

efficient action space for the controllable reason- 559

ing generation. We also introduce Monte Carlo 560

Tree Search to expand the solution space. Mean- 561

while, by employing the tree-based search and self- 562

consistency verification, we explore potential rea- 563

soning paths and achieve comprehensive inference 564

computation scaling. In addition, computationally 565

optimal strategies are used to apply more computa- 566

tion to key actions, leading to further performance 567

improvements. Experimental results on diverse QA 568

datasets demonstrate the significant superiority of 569

AirRAG over other methods designed for complex 570

deep search scenarios. 571
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Limitations572

Although our model achieves competitive perfor-573

mance in various RAG tasks, there are some meth-574

ods and limitations that can be improved. The575

current optimal computation allocation strategy is576

derived from sufficient experiments. We can con-577

sider designing an automated policy model to im-578

plement the trade-off between computational cost579

and performance. Despite great efforts in the in-580

ference scaling of RAG, the experimental analysis581

may be limited due to the massive computational582

cost of tree-based search approaches. We will ex-583

plore more complex reasoning tasks to verify the584

robustness and effectiveness of our approach. In585

addition, the large search space also brings more586

noise information, so we will further investigate587

the reward model or strategy to explore a better588

reasoning path.589
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A Implementation Details833

For evaluation, we randomly select 1,000 samples834

from the whole validation sets of each dataset as835

our final test set, with a fixed random seed 0. To836

better understand the complexity of multi-hop rea-837

soning in these datasets, we analyze the hop dis-838

tribution of the HotpotQA, MuSiQue, and 2Wiki-839

MultiHopQA test sets in Figure 6. The statistics840

show that there is a high proportion of complex rea-841

soning queries with 3 hops or more (aboout 30%,842

50%, 25%). HotpotQA lacks explicit hop annota-843

tions, so we instead count the number of supporting844

facts. MuSiQue has a significantly higher propor-845

tion of 3-hop and 4-hop queries compared to the846

other datasets, indicating great reasoning complex-847

ity. This observation is further corroborated by our848

experimental results in Table 1 and Figure 7. The849

performance of our approach on MuSiQue is much850

lower than those of the other two datasets.851

In the retrieval process, we employ the852

multilingual-e5-base (Wang et al., 2024) as the853

retriever and use the widely used Wikipedia854

dump from December 2018 as the retrieval cor-855

pus (Karpukhin et al., 2020) which comprises over856

21 million passages. For generation, the default857

sampling parameters top-p, top-k and temperature858

are set to 0.8, 50 and 0.7 respectively. Evalua-859

tion metrics include Exact Match (EM), F1 score860

(F1), and Accuracy (Acc), where accuracy indi-861

cates whether the ground truth is a substring of the862

final generated answer. For reward model training,863

we sample 8,000 question-answer pairs from each864

dataset and generate more than 156,000 reasoning865

paths using our proposed AirRAG (rollouts=32,866

n=4, qdiv=1.0). In inference scaling experiments,867

we sample maximum computation budgets Lmax868

(e.g., 8k, 16k, 32k, 64k and 128k tokens). The869

Lmax (maximum effective context length) denotes870

the maximum number of input tokens across all871

rollouts following (Yue et al., 2024). The predeter-872

mined maximum tree depth d is set to 10, specif-873

ically indicating that the SAY and SA actions are874

executed once, while the RA-QT or QT-RA actions875

have a maximum of 4 iterations.876

B Additional Experiment Results877

We evaluate the performance of AirRAG on var-878

ious complex QA datasets. Table 3 compares its879

accuracy and F1 with strong baselines under the880

given inference computation budget, which is im-881

plemented based on Qwen2.5-14B-Instruct and one882

million document database. The optimal perfor- 883

mance exhibits consistent gains as Lmax expands, 884

which is termed as the inference scaling laws for 885

RAG (Yue et al., 2024). We integrate the remaining 886

methods for a given maximum computational bud- 887

get into our approach, dubbed as AirRAG-Blender. 888

The best results are obtained by using only the SA 889

action to refine the final answer from all candidates, 890

as shown in Table 3. This also demonstrates the 891

flexibility of our approach architecture. In addi- 892

tion, to verify the robustness and generalization of 893

AirRAG, Table 4 shows the performance on more 894

diverse LLMs and datasets. For a fair comparison, 895

we utilize the widely used Wikipedia dump from 896

December 2018 (Karpukhin et al., 2020) as the 897

retrieval corpus. We observe consistent improve- 898

ments over vanilla RAG and existing iterative meth- 899

ods (more than 10% on average). The significant 900

boost over IterDRAG and Auto-RAG suggests that 901

AirRAG explores more effective reasoning paths 902

through the human-like thinking paradigm and tree- 903

based search. Furthermore, we present detailed in- 904

ference scaling results for each dataset individually, 905

as shown in Figure 7 and Figure 8. 906

C Inference Efficiency Analysis 907

Given the inherently large search space of tree- 908

based search, we design computational optimiza- 909

tion strategies for different actions to avoid ineffi- 910

cient and redundant expansions, as shown in Ta- 911

ble 2. Furthermore, in Section 3.2.2, we propose 912

pruning strategies for state nodes and reasoning 913

paths. These optimizations significantly reduce in- 914

efficient LLM inference and repetitive path explo- 915

ration. In practical applications, we can select ap- 916

propriate configuration parameters such as rollout, 917

n, and Lmax based on computational resource bud- 918

gets and time constraints, ensuring effectiveness 919

while achieving inference efficiency comparable to 920

current mainstream iterative RAG approaches. We 921

analyze the average inference efficiency per sample 922

on the HotpotQA dataset in Table 5. 923

D Prompt Examples 924

Given a user input query, our proposed AirRAG, 925

as shown in Figure 2, first attempts the direct an- 926

swer (DA) action without prompts and performs 927

system analysis (SAY) using the prompt in Figure 9. 928

Subsequently, AirRAG performs retrieval and an- 929

swer (RA) with the prompt in Figure 11, or query 930

transformation (QT) to generate refined queries for 931
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Lmax Method HotpotQA MuSiQue 2Wiki Average

F1 Acc F1 Acc F1 Acc F1 Acc

8k

ZeroShot QA 42.5 41.3 13.5 12.1 48.2 47.3 34.7 33.6
Vanilla RAG 70.3 65.4 23.0 17.7 55.8 53.4 49.7 45.5
IterDRAG∗ 74.3 69.1 26.7 19.4 60.5 57.6 53.8 48.7
AirRAG-Lite 80.6 75.4 35.4 28.9 75.3 73.1 63.8 59.1
AirRAG 79.6 75.2 41.0 35.0 76.0 74.2 65.6 61.5

AirRAG-Blender 81.1 79.8 41.6 36.4 82.2 81.7 68.3 66.0

32k

Vanilla RAG 77.1 72.0 29.0 22.9 60.9 58.1 55.7 51.0
IterDRAG∗ 77.7 71.6 30.8 22.3 63.0 60.2 57.1 51.4
AirRAG-Lite 82.4 76.9 36.7 30.1 78.8 76.8 66.0 61.3
AirRAG 82.5 77.4 43.2 36.3 80.4 78.9 68.7 64.2

AirRAG-Blender 82.9 80.6 43.3 37.6 83.4 83.0 69.9 67.1

128k
IterDRAG∗ 76.8 71.0 31.7 24.8 65.5 62.4 58.0 52.7
AirRAG-Lite 82.5 77.1 35.7 30.4 78.3 76.0 65.5 62.2
AirRAG 83.3 78.0 43.5 36.5 82.3 80.5 69.7 65.0

AirRAG-Blender 83.7 81.4 43.9 38.5 84.4 84.2 70.6 68.0

Table 3: Overall evaluation results under different computational resource budgets, where Qwen2.5-14B-Instruct
is used as the generator LLM. * indicates the results reproduced by us. Lmax denotes the maximum number of
input tokens across all rollouts. The best results for each Lmax are in bold. The number of both rollouts and output
sequences is set to 1 for our proposed AirRAG methods.

Method NQ TriviaQA PopQA WebQA HotpotQA 2Wiki

EM EM F1 EM F1 F1

Vanilla RAG 35.1 58.8 36.7 15.7 35.3 21.0
Self-RAG 36.4 38.2 32.7 21.9 29.6 25.1
Iter-RetGen 36.8 60.1 37.9 18.2 38.3 21.6
Auto-RAG 37.9 60.9 47.8 25.1 44.9 48.9
AirRAG 53.6 63.2 51.8 52.6 67.6 66.3

Table 4: Performance comparison on six benchmarks, where Llama3-8B-Instruct is used as the generator LLM.
Partial experimental results are quoted from Jin et al. (2024) and Yu et al. (2024). The best results are in bold. The
number of both rollouts and output sequences is set to 1. The number of documents for a single retrieval is set to 5.
Our proposed AirRAG significantly outperform the others.

Lmax Method database_size retrieval_time retrieval_number e2e

8k

Vanilla RAG 100w 0.900 1.00 3.828
IterDRAG 100w 1.833 2.04 6.703
AirRAG-Lite 100w 2.205 2.25 8.482
AirRAG 100w 3.453 3.84 12.752

Table 5: Performance analysis of inference efficiency. Lmax denotes the maximum number of input tokens across
all rollouts. The retrieved database contains approximately one million documents. e2e and retrieval_time denote
the average total time for a single question-answering process and the time spent on retrieval respectively, measured
in seconds. Other inference configurations remain consistent with those in Table 3.
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Figure 5: Performance comparison of different verification methods. "QwenRM" is short for reward model trained
on the Qwen model. "SA" is the reasoning action of summary and answer. "SC-emb/jcd" are two self-consistency
verification methods based on text embeddings and jaccard similarity. "Average" is the average score over all
candidate rollouts. The single retrieval process is set to retrieve three documents or fixed 8k context.
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Figure 6: Overview of the distribution of query complexity over three multi-hop QA datasets.

better retrieval and answer. This process of RA-QT932

or QT-RA can continuously iterate until no new933

sub-queries arise or the maximum iteration depth is934

reached. Finally, the summary answer (SA) in Fig-935

ure 11 utilizes all the information and conclusions936

from intermediate steps to refine the final answer.937

E Case Study938

We select a sample from the complex multi-hop939

dataset MuSiQue to analyse in detail, as shown in940

Figures 13 and 14.941
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Figure 7: Impact of the retrieved document number scaling and the maximum context length scaling over three
datasets.
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Example prompt for SAY reasoning action

Given the user query, you may rephrase it for better clarity, summarize it at a higher level,
or decompose it into multiple sub-queries to facilitate more effective information retrieval and
response generation. If no modification is necessary, return "None". Otherwise, list sub-queries,
each on a new line.
<Here are some examples.>
Query: {question}
Output:

Figure 9: Example prompt for SAY reasoning action.

Example prompt for QT reasoning action

Given the context provided, please determine whether rephrasing, summarization, or decomposition
into sub-queries is necessary to enhance the accuracy and efficiency of information retrieval and
response generation. If no modification is required, return "None". Subsequent queries should be
listed individually.
<Here are some examples.>
Main Query: {question}
History: {history}
This Query: {this_question}

Figure 10: Example prompt for QT reasoning action.

Example Prompt for RA actions

You are an expert in question answering. I am going to give you some contexts with may or may
not be relevant to the question. Answer the question according to the contexts.
{contexts}
Question: {question}

Figure 11: Example Prompt for RA actions.

Example prompt for SA reasoning action

You are an expert in question answering. Given the context, sub-queries and responses, output a
correct and concise answer to User Query.
<Here are some examples.>
User Query: {question}
{history}
Contexts: {contexts}
Final Answer:

Figure 12: Example prompt for SA reasoning action.
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The iterative methods often traps in a solution space

Context: <Retrieved documents>
Question: What is the mouth of watercourse for the body of water where Bartram’s Covered Bridge is located?
Follow up: Which body of water is Bartram’s Covered Bridge located on?
Follow up: | Intermediate answer: | So the final answer is:

Output: Follow up: Which body of water is Bartram’s Covered Bridge located on?

(Note: The context does not specify which body of water Bartram’s Covered Bridge is located on, but it does mention
that the bridge carries Goshen Road over Crum Creek. Therefore, we need to confirm that Crum Creek is the body
of water in question before proceeding to find the mouth of the watercourse.)

· · ·
· · · (It enters an endless cycle of iteration until it reaches predefined maximum depth.)

Gold Answer: Delaware River
Process Annotation: Q1: Bartram’s Covered Bridge » crosses
A1: Crum Creek
Q2: Q1 » mouth of the watercourse
A2: Delaware River

The iterative self-exploration often traps in a solution space with low-quality reasoning steps even
after many attempts.

Figure 13: Incorrect reasoning path of iterative RAG methods. Ambiguity or missing information in the intermediate
steps leads in duplicate sub-query.
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The simple and effective action space of AirRAG leads to the correct reasoning trajectory

Question: What is the mouth of watercourse for the body of water where Bartram’s Covered Bridge is located?

Action1: SAY
Input: What is the mouth of watercourse for the body of water where Bartram’s Covered Bridge is located?
Output: Where is Bartram’s Covered Bridge located?
What is the mouth of the watercourse for the body of water near Bartram’s Covered Bridge?

Action2: RA
Input: <Retrieved documents> Where is Bartram’s Covered Bridge located?
Output: Bartram’s Covered Bridge is located on the border between Delaware County and Chester County, Pennsylvania,
carrying Goshen Road over Crum Creek.

Action3: QT
Input: What is the mouth of the watercourse for the body of water near Bartram’s Covered Bridge?
Output: What is the mouth of Crum Creek?

Action4: RA
Input: <Retrieved documents> What is the mouth of Crum Creek?
Output: Based on the provided contexts, there are two different locations referred to as Crum Creek, and they flow into
different bodies of water:
1. The Crum Creek in Delaware County and Chester County, Pennsylvania, flows into the Delaware River in Eddystone,
Pennsylvania.
2. The Crum Creek (also called Cathatachua Creek) in East Creek, New York, flows into the Mohawk River.
Since the question does not specify which Crum Creek is being referred to, both answers are possible. However, if
we consider the first context as the primary reference, the mouth of Crum Creek is the Delaware River in Eddystone,
Pennsylvania.

Action5: SA
Input: <Retrieved documents> <Sub-queries with answers>
Output: The mouth of the watercourse for the body of water where Bartram’s Covered Bridge is located, Crum Creek,
is the Delaware River in Eddystone, Pennsylvania.

Gold Answer: Delaware River.

AirRAG obtains the correct answer by performing five reasoning actions efficiently.

Figure 14: Effective reasoning rollout of AirRAG. The fundamental action space and tree-based search provides
greater compatibility and flexibility, which avoids being trapped in a single solution space by a low-quality
intermediate step for chain-like reasoning paradigm.
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