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Abstract

In this work, we study an inverse reinforcement learning (IRL) problem where the
experts are planning under a shared reward function but with different, unknown
planning horizons. Without the knowledge of discount factors, the reward function
has a larger feasible solution set, which makes it harder to identify a reward
function. To overcome this challenge, we develop an algorithm that in practice, can
learn a reward function similar to the true reward function. We give an empirical
characterization of the identifiability and generalizability of the feasible set of the
reward function.

1 Introduction

Designing reward functions in reinforcement learning (RL) can be difficult in domains such as
healthcare [Riachi et al., 2021] and finance [Charpentier et al., 2021]. Inverse reinforcement learning
(IRL) addresses this challenge by learning a reward function from expert demonstrations. The learned
reward is a succinct description of the task and can be transferred to similar tasks with different
environments. Recent research in IRL has focused on the additional challenge of learning the reward
function from heterogeneous expert behaviors, for example, where expert demonstrations vary in
quality [Shiarlis et al., 2016, Brown et al., 2019], or where each expert’s policy is optimal under a
distinct reward function [Mendez et al., 2018, Gleave and Habryka, 2018, Yu et al., 2019].

In this work, we focus on the setting where the expert behaviors vary because they are optimizing for
different planning horizons but a shared reward function. In RL, the planning horizon is encoded
in the discount factor, which discounts future (expected) rewards received for a given policy. A
small discount factor corresponds to a short planning horizon, which implies that the expert focuses
on short-term goals, whereas a large discount factor corresponds to a long planning horizon. For
example, in an intensive care unit, the ventilation weaning practice is influenced by specific unit
protocols and team or individual physician preferences [Kapnadak et al., 2015]. A more aggressive
weaning practice implies a small discount factor. Another example is a mobile health application that
helps with wellness self-management, where users set up short-term (< 1 year), long-term (1-2 years),
or maintenance (> 2 years) health goals [Dicianno et al., 2017].

In this paper, unlike previous IRL work that relies on known discount factors [Cao et al., 2021,
Rolland et al., 2022] , we assume that both the discount factors (one per expert) and the reward
function are unknown. We show that existing IRL approaches cannot be directly adapted to our
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IRL problem, e.g., linear programming IRL (LP-IRL [Ng et al., 2000]) admits undesirable feasible
solutions such as identical discount factors for multiple experts. We develop a novel algorithm to
learn a global multi-agent reward function with agent-specific discount factors based on LP-IRL.
On a discrete MDP and grid domains, we show that our algorithm successfully identifies a reward
function and a set of discount factors that can be used to reconstruct expert policies.

We also provide a better understanding of the identifiability and generalizability of IRL in settings
where the discount factors associated with each expert, as well as the reward function, are unknown.
Recent work shows that when there are two experts acting under a shared reward function and different
but known and correctly specified discount factors, under certain conditions, IRL can identify the true
reward function up to a constant [Cao et al., 2021, Rolland et al., 2022]. However, it is unclear how
unknown or misspecified discount factors affect the identifiability and generalizability of the reward
function. We empirically show that when the discount factors are unknown, the reward function is
not identifiable. However, given a set of (misspecified) discount factors, the reward function has a
unique feasible solution that generalizes well across most new RL tasks.

2 Related Work

IRL with homogeneous demonstrations. Previous IRL work focuses on identifying a reward
function that explains expert behavior when the demonstrations are generated by a single expert. For
example, max-margin IRL methods [Ng et al., 2000, Abbeel and Ng, 2004] seek a reward function
that maximally separates the optimal policy and the second-most optimal policy. Max entropy IRL
methods [Ziebart et al., 2008, Ziebart, 2010] estimate a reward function that maximizes the likelihood
of the expert demonstrations. Bayesian IRL methods [Ramachandran and Amir, 2007, Jin et al.,
2010] use prior knowledge to generate a posterior distribution over a set of possible reward functions.
However, when given trajectories from multiple experts, each of these IRL approaches will learn a
separate reward function for each expert by default, which is undesirable. In our work, we focus on
a common scenario where the global reward function is shared by all experts with discount factors
specific to each expert; these different discount factors lead to different optimal policies.

IRL with heterogeneous demonstrations. Recent IRL work explores heterogeneous expert demon-
strations. Some methods study the scenario where expert demonstrations vary in quality. For
example, Shiarlis et al. learns from demonstrations of both optimal policies and policies with unde-
sirable behaviors (e.g., violating safety constraints). Similarly, Brown et al. assumes that one has
access to a set of demonstrations ranked by their expected return. Other work studies the setting
where each expert optimizes for a different task. For example, Babes et al. first identifies the tasks
by clustering the expert demonstrations and then identifies a reward function for each task. In Yu
et al. [2019], the authors use deep latent generative models to capture the shared reward structure of
expert demonstrations. Finally, Mendez et al. consider a lifelong learning setting where the agent
faces a sequence of similar tasks and optimizes overall performance. In contrast, we consider the
scenario where experts share the same reward function but have different planning horizons. To the
best of our knowledge, we are the first to study this type of IRL problem.

Identifiability and generalizability in IRL with respect to the reward function and discount
factors. Recent work [Cao et al., 2021, Rolland et al., 2022] proves that, for entropy-regularized
Markov decision processes (MDPs), if given optimal policies under two distinct discount factors,
one can identify the true reward function up to a constant. However, the theory assumes that the
discount factors are correctly specified, which is not realistic. In this work, we conduct identifiability
and generalizability analyses on a toy domain without prior knowledge of the discount factors.
Additionally, we develop algorithms to recover the reward function and the unknown discount factors
simultaneously while previous work does not.

3 Background (LP-IRL)

An MDP is defined as a tuple M∗ = (S,A, R∗, T, γ) where S is a finite state space, A is a set
of discrete actions, the transition dynamics T : S × A × S → [0, 1] describes the probability of
reaching the next state s′ by performing action a in the current state s, R∗(s) is a deterministic reward
function that we assume is action independent, and γ ∈ [0, 1] is the discount factor. A Q-function RL
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approach learns an optimal policy, π∗ : S → A, that maximizes the Q-function defined as

π∗(a|s) = argmax
a

Qγ
π(s, a) = argmax

a

( ∑
s′∈S

T (s′|s, a)R∗(s′) + Eπ

[ ∞∑
t=1

γtR∗(St)
])

,

where the expectation is over the distribution of the state space induced by the policy π. The discount
factor γ determines the bias towards short- or long-term outcomes. When γ = 0, the agent is myopic
and ignores future rewards. When γ = 1, future rewards are valued as much as immediate ones.

In IRL problems, we are given an MDP, M∗\R∗, with an unknown reward function, and we consider
a simple case where the expert policy can be fully observed. We wish to find a reward function R
such that the expert policy is still optimal under the reconstructed MDP M = (S,A, R, T, γ).

In Ng et al. [2000], the authors identify a reward function by solving,

max
R

∑
s∈S

min
a∈A\π∗(s)

Qγ
π∗(s, π∗(s))−Qγ

π∗(s, a)− λ∥R∥1 (1a)

s.t. Qγ
π∗(s, π∗(s))−Qγ

π∗(s, a) ≥ 0 for s ∈ S, a ∈ A \ a∗ (1b)
|R| ⪯ Rmax (1c)

(1d)

where the l1 norm penalty, λ∥R∥1, regularizes the sparsity of the reward function. Constraints (1b)
ensure that π∗ is optimal under the inferred reward function R. The reward function solution to
Equation 1a maximizes the sum of the differences of the Q-functions between the best and the
next-best action over all states. Note that the difference of the Q-function is linear with respect to the
reward function R,

Qγ
π∗(s, π∗(s))−Qγ

π∗(s, a) = (T (·|s, a∗)− T (·|s, a))(I − γTπ∗
)−1R,

where Tπ∗
denotes the transition dynamics following the optimal policy π∗. Thus, the optimization

problem in Equation 1 can be solved with linear programming (LP) [Ng et al., 2000].

4 Methods

In IRL problems with multiple planning horizons, we assume that we observe a set of expert policies
Π∗ = {π∗

k}Kk=1, each optimized under the global reward function R∗, and transition dynamics T .
But we allow a different discount factor γ∗

k . That is,

π∗
k(a|s) = argmax

a
Q

γ∗
k

π (s, a) = argmax
a

(∑
s′

T (s′|s, a)R∗(s′) + Eπ[

∞∑
t=1

γ∗
k
tR∗(St)]

)
.

We assume that both the reward function R∗ and the set of discount factors Γ∗ = {γ∗
k}Kk=1 are

unknown to us. We further make the following assumption:
Assumption 1. For any two distinct expert policies π∗

i , π
∗
j ∈ Π∗, i ̸= j, optimized under γ∗

i , γ
∗
j

respectively, there is at least one state s ∈ S such that Qγ∗
i

π∗
i
(s, π∗

i (s)) > Q
γ∗
j

π∗
i
(s, π∗

j (s)).

The assumption ensures that each expert policy is uniquely optimal in at least one of the states, i.e.,
no two expert policies can be equally optimal in all states. The assumption implies that the discount
factors lead to distinct policies, and thus are distinguishable from the data (i.e., γ∗

i ̸= γ∗
j for i ̸= j).

Naive extension fails. To extend the formulation in Section 3 to our target IRL setting, one naive
idea is to maximize the sum of the differences of the Q-functions over all experts as well as states,
i.e.,

max
Γ∈[0,1]K

max
R

∑
k∈[K]

∑
s∈S

min
a∈A\π∗

k(s)
Qγk

π∗
k
(s, π∗

k(s))−Qγk

π∗
k
(s, a)− λ∥R∥1 (2a)

s.t. Qγk

π∗
k
(s, π∗

k(s))−Qγk

π∗
k
(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗

k(s), k ∈ [K] (2b)

|R| ⪯ Rmax (2c)
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There are two issues with the optimization problem in Equation 2. First, the objective function is
not convex with respect to discount factors Γ. We will use Bayesian optimization (BO) techniques
to solve the nonconvex optimization problem (Section 4.2). Second, and more problematic, this
formulation allows for a solution that maximizes the Q-function difference of one particular policy
with its discount factor. However, this allows all policies to be equally optimal under other discount
factors, which violates Assumption 1 that requires each policy to be distinguishable with its discount
factor. Ideally, the expert policies should be sufficiently different in terms of Q-functions under the
learned reward function and discount factors.

4.1 LP-IRL with multiple discount factors

To avoid undesirable solutions, we propose a new optimization problem as follows:

max
Γ∈[0,1]K

max
R

min
k∈[K],(s,a)∈Ωk

Qγk

π∗
k
(s, π∗

k(s))−Qγk

π∗
k
(s, a)− λ∥R∥1 (3a)

s.t. Qγk

π∗
k
(s, π∗

k(s))−Qγk

π∗
k
(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗

k(s), k ∈ [K] (3b)

|R| ⪯ Rmax, (3c)

where Ωk is a pre-computed set of state-action tuples that ensures there exists a feasible reward
solution R such that, for any (s, a) ∈ Ωk, Q

γk

π∗
k
(s, π∗

k(s))−Qγk

π∗
k
(s, a) > 0. Details of the algorithm

that constructs Ωk are described in Appendix A. In situations where there is a pair of expert policies
π∗
i , π

∗
j that cannot be distinguished under any reward function (i.e., (s, π∗

i (s)) /∈ Ωj for any s ∈ S),
we cannot find a solution that does not violate Assumption 1 and claim the optimization problem in
Equation 3 to be infeasible. Intuitively, our proposed optimization problem seeks a reward function
that maximizes the minimal non-zero difference of Q-functions of all experts over states where
policies are distinguishable, thus encouraging expert policies to be sufficiently different and ensuring
the satisfaction of Assumption 1.

4.2 Inference for LP-IRL

Unfortunately, the objective function in 3a is not convex with respect to the discount factors Γ. To
solve for the global optima, we perform a bi-level optimization. Denote the upper-level objective
function as

f(Γ, R) = min
k∈[K],(s,a)∈Ωk

Qγk

π∗
k
(s, π∗

k(s))−Qγk

π∗
k
(s, a)− λ∥R∥1.

We rewrite the optimization problem in Equation 3 as,

max
Γ∈[0,1]k

g, (4)

where g = maxR f(Γ, R) under constraints 3b , 3c. Given any Γ ∈ [0, 1]K , the lower-level objective
function g can be solved analytically with LP. The upper-level optimization problem can be solved by
performing a grid search over the space [0, 1]K . However, the computation complexity of grid search
increases exponentially with respect to the total number of expert policies. To improve computation
efficiency, we use Bayesian optimization (BO) techniques, which are suitable for nonconvex objective
functions that are expensive to evaluate. The full algorithm is described in Appendix B.

5 Experiments and Results

5.1 Domains

We test Algorithm 1 in two domains: (1) a toy domain, a discrete MDP with 3 distinct expert policies
(Figure 3a); (2) a grid domain [Ankile et al., 2023] with 4 distinct expert policies (Figure 5a). In the
toy domain, experts trade-off between the probability of getting the reward and the reward magnitude.
In the grid domain, experts choose between a small reward close by or a large one that is far away.
The details are described in Appendix C. We first study the properties of the global optima of the
reward function and the set of discount factors without considering the inference efficiency. That is,
we solve the upper-level optimization problem in Equation 4 by performing a grid search. We then
study the convergence performance of Algorithm 1, which utilizes BO for efficient inference.
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(a) The value function V γ
π∗
k
(s0)) of expert policies

π∗
0 , π

∗
1 , π

∗
2 under the true reward R∗

(b) The value function V γ
π∗
k
(s0) of reconstructed optimal

policies π0, π1, π2 under the global maximum, R̃

Figure 1: Plots of the value function of the initial state, V γ
π∗
k
(s0), under (a) the true reward function

R∗ (b) and the global optimum of the reward function of Equation 3, R̃: x, y-axes represent the
discount factor γ ∈ [0, 1] and the value function V γ

π∗
k
(s0) of expert policy π∗

k respectively. Each
color represents a different expert policy. With the true reward function R∗, each expert policy, π∗

k,
is optimal under a continuous set of γ. The dashed lines in (b) represent the global optima of the
discount factors, Γ̃.

5.2 Results

The discount factors optimizing our objective recover the true order of discount factors. From
Figure 1, we see that although the learned discount factor (Γ̃ ≈ {0, 0.35, 1}) does not exactly align
with the ground truth, they follow the same order of the true discount factors (γ∗

0 ≤ γ∗
1 ≤ γ∗

2 ). This is
also true for the grid domain where the global maximum is achieved at Γ̃ ≈ {0.38, 0.72, 0.94, 1}.
This property allows us to interpret the bias of each expert’s goal—a small discount factor implies
that the policy cares more about short-term outcomes and vice versa.

The reward function optimizing our object has a similar structure to the true reward function.
Comparing Appendix Figure 3a to 3b, we see that the global optimum of the reward function has
a larger reward at state s2 than at state s1. When the discount factor is large, this reward structure
encourages the agent to collect the large reward even in the face of more stochasticity. Comparing
Appendix Figure 5a to 5b, we see that the learned reward function learns a small reward for the left
bottom grid and a large reward for the right bottom grid, which is similar to the true reward function.

Bayesian Optimization converges quickly. From Appendix Figure 7, we see that on the toy domain,
BO converges to the global maximum within 50 iterations while for the grid domain, within 200
iterations. If one were to perform a grid search over the space of Γ ∈ [0, 1]K with an interval of 0.1,
it would require solving the linear programming 10K times. Our algorithm is more computationally
efficient and converges reliably to the global maximum.

5.3 Identifiability and Generalizability Analyses

In this section, we give an empirical characterization of the feasible set of the reward function and the
set of discount factors under our IRL setting described in Section 3.

We assume that the observed expert policies are entropy-regularized optimal policies [Liu et al.,
2019]. We conduct empirical identifiability and generalizability analyses on the described domain in
Appendix Figure 4, whose feasible solution set is smaller than that of the toy domain in Appendix
Figure 3a and easier to visualize. We show that when the discount factors are assumed to be unknown,
the reward function is not identifiable anymore. However, if given a set of possibly misspecified
discount factors, the reward function has a unique feasible solution and it generalizes well across a
wide range of different RL tasks. See proofs in Corollary 1.

From Figure 2a, we can see that given two misspecified discount factors, the unique feasible reward
function can be very different from the true reward function (the heatmap is dark in most of the plot
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(a) Heatmap of the absolute error of the reward of
states s1, s2 on a log10 scale (log10 |R−R∗|)

(b) Heatmap of the absolute error of the value func-
tions of the true optimal policy and the reconstructed
optimal policy under randomly generated transition
dynamics and discount factors (Equation 19).

Figure 2: Identifiability and generalizability of the reward function: x, y-axis represents
(mis)specified γ0, γ1 respectively. The red star represents the true discount factors γ∗

0 , γ
∗
1 . There are

no feasible solutions along the diagonal. Lighter blue indicates a smaller error and vice versa.

area except the white curve on the top). From Figure 2a, we see that although the reward function is
not identifiable, it generalizes well when γ0 < γ1 (the upper diagonal is lightly colored).

6 Conclusion and Future Work

In this work, we focus on an IRL setting with multiple experts optimizing with a global reward
function but different discount factors. We assume that both the reward function and the discount
factors are unknown. We show that in our targeted IRL setting, the feasible set of the reward function
is larger and the reward function is not identifiable, which increases the difficulty of the IRL problem.
To address the challenge, we make non-trivial modifications to the existing LP-IRL algorithm. We
show that our algorithm can recover a reward structure that is similar to the true reward function, and
also a set of discount factors whose magnitudes follow the same order as the true discount factors.

In the future, we want to extend the Max Causal Entropy IRL algorithm to our IRL problem and
provide theoretical guarantees on the identifiability and generalizability of the reward function as
well as the discount factors.
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A Construct Ωk

In the following, we assume that we are given an arbitrary set of discount factors Γ. We show that for
any π∗

k, how to construct a set of state-action tuples that ensures there exists a feasible reward solution
R such that for any (s, a) ∈ Ωk, Q

γk

π∗
k
(s, π∗

k(s))−Qγk

π∗
k
(s, a) > 0. Recall that in an IRL setting with

multiple experts (multiple discount factors), we solve the following optimization problem:

max
Γ∈[0,1]K

max
R

min
k∈[K],(s,a)∈Ωk

Qγk

π∗
k
(s, π∗

k(s))−Qγk

π∗
k
(s, a)− λ∥R∥1 (5a)

s.t. Qγk

π∗
k
(s, π∗

k(s))−Qγk

π∗
k
(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗

k(s), k ∈ [K] (5b)

|R| ⪯ Rmax, (5c)

With Bellman Equations, the difference of the Q-functions can be written as,

Qγk

π∗
k
(s, π∗

k(s))−Qγk

π∗
k
(s, a) = (T (·|s, π∗

k(s))− T (·|s, a))(I − γkT
π∗
k)−1R.

Further, let W ∈ R(|S|×(|A|−1)×K)×|S| be a matrix where each row

w⊺
s,a,k = (T (·|s, π∗

k(s))− T (·|s, a))(I − γkT
π∗
k)−1,

for s ∈ S, a ∈ A \ π∗
k(s), k ∈ [K]. The optimization problem in Equation 5 then becomes

max
R

min
k∈[K],(s,a)∈Ωk

WR (6a)

s.t. WR ≥ 0 (6b)
|R| ⪯ Rmax (6c)

To construct Ωk, we search for a reward function R that distinguishes the expert policy from other
actions on as many states as possible. I.e., we solve the following optimization problem,

max
R

|WR|0 (7a)

s.t. WR ≥ 0 (7b)

Let R∗ be the optimal solution of Optimization Problem 7. Then,

Ωk = {(s, a) ∈ (S ×A \ π∗)|w⊺
s,a,kR

∗ ̸= 0}.

In the following, we show that Optimization Problem 7 can be solved with Linear Programming.
Claim 1. The optimization problem in Equation 7 is equivalent to the following

min
R,z

1
⊺z (8a)

s.t. WR+ z ≥ 1 (8b)
WR ≥ 0 (8c)
z ≥ 0 (8d)

Specifically, an optimal solution R∗ of Optimization Problem 8 is also an optimal solution of
Optimization Problem 7. Furthermore, 1⊺z∗ = |S| × (|A| − 1)×K − |WR∗|0

Proof. Let R be a reward function that satisfies Constraint 8c. Then for any constant c > 0, cR also
satisfies Constraint 8c. Now, let c be a constant such that any positive element in cWR is larger than
1. Denote the i-th element of any vector x by xi. The vector z that minimizes 1⊺z while satisfies
Constraints 8b, 8d has the following form:

zi = 1 if (cWR)i = 0, zi = 0 if (cWR∗)i ≥ 1. (9)
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We show that an optimal solution of Optimization Problem 8 is also an optimal solution of Optimiza-
tion Problem 7 with proof by contradiction. Let (R∗, z∗) be an optimal solution of Optimization
Problem 8 with z∗ defined in Equation 9. We assume that R∗ is optimal under Optimization Problem 7
Then there exists another R̃ such that WR̃ ≥ 0 and |WR̃|0 > |WR∗|0. Now, let c be a constant such
that any positive element in W (cR̃) is larger than or equal 1 and construct a vector z̃ according to
Equation 9. Because |cWR̃|0 = |WR̃|0 > |WR∗|0, WR̃ ≥ 0 and WR∗ ≥ 0, z̃ will have more zero
elements than z∗. Thus, 1⊺z̃ < 1

⊺z∗, which contradicts the assumption that z∗ is optimal.

With the definition of z∗ in Equation 9, it is easy to see that 1⊺z∗ = |z|0 = |S| × (|A| − 1)×K −
|WR∗|0.

B Algorithm

Algorithm 1 LP-IRL with multiple planning horizons

1: Given a set of K observed policies Π∗ = {π∗
k}Kk=1 and the transition dynamics T .

2: Place a Gaussian process prior on g.
3: Observe g at a set of m points, {Γ(i)}mi=1, with Γ(i) ∼ Unif(0, 1)K
4: while m ≤ N do
5: Update the posterior distribution of g given all observed points.
6: Query a new point Γ(m) based on the acquisition function.
7: Observe gm = maxR f(Γ(m),R) with constraints in Equation 3b, 3c.
8: increment m
9: end while

10: Return the reward function R and the set of discount factors Γ with the largest observed g.

C Domains

C.1 Toy Domain with a Discrete MDP

The toy domain is designed such that the optimal policy is a 3-step piecewise function with respect to
the discount factor γ ∈ [0, 1]. We assume the transition dynamics T is given.

s0

+0

s1

+6

s2

+7

s3

+10

a0 w.p. 0.95

a1 w.p. 0.9

a2 w.p. 0.6

(a) Discrete MDP with the true reward function.

s0

+10

s1

+8.83

s2

+10

s3

+10

a0 w.p. 0.95

a1 w.p. 0.9

a2 w.p. 0.6

(b) Discrete MDP with the learned function.

Figure 3: Toy Domain

Specifically, s0 is the initial state, s3 is the absorbing state. The agent gets a large positive reward
when getting to the absorbing state (r(s3) = 10). The agent gets some small rewards when getting
to s1, s2 (r(s1) = 6, r(s2) = 7). With action a0, the agent moves to the absorbing state w.p. 0.95.
With action a1, the agent moves to s1 w.p. 0.9. With action a2, the agent moves to s2 w.p. 0.6. The
agent stays otherwise. Note that although s2 has a larger reward, the agent faces more stochasticity.
Thus, there is a trade-off when the discount factor γ varies. See MDP details in Figure 3a.
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Let π∗
0 , π

∗
1 , π

∗
2 denote the optimal action is a0, a1, a2 (πi = 1ai). We note that for this toy example,

in state s1, s2, s3, π∗
0 , π

∗
1 , π

∗
2 are equally optimal. Thus, we focus on s0 in the later analysis. The

value functions are


V π0
γ (s0) = 0.95·10

1−0.05γ

V π1
γ (s0) = 0.9(6+10γ)

1−0.1γ

V π2
γ (s0) = 0.6(7+10γ)

1−0.4γ

Solve pairwise difference between value functions and let γ0 ≈ 0.432, γ1 ≈ 0.876. When γ < γ0,
π∗ = π0. When γ0 < γ < γ1, π∗ = π1. When γ > γ1, π∗ = π2. See Figure 1a.

C.2 Discrete MDP for Identifiability Analyses

s0

+0(given)

s1

+6(unknown)

s2

+7(unknown)

s3

+10(given)
a0 w.p. 0.9

a1 w.p. 0.6

Figure 4: Discrete MDP for identifiability Analyses. We assume that R(s0), R(s3) are given and we
need to infer R(s1), R(s2)

We modify the discrete MDP for easier analyses of the feasible solution set of the reward function R
and the discount factor set Γ. Specifically, we only consider two actions. We assume that we are given
the rewards at state s0, s3 (R∗(s0) = 0, R∗(s3) = 10) and we only need to infer the rewards at
s1, s2, (R∗(s1), R

∗(s2) are unknown). With action a0, the agent moves to s1 w.p. 0.9. With action
a1, the agent moves to s2 w.p. 0.6. The agent stays in state s0 otherwise. See details in Figure 4.

We are given two entropy-regularized optimal policies π∗
0 , π

∗
1 with γ∗

0 = 0.1, γ∗
1 = 0.9, respectively.

We note that in state s1, s2, s3, π∗
0 , π

∗
1 are equally optimal. Thus for s ∈ {s1, s2, s3}, π∗

0(·|s) =
π∗
1(·|s) = 0.5.

C.3 Grid Domain

In the grid domain, there are two absorbing states: one at the left bottom cell with a small reward
(+10) and one at the right bottom cell with a small reward (+100). Each step costs −10 if not
reaching the rewarding state. The true reward function is plotted in 5a. The agent can start from
anywhere in the grid world except the absorbing states. The agent can choose to move {right,
down, left, up} at each state. If the agent comes across the wall by taking an action, the agent
stays where it is and moves to the corresponding state otherwise. The transition dynamics of the grid
domain are deterministic.

We observe 4 distinct expert policies whose optimal actions are visualized in Figure 6. We see that
when the discount factor is small, the agent will go for the closest reward regardless of its magnitude
(Figure 6a). When the discount factor is large, the agent prefers the large reward regardless of how
far the reward is (Figure 6d).

D Additional Results

We plot the trace plot of the best observed objective function of BO 7. We see that BO converges fast
(within 50 iterations for the toy domain and 200 iterations for the grid domain).
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(a) The true reward function R of the grid domain. (b) The learned reward function R̃ of the grid domain.

Figure 5: The reward function of the grid domain.

(a) The optimal actions of expert policy π∗
0 , (γ

∗
0 ∈ [0, 0.2)) (b) The optimal actions of expert policy π∗

1 , (γ∗
1 ∈

[0.2, 0.68))

(c) The optimal actions of expert policy π∗
2 , (γ∗

2 ∈
[0.68, 0.87))

(d) The optimal actions of expert policy π∗
3 , (γ

∗
3 ∈ [0.87, 1])

Figure 6: Visualization of the optimal actions at each state.

(a) The toy domain (b) The grid domain

Figure 7: Trace plots of the best observed objective value of BO: x, y-axis represents the iteration and
the best observed objective value, respectively. The red dashed line represents the global maximum
from performing a grid search over [0, 1]K .
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E Identifiability and Generalizability Analyses

E.1 Identifiability Analyses

In entropy-regularized RL with MDP ,M = S,A, T ,R, γ, the agent additionally maximizes its
entropy at each visited state,

π∗ = argmax
π∈P

V π
γ = argmax

π∈P
E
[ ∞∑

t=0

γt
(
R(st) + αH(·|st)

)]
,

where P denotes the probability space, H = −π(at|st) log π(at|st) and α is the temperature
parameter that controls the trade-off between the value function and the entropy regularization. When
α is large, the entropy penalization is large and the optimal policy is encouraged to be more stochastic.

In an IRL problem M\R where we observe a single optimal policy, we have the following theorem
Theorem 1. (Restate of Theorem 1 in [Cao et al., 2021]) Let T a(s, s′) denote the probability of
reaching state s′ from the state s by taking action a. For a fixed policy π(a|s), a discount factor
γ ∈ [0, 1), and an arbitrary choice of vector v ∈ R|S|, there is a unique corresponding action-
independent reward function R

T aR = α log π∗(a|s)− γT av + v for a ∈ A (10)
such that the MDP with reward function R yields an entropy-regularized optimal policy π∗

γ = π with
value function V π∗

γ = v.
Corollary 1. Consider the IRL problem described in Section C.2 with two observed policies π∗

0 , π
∗
1

acting optimally under the global reward function R∗ but different discount factors γ∗
0 , γ

∗
1 . Assume

that the true discount factors Γ∗ and the reward function are unknown to us. Then, for any given
γ0, γ1 ∈ [0, 1],

1. When γ0 = γ1, there is no feasible reward function.

2. When γ0 ̸= γ1, there is a unique reward function such that π∗
0 , π∗

1 are optimal under the
discount factors γ1, γ2.

Proof. Let R =

 0
R1

R2

10

, v0 =

v00v01
v02
v03

, v1 =

v10v11
v12
v13

. Plugging R, v0, v1 into Equation 10 results in,

T aR = α log π∗
0(a|s)− γ0T

av0 + v0 for a ∈ {a0, a1} (11)
T aR = α log π∗

1(a|s)− γ1T
av1 + v1 for a ∈ {a0, a1}. (12)

By re-writing Equations 11, 12 into a system of linear equations and solving it, we obtain the
following equalities

v01 = v02 = −α(γ2
0 + γ0 + 1) log 0.5 + 10

v11 = v12 = −α(γ2
1 + γ1 + 1) log 0.5 + 10

R1 =
1

0.9
[α log π∗

0(a0|s0)− γ0(0.1v00 + 0.9v01) + v00]

R2 =
1

0.6
[α log π∗

0(a1|s0)− γ0(0.4v00 + 0.6v02) + v00]

R1 =
1

0.9
[α log π∗

1(a0|s0)− γ1(0.1v10 + 0.9v11) + v10]

R2 =
1

0.6
[α log π∗

1(a1|s0)− γ1(0.4v10 + 0.6v12) + v10]

(13)

(14)

(15)

(16)

(17)

(18)

Subtract Equation 15 from Equation 17, Equation 16 from Equation 18 and we will have[
1− 0.1γ0 −1 + 0.1γ1
1− 0.4γ0 −1 + 0.4γ1

] [
v00
v10

]
=

[
α(log π∗

1(a0|s0)− log π∗
0(a0|s0))− 0.9(γ0v01 − γ1v11)

α(log π∗
1(a1|s0)− log π∗

0(a1|s0))− 0.6(γ0v02 − γ1v12)

]
The matrix

[
1− 0.1γ0 −1 + 0.1γ1
1− 0.4γ0 −1 + 0.4γ1

]
is invertible if and only if γ0 ̸= γ1. Thus, when γ0 ̸= γ1,

[v00, v10] have a unique solution, which corresponds to a unique [R1, R2].
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E.2 Generalizability Analyses

We test the generalizability of the reward function under misspecified discount factors. For each
pair of γ0, γ1 ∈ [0, 1], we generate 100 random transition dynamics {T (i)}100i=1 and discount factors
{γ(i)}100i=1. We then solve the optimal policies under the true reward function R∗ and the unique
feasible reward function R, denoted as π∗, π(i) respectively. We evaluate the policy quality by
computing the difference of the value function under the true R∗ and γ′,

△V =
1

100

100∑
i=1

V π∗

R∗,T (i),γ(i) − V π(i)

R∗,T (i),γ(i) (19)
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