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Abstract
Recommender systems aim to predict user in-001
terest based on historical behavioral data. They002
are mainly designed in sequential pipelines,003
requiring lots of data to train different sub-004
systems, and are hard to scale to new do-005
mains. Recently, Large Language Models006
(LLMs) have demonstrated remarkable gener-007
alized capabilities, enabling a singular model008
to tackle diverse recommendation tasks across009
various scenarios. Nonetheless, existing LLM-010
based recommendation systems utilize LLM011
purely for a single task of the recommenda-012
tion pipeline. Besides, these systems face chal-013
lenges in presenting large-scale item sets to014
LLMs in natural language format, due to the015
constraint of input length. To address these016
challenges, we introduce an LLM-based end-017
to-end recommendation framework: UniLLM-018
Rec. Specifically, UniLLMRec integrates019
multi-stage tasks (e.g., recall, ranking, re-020
ranking) via chain-of-recommendations. To021
deal with large-scale items, we propose a novel022
strategy to structure all items into a semantic023
item tree, which can be dynamically updated024
and effectively retrieved. UniLLMRec shows025
promising zero-shot results compared to super-026
vised models, and it is highly efficient by reduc-027
ing 86% input tokens than LLM-based models.028
Our code is available to ease reproduction.1029

1 Introduction030

Recommender systems aim to understand the pref-031

erences, historical choices, and characteristics of032

users and items via collected behavioral data (e.g.,033

clicks, likes, pages viewed, and etc) (Bobadilla034

et al., 2013). Given their capability to predict035

user interests, recommender systems are widely036

adopted by content/product providers. The rec-037

ommendation process includes item candidates re-038

trieval (i.e., recall) (Bobadilla et al., 2013), prioriti-039

zation of potential items (i.e., ranking) (Wang et al.,040

1https://anonymous.4open.science/r/
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Figure 1: Examples of conventional pipelined and LLM-
empowered end-to-end recommender systems.

2020; Qi et al., 2021), and the curation of a diverse 041

set of items for users (i.e., re-ranking) (Pei et al., 042

2019). Conventional recommender systems often 043

structure the recommendation process in sequential 044

pipelines, as illustrated in Figure 1a. These sys- 045

tems comprise several specialized models, each 046

tailored for one stage (e.g., recall, ranking, re- 047

ranking). Yet, the training and ongoing mainte- 048

nance of several distinct models incur significant 049

costs. Additionally, re-training the entire system 050

with new data poses challenges to scalability and 051

operational efficiency. Therefore, it is important 052

to design a unified end-to-end model to alleviate 053

these concerns. Meanwhile, understanding human 054

behavior presents substantial challenges in conven- 055

tional recommender systems. Typically, these sys- 056

tems (Kang and McAuley, 2018; Sun et al., 2019; 057

Song et al., 2019) model user and item information 058

in vector space, resulting in the potential loss of 059

rich contextual semantics. 060

Recent emergence of Large Language Models 061

(LLMs), such as ChatGPT (Brown et al., 2020) and 062

Claude (Bai et al., 2022), has demonstrated robust 063

ability to excel in a wide array of NLP tasks. The in- 064

herent potential of LLMs positions them as natural 065
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zero-shot solvers, capable of addressing multiple066

recommendation challenges simultaneously. Be-067

yond task performance, LLMs exhibit impressive068

capacity to assimilate human knowledge related to069

our physical world and society, as highlighted in070

recent studies (Sanh et al., 2021; Wei et al., 2021;071

Wang et al., 2022). In light of these capabilities,072

LLMs have recently been applied to enhance rec-073

ommender systems with strong zero-shot abilities074

and deeper understanding of human behavior.075

Firstly, Dai et al. (2023); Petrov and Macdon-076

ald (2023) formulate recommendation tasks within077

the framework of natural language generation. In078

their approaches, LLMs are finetuned to cater to079

different recommendation scenarios via Parame-080

ter Efficient Fine Tuning (PEFT) methods such as081

LoRA and P-tuning (Hu et al., 2021; Liu et al.,082

2021). Challenge 1 arises: though claiming to be083

efficient, these fine-tuning techniques rely on sub-084

stantial training data which is costly to obtain. This085

issue worsens in dynamic environments, where con-086

tinual item updates drive periodic LLM training.087

Meanwhile, Hou et al. (2023); Gao et al. (2023)088

design well-crafted prompts for the ranking stage of089

recommendation. These methods leverage on the090

strong zero-shot ability of LLM to perform ranking091

task. However, challenge 2 arises, as these meth-092

ods under-utilize the strong general or multi-task093

capabilities of LLM, whereas we believe LLM can094

do much more beyond a single-stage application.095

Moreover, Gao et al. (2023); Dai et al. (2023)096

attempt to concatenate the entire list of items into097

a single prompt to leverage LLM for recall. Items098

are often represented using attributes such as title,099

description, listing date, category, and etc. How-100

ever, the efficacy of such systems is constrained101

by trade-off between the size of the item list and102

the amount of detail provided for each item. For103

instance, incorporating more comprehensive de-104

scriptions requires reducing the number of items105

included in the list, and vice versa. Consequently,106

existing systems limit their input to either an item107

title or a brief description, with the item size rang-108

ing typically from 10 to 100. Challenge 3 arises,109

reflecting the difficulty in presenting a large-scale110

item corpus to LLMs in the natural language for-111

mat, due to the constraint of LLM input length.112

To address the aforementioned challenges, we113

propose UniLLMRec, which utilizes one single114

LLM to execute items recall, ranking, and re-115

ranking in a unified end-to-end recommendation116

framework (see Figure 1b). Note that we leverage117

the zero-shot capability intrinsic to LLMs, thereby 118

neither training nor finetuning is needed. Hence, 119

UniLLMRec not only streamlines the recommen- 120

dation process but also significantly mitigates the 121

reliance on extensive training datasets, enabling 122

more efficient and scalable deployment in various 123

recommendation scenarios. To make UniLLMRec 124

applicable to large-scale item corpus, we design a 125

novel semantic tree recall strategy. Specifically, we 126

construct a semantic item tree according to item 127

semantic information (e.g., category, subcategory, 128

keywords, etc) among large-scale item lists. Note 129

that each leaf node consists of only a small portion 130

of entire items. With the constructed item tree, the 131

recall of UniLLMRec is achieved by (i) traversing 132

from the root node until it reaches the leaf node, 133

and (ii) searching items from selected leaf nodes. 134

In comparison, conventional methods search can- 135

didates from the entire item list. In summary, our 136

contributions are in three-fold: 137

• We propose UniLLMRec, a first end-to-end 138

LLM-empowered recommendation framework, 139

which realizes the whole recommendation pro- 140

cess including stages of recall, ranking, and re- 141

ranking. It is much easier to deploy compared 142

with conventional recommender systems. 143

• We design a hierarchical semantic tree structure 144

that can frame large-scale item lists into small 145

lists in leaf nodes. Such the semantic tree can be 146

dynamically updated and effectively retrieved. 147

• We validate the effectiveness and efficiency of 148

UniLLMRec on two benchmark datasets. Our 149

zero-shot results are comparable to conventional 150

baselines trained on voluminous data. Compared 151

to LLM-based baselines, UniLLMRec is highly 152

efficient by reducing 85% input tokens. 153

2 Proposed Framework 154

2.1 Overview 155

The overall framework of UniLLMRec is depicted 156

in Figure 2. Firstly, we explain our strategy of con- 157

structing semantic item tree in Section 2.2. Based 158

on our semantic item tree, UniLLMRec can tra- 159

verse a large-scale item corpus for fast recall from 160

leaf nodes. Next, we explain our end-to-end archi- 161

tecture of UniLLMRec in Section 2.3. We elabo- 162

rate on how it can capture user interest and conduct 163

recommendation stages from recall to re-ranking. 164

2



Rank top <k> subcategories 
about <Category Name> 
based on user's interest. 
Output template: {1. 
Subcategory1, 2. 
Subcategory2, ...} 
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Be aware of ranking diversity 
and do not change the format 
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Figure 2: The overview of UniLLMRec: Unified LLM-empowered end-to-end recommendator
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Figure 3: An example of Semantic Item Tree.

2.2 Semantic Item Tree Construction165

LLM-based recommender systems face challenges166

in recalling items from large-scale item corpus167

mainly due to two challenges: (i) LLMs are con-168

strained by limited input length, while the con-169

catenated descriptions of 10-100 items can easily170

exceed such limit. (ii) lengthy item descriptions171

can easily confuse LLM, making it hard for LLM172

to extract salient item features. To alleviate these173

challenges, we introduce a hierarchical tree to or-174

ganize items into leaf nodes, facilitating LLM in175

efficiently handling large-scale item sets. Figure 3176

shows an example of a semantic item tree.177

Specifically, the root node (depicted in red color)178

encompasses all the items within the item corpus.179

Starting from the root node, items are categorized180

into corresponding subsets according to their se- 181

mantic information (e.g., categories, subcategories, 182

keywords, and other useful information if neces- 183

sary). Each subset corresponds to a child node (de- 184

picted in yellow color) of its root node. For each 185

node, we keep splitting it further into child nodes, 186

if it contains more fine-grained sub-categories. The 187

stopping criteria are met when (i) the attributes of 188

this node are semantically self-contained and (ii) 189

the number of items belonging to the node is rea- 190

sonable. Such nodes (depicted in green color) are 191

defined as leaf nodes, and each of them is a small 192

subset of the large-scale item list. 193

2.3 LLM-empowered End-to-End 194

Recommendation Framework 195

Existing LLM-based systems (Gao et al., 2023; 196

Hou et al., 2023; Wang and Lim, 2023) mainly 197

focus on the ranking stage in the recommender 198

system, and they rank only a small number of can- 199

didate items. In comparison, UniLLMRec is a 200

comprehensive framework that unitizes LLM to 201

integrate multi-stage tasks (e.g., recall, ranking, re- 202

ranking) by chain-of-recommendation, referring to 203

Section 2.3.1. Moreover, we elaborate on our effec- 204

tive retrieval strategy that enables UniLLMRec to 205

recall related items among large-scale item sets in 206

Section 2.3.2 207
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2.3.1 Chain-of-Recommendation Strategy208

With the aid of semantic item tree, we design a209

chain-of-recommendation strategy to seamlessly210

integrate it with our recommendation process.211

UniLLMRec provides an effective way for LLM to212

handle large-scale item sets under zero-shot setting.213

UniLLMRec executes the recommendation chain214

in a single session as follows:215

User Profile Modeling. Since private user profile216

information (e.g., age, gender, interests) is absent217

from the public dataset, we use user’s interaction218

history as LLM input for user profile modeling.219

Semantic Tree Search. UniLLMRec traverses220

the semantic tree from the root node to its child221

nodes. The search stops when the leaf node is222

reached. In each step, it deduces and ranks the top223

categories based on user interaction history and in-224

terest. More details are discussed in Section 2.3.2.225

Recall from Leaf Node. Every leaf node corre-226

sponds to a small subset of items that cannot be fur-227

ther divided based on semantic information. Hence,228

the text describing all items in the subset can be229

easily fed into UniLLMRec. Then, UniLLMRec230

will recall top items by considering user interaction231

history and interest.232

Diversity-aware Re-ranking. After recalling233

items from various leaf nodes, we aim to enhance234

the diversity of the recommendation items. There-235

fore, UniLLMRec will re-rank all the recalled items236

with our well-curated prompt to ensure diversity.237

2.3.2 Search Strategy238

The purpose of our search strategy is to balance be-239

tween the diversity and relevance of retrieved items.240

In general, we apply Depth-first Search (DFS) on241

our semantic item tree, as demonstrated in Algo-242

rithm 1. In particular, throughout each step of the243

search, only the top-ranked nodes will be selected244

for further DFS search, allowing UniLLMRec to245

bypass less relevant nodes. Upon reaching a leaf246

node, UniLLMRec will recall top k items from the247

item subset of this leaf node. The search ends if248

either (i) all leaf nodes are traversed, or (ii) the249

desired number of n items has been recalled. The250

parameter k effectively serves a lever to modulate251

the diversity of recalled items. Opting for a smaller252

k increases the recommendation diversity, but at253

the cost of increased search time. Conversely, a254

larger k tends to reduce diversity while expediting255

the search process.256

Algorithm 1: UniLLMRec
Input: User-item interaction history H
Output: Recommended item list R
Initialize: L = ∅, Q = Queue()

1 Infer interests:
I = User_profile_modeling(H)
Q.push(root)

2 while |L| < n do
3 node = Q.front()
4 Q.pop()
5 if node is leaf node then
6 Get item subset from node:

items =
Recall_from_subset(H, I, subset, k)

7 L.add(items)
8 else
9 childnodes =

Semantic_tree_search(H, I, node)
10 for node in childnodes do
11 Q.push(node)
12 end
13 end
14 end
15 R = Diversity-aware Re-ranking(H, I, L)

3 Experiment 257

In this section, we will first introduce the experi- 258

ment setting, then evaluate the model performance 259

on recall and re-rank tasks, and finally conduct 260

some topic analysis. 261

3.1 Experiment Setting 262

3.1.1 Datasets 263

In the experiments, we utilized two benchmark 264

datasets including the MIND dataset (Wu et al., 265

2020) and Amazon Review dataset (He and 266

McAuley, 2016) in the category of Movies and TV. 267

To ensure fair comparisons in our experiments, all 268

methods exclusively utilized the item titles as fea- 269

tures. For the MIND dataset, 500 test instances 270

are randomly sampled from the small_dev sub- 271

set, while the small_train subset (51283 samples) 272

served as the training set. For Amazon dataset, 500 273

samples were chosen from the reviews dataset for 274

testing, with the remaining 70728 samples used for 275

training. We list the statistics of datasets in Table 1. 276

3.1.2 Evaluation Metrics 277

We focus on evaluating the performance of the 278

proposed framework and baseline in recall and 279
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Figure 4: Performance Comparison of Recall and NDCG value on MIND and Amazon datasets.

Dataset Training set size Test set size

MIND 51,283 500
Amazon 70,728 500

Table 1: The statistic detail of dataset

re-ranking tasks. For each model, we primar-280

ily consider its Recall metric and the Normal-281

ized Discounted Cumulative Gain (NDCG) in282

the recall task, and Intra-List Average Distance283

(ILAD) (Zhang and Hurley, 2008) in re-ranking284

tasks. We evaluate the above metrics in top-k rec-285

ommendation items.286

3.1.3 Baselines287

UniLLMRec are compared with Popularity-288

based recommendation, FM (Rendle, 2010),289

DeepFM (Guo et al., 2017), NRMS (Wu et al.,290

2019), SASRec (Kang and McAuley, 2018), and291

LLM-Ranker (Hou et al., 2023).292

3.1.4 Implementation Details293

The UniLLMRec framework leverages gpt-3.5-294

turbo2 as the backbone model of LLM. The se-295

mantic tree depth in MIND dataset is 2, with leaf296

nodes merely located in the second layer. There297

are 17 and 276 nodes in the first and second lay-298

ers respectively. As for the Amazon dataset, items299

without semantic information are discarded during300

semantic tree construction. Subsequently, the con-301

structed tree has a depth of 4, and the leaf nodes302

may be located in all layers. The node numbers303

from the first layer to the fourth layer are 78, 298,304

126, and 19, respectively. In the semantic tree305

search stage, we set the recall subnode number as306

10. Meanwhile, in the experiments, the parameter307

k in the recall stage serves to limit the number of308

selected leaf nodes and is set to 5. In addition, the309

total number of recalled items is set at 20.310

2https://platform.openai.com/docs/models/
gpt-3-5

For conventional models, FM uses TF- 311

IDF (Term Frequency-Inverse Document Fre- 312

quency) (Salton and Buckley, 1988) of item titles as 313

features, while in DeepFM, NRMS, and SASRec, 314

item word embeddings are employed as features. 315

More details on parameter setting can be found in 316

Appendix A.2. Then, we increase the 10% training 317

set size for each model until the model performance 318

is equivalent to UniLLMRec. Thus, we can eval- 319

uate the performance between the capabilities of 320

zero-shot end-to-end methods and supervised con- 321

ventional recommendation models. 322

3.2 Performance Comparison 323

The overall performance of UniLLMRec and base- 324

lines are shown in Figure 4. To be specific, the 325

proposed end-to-end LLMRec framework is com- 326

pared with the methods in two categories. 327

The first is the method implemented under a 328

zero-shot setting. The popularity-based method, 329

hampered by the absence of user-specific informa- 330

tion, demonstrated an exceedingly low recall of 331

items. LLM-Ranker outperforms popularity-based 332

methods in both Recall and NDCG metrics, yet it 333

lags behind UniLLMRec. UniLLMRec is capable 334

of refining the candidate set based on user interests 335

and semantic trees, resulting in a smaller candidate 336

set compared to LLM-Ranker, thereby leading to 337

improved performance. 338

The other is the conventional recommendation 339

model. Our main focus lies in evaluating how the 340

performance of UniLLMRec is competitive with 341

conventional recommendation models with vary- 342

ing amounts of training data. The performance 343

comparison is shown in Figure 4 where x axis 344

denotes the training dataset ratio and y axis de- 345

notes the Recall@20 and NDCG@20. While 346

the training dataset ratio increases, FM excels 347

UniLLMRec when r reaches 0.3 in recall@20 348

on MIND but fails to outperform UniLLMRec 349

on Amazon. DeepFM, NRMS, and SASRec 350
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Figure 5: The impact of the re-rank stage on the recom-
mendation diversity.

outperform UniLLMRec in Recall@20 on both351

MIND and Amazon under a small ratio of training352

datasets. UniLLMRec outperforms baselines in353

NDCG@20 on MIND, which means it can recall354

the most relevant items in higher rank.355

In addition, UniLLMRec achieves better perfor-356

mance on MIND than Amazon. Due to the imbal-357

anced structure of the semantic tree in the Amazon358

dataset, as well as the issue of homogenized item ti-359

tles and insufficient semantic information of items,360

UniLLMRec can not fully leverage its ability to361

recall items based on the semantic tree.362

We also evaluate the impact of re-rank on di-363

versity, and demonstrate the results in Figure 5,364

which indicates that the re-ranking step contributes365

to enhancing the diversity of recommended results.366

3.3 Hyper-parameter Analysis367

The recall number k in leaf nodes is the only hyper-368

parameter in UniLLMRec. We conducted a study369

on the impact of k on the recall task, and illustrate370

the results in Figure 6. As the value of k increases,371

the number of items recalled by our model from dif-372

ferent leaf nodes steadily rises. We observe a phe-373

nomenon where both recall rate and NDCG initially374

rise and then decline with the increasing k. Clearly,375

with the continuous increment of k, the number of376

items recalled from each node also increases, in-377

dicating that the model tends to recommend items378

from subsets that are of higher interest to the user.379

When k decreases, the model recalls items from380

more leaf nodes, resulting in higher diversity in381

the retrieved results. In summary, the parameter382

k plays a crucial role in the model by influencing383

the trade-off between diversity and the quantity of384

recalled items under different categories.385

3.4 Prompt Study386

UniLLMRec utilizes prompts to adapt the LLM to387

recommendation tasks, where the design of prompt388

templates plays a crucial role in fully leveraging389

the capabilities of LLM in recommendation tasks.390

Therefore, we craft prompt templates from four dif-391
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Figure 6: The impact of k on recall performance.
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Figure 7: The impact of various perspective prompt
design on recall performance.

ferent perspectives including interest, relevance, ac- 392

tion, and recommendation tailored to the news rec- 393

ommendation as in Prompt4NR (Zhang and Wang, 394

2023). The prompts designed from various perspec- 395

tives are detailed in Table 2 where the blue variant 396

prompts are changed based on perspective. The 397

performance of models under these four types of 398

prompt settings is shown in Figure 7 from which 399

we can see that prompt design significantly impacts 400

the model performance. Using a relevance-based 401

prompt yielded a recall rate of only 1.24% and 402

an NDCG of 0.0183. By contrast, models using 403

prompts of action and recommendation achieve 404

approximately 2% recall rate. Besides, the best 405

performance is observed under the interest-based 406

prompt design, where the recall rate and NDCG 407

were twice that of the relevance prompt model. 408

These results underscore the significance of 409

prompt design on non-fine-tuned LLMs in recom- 410

mendation tasks. The interest-based prompt design 411

can effectively leverage the LLM’s ability to un- 412

cover user interests, thereby enhancing the person- 413

alization and precision of recommendations. 414

3.5 Token Requirement Analysis 415

UniLLMRec recalls items from subsets based on 416

the semantic tree, which effectively reduces the 417

model’s token requirement in the recall stage. We 418

conduct a statistical analysis on the size of the can- 419
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Table 2: Prompt design from 4 perspectives.

Perspective User profile modeling Semantic tree search Recall from leaf node Diversity-aware
re-rank

Prompt template A user’s click items
are: <Item List>.
<Perspective-Variable
Prompt>, from the
most important to the
least important.

Rank the top
<k>subcategories
about <Category
Name>based on
<Perspective-Variable
Prompt> from the
following candi-
dates without any
explanation. The
output template is:
{1. Subcategory1, 2.
Subcategory2, ...} Here
is the provided list:
<Subcategory List>.

Rank the top <k>items
about <Semantic
Information>based on
<Perspective-Variable
Prompt> from the
candidates about
<Topic>without any
explanation. The
output template is: {1.
Item1, 2. Item2, ...}
Here is the provided
list: <Item list>.

Rank these pre-
selected items based on
<Perspective-Variable
Prompt>. Be aware
of ranking diversity
and do not change
the format of the title:
<Item list>.

interest Summarize the inter-
ested items topic cate-
gories

the user’s interest the user’s interest the user’s interest

relevance Summarize the news
topic categories related
to users

the relevance related to
the user

the relevance related to
the user

the relevance related to
the user

action Summarize the news
topic that the user are
likely to click on

the probability that the
user is likely to click

the probability that the
user is likely to click

the probability that the
user is likely to click

recommendation Summarize the news
topic worth recom-
mending to the user

the degree of recom-
mendation to the user

the degree of recom-
mendation to the user

the degree of recom-
mendation to the user
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Amazon Output0
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Figure 8: Consumption of tokens for each stage.

didate item set and the average token length for420

each item. After sampling, the MIND dataset com-421

prises 1,217 items, while the Amazon dataset has422

6,167 items, with an average token length of 14423

and 10, respectively. The total tokens needed to424

input all items into the LLM exceed ten thousand.425

Consequently, an LLM recalling items from candi-426

date sets faces inherent challenges in handling such427

large-scale item datasets.428

However, by employing the UniLLMRec with429

semantic tree-based search, the token requirement430

can be effectively reduced. Figure 8 illustrates av-431

erage token consumption in each framework stage,432

demonstrating fewer tokens used by UniLLMRec433

in the four stages. For a set of items with a scale434

of n, our model reduces the token requirement435

from O(n) to O(log(n)), enabling LLM to pro- 436

cess large-scale item sets. 437

3.6 Topic Analysis 438

We conduct a statistical analysis on the distribution 439

of topics from UniLLMRec, user interaction his- 440

tory, and ground truth. Subsequently, we calculate 441

the similarity in topic distribution between ground 442

truth and user click history, as well as ground truth 443

and UniLLMRec. These values are 0.8091 and 444

0.6239, respectively, in the MIND dataset, and 445

0.8524 and 0.6157 on Amazon. Figure 9 illustrates 446

the top 10 most frequently occurring topics in the 447

ground truth. For the top 5 most frequent topics in 448

the ground truth, UniLLMRec also demonstrates 449

a high frequency in generating these topics. Ad- 450

ditionally, UniLLMRec generates content from a 451

broader range of topics, thereby enhancing the di- 452

versity of results. 453

4 Related Work 454

In this section, we provide an overview of the re- 455

lated work on conventional recommendation mod- 456

els and large language model for recommendation. 457

4.1 Conventional Recommendation Models 458

Conventional recommendation model (CRM) (Lin 459

et al., 2023) usually consists of the following pro- 460
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Figure 9: Illustration on the topic distribution.

cedures. It takes historical user behaviors, user461

profile feature, and item feature as input. Then, the462

embedding layer maps the sparse feature into dense463

vectors. Next the feature interaction component is464

explicitly designed. For example, DeepFM (Guo465

et al., 2017) adopts the linear model, factorization466

machine, and fully connected network to capture467

the low and high order interactions among different468

feature fields. Finally, the output layer generates469

the prediction result of the recommendation task.470

However, these methods are explicitly proposed471

for one specific stage of recommendation, thus can472

not be simultaneously deployed in different stages473

(from recall to re-ranking) in an end-to-end manner.474

By contrast, in this paper, we are the first to propose475

an LLM-enpowered end-to-end framework which476

leads to easy deployability with high efficiency.477

4.2 Large Language Model for478

Recommendation479

In recent years, large language models (LLMs)480

have shown their great potential and strong capabil-481

ity in handling different tasks like computer vision482

(Yang et al., 2023). In the recommendation com-483

munity, existing methods incorporating LLMs can484

be categorized into two groups. On the one hand, 485

some works directly generate the recommendation 486

result of item ID (Geng et al., 2022; Cui et al., 487

2022; Hua et al., 2023). For example, P5 (Geng 488

et al., 2022) reformulates recommendation tasks 489

to natural language processing tasks utilizing per- 490

sonalized prompts and conducts conditional text 491

generation. Hua et al. examine various item IDs 492

based on P5 (Hua et al., 2023). Nonetheless, they 493

require fine-tuning the LLMs which results in high 494

computation costs even if some parameter-efficient 495

fine-tuning techniques are adopted (Hu et al., 2021; 496

Liu et al., 2021; Bao et al., 2023). On the other 497

hand, some approaches (Gao et al., 2023; Liu et al., 498

2023; Hou et al., 2023) adopt a straightforward 499

strategy of inputting the candidate set directly into 500

the LLM to generate the recommended item list 501

using hard prompts, without fine-tuning the LLM. 502

However, all the existing methods primarily fo- 503

cused on one specific recommendation stage, and 504

they also face challenges related to input token lim- 505

itations and susceptibility to noise information. By 506

contrast, by introducing the semantic tree structure 507

and search strategy, our proposed framework can 508

tackle these problems and it also supports large- 509

scale dynamically updated item corpus free from 510

fine-tuning the LLM. 511

5 Conclusion 512

We propose UniLLMRec, the first end-to-end LLM- 513

empowered recommendation framework to execute 514

multi-stage tasks (e.g., recall, ranking, re-ranking) 515

via through chain-of-recommendations. To deal 516

with large-scale item sets, we design a novel strat- 517

egy to structure all items into a hierarchical tree 518

structure, i.e., semantic item tree. The semantic 519

item tree can be dynamically updated to incorpo- 520

rated new items and effectively retrieved according 521

to user interests. Extensive experiments on MIND 522

and Amazon datasets indicate that even under the 523

zero-shot setting, UniLLMRec achieves competi- 524

tive performance compared to conventional recom- 525

mendation models. Hence, UniLLMRec not only 526

simplifies the recommendation process but reduces 527

the reliance on large-scale training datasets as well. 528

This enables more efficient and scalable deploy- 529

ment in various recommendation scenarios. In the 530

future, we will work to improve the balance of the 531

semantic tree to avoid model performance degrada- 532

tion resulting from the imbalance tree structure. 533
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Limitations534

Our proposed UniLLMRec can effectively work on535

large-scale item corpus in a zero-shot manner. It536

mainly leverages the semantic item tree, by dynam-537

ically updating its structure in real-time. Therefore,538

there is no need for LLM fine-tuning to cater dy-539

namic item updates. Nevertheless, the tree is man-540

ually constructed based on item semantic informa-541

tion, similar items with subtle semantic differences542

can be assigned to different subcategories, thus in-543

troducing noises to our model. Additionally, issues544

such as structural imbalance and uneven item set545

sizes in leaf nodes exist in the constructed semantic546

tree. For instance, in the MIND dataset, a majority547

of news concentrates on a few subcategories. Simi-548

lar issues arise in the Amazon dataset, exhibiting549

the imbalanced distribution of the constructed tree.550

We leave it for future work to construct a balanced551

semantic tree with accurate semantic information.552

Ethics Statement553

The proposed LLM-empowered recommendation554

systems leverage user interaction history to infer555

user interests and conduct recommendation tasks.556

Therefore, on the one hand, for privacy concerns,557

the utilization of user data for inference is contin-558

gent upon obtaining explicit user consent. On the559

other hand, though concerns regarding fairness in560

large language models may arise, our proposed561

model solely relies on user historical interaction562

data, avoiding any involvement with sensitive user563

attributes, thus mitigating potential fairness issues564

associated with these features.565
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A Experimental Details 740

A.1 Datasets 741

• MIND3 is a large-scale news recommendation 742

dataset collected from Microsoft News. It in- 743

cludes the historical behaviors of click and non- 744

3https://msnews.github.io/
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click on English news articles from a million745

users.746

• Amazon-Review4 dataset is crawled from Ama-747

zon e-commerce platform containing not only748

the reviews and ratings from users but also the749

product information like price and category.750

Besides, for user-item interaction sequences, we751

limited their length to 50. Handling the extensive752

item subsets from some leaf nodes posed chal-753

lenges for direct input into the Language Model754

(LLM) using a single prompt template. Conse-755

quently, we constrained each subset to a maximum756

of 50 items. Positive items were grouped into their757

respective subsets, and negative sampling was ap-758

plied to each leaf node until reaching a size of 50.759

This process resulted in a candidate set of 1217760

items for MIND and 6176 items for Amazon.761

A.2 Baseline implementation details762

For popularity-based models, we recall the top 20763

items with the highest historical click-through rates764

based on user click history. Unfortunately, none of765

these 20 items were successfully recalled within766

the 500 samples selected for evaluation. Therefore,767

we conducted experiments on the entire test set,768

and the results are reported in Figure 4. The FM,769

DeepFM, NRMS, and SASRec models all adopt a770

dual-tower structure, utilizing the Adam optimizer.771

Cross entropy is employed as the loss function,772

with a negative sampling ratio of 1 across all mod-773

els. In the MIND dataset, all models use the item774

title as the input feature. However, in the Amazon775

dataset, using only the title feature leads to subop-776

timal performance for FM, DeepFM, NRMS, and777

SASRec. Consequently, for the Amazon dataset,778

we substitute the item description feature for the779

title as the input. For the DeepFM model, we set780

the embedding dimension to 50. In NRMS and781

SASRec, the embedding dimension is set to 300,782

with a dropout rate of 0.2.783

4https://cseweb.ucsd.edu/ jmcauley/datasets.html
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