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Figure 1. We present MonoPatchNeRF (left) on a large-scale scene facade that contains 68 input views. Our method renders realistic
images and accurate normals from the test view and reconstructs the complete mesh compared to baselines [20, 28, 48].

Abstract
The latest regularized Neural Radiance Field (NeRF)

approaches produce poor geometry and view extrapola-
tion for large scale sparse view scenes, such as ETH3D.
Density-based approaches tend to be under-constrained,
while surface-based approaches tend to miss details. In this
paper, we take a density-based approach, sampling patches
instead of individual rays to better incorporate monocular
depth and normal estimates and patch-based photometric
consistency constraints between training views and sam-
pled virtual views. Loosely constraining densities based on
estimated depth aligned to sparse points further improves ge-
ometric accuracy. While maintaining similar view synthesis
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quality, our approach significantly improves geometric accu-
racy on the ETH3D benchmark, e.g. increasing the F1@2cm
score by 4x-8x compared to other regularized density-based
approaches, with much lower training and inference time
than other approaches.

1. Introduction
Modeling 3D scenes from imagery is useful for mapping,
facility assessment, robotics, construction monitoring, and
many other applications, which typically require both accu-
rate geometry for measurement and realistic visualization
for novel views.

Traditional multi-view stereo (MVS) methods predict ac-
curate geometry given color images, but they have many
limitations, such as modeling incomplete surfaces, low abil-
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ity to render novel views, and reliance on complex algo-
rithms and heuristics that inhibit further improvement. Neu-
ral Radiance Field (NeRF) [26] and 3D Gaussian Splat-
ting [14] provide excellent synthesis of novel views, espe-
cially when interpolating or near the training views. Recent
work aims to improve the geometric accuracy in densely
sampled scenes, from object-centric scale [38, 46] to large
building scale [20, 48]. However, these approaches do not
perform well in large scenes with sparse views (Fig. 1),
which is a commonly encountered setting in many applica-
tions. In this paper, we aim to create 3D models that provide
accurate geometry and view synthesis for large scale scenes
with sparse input views.

Current approaches to improve geometric accuracy of
NeRF models include guiding with monocular geometry esti-
mates [48], applying appearance priors to virtual views [28],
and constraining solutions with SDF-based models [20, 48].
Our early experiments showed SDF-based methods have
difficulty capturing details in large, complex scenes, due to
sensitivity to initialization, the surface smoothness prior, and
limits on volumetric resolution. This leads us to a density-
based approach, where the challenge is regularizing an under-
constrained solution space.

The key to our approach is to use patch-based ray sam-
pling to provide novel constraints that better incorporate
monocular estimates and encourage cross-view consistency.
Monocular depth estimators (e.g., [12]) provide excellent
estimates of local shape but may not be globally consistent.
By sampling multiple rays in a local patch, we can predict
depth gradients and enforce consistency up to a scale and
translation. Also, rather than a general appearance prior [28]
without scene contexts, we apply a more specific constraint
of patch-based photometric consistency between sampled
virtual views and training views. To overcome the varying oc-
clusion patterns from the patches, we compute the occlusion
masks with the rendered scene geometry for the consistency
constraint. Density-based models tend to “cheat” by mod-
eling view-dependent effects as densities near the frustrum,
which we prevent with loose constraints based on monocular
depth maps aligned to sparse structure-from-motion points.

Our experiments show that each of these improvements
are critical to improve geometry estimates in large-scale
sparse-view scenes. Our method significantly outper-
forms other NeRF-based approaches on the ETH3D bench-
mark [34] in geometry estimation while maintaining compet-
itive results in novel view synthesis. We also achieve com-
petitive results on the Tanks and Temples benchmark [15],
which has denser views. Our method also has practical ad-
vantages of faster training and inference and lower memory
requirements, compared to other NeRF-based approaches
that aim for geometric accuracy. Our method still falls short
of the best classic MVS approaches according to point cloud
metrics, but provides a good balance of geometric accuracy

and novel view synthesis. Even with additional regulariza-
tion, our method remains faster than the baselines for both
training and inference, thanks to the efficient representation
QFF [18] and the NerfAcc [19] pipeline.

In summary, this paper offers the following main contri-
butions:
• More effective use of monocular geometry estimates

through patch-based ray sampling (Tab. 3, 4)
• Effective photometric consistency constraints between

training and sampled virtual views (Tab. 3, 4)
• State-of-the-art blend of geometric accuracy and novel

view synthesis for complex scenes with sparse views
(Tab. 1).

2. Related Works
Our work aims to create models from sparse views of com-
plex, large-scale scenes that achieve both geometric accuracy,
typically pursued by multiview stereo (MVS), and realistic
novel view synthesis, as pursued by neural rendering meth-
ods.

MVS is a well-studied field, ranging from early
works [22] with pure photometric scoring to more recent
approaches that incorporate learned features [11, 17, 44, 45].
While scene representations vary, state-of-the-art methods
typically predict the depth map of each image based on pho-
tometric consistency with a set of source views [16, 17, 23,
33], and use geometric consistency across views to fuse the
depths together into a single point cloud [8, 33]. The fused
point clouds are evaluated against the ground truth geome-
try for precision-recall [15], or accuracy-completeness [34],
with F1 score combining the harmonic mean of the two
values. Different from MVS, our method constructs a 3D
density representation and extracts depth maps using volu-
metric rendering of expected depth at source views, followed
by a conventional depth-map fusion pipeline [8].

Rather than producing precise 3D points, neural render-
ing methods, such as Neural Radiance Field (NeRF) [26]
and 3D Gaussian Splatting (3DGS) [14], aim to realistically
synthesize novel views by optimizing a model to render
the training views. Many efforts boost the rendering qual-
ity [1, 2, 40], rendering efficiency [27], model size [18, 31],
and device requirements [3]. DeLiRa [9] incorporates multi-
view photometric consistency but notes that this requires
overlap between input images, limiting applicability to
sparsely viewed scenes.

While NeRF and 3DGS approaches have been shown
to reliably estimate geometry and appearance in dense cap-
tures [7, 20], multiple papers [13, 28, 30, 37, 41, 43, 47]
show failures in cases of outward-facing, wide-baseline, or
sparse inputs. PixelNeRF [47] and DietNeRF [13] pro-
pose learning based feed-forward solutions that use prior
knowledge to better handle sparse inputs. RegNeRF [28]
regularizes by applying appearance likelihood and geometric
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Figure 2. Overview of our architecture. Our MonoPatchNeRF contains three major types of losses: 1) color supervision of RGB images, 2)
geometric supervision of monocular depth and normal maps, and 3) virtual view patches regularization between randomly sampled patches
and corresponding ground truth RGB pixels. We sample the virtual view pose via random translations from the training view camera center,
and obtain the virtual view corresponding patch by rendering along the back-projected ray that is unprojected with the rendered depth from
the training view (Figure 3). Additionally, we limit the density search space by pruning out the regions using the monocular geometry
(Figure 4).

smoothness objectives to patches sampled from virtual views.
SPARF [35] jointly optimizes the NeRF models and cam-
era poses with extracted pixel matches on input views, and
improves performance given sparse inputs. FreeNeRF [43]
improves sparse-view modeling of object-scale scenes by
attenuating high-frequency components of the ray positional
encoding and penalizing near-field densities. Diffusion-
NeRF [41] employs the diffusion model and computes the
gradient of the logarithm from rendered RGB-D patches as
additional regularization. Our strategy is closest to that of
RegNeRF [28], as we also sample patches from virtual views
to regularize appearance. We enforce a stronger constraint
of photometric consistency with training views and also en-
courage geometric consistency with monocular estimates.

Using image-based priors in regularization has also been
shown effective in training neural SDF and NeRF-based mod-
els. Roessle et al. [32] and NerfingMVS [39] use a pretrained
network to estimate dense depth given sparse SfM points,
and supervise the NeRF model with the estimated depth.
However, the sparse depth from SfM often contains noise
that can be passed down to the dense prediction [4, 29]. Neu-
ralWarp [5] proposes cross-view photometric consistency
for training patches as MVS with visibility information from
SfM. Our occlusion-aware photometric consistency between
virtual and training views takes advantage of the novel view
synthesis capability of NeRF to provide more effective con-
straints for sparse views.

Implicit surface models, such as SDF-based, model the
scene in terms of distance to surfaces, rather than point den-
sities. MonoSDF [48] guides signed distance function (SDF)
models with monocular estimates of depth and normals,
producing accurate surface models from videos of rooms.
Neuralangelo [20] improves the ability of SDF-based meth-
ods to encode details such as bicycle racks and chair legs
using coarse-to-fine optimization and by using numerical
gradients to compute higher-order derivatives. However, our

experiments show that these methods have limited effective-
ness for modeling complex, large-scale scenes from sparse
views.

3. Method
Given a collection of posed images capturing a large scale
scene, our goal is to construct a 3D neural radiance field that
renders high-quality images and predicts accurate and com-
plete surface geometry. We achieve this by introducing three
novel components: 1) patch-based geometry supervision
to better leverage the local consistency of monocular cues; 2)
patch-based occlusion-aware photometric regularization
across virtual and training viewpoints, better guiding NeRF
training when input views are sparse; 3) density restriction
through monocular geometry estimates and sparse points,
inhibiting NeRF from modeling view-dependent effects with
densities in unlikely areas. Figure 2 provides a summary of
our approach.

3.1. NeRF with Patch-Based Sampling

The Neural Radiance Field (NeRF) [25] establishes a para-
metric representation of the scene, enabling realistic render-
ing of novel viewpoints from a given image collection. NeRF
is defined by c, σ = Fθ(x,v), where c is output color, σ
represents opacity, x is the 3D point position, and v denotes
the viewing direction. The variable θ represents learnable
parameters optimized for each scene. The pixel color and
depth can be computed through volume rendering along the
corresponding ray r(t) = o + tv, where o is the camera
center and v is the ray direction.

NeRF is trained by minimizing the difference between the
rendered RGB value ĉ and the observed value c of random
sampled pixels across images. Despite its exceptional perfor-
mance in synthesizing nearby novel views, NeRF falls short
in capturing high-quality geometry and rendering extrapo-
lated viewpoints (Figure 6). To overcome these challenges,



we sample local patches instead of discrete rays, and pro-
pose our patch-based supervision and regularization. During
training, we iterate all training views, sample a batch of local
8× 8 patches P = {p}, and apply the per-pixel Huber loss
for each patch: Lrgb =

∑
p⊂P Lhuber((ĉp, cp)).

3.2. Distillation of Patch-based Monocular Cues

Learning-based networks for single-image normal and depth
prediction can provide robust cues for the geometry, espe-
cially for areas with photometric ambiguity (reflective and
textureless surfaces). Taking inspiration from this, prior
works [10, 48] exploit monocular depth and normal super-
vision for neural fields, and apply a pixel-based scale and
shift per batch to align monocular and predicted depth. How-
ever, monocular methods tend to be only locally consistent.
Image-wide scale-and-shift alignment may still leave large
depth errors that reduce the usefulness of monocular depth
estimates for supervision. To address this challenge, we
compute the scale and shift per local patch to better lever-
age the capacity of monocular cues and achieve better per-
formance (Compare Mono. and Mono.+Patch in Tables 3
and 4).

For each patch P = {p}, we compute the transformed
monocular depth {d†p} using the optimal scale s and shift
t from a least-squares criterion [24] between rendered
depth{d̂p} and monocular depth {dp} on P . The depth
loss Ldepth and L∇depth are applied to penalizes the absolute
and gradient discrepancy between {d̂p} and {d†p}:

Ldepth =
∑
p⊂P

∥d̂p − d†p∥ (1)

L∇depth =
∑
p⊂P

∥∇d̂p −∇d†p∥, (2)

Following RefNeRF [36], we compute density-based nor-
mals n∇

i = −∇σi/∥ − ∇σi∥ with the gradient of opacity
and MLP-based normals ni

θ = Fθ(xi,vi) with a normals
rendering head. After volume rendering, the two normals
predictions are supervised with monocular normals {np}
using angular and L1 loss:

Lnormal =
∑
p⊂P

(1− cos(np,n
∇
p ) + |np − n∇

p |)

+
∑
p⊂P

(1− cos(np,n
θ
p) + |np − nθ

p|)
(3)

We also apply the gradient loss L∇normal over n∇:

L∇normal =
∑
p⊂P

(|∇np −∇n∇
p |) (4)

Finally, our patch-based monocular loss is defined as:

Lmono = Ldepth + L∇depth + Lnormal + L∇normal. (5)
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Figure 3. Virtual view patch sampling and occlusion visual-
ization. (a) We first sample a virtual center op∗ near the training
center op. We then unproject the training patch to {Xp} with ren-
dered depth, and project {Xp} to op∗ for the virtual patch viewing
directions. Color of the virtual patch are rendered and compared to
the ground truth RGB in the training patch. (b) We unproject the
virtual patch to {Xp∗} with virtual rendered depth, and mask pixels
based on the angle {θp∗→p} between {Xp} to op and {Xp∗} to op.
For simplicity, the visualization only contains a single pixel p.

3.3. Patch-based Photometric Consistency over Vir-
tual Views

To better train NeRF models given sparse input views, we
enforce an occlusion-aware photometric consistency be-
tween training patches and randomly sampled virtual patches.
Though designed for sparse-view input, we find that the
photometric regularization works for general setups, signif-
icantly boosting the performance for both sparse-view (Ta-
ble 3) and dense-view scenes (Table 4).

As visualized in Fig. 3, for each training patch P , we
randomly sample a corresponding virtual camera center op∗

within a fixed distance to op (0.05× the scene width). The
correspondence is determined by unprojecting the pixel from
the training view into 3D points, denoted as Xp = op+d̂pvp,
and then back-projecting Xp into the op∗ for the correspond-
ing direction vp∗ = (Xp − op∗)/∥(Xp − op∗)∥. Given
op∗ and vp∗ , we render the color ĉp∗ and depth d̂p∗ . Since
viewing the same point from different perspectives can result
in varying occlusion patterns, we additionally apply mask
Mp→p∗ to remove any clearly occluded pixels to eliminate
the occlusion impact. We compute Mp→p∗ by comparing
an angle threshold θthresh and the angle θp∗→p between rays
from op to Xp and op to Xp∗ :

θp∗→p = arccos(vp∗→p · vp),

Mp→p∗ =

{
1 if θp∗→p ≤ θthresh

0 otherwise

(6)

where vp∗→p =
(Xp∗−op)

∥(Xp∗−op)∥ and Xp∗ = op∗ + d̂p∗vp∗ .
The occlusion-aware patch-based consistency loss is de-

fined as:

Lvirtual = LSSIM({ĉp∗}, {cp}, {Mp→p∗})
+ LNCC({ĉp∗}, {cp}, {Mp→p∗})

(7)



Figure 4. Visualization of density restrictions. On the left, we
present the point cloud reconstruction of our model trained with
density restrictions. On the right, a vertical slice of the recon-
structed scene is shown, both with and without density restrictions.
The original scene points and color points (green and red) represent
our reconstructed point cloud with and without density restrictions,
respectively. The blue area denotes density-restricted voxels. With
density restrictions, the ground is accurately reconstructed as a
plane, whereas without density restrictions, the ground sinks down.

where LSSIM and LNCC measure the structural similar-
ity and normalized cross-correlation between two masked
patches respectively. Both losses are robust to view-
dependent effects like illumination change. Though we rely
on rendered depth for the loss, the occlusion mask will in-
hibit the loss from incorrectly guiding the optimization in
the beginning.

3.4. Density Restriction by Empty Space Pruning
with Sparse SfM Geometry

One significant challenge in NeRF is the occurrence of
floaters and background collapse [1]. The challenge arises
because NeRF fails to predict correct geometry for surfaces
with low texture and view-dependent effects, or tends to over-
fit in near-camera regions that are unseen from other views
during training. We address this problem by limiting the
domain of density distributions using monocular geometric
prior and sparse multi-view prior (Figure 4).

Monocular depth provides useful relative distance infor-
mation, and SfM points provide metric depth that can be
utilized for aligning the monocular depth with 3D space. For
each view, we use RANSAC to solve a scale and shift for
monocular depth with the projected sparse points to mini-
mize the influence of noise in the points. We then constrain
the grid density distribution to a specified interval around
the estimated depth along each ray. This hard restriction
effectively prunes out empty space, thereby eliminating the
floaters and improving the overall geometry estimation.

3.5. Training

We start by estimating monocular geometric cues with im-
ages using the pretrained Omnidata [6] model. With the
sparse points from SfM, we use RANSAC to find the optimal
shift and scale for the monocular depth for density restriction.
To initialize the density restriction, we voxelize the space,
project the center of each voxel to all training views, label

voxels with centers lying within 20% of any monocular depth
map, and exclude sampling outside of labeled voxels. During
training, we sample 128 patches per iteration, sample one vir-
tual patch for each training patch, and evaluate the loss terms
for all patches. Angle threshold δthresh is set as 10 degrees
when estimating occlusion masks. We use NerfAcc [19]
with modified QFF [18] as our base model for faster training
and inference without loss of accuracy, and train with the
unified loss L =

∑
λ:L:, with λrgb = 1.0, λdepth = 0.05,

λ∇depth = 0.025, λnormal = 1× 10−3, λ∇normal = 5× 10−4,
λSSIM = 1×10−4, λNCC = 1×10−4. Please see our supple-
mentary material for more details on parameters and model
architecture.

4. Experiments

Our experiments investigate: (1) the geometric accuracy and
rendering quality of existing NeRF methods and our method
on the challenging MVS benchmarks, as measured by point
cloud metrics and novel view synthesis; (2) how each of our
contributions and system components affect performance.

Datasets: We experiment with ETH3D [34] and Tanks and
Temples (TnT) [15] because they are among the most chal-
lenging benchmarks for MVS. We use the training scenes
from the ETH3D High-Resolution dataset (ETH3D) [34],
consisting of 7 large-scale indoor scenes and 6 outdoor
scenes. These scenes are sparsely captured, with only 35
images on average, which is especially challenging for NeRF.
In addition, we experiment with TnT large-scale indoor
scenes (Church, Meetingroom) and outdoor scenes (Barn,
Courthouse), as well as the advanced testing scenes used in
the [48] to validate our method on densely captured scenes.

Evaluation Protocols: We evaluate the methods on novel
view synthesis and geometric inference. For novel view
synthesis, we train the model with 90% of the images and
treat the remaining 10% images as test views for evaluation.
We report Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), and Learned Perceptual
Image Patch Similarity (LPIPS) [49] as evaluation metrics.
For geometric inference, we train on all images, and evaluate
using the provided 3D geometry evaluation pipeline [15, 34]
on point clouds. To generate point clouds, for density-based
methods, we render the expected depth map of each training
view, and fuse the depth maps with the scheme proposed
by Galliani et al [8]; for SDF-based methods, we render the
mesh with SDF values using marching cube [21] and sample
points from the rendered mesh. For TnT dataset, we only re-
port the geometry inference as all views are densely captured.
Since NeRF papers rarely report F1-scores, we train and
evaluate scene models for some of the leading methods in
density-based and SDF-based NeRF, using author-provided
code, advice, and reported numbers where possible.
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Figure 5. Qualitative results on ETH3D [34]. We visualize the rendered RGB, depth and normal map of the test views and the complete
geometry reconstruction on the facade of ETH3D [34] for our method and baselines [20, 28, 43, 48]. We zoom in on challenging areas
such as lamps and stairs to highlight the difference. The depths of patches are re-normalized for visualization purposes. The geometry of
MonoSDF and Neuralangelo is a mesh, and the geometry of other methods is a projected point cloud. Best viewed when zoomed in.

4.1. Main Results

Table 1 compares our approach to density-based and SDF-
based NeRF approaches and to MVS for both novel view
synthesis and point cloud accuracy metrics. Fig. 5 compares
RGB, depth, and normal renderings of the NeRF-based ap-
proaches, and Fig. 6 shows more examples of meshes and
novel view synthesis. Fig. 7 compares generated point clouds
to MVS. Table 2 compares geometric accuracy to SDF-based
methods on the TnT dataset. More results like synthesized
video comparisons and sparse-view TnT comparisons are in
the supplemental.

Comparison to regularized density-based NeRF: Our ap-
proach provides more accurate and detailed novel view syn-
thesis, depth, normals, and meshes than RegNeRF [28] and
FreeNeRF [43] in the ETH3D experiments (Tab. 1, Fig. 5,
Fig. 6). Our approach particularly outperforms on texture-
less, semi-transparent, or reflective surfaces (e.g., tables,
glass doors, and windows). RegNeRF is second best and is
closest to our approach. While RegNeRF samples patches
in virtual views to regularize based on their color and ge-
ometry likelihood, our key differentiation is encouraging
patch-based geometric consistency with monocular cues and



Method NVS PSNR ↑ SSIM ↑ LPIPS↓ Prec.2cm ↑ Recall2cm ↑ F-score2cm ↑ F-score5cm ↑ Time (hrs/secs) ↓ Step
Mean / In/ Out Mean / In / Out Mean / In / Out Mean / In / Out Training / Inference

RegNeRF [28] ✓ 20.90 0.707 0.439 7.3 / 11.1 / 2.8 6.0 / 9.5 / 1.9 6.4 / 10.0 / 2.2 15.5 / 22.4 / 7.4 14.4 / 36.4 200000
FreeNeRF [43] ✓ 17.24 0.590 0.581 7.5 / 10.4 / 4.1 2.6 / 3.8 / 1.3 3.3 / 4.7 / 1.7 8.5 / 10.8 / 5.7 7.0 / 30.4 200000
MonoSDF [48] ✓ 18.85 0.679 0.498 25.2 / 26.2 / 24.0 19.3 / 28.5 / 8.5 20.1 / 26.9 / 12.1 41.1 / 45.2 / 36.4 20.9 / 136.0 200000
Neuralangelo [20] ✓ 19.53 0.696 0.414 3.3 / 3.4 / 3.2 2.1 / 3.4 / 0.6 2.3 / 3.4 / 1.0 7.2 / 8.0 / 6.2 19.9 / 61.9 200000
Ours ✓ 20.12 0.720 0.379 36.2 / 45.6 / 25.2 24.4 / 29.8 / 18.2 28.8 / 35.6 / 20.9 46.9 / 52.9 / 40.0 2.2 / 4.6 50000

Ours (MVS-Depth) ✓ 20.48 0.742 0.341 70.2 / 71.6 / 68.4 53.6 / 58.5 / 47.9 60.4 / 64.0 / 56.3 80.7 / 81.7 / 75.3 2.7 / 4.6 50000

Gipuma [8] ✗ - - - 86.5 / 89.3 / 83.2 24.9 / 24.6 / 25.3 36.4 / 35.8 / 37.1 49.2 / 47.1 / 51.7 - / - -
COLMAP [33] ✗ - - - 91.9 / 95.0 / 88.2 55.1 / 52.9 / 57.7 67.7 / 66.8 / 68.7 80.5 / 78.5 / 82.9 - / - -
ACMMP [42] ✗ - - - 90.6 / 92.4 / 88.6 77.6 / 79.6 / 75.3 83.4 / 85.3 / 81.3 92.0 / 92.2 / 91.9 - / - -

Table 1. Quantitative evaluation on ETH3D [34]. We report baselines, our results with and without MVS depth based guidance, and
reference MVS results on ETH3D [34]. We denote NVS as the model’s ability to perform novel-view synthesis, and the indoor and outdoor
scenes in the ETH3D dataset as In, Out. The top rows show the baselines and our methods without using additional multi-view supervision,
and the bottom rows show the reference MVS results and our method supervised with ACMMP [42] depth. We use author provided codes to
evaluate the baselines, and ETH3D webpage provided results for MVS. We mark the top methods in blue and green. ( best, second best)
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Figure 6. Qualitative comparison of novel view images and
meshes. We provide test view rendered images and meshes on
the ETH3D dataset [34]. The mesh of Ours, RegNeRF [28] and
FreeNeRF [43] are generated via TSDF fusion given predicted
RGBD sequence. Best viewed when zoomed in.

patch-based photometric consistency with virtual views. Our
ablation (Table 3) confirms that without using patches or
without incorporating both of these types of consistencies,
our method achieves F-scores more similar to these others.
Comparison to SDF-based approaches: SDF-based ap-
proaches like MonoSDF [48], Neuralangelo [20], and Neu-
ralWarp [5] are well-regularized by solving directly for an
implicit surface, and more easily incorporate monocular ge-

Scene Ours MonoSDF NeuralA.∗ NeuralWarp∗ Scene Ours MonoSDF†

Tr
ai

ni
ng

Meetingroom 22.0 27.2 32.0 8.0

A
dv

an
ce

d

Auditorium 8.0 3.2
Barn 49.4 6.0 70.0 22.0 Ballroom 26.6 3.7

Courthouse 38.3 6.1 28.0 8.0 Courtroom 17.2 13.8
Church 20.3 21.8 - - Museum 21.4 5.7

Mean 36.6 13.1 43.3 12.7 Mean 18.3 6.5

Table 2. Comparisons on TnT [15]. We report the F -score of each
method on Tanks and Temples Dataset. ∗ indicates results from
Neuralangelo [20], acquired with scale initialization from ground
truth points. † indicates results from MonoSDF [48]. For ease of
comparison against Neuralangelo, we exclude scene Church which
is not provided by the authors for comparison. NeuralA. refers to
Neuralangelo. Advanced scene results are from the official online
evaluation site. We mark the best scoring methods with bold.

ometry estimates. SDF-based approaches work very well
in some scenes, but have drawbacks of higher dependence
on initialization, compute-heavy optimization, and overly
smooth surfaces in the results. Qualitative results in the
ETH3D scenes (Fig. 5) show that our method captures better
details, such as the stairs, lamppost, and tables. In Tab. 1,
our method outperforms MonoSDF and Neuralangelo in all
novel view synthesis and geometry metrics. Interestingly,
Neuralangelo outperforms MonoSDF in NVS but greatly
underperforms in geometric accuracy because the sparse
views do not provide sufficient regularization to constrain
geometry.

The denser views and often simpler scenes make TnT
scenes more amenable to SDF-based methods (Tab. 2). In
the simpler Training scenes, our method performs best for
“Courthouse”, while Neuralangelo performs best for “Meet-
ingroom” and “Barn” and MonoSDF slightly outperforms
ours in “Church”. For Advanced TnT scenes, our method
consistently outperforms MonoSDF.

Robustness and compute can also be a concern for SDF-
based methods. For example, Neuralangelo requires scale
initialization from ground truth point clouds. For MonoSDF,
following author advice, we find that reducing the bias pa-
rameter (initialized sphere radius) from defaults gives much
better results. With this setting, MonoSDF captures the
columns in Relief_2 (Fig. 6) but still does not extend to the



Patch Mono. Virtual Restr. PSNR ↑ SSIM ↑ LPIPS↓ F-12cm ↑ F-15cm ↑ Time ↓
18.8 0.695 0.397 6.2 14.2 129

✓ 19.6 0.695 0.393 6.7 15.1 150
✓ 18.2 0.618 0.484 10.3 23.1 97

✓ ✓ 20.0 0.723 0.388 11.7 24.0 130
✓ ✓ 21.4 0.745 0.382 18.3 33.7 165
✓ ✓ ✓ 20.9 0.742 0.372 23.1 38.7 233
✓ ✓ ✓ ✓ 20.1 0.720 0.379 28.8 46.9 153

Table 3. Ablations on ETH3D [34]. We report evaluations and
training time (seconds per 1000 steps) of different combinations
of our components on the ETH3D dataset [34]. Patch denotes
using patch-based training, Mono. denotes using monocular geo-
metric cues, Virtual denotes using virtual view-based regular-
ization, and Restr. denotes density restriction. We mark the
best-performing combinations for each criterion in bold.
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Figure 7. Point cloud visualization. We visualize the point clouds
of ACMMP [42] and our method with MVS depth supervision
on ETH3D [34]. Our method is able to complete textureless and
reflective surfaces.

full depth of the gallery. Neuralangelo is memory-intensive;
we had to reduce the batch size from default to train us-
ing one A40 GPU (48GB). By contrast, our method uses
the same parameters for all experiments, and scale is set
automatically based on SfM sparse points, which are typi-
cally available for posed images. Our memory and compute
requirements are lower. See Tab. 1 and supplemental for
details.
Comparison to MVS: MVS methods, such as ACMMP [42],
produce very accurate geometry in some portions of scenes
but also tend to produce noisy points and incomplete sur-
faces, and they cannot synthesize realistic novel views. Quan-
titatively, our method underperforms MVS according to
point cloud metrics (Table 1), but qualitatively (Fig. 7) our
method’s point cloud is more complete and similarly ac-
curate, especially when using guidance from MVS depth
maps (described in Sec. 4.2). Much of the gap is likely
due to limitations in extracting the 3D point clouds from
the NeRF model. We use a simple approach of rendering
expected depth in each view and applying standard fusion
techniques as a post-process, while MVS methods often in-
clude optimization steps to improve geometric consistency
across views. Another possible cause is that multiscale MVS
methods better exploit high resolution images.

4.2. Ablation Study

Key Contributions: We ablate each key contribution of our
approach in Tables 3 and 4. Patch-based objectives, monoc-
ular cues, virtual view-based regularization, and density re-

Patch Mono. Virtual Restr. Church Meetingroom Barn Courthouse Mean

1.6 4.7 16.1 4.5 6.7
✓ 1.7 7.7 22.9 6.2 9.6

✓ 10.2 10.6 24.7 16.4 15.5
✓ ✓ 7.8 13.0 35.7 11.9 17.1
✓ ✓ 2.3 13.7 38.0 22.4 19.1
✓ ✓ ✓ ✓ 20.3 22.0 49.4 38.3 32.5

Table 4. Ablations on TnT [15] dataset Training scenes. We
show evaluations of different configurations on the selected TnT
scenes. We report the F -score for each scene and mark the best
performing configuration in bold.

striction are all important for geometry estimation. Table 3
indicates that monocular cues and the density restriction very
slightly decrease the novel view synthesis quality, likely be-
cause they prevent the model from using erroneous geometry
to create some view-dependent effects that it otherwise has
trouble modeling. When using monocular supervision with-
out patch-based training, loss for gradient of depth L∇depth
and normals L∇normal are not applied as gradients are less
accurate among randomly sampled pixels.
Incorporating MVS Depth: We investigate how improved
depth maps can affect results of our method. We use
ACMMP [42] inferred depth (denoted as d̂mvs

p for simplic-
ity) to supervise our rendered depth with an additional L1
Loss Lmvs = |d̂mvs

p −dp| and weight λmvs = 0.1. We do not
apply scale and shift for d̂mvs

p because MVS depth is metric
depth. In Table 1, “Ours (MVS-Depth)” shows that these
losses based on MVS depth significantly boost the geometry
and slightly improve the rendering.

5. Conclusion
We propose MonoPatchNeRF, a patch-based regularized
NeRF model that aims to produce geometrically accurate
models. We demonstrate the effective use of monocular
geometry estimates with patch-based ray sampling optimiza-
tion and density constraints, as well as the effectiveness of
NCC and SSIM photometric consistency losses between
patches from virtual and training views. Our method signif-
icantly improves geometric accuracy, ranking top in terms
of F1, SSIM, and LPIPS compared to state-of-the-art reg-
ularized NeRF methods on the challenging ETH3D MVS
benchmark. Still, there are many potential directions for
improvement, including: guided sampling of virtual view
patches; joint inference of geometry with single-view pre-
dictions; including per-image terms to better handle lighting
effects; expanding material models, e.g. with both diffuse
and specular terms per point; incorporating semantic segmen-
tation; and reducing memory and computation requirements.
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