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Abstract

Visible-infrared person re-identification (VIReID) is widely used in fields such
as video surveillance and intelligent transportation, imposing higher demands on
model security. In practice, the adversarial attacks based on VIReID aim to disrupt
output ranking and quantify the security risks of models. Although numerous
studies have been emerged on adversarial attacks and defenses in fields such
as face recognition, person re-identification, and pedestrian detection, there is
currently a lack of research on the security of VIReID systems. To this end, we
propose to explore the vulnerabilities of VIReID systems and prevent potential
serious losses due to insecurity. Compared to research on single-modality ReID,
adversarial feature alignment and modality differences need to be particularly
emphasized. Thus, we advocate for feature-level adversarial attacks to disrupt the
output rankings of VIReID systems. To obtain adversarial features, we introduce
Universal Adversarial Perturbations (UAP) to simulate common disturbances in
real-world environments. Additionally, we employ a Frequency-Spatial Attention
Module (FSAM), integrating frequency information extraction and spatial focusing
mechanisms, and further emphasize important regional features from different
domains on the shared features. This ensures that adversarial features maintain
consistency within the feature space. Finally, we employ an Auxiliary Quadruple
Adversarial Loss to amplify the differences between modalities, thereby improving
the distinction and recognition of features between visible and infrared images,
which cause the system to output incorrect rankings. Extensive experiments on two
VIReID benchmarks (i.e., SYSU-MM01, RegDB) and different systems validate
the effectiveness of our method.

1 Introduction

VIReID is widely applied in key tasks such as security monitoring[1–3]. Suppose the law enforcement
agency of a city uses ReID system to monitor public places for tracking criminal suspects. Internal
personnel may attempt to deceive the system by modifying the images [4–6]of criminal suspects due
to improper behavior or other reasons, in order to protect specific individuals. According to Figure1,
infrared adversarial samples will erroneously match visible samples, while visible adversarial samples
will also erroneously match infrared samples. The credibility and stability of VIReID are crucial in
such special application scenarios. However, there is currently insufficient theoretical research on the
security of VIReID. Therefore, this paper explores how to obtain better adversarial features and how
to address the task characteristics of VIReID modality differences and re-ranking.
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Figure 1: Security risks of VIReID in the physical world. Images with added noise are referred to as
adversarial samples. Red indicates that adversarial samples will incorrectly match pedestrians. Green
indicates that clean samples will correctly match pedestrians.

The current research on adversarial attacks in the fields of face recognition and person re-identification
mainly focuses on digital attacks [7–9], which refer to the manipulation, distortion, or tampering of
digital images to deceive, disrupt, or mislead systems, leading to erroneous identification results or
reduced recognition accuracy[10]. Adversarial attacks based on ReID focus on crafting adversarial
samples suitable for visible images and disrupting internal rankings. In contrast, VIReID requires
more consideration regarding the generalizability of attack methods under different imaging mecha-
nisms and how to align adversarial features between infrared and visible images. Moreover, dealing
with two modalities necessitates comparing distances between modalities and within modalities. To
address these challenges, we propose a feature-level adversarial attacks and ranking disruption for
VIReID.

First, we adopt the method of universal adversarial perturbation (UAP)[11] to generate adversarial
samples, which seeks a set of universal perturbations independent of the image and can generalize
well in deep neural networks. At the same time, it significantly lowers the threshold for implementing
adversarial attacks and adapts to different systems. Secondly, to make visible and infrared images
more consistent in the feature space, we propose a frequency-spatial attention module, achieving
adversarial feature alignment by unifying frequency and spatial features. Visible and infrared images
are generated under different imaging conditions; the former provides rich texture information, while
the latter contains significant pixel amplitude information. This module uses fast Fourier transform to
decompose features into amplitude and phase, corresponding to the texture details and spatial position
information of images, respectively. Since these features are closely related to the spatial domain,
a spatial attention module is chosen for these two components to further emphasize or suppress
different regions in the feature map. Additionally, a weighted spatial attention module is applied to
the shared features to maintain consistency in the feature space. This method not only focuses on
the frequency domain features of visible and infrared images from different imaging conditions but
also emphasizes their spatial features for significant pedestrian poses, thereby achieving adversarial
feature alignment. To disrupt the ranking of identification results, we propose an auxiliary quadruple
adversarial loss function. The visible and infrared pedestrian features extracted by the first-stage
model are used as auxiliary features in the calculation process of the features loss function extracted in
the second stage. By pulling the distance between the same modality and the same person closer and
pushing the distance between different modalities and the same person farther, while also ensuring
that the intra-class distance is smaller than the inter-class distance, the differences between modalities
are expanded and the ranking under different modalities is disrupted. By utilizing generated features
containing multiple types of information, the network’s ability to explore features at different levels
is enhanced. That is, with four types of features, we ensure a double guarantee to achieve the goal of
disrupting the ranking. The main contributions of this paper can be summarized as follows:

• We are the first to propose exploring the security of VIReID, considering the alignment of
adversarial features across modalities in VIReID.

• We propose a frequency-spatial attention module that integrates frequency-domain features
with spatial features to enhance the consistency and representation ability of adversarial
features.
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• We design an auxiliary quadruple adversarial loss function, which utilizes auxiliary features
to amplify the differences within and between modalities, thereby disrupting the ranking
results.

2 Related Work

Visible-Infrared Person Re-identification. VIReID [12–15]refers to the technique of identifying
and matching pedestrians from one modality to another using visible or infrared images. Moreover,
VIReID finds wide application in the field of security, enhancing the intelligence level of security
systems. The significant differences between different modalities make VIReID challenging. To
alleviate the modality discrepancy at the feature level, some methods adopt single-stream, dual-stream,
or multi-stream networks[16–19], extracting shared features from different modalities by designing
various attention mechanisms and loss functions[20–23]. Ye et al.[16] proposed the concept of
metric learning, jointly optimizing modality-specific and modality-shared matrices. Subsequently,
Zhu et al.[18] proposed a hetero-center loss, which for the first time shortens the distance between
feature centers of the same identity, bridging the gap between features of the same pedestrian
across different modalities. In addition, Ling et al.[24] devised a multi-constraint similarity learning
approach to comprehensively explore the relationships between cross-modal information. Meanwhile,
as the posture and shape of pedestrians provide important information in the recognition process,
these methods mainly focus on spatially enhancing feature representation. However, there are also
differences in frequency information between visible and infrared images. Li et al.[25] proposed a
novel frequency-domain modality-invariant feature learning framework to reduce modality differences
from a frequency-domain perspective.

Adversarial Attacks. In the fields of computer graphics and pattern recognition, adversarial
attacks[26–29] are an important area of research. Many studies have revealed the vulnerability
of deep models to carefully crafted small perturbation, resulting in significant errors with high
confidence in predictions. Adversarial attacks aim to explore adversarial noise that causes deep
learning models to behave abnormally. FGSM[30] belongs to the single-step attack algorithm, which
optimizes the loss by quickly determining the direction of perturbation for input samples and calcu-
lates the adversarial perturbation through backpropagation. The concept of iterative thinking was
subsequently incorporated into FGSM, thereby leading to the development of Projected Gradient
Descent [31] (PGD). Subsequently, adversarial attacks on ReID were also studied, with the core idea
of generating well-crafted adversarial examples or disturbing ranking results. LTA[32] used local
grayscale iteration to generate adversarial examples, mainly focusing on disturbing the color of the
original image. A mis-ranking formula was proposed by DMR[33] to increase the distance between
images of the same pedestrian while decreasing the distance between images of different pedestrians,
effectively disrupting the ranking results.

Cross-modality Attacks. Adversarial instances are widely present across various domains of visible
images. In recent years, exploration of adversarial instances in the field of infrared pedestrian
detection has begun. Osahor et al.[34] discussed perturbation by altering pixel values within infrared
images. Subsequently, Zhu et al.[35] attempted for the first time to alter the infrared radiation
distribution of the human body by simulating additional heat sources using a set of small bulbs,
generating physical adversarial examples. To be more easily implemented in the physical world, Wei
et al.[36, 37] considered the different imaging mechanisms of visible and infrared sensors, proposing
a unified adversarial patch to execute cross-modality physical attacks. Meanwhile, we chose to
perform security evaluation on visible-infrared person re-identification models proposed in recent
years in the digital world.

3 Proposed Method

As shown in Figure 2, the overall structure of the proposed method adopts a dual-stream ResNet
network as the backbone. Firstly, Universal Adversarial Perturbation (UAP) are added separately to
visible and infrared images. In the first stage, the Frequency-Spatial Attention Module (FSAM) is
embedded to extract frequency-domain spatial correlated features as auxiliary features for images
of two different modalities, visible and infrared. Subsequently, through a shared module, further
focus is applied to the temporal domain features. This completes the focus on spatial features in both
frequency and normal domains, making the learned information more diversified, thereby completing
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Figure 2: Overview of the proposed method. FSAM consists of FFT and IFFT along with a spatial
focusing module, focusing on the frequency-domain spatial characteristics of the image. We propose
a auxiliary quadruple adversarial loss function and provide a simple illustration of its operation.

the learning of features in the second stage. During the training phase, the features from the first stage
are used as auxiliary features and combined with the features from the second stage, all of which are
inputted into the Auxiliary Quadruple Adversarial Loss for optimizing the entire module.

3.1 Universal Adversarial Perturbation

Universal Adversarial Perturbation (UAP) aims to generate a single perturbation that can be added
to any image from the same distribution, resulting in mis-classification when added. Deep neural
networks are highly susceptible to this type of UAP, yet they remain imperceptible to the human eye.
Defining a set of images I that satisfies distribution µ, where g(I) fits the output function, and after
perturbation δ, the labels are not equal. That is:

g(I + δ) ̸=g(I). (1)
When δ is constrained by two conditions simultaneously, the optimization problem of finding universal
perturbation can be described as follows:

s.t.||δ||p ≤ ε, PI∼µ(g(I + δ)̸=g(I)) ≥ 1− ϵ, (2)

where P (·) represents probability, || · ||p denotes the p-norm, ε indicates the magnitude of the
perturbation to ensure that the adversarial perturbation is visually imperceptible, µ represents the
data distribution, ϵ ∈ (0,1] denotes the success rate of deception to ensure the attack’s success rate.
The goal is to find an adversarial perturbation δ that can be added to all sample points and will result
in misclassification of adversarial samples with a probability of 1 - ϵ. The UAP algorithm does not
require solving optimization problems or gradients of the model and is applied in scenarios where a
large number of adversarial samples need to be quickly generated.

So we choose universal perturbation for addition, which can be used on both visible and infrared
images and can also adapt to scenarios with a large number of pedestrian samples in real-world
environments. The introduction of UAP can make the model more independent of specific data
distributions and training sets, thereby reducing the model’s dependence on specific data and making
the system more flexible and adaptable to challenges in different environments and scenarios. Visible
and infrared images generate their respective adversarial samples as follows:

Q̂vi = Qvi + δvi, (3)

Q̂ir = Qir + δir. (4)

For the input Qvi and Qir, adding perturbation(δvi,δir) related to the data distribution to each, the
generated adversarial sample Q̂vi, Q̂ir can deceive the system by exploiting visual similarity attacks.
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3.2 Frequency-Spatial Attention Module

3.2.1 Fast Fourier Transform

The Fast Fourier Transform (FFT) is widely utilized in the field of image processing to convert images
into the frequency domain, enabling the analysis of the frequency components of the image. This
aids in understanding the overall structure, texture, and edge information of the image. Therefore, we
combine the Fast Fourier Transform with a spatial attention module to focus on the unique features in
the frequency domain of the image, which aids in enhancing feature representation capabilities. First,
we provide a brief introduction to the basic concepts of the FFT. Given the feature x ∈ RC×H×W

output by network, its FFT can be expressed as follows:

F(x)(u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x(h,w)e−2jπ(u h
H +v w

W ), (5)

where j represents the imaginary unit, u and v are the horizontal and vertical coordinates of the x,
and F(·) denotes the Fourier transform, C, H and W denote the number of the channel, height and
width of features. The frequency-domain feature F(x) is represented as F(x) = R(x) + jI(x),
where R(x) and I(x) represent the real and imaginary part of F(x). These real and imaginary parts
can be converted to amplitude and phase spectrums, which can be formulated as follows:

A(x)(u, v) =
[
R2(x)(u, v) + I2(x)(u, v)

]1/2
, (6)

P(x)(u, v) = arctan

[
I(x)(u, v)
R(x)(u, v)

]
. (7)

As shown in Figure 3, in the task of VI-ReID, the
amplitude component captures the overall bright-
ness and contrast of pedestrian images, reflect-
ing the luminance and color information of the
image, while the phase component captures the
structural information and details of the pedes-
trians, including their shape and outline, to help
distinguish between different pedestrians’ details
and features. The combination of these compo-
nents allows for the effective extraction of global
and local features of pedestrians. By focusing fur-
ther on spatial information characteristics in the
phase component, attention to spatial information
in the frequency domain is increased, enhancing
the ability to express distinguishing features. In
the context of the features x extracted by the net-
work, we represent the amplitude component of
the FFT as xa, and the phase component as xp.
Given that the dual-branch network separately
extracts visible and infrared pedestrian features,

(a) (b) (c)

Figure 3: Decomposition and reconstruction of
visible and infrared image in the frequency do-
main. (a) denote visible and infrared images of
pedestrian; (b)present the reconstructed images
with amplitude information only; (c) are the re-
constructed images with phase information only.

the amplitude component of the visible pedestrian features after FFT is represented as xva and the
phase component as xvp, while the amplitude component of the infrared pedestrian features after
FFT is represented as xiaand the phase component as xip.

3.2.2 Spatial Attention Module

The spatial attention module generates spatial attention maps using the spatial relationships within the
features. It focuses on the distribution of information, locating the position and shape of the subject
while reducing background information interference. We apply max pooling and average pooling
operations along the channel axis. These two pooling operations respectively extract the maximum
and average value information from the feature map and concatenate them to form a richer feature
descriptor. Pooling is performed along the channel axis, which helps highlight information-rich
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regions in the feature map and better locate key information. In summary, the specific calculation
process is as follows:

M(x) = Sigmoid(f([MaxPool(x);AvgPool(x)])), (8)

where M(x) denotes the weight distribution generated by applying the convolution layer and Sigmoid
denotes the sigmoid function. f represents a convolution operation with the filter size of 7 × 7.
MaxPool(x) and AvgPool(x) represent the features after passing through the max-pooling layer
and average-pooling layer, respectively.

Given that the phase component involves more spatial information, we sequentially apply the spatial
attention module to obtain the new phase component(x

′

vp,x
′

ip), which can be expressed as follows:

x
′

vp = Mv(xvp)⊗ xvp, (9)

x
′

ip = Mi(xip)⊗ xip, (10)

where ⊗ denotes element-wise multiplication, Mv(xvp) and Mi(xip) represent the attention weights
generated by the feature phase components. The combination of the original amplitude component
and the new phase component can reconstruct the original feature information through inverse fast
Fourier transform(IFFT). At this point, the network outputs features xv1 and xi1, which will serve as
auxiliary features. This process can be described as:

xv1 = IFFT (x
′

vp, xva), (11)

xi1 = IFFT (x
′

ip, xia). (12)

The features are then further input into a shared module T in the model to complete feature ex-
traction. At this point, choosing to pass through the spatial attention module allows for focusing
on spatial information in the original domain. This two-stage process completes the focus on both
frequency domain and original domain spatial information, enhancing the representation capability
of distinguishing features. Thus, the final extracted visible and infrared features can be expressed as:

xv2 = M
′

v(T (xv1))⊗ T (xv1), (13)

xi2 = M
′

i (T (xi1))⊗ T (xi1), (14)

where M
′

v and M
′

i indicates the weight distribution generated by the second-stage SAM module,
resulting in the final stage features, namely xv2 and xi2.

3.3 Auxiliary Quadruple Adversarial Loss

We propose an auxiliary quadruplet adversarial loss function to disrupt the system’s output ranking.
This method effectively adapts to ReID issues by attacking the predicted ranking results. Additionally,
considering the modality differences involved in VIReID, we introduce auxiliary features to fully
leverage the information disparities between modalities, erroneously outputting cross-modality
ranking results. In this process, there are both modality differences and identity differences. Therefore,
we approach it from two aspects: under the condition of the same modality, minimizing the distance
between the same identities and maximizing the distance between different identities; under the
condition of the same identity, minimizing the distance between the same modalities and maximizing
the distance between different modalities. Let’s start by controlling the same modality case:

L(xv2,xv1) =
[
D(xj

v2,x
j
v1)−D(xj

v2,x
k
v2)

]
+
, (15)

where xj
v1 represents the auxiliary feature, j and k denote different pedestrians, D(·, ·) represents

the Euclidean distance between two feature vectors and [x]+ = max(x, 0). When the modalities are
the same, the task is transformed into a single-modality ReID. This problem discusses the disruption
of matching pairs across modalities, while still maintaining the original requirement for the same
modality, namely, encouraging that the maximum distance between the most easily identifiable pairs
of images across identities is still less than the minimum distance between the most easily identifiable
pairs of images within an identity, ensuring that the sorting output within the same modality is normal.
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This part ensures that the original order and matching relationships within the modality are not
disrupted.

When the identities are consistent across modalities:

L(xv2,xv1,xi2) =
[
D(xj

v2,x
j
v1)−D(xj

i2,x
j
v1)

]
+
, (16)

we encourage reducing the distance between pedestrians in the same modality while increasing the
distance between pedestrians in different modalities. This strategy aims to narrow the distance within
the same modality while widening the distance between different modalities, thereby increasing the
modalities differences. It disperses the features in the feature space, making it more challenging
for the model to cluster features. This is intended to impact the matching and sorting results across
modalities. The loss function augmented with visible features can be expressed as:

L(xv2,xi2,xv1) =

N∑
j,k=1
j ̸=k

[
D(xj

v2,x
j
v1)−D(xj

i2,x
j
v1)−D(xj

v2,x
k
v2) + α

]
+
, (17)

where N is the number of person ID in a mini-batch. Meanwhile, using more discriminative
embedding centers(cv1, cv2, ci1, ci2) for each class, we introduce a margin term α to balance the two
terms. Thus, the loss function augmented with visible features and infrared features can be expressed
as follows:

L(cv2, ci2, cv1) =
N∑

j,k=1
j ̸=k

[
D(cjv2, c

j
v1)−D(cji2, c

j
v1)−D(cjv2, c

k
v2) + α

]
+
, (18)

L(ci2, cv2, ci1) =
N∑

j,k=1
j ̸=k

[
D(cji2, c

j
i1)−D(cjv2, c

j
i1)−D(cji2, c

k
i2) + α

]
+
. (19)

Finally, the auxiliary quadruplet adversarial loss function (LAQAL) is ultimately formulated as:

LAQAL = L(cv2, ci2, cv1) + L(ci2, cv2, ci1). (20)

The LAQAL forces the distance between modalities to increase, preventing them from easily clustering
together, thereby disrupting the overall ranking results.

3.4 Objective Function

Besides the auxiliary quadruple adversarial loss LAQAL, we also have the identity loss Lid. The
training process of VIReID is considered an image classification problem, where each identity is a
distinct class. During the testing phase, the output from the pooling layer or embedding layer is used
as the feature extractor. Given an input image xi with label yi, the probability of xi being recognized
as class yiis encoded using the softmax function and denoted as p(yi|xi). The identity loss is then
computed by the cross-entropy

Lid = − 1

N

N∑
i=1

log(p(yi|xi)), (21)

where N represents the number of training samples within each batch.

4 Experiments

4.1 Implementation Details

The experiments are conducted on an NVIDIA GeForce 3090 GPU with Pytorch. We chose the
powerful baseline model AGW[38], which is a ResNet-50 pretrained on ImageNet, as the backbone
network. During training, we randomly sampled 16 identities, each with 4 images, to form a mini-
batch of size 64. Pedestrian images are resized to 288 × 144. Data augmentation included random
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Table 1: Comparison of CMC (%) and mAP (%) with the state-of-the-art methods on SYSU-MM01
and RegDB datasets. Our results show the best results in terms of Rank-1 accuracy and mAP .

methods
SYSU-MM01 RegDB

All-search Indoor-search Visible to Thermal Thermal to Visible
Rank-1 Rank-10 mAP mINP Rank-1 Rank-10 mAP mINP Rank-1 mAP mINP Rank-1 mAP mINP

Before Attack 47.50 84.39 47.65 35.30 54.17 91.14 62.97 59.23 70.05 66.37 - 70.49 65.90 -
FGSM [30] 36.02 59.22 31.80 19.72 33.25 69.17 46.31 30.36 45.87 44.39 36.59 46.15 46.12 43.24
PGD [31] 26.60 46.65 25.67 16.90 36.89 75.19 43.50 27.20 29.37 26.87 17.83 29.05 29.12 17.14
SMA [39] 21.72 39.80 21.34 20.39 25.77 51.24 30.91 29.96 19.85 17.37 9.49 16.57 18.23 10.84
UAP [11] 17.59 56.81 25.35 20.89 35.34 47.86 30.75 19.13 29.51 24.42 16.64 19.61 18.95 12.67
LTA [32] 15.47 30.39 17.71 13.44 21.68 38.56 26.61 20.59 11.60 10.86 6.07 14.56 13.11 7.75
DMR [33] 9.20 24.43 10.21 4.71 13.62 27.14 14.94 6.27 4.97 4.80 2.12 6.09 5.26 3.54
Ours 0.79 9.83 2.81 1.69 1.68 17.35 6.73 5.65 0.49 0.85 0.57 0.71 0.89 0.60

Table 2: Comparison of CMC (%) and mAP (%) of different VIReID systems before and after attack.
Bold numbers indicate values after attack.

methods
SYSU-MM01 RegDB

All-search Indoor-search Visible to Thermal Thermal to Visible
Rank-1 Rank-10 mAP Rank-1 Rank-10 mAP Rank-1 Rank-10 mAP Rank-1 Rank-10 mAP

HCLoss[18] 56.96/1.09 91.50/10.37 54.95/2.91 59.74/2.09 92.07/18.85 64.91/7.17 86.02/2.67 96.36/10.73 74.80/2.82 87.28/1.02 97.04/4.66 78.30/2.07
CAJ[40] 69.88/1.04 95.71/10.32 66.89/2.99 76.26/2.45 97.88/18.93 80.37/7.66 85.0/1.04 95.5/10.32 84.6/2.99 88.3/2.45 98.5/18.93 81.9/7.66
MMN [41] 70.60/1.39 96.2/4.55 66.9/3.81 76.2/4.26 97.2/27.81 79.6/8.16 91.6/0.49 97.7/0.97 84.1/1.71 87.5/3.50 96.0/14.08 80.5/3.72
DEEN [42] 74.70/1.71 97.60/10.49 71.80/3.55 80.30/2.04 99.00/17.96 83.30/7.34 91.1/3.15 97.8/12.48 85.1/4.05 89.5/2.85 96.8/16.34 83.4/6.21

horizontal flipping and random erasing with a probability of 0.5. We optimize using the stochastic
gradient descent (SGD) optimizer, with a weight decay set to 0.0005 and a momentum parameter
set to 0.9. The initial learning rate for both datasets was set to 0.1, and it was decayed by a factor
of 0.1 at the 20th and 50th epochs, respectively. Finally, the margin α in the auxiliary quadruplet
adversarial loss function is set to 0.2. We adopt a warm-up learning rate scheme, with a total of 60
training epochs.

4.2 Datasets

SYSU-MM01[1] is a cross-modality pedestrian re-identification dataset proposed in 2017. There
are 287,628 visible images and 15,792 infrared images in total. Cameras 1 and 2 are installed in
well-lit environments, cameras 3 and 6 operate under infrared conditions, and cameras 4 and 5 are
placed in outdoor scenes. The dataset comprises two testing modes: all-search and indoor-search.
The all-search mode is more challenging because the gallery includes images from all cameras.

The RegDB [43]dataset comprises 412 individuals, with each person having 20 images, including
10 visible images and 10 infrared images. Among the 412 individuals, there are 254 females and
158 males, with 156 individuals captured in frontal views and 256 individuals captured in rear views.
During the testing phase, RegDB offers two modes: visible to infrared and infrared to visible. In the
visible to infrared mode, visible images serve as query images, while infrared images are used as
gallery images. The infrared to visible mode operates in the opposite manner.

4.3 Comparison with State-of-the-Art Methods

We select six different methods to evaluate the security of the AGW model. Among them, FGSM and
PGD are typical gradient-based methods for generating adversarial samples, while UAP generates
universal perturbations that are independent of the image. Additionally, we chose SMA, DMR, and
LTA, three pedestrian re-identification attack methods which primarily disrupt ranking and generate
adversarial samples through local color iteration. The results, as shown in Table1, indicate a sharp
decline in all evaluation metrics after attacking AGW across two datasets and two different tests. In
the RegDB dataset, under two testing modes, our mAP decreased dramatically from 66.37% and
65.90% to 0.85% and 0.89%, nearly approaching 0. This demonstrates that our method is more
suitable for testing robustness against VIReID tasks.

To demonstrate the universality of our method, we select three approaches to improve the recognition
accuracy of VIReID systems: HCLoss enhances intra-class cross-modality similarity through a
heterogeneous center loss function, CAJ improves recognition accuracy based on data augmentation
techniques, and MMN and DEEN utilize different network designs to better extract effective shared
features. These methods are commonly used to improve VIReID accuracy at the feature level. As
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Table 3: Analysis about the influence of each component in terms of Rank-1 (%) and mAP (%).

Noise FSAM SAM LAQAL
SYSU-MM01 RegDB

Rank-1 mAP Rank-1 mAP
46.73 45.78 82.24 76.52

✓ 16.67 18.28 33.00 30.60
✓ ✓ 12.75 12.17 15.74 12.91
✓ ✓ 11.04 13.19 20.73 19.81
✓ ✓ 14.62 15.52 15.86 15.53
✓ ✓ ✓ 5.10 6.35 7.58 7.51
✓ ✓ ✓ 1.07 3.27 0.58 1.35
✓ ✓ ✓ 1.74 3.81 6.70 5.77
✓ ✓ ✓ ✓ 0.79 2.81 0.49 0.85

Table 4: Performance comparison of different feature extraction methods in terms of CMC (%) and
mAP (%) on RegDB. (Setting: Baseline + SFM + LAQAL.)

Settings + FSAM SYSU-MM01 RegDB
Rank-1 Rank-10 mAP mINP Rank-1 Rank-10 mAP mINP

block0 1.05 10.60 3.15 2.04 0.49 4.17 1.07 1.27
block1 1.05 10.52 4.29 5.33 0.53 1.69 1.68 2.41
block2 1.05 10.07 3.56 2.25 0.54 2.94 1.23 1.11
block3 1.34 10.41 4.07 4.72 0.49 1.46 1.67 2.41
block4 1.01 10.12 2.91 1.68 0.49 4.71 0.93 0.67

block0-block4(ours) 0.79 9.83 2.81 1.69 0.48 4.64 0.85 0.57

shown in Table2, our experimental results show that after applying our attack method, the mAP of all
systems dramatically decreased across different datasets and test modes (for example, the Rank-1
of DEEN drops from 74.70% to 1.71%, and mAP falls from 71.80% to 3.55% in all-search mode),
indicating that these systems cannot withstand our attacks. This demonstrates that our method can
effectively test the robustness of various VIReID systems.

4.4 Ablation Study

As shown in Table3, the effectiveness of different modules is validated on two datasets. Using the
SYSU-MM01 dataset as an example, after adding noise to generate adversarial samples, the mAP
decreases from 45.75% to 18.28%. Subsequently, the three modules are individually tested on this
basis, and all show a decrease in accuracy, with the FSAM module being the most effective, reducing
the mAP to 12.17%. Additionally, since both FSAM and SAM are designed to enhance adversarial
feature representation capabilities, the combined effect of these two modules is tested, further reducing
the mAP to 6.35%. The experiments demonstrate that all three proposed modules are highly effective.
Although targeting different aspects, their combined usage enhances the effectiveness of method.

Determining which stage of ResNet-50 should have the FSAM module inserted. In this experiment,
we use ResNet-50 as the backbone, which has five stages: block 0 to block 4. We study the impact
on model performance by inserting the FSAM module after different stages of ResNet-50. This
experiment controls only the insertion position of FSAM as the variable, keeping all other factors
constant. As shown in Table4, inserting FSAM after block 0 and block 4 results in lower accuracy,
indicating better performance. This suggests that in the shallow layers of the network, image
processing captures more effective information from the initial frequency domain features, while in
the deeper layers of the network, the feature representation capability is further enhanced, and spatial
information becomes more important. Based on these results, we integrate the proposed FSAM
module after block 0 and block 4 of the ResNet-50 model.

As shown in Table 5, we compared our frequency domain attention module with channel attention
mechanisms like SE-Net [44] and ECA-Net[45]. The results reveal that while SE-Net and ECA-
Net excel in certain areas, our frequency domain attention module is highly competitive across
various metrics. It achieves the best Rank-1 and mAP scores on both datasets. Channel attention
mechanisms often focus on global features, which may overlook local details and spatial relationships
in cross-modal VIReID tasks, leading to potential information loss and reduced performance.
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Table 5: Performance of the FSAM module replacing different attention mechanisms on CMC(%)
and mAP(%).

Attention SYSU-MM01 RegDB
Rank-1 Rank-10 mAP mINP Rank-1 Rank-10 mAP mINP

SENet 1.66 12.15 3.30 1.76 0.53 5.00 1.15 0.64
ECA-Net 1.60 11.65 3.24 1.65 0.68 3.64 1.20 0.68

Ours) 0.79 9.83 2.81 1.69 0.48 4.64 0.85 0.57

4.5 Visualization Analysis

We compare the t-SNE visualization results on the baseline and the proposed method. To ensure
fairness, we randomly select several images of ten identities from all cameras. For each individual,
20 visible images and 20 infrared images are randomly chosen. As shown in Figure4, after the attack,
the clustering of all pedestrians became more dispersed, with the visible and infrared modalities each
forming their own clusters, and the relative distance between them increasing. The visualization
experiments validated the effectiveness of our attack method, as the attack further exaggerated the
gap between the two modalities, effectively suppressing the output performance. These results
demonstrate that our method is highly effective for security testing in VIReID.

Baseline Attacked

Figure 4: t-SNE visualization comparison before and after the attack. Different colors represent
different identities. The ’asterisks’ and ’rectangles’ denote the infrared person features and visible
person features, respectively. After the attack, the features are dispersed, enlarging the distance
between modalities.

5 Conclusion

In this paper, our objective is to conduct security validation of VIReID systems and propose a novel
attack method suitable for cross-modality tasks. We introduce the frequency-spatial attention module,
which are used at two stages of feature extraction, focusing on spatial information in both frequency
and source domains to enhance the representation capability of adversarial features and strengthen
the effectiveness of adversarial samples. Additionally, we propose an auxiliary quadruple adversarial
loss function considering the modalities differences involved in VIReID tasks to interfere with the
ranking of system outputs, completing the robustness test of the current VIReID system. Extensive
experiments not only deepens the understanding of the security of cross-modality ReID systems but
also provides a new direction for the development of VIReID and emphasizes the importance of
ensuring their reliability and protection in practical applications.
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7 NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract succinctly summarizes the core contributions and scope of the
paper, while the introduction elaborates on the research background, problem definition,
proposed methods, and main results obtained.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: Our approach was tested on only a few datasets and systems, demonstrating
the feasibility of the theory without exploring its application in real-world scenarios.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Detailed theorems and formulas are provided in Section 3, with the theorems
relied upon being properly cited.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We contribute a novel architecture, and the entire process is detailed in Section
3 through images and formulas.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will consider making the code details publicly available in the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a detailed explanation in Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experimental results do not include error bars, confidence intervals, or
tests for statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We present the relevant computational information in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the relevant requirements and ensured compliance with
ethical guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: While our method can be applied for robustness testing of models, it also
implies that certain groups might use this method to attack systems, resulting in potentially
destructive impacts. These are considerations that need to be taken into account in practical
deployments.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We use publicly available datasets and do not involve scraping data from the
internet.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We ensure that all assets used are properly credited and adhere to the relevant
licenses and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: The pedestrian dataset used in this paper is publicly available, and it is stated
by the publisher that each pedestrian captured in the dataset has signed a privacy release
allowing the use of the images for scientific research and display in research papers.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: The pedestrian dataset used in this paper is publicly available, and it is stated
by the publisher that each pedestrian captured in the dataset has signed a privacy release
allowing the use of the images for scientific research and display in research papers.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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