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Abstract. Abdominal organs serve as frequent sites for the manifesta-
tion of cancer, however, a prevailing gap exists in the availability of a
widely accessible and precise segmentation model tailored to these organs
and associated tumors. While nnU-Net has become a powerful baseline
for medical image segmentation in recent years, its default configura-
tion lacks the ability to leverage unlabeled data and falls short in terms
of inference efficiency. To surmount these inherent constraints, we pro-
pose an improved approach based on nnU-Net. Our proposed method
incorporates a semi-supervised algorithm that utilizes pseudo-labeling
to effectively process unlabeled data within the nnU-Net framework.
We improve the utilization of unlabeled data by generating high qual-
ity pseudo-labels with the default nnU-Net. Additionally, we reduce the
network complexity of 3D U-Net and train a lightweight student model
using a combination of labeled and pseudo-labeled data. In terms of per-
formance, our lightweight student model achieved promising results on
the validation set. The method yielded the average DSC of 0.8856 and
NSD of 0.9451 in the process of segmenting 13 abdominal organs. For tu-
mor segmentation, the average DSC and NSD were computed as 0.4258
and 0.3513, respectively. The average running time per case is 29s and
the average GPU memory is 25411MB. In conclusion, our approach ef-
fectively addresses the limitations of nnU-Net, improving both inference
efficiency and the utilization of unlabeled data. The encouraging results
obtained in the FLARE 2023 challenge underscore the potential of our
method to advance practical clinical applications in the field of medical
image segmentation.
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1 Introduction

Accurate segmentation of abdominal organs is crucial for diagnosing and treat-
ing abdominal lesions [1], with CT imaging being widely used in clinical practice.
⋆ Corresponding author
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Manual segmentation is time-consuming, labor-intensive, and prone to variabil-
ity among observers [2]. AI development presents an opportunity to automate
this process, reducing the burden on clinicians and enabling applications like
surgical planning. However, deep learning models have become increasingly com-
plex, requiring large amounts of labeled data [3]. Medical image segmentation,
especially for intricate abdominal organs or diseases, requires pixel-level labels
that can only be provided by experts. The growing size and resolution of images
exacerbate these challenges. In clinical settings, there is a significant amount
of semi-labeled or unlabeled data that cannot be effectively utilized with fully
supervised learning approaches.

In this context, the practicality of semi-supervised segmentation methods
has seen a notable increase, primarily attributed to their ability to effectively
exploit small, accurately labeled datasets while leveraging larger pools of unla-
beled data, resulting in enhanced model accuracy [4]. In recent years, the field
of medical image segmentation has witnessed widespread application of semi-
supervised learning techniques. These approaches exploit the global characteris-
tics of data by incorporating unlabeled samples and can be broadly categorized
into three types [5]: first, utilizing model predictions on unlabeled images to
generate pseudo-labels for subsequent model training; second, jointly training
the model with both labeled and unlabeled data; third, incorporating unlabeled
images with prior knowledge (such as shape and location) along with labeled
images during model training. Initially, pseudo-labeling was employed in early
semi-supervised methods [6], and many existing frameworks have integrated
this concept [7,8,9,10]. Presently, the latest advancements in semi-supervised
segmentation revolve around consistency learning, adversarial learning, and en-
tropy minimization. Furthermore, hybrid semi-supervised learning [11,12,13,14]
has gained significant attention and application, where diverse methods are in-
tegrated to optimize the model and enhance segmentation performance.

In recent years, the nnU-Net framework [15] has been widely adopted for
medical image segmentation. While it excels in fully supervised scenarios, it
lacks built-in support for semi-supervised training. In practical clinical settings,
time constraints for inference and limited labeled data availability hinder optimal
efficiency with the default nnU-Net. The first-place solution of Flare 2022 chal-
lenge developed a semi-supervised learning framework based on nnU-Net [16],
demonstrating the efficacy of pseudo-labeling methods in leveraging unlabeled
data to enhance model robustness.

In this work, we propose a semi-supervised framework based on nnU-Net for
abdominal organ segmentation, aiming to meet the requirements of fast infer-
ence and low computational cost while making the most of a limited amount of
labeled data. We introduce high-quality pseudo-labels by utilizing a resource-
intensive nnU-Net trained on fully labeled CT scan data to generate them for
the semi-labeled data. In a lightweight nnU-Net, we jointly train the labeled
images with pseudo-labels and the unlabeled images to obtain a model capable
of fast inference. Additionally, we have implemented a method proposed in the
literature [16,17] that utilizes efficient sliding window strategies based on prior
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knowledge of abdominal organs to reduce the number of inference windows and
leverages GPU for resizing data, leading to improved inference efficiency.

The principal contributions of our study can be outlined as follows:

– We propose a semi-supervised segmentation framework based on nnU-Net,
which effectively utilizes unlabeled data to improve the segmentation accu-
racy of models.

– We performed compression optimization on the default nnU-Net. By reduc-
ing the input data size and using a narrower network width, we maintained
high segmentation accuracy while minimizing GPU resource requirements,
making it more suitable for practical applications and competition needs.

2 Method

To leverage unlabeled data, we initiate the process by training a teacher model
using labeled data. We chose the default nnU-Net as the teacher model, which
works well in most cases. Subsequently, we utilize the well-trained teacher model
to generate predictions for the unlabeled data, thereby obtaining high-quality
pseudo-labels that significantly enhance the training process. To optimize infer-
ence efficiency, we draw inspiration from the first-place solution of the previous
Flare 2022 challenge [16] and downscale the default U-Net network of the nnU-
Net framework to serve as a student model. The modified student model is
trained by leveraging these pseudo-labeled data in combination with the labeled
dataset. This approach ensures that the smaller student model achieves segmen-
tation accuracy comparable to its larger teacher model while concurrently im-
proving segmentation efficiency to meet the resource-constrained requirements.
An overview of the framework we designed is shown in Fig. 1.

Fig. 1. Teacher-Student Semi-Supervised segmentation framework: During the model
training, the teacher model infers on unlabeled data and utilizes high-quality pseudo-
labeled data generated by the larger teacher model to train a more efficient student
model.



4 Ziran Chen et al.

2.1 Preprocessing

We divided our partially labeled dataset of 2,200 samples into two distinct train-
ing sets based on the labeled content. The first set consisted of 222 samples, each
labeled with all 13 organs, and was used to train a teacher model for organ seg-
mentation. The second set encompassed a collection of 597 samples, each labeled
to encompass tumors and six additional organs, thereby serving as the founda-
tion for training dedicated tumor segmentation models.This approach allowed
us to train independent models for organ segmentation and tumor segmentation,
enabling us to focus on the specific features and characteristics of each segmen-
tation type, resulting in improved accuracy and efficiency of our analysis.

Regarding image preprocessing, we applied several steps to the FLARE 2023
dataset using the default nnU-Net settings. First, we cropped each CT scan to
remove non-zero regions. Subsequently, the CT images were subject to clipping,
specifically aligned with the 0.5 and 99.5 percentiles of the foreground voxels,
followed by the implementation of Z-score normalization utilizing the global
foreground mean and standard deviation.Finally, we resampled each scan to a
specific uniform spacing to ensure consistency in the dataset. We used third-order
spline interpolation and nearest-neighbor interpolation methods for the data and
segmentation mask, respectively. This step was crucial since CT scan values are
directly related to physical properties, and keeping them in a preprocessing state
was essential for accurate analysis. The resampling spacing for the teacher model
is [2.5, 0.86, 0.86], whereas for the student model, it is [4.0, 1.2, 1.2]. Overall,
these preprocessing steps ensured that the FLARE 2023 dataset was suitable for
meaningful and accurate analysis of abdominal tumors and organs.

2.2 Proposed Method

Our backbone network utilizes the 3D U-Net structure, which is commonly em-
ployed for training 3D medical images such as CT and MRI. However, it requires
a significant amount of GPU memory. To enhance training speed and reduce
resource consumption, a patch-based 3D U-Net approach can be adopted to
lower network computing costs. The primary objective of 3D U-Net is to address
the limitations of 2D U-Net when applied to anisotropic data. In the nnU-Net
framework, the ReLU activation function is substituted with Leaky ReLU, batch
normalization is replaced by instance normalization, and the network structure
closely resembles the default 3D U-Net architecture.

In order to improve inference efficiency and computational cost, we made
specific modifications to the 3D U-Net based on the default settings of the nnU-
Net framework. Our small-scale 3D U-Net network takes input patches of size
32×128×192, with a batch size of 2, and comprises four up-sampling and down-
sampling layers. Each layer consists of 3D convolution, LReLU activation, and
instance normalization. The initial layer of the 3D U-Net extracts 16 feature
maps, while each downsampling process extracts a maximum of 256 feature
maps. The structure of the 3D U-Net backbone network is depicted in Fig. 2.
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Fig. 2. The small 3D U-Net network architecture.

Loss function: We utilize the default composite loss function in nnU-Net,
which combines the Dice loss and Cross-entropy loss. This composite loss func-
tion has been proven to exhibit robustness in various medical image segmentation
tasks. [18].

2.3 Post-processing

Due to meet time constraints, we opted not to employ complex post-processing
techniques. To expedite the inference process, Test Time Augmentation (TTA)
was disabled, resulting in a 2x reduction in inference time. Given that we have
two segmentation models, it is necessary to integrate the results of the organ seg-
mentation and tumor segmentation models. The tumor segmentation results are
superimposed on the organ segmentation results, and if there are any conflicts,
the tumor segmentation results are given priority.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [19,20],
aiming to aim to promote the development of foundation models in abdomi-
nal disease analysis. The segmentation targets cover 13 organs and various ab-
dominal lesions. The training dataset is curated from more than 30 medical
centers under the license permission, including TCIA [21], LiTS [22], MSD [23],
KiTS [24,25], and AbdomenCT-1K [26]. The training set includes 4000 abdomen
CT scans where 2200 CT scans with partial labels and 1800 CT scans without la-
bels. The validation and testing sets include 100 and 400 CT scans, respectively,
which cover various abdominal cancer types, such as liver cancer, kidney cancer,
pancreas cancer, colon cancer, gastric cancer, and so on. The organ annotation
process used ITK-SNAP [27], nnU-Net [15], and MedSAM [28].
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The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 18.04.4 LTS
CPU Intel(R) Xeon(R) Gold 6146 CPU@3.20GHz
RAM 256G
GPU Two NVIDIA V100 16G
CUDA version 10.2
Programming language Python 3.8
Deep learning framework torch 1.11, torchvision 0.12.0
Specific dependencies nnU-Net

Training protocols We employed nnU-Net’s deep supervision loss, a method-
ology that incorporates the output layer into the loss calculation during each
upsampling operation. To achieve this, different weights are assigned to the
shallowest and deeper layers, with a weight of 1 for the shallowest layer and
halved weights for each subsequent deeper layer. This combined approach in-
tegrates equally weighted dice and cross-entropy loss terms, facilitating com-
prehensive and effective training. To harness the benefits of ensemble learning,
we trained five teacher models iteratively until reaching convergence. Subse-
quently, we utilized their collective predictions on the unlabeled samples to gen-
erate pseudo labels, which were then employed for training the student model.
This teacher-student training paradigm with pseudo labels serves to leverage
the information-rich unlabeled data effectively, enhancing the performance of
the student model. For the specifics of our training procedure, including batch
size, number of epochs, optimizer choice, and other relevant details, please refer
to Table 2 and Table 3 for comprehensive information. These tables present a
clear and organized overview of the training protocols, ensuring reproducibility
and facilitating comparison with other methodologies in the field.

Data Augmentation During the training of the teacher model, several data
augmentation techniques were employed, including the use of Gaussian noise,
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brightness adjustment, gamma correction, rotation, scaling, elastic deformation,
and simulated low-resolution data. It is worth noting that for the training of the
student model, only a subset of these techniques were utilized, specifically lumi-
nance adjustment, gamma correction, rotation, scaling, and elastic deformation.

Table 2. Training protocols for teacher model.

Network initialization "HE" normal initialization
Batch size 2
Patch size Stage0 [64,192,192], Stage1 [48,192,192]
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy:(1− epoch/1000)0.9

Training time 72 hours
Number of model parameters 31.2M
Number of flops 230G

Table 3. Training protocols for student model.

Network initialization "HE" normal initialization
Batch size 2
Patch size Stage0 [32,128,192], Stage1 [32,128,192]
Total epochs 1500
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy:(1− epoch/1500)0.9

Training time 24 hours
Number of model parameters 6.1M
Number of flops 140G

4 Results and discussion

The DSC and NSD results for all experiments were obtained through the online
validation leaderboard in the MICCAI FLARE 2023 challenge. Additionally,
the detailed results of the 50 public validation sets were processed privately.
The challenge organizers provided an efficiency analysis based on the Docker
containers we submitted.
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4.1 Quantitative results on validation set

Overall, the quantitative evaluation results on the provided validation and test
sets are shown in Table 4. On the validation set, the average DSC for the 13
organs is 0.8856, with an average NSD of 0.9491. The DSC for tumor segmenta-
tion is 0.4258, with an NSD of 0.3513. On the test dataset, the average DSC for
the 13 organs is 0.8856, with an average NSD of 0.9491. The DSC for tumor seg-
mentation is 0.4258, with an NSD of 0.3513. Due to limitations in inference time
and memory, our approach employed larger spacing for resampling the input
data and used smaller patch sizes. This exacerbated the risk of losing contex-
tual information when dealing with small targets. It can be observed that the
segmentation performance for the right adrenal gland, left adrenal gland, and
gallbladder, which are small-volume organs, is relatively poor.

Table 4. Quantitative evaluation results.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 97.37 ± 0.55 84.58 ± 4.46 97.30 98.76 95.91 97.15
Right Kidney 94.35 ± 7.38 93.98 ± 8.70 93.32 94.99 94.23 95.36
Spleen 96.46 ± 1.65 98.61 ± 2.84 95.67 97.96 95.90 97.96
Pancreas 85.70 ± 6.25 94.38 ± 6.12 84.53 95.77 88.58 97.10
Aorta 94.92 ± 2.11 99.49 ± 1.56 95.02 98.22 95.31 99.19
Inferior vena cava 93.61 ± 2.13 99.53 ± 0.96 93.21 96.45 93.42 96.96
Right adrenal gland 81.28 ± 6.24 99.95 ± 0.19 80.30 94.79 78.01 93.34
Left adrenal gland 78.52 ± 7.14 99.83 ± 0.39 78.08 92.59 77.41 92.50
Gallbladder 83.62 ± 18.8 93.93 ± 19.9 84.67 83.62 81.68 83.07
Esophagus 81.21 ± 15.2 96.85 ± 14.4 81.71 93.85 87.47 98.29
Stomach 92.11 ± 3.63 98.33 ± 3.69 92.63 97.34 92.33 97.43
Duodenum 81.67 ± 7.49 96.85 ± 3.76 82.27 95.18 85.27 96.97
Left kidney 92.26 ± 12.5 97.98 ± 7.72 92.53 94.28 92.99 94.69
Tumor 49.38 ± 33.0 64.71 ± 37.8 42.58 35.13 36.01 26.48
Organ Average 88.70 ± 6.52 96.48 ± 4.03 88.59 94.91 89.03 95.31

4.2 Qualitative results on validation set

Fig. 3 presents four representative segmentation results obtained from our final
submission using the small nnU-Net. The top two rows depict case 17 and case
75, where the network successfully achieved high-accuracy identification of all
organs. However, in the bottom two rows, specifically case 124 and case 94,
noticeable segmentation deficiencies and over-segmentation errors are apparent.
These issues may be attributed to the limited contextual information capturing
capability of the small 3D nnU-Net and the loss of important details due to the
large spacing of the resampled images, resulting in suboptimal segmentation of
small-volume organs.



Semi-Supervised Segmentation with Efficient nnU-Net 9

It is worth noting that compared to models trained solely on fully labeled
data, the use of pseudo-labels in the semi-supervised approach improves segmen-
tation accuracy. It can be observed that models employing pseudo-labels demon-
strate higher generalization performance, highlighting the benefits of leveraging
unlabeled data in these specific cases.

Fig. 3. Qualitative results of our small nnU-Net on two easy cases(case 17, case 75)
and two challenging cases(case 124, case 94).

4.3 Segmentation Efficiency Results on Validation Set

Our validation Docker was submitted to an official evaluation platform with
NVIDIA QUADRO RTX5000 (16G) and 28G RAM. The evaluation was per-
formed on 100 validation sets, with an average running time of 29 seconds per
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case. The average maximum GPU memory utilization was 3077MB, and the
average area under the GPU memory time curve was 25411. We conducted an
efficiency analysis by selecting validation set data of different sizes, and the
results are presented in Table 5. Since our organ segmentation and tumor seg-
mentation are separate models, we need to perform inference twice on the same
sample, which contributes to longer run times. However, our GPU exhibits lower
maximum memory usage.

Table 5. Quantitative evaluation of segmentation efficiency in terms of the run-
ning time and GPU memory consumption. (Total GPU denotes the area under GPU
Memory-Time curve)

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 27.73 2538 23063
0051 (512, 512, 100) 27.58 2538 25422
0017 (512, 512, 150) 31.46 3700 29963
0019 (512, 512, 215) 30.08 3700 25978
0099 (512, 512, 334) 34.74 1954 28417
0063 (512, 512, 448) 41.71 3700 34501
0048 (512, 512, 499) 46.18 3700 38808
0029 (512, 512, 554) 48.52 1690 39530

4.4 Effect of unlabeled data

In this study, we developed separate models for organ segmentation and tumor
segmentation. Table 6 illustrates the impact of incorporating unlabeled data
with labeled data during the training of the organ segmentation model. The
results clearly demonstrate that this semi-supervised learning approach leads to
enhanced performance compared to models trained solely on labeled data. It is
worth noting that smaller models utilizing efficient inference strategies exhibit
particularly significant performance improvements. Due to the time constraints
of the competition, our tumor segmentation model was trained only on 597
fully labeled cases and did not utilize unlabeled data. Therefore, a comparative
experiment between different training approaches for the tumor segmentation
model could not be conducted.

Table 6. The segmentation accuracy of the default nnU-Net model and the small
nnU-Net model in the validation set with or without the use of pseudo-labeled data.

Method Val Organ DSC(%) Val Organ NSD(%) Running Time
Default nnU-Net 87.51 92.92 4minDefault nnU-Net+unlabel 89.40 94.31
Small nnU-Net 85.49 90.94 29sSmall nnU-Net+unlabel 88.59 94.91
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4.5 Limitation and future work

Several limitations have been discerned within the scope of our investigation.
Due to time constraints during inference, we had to make compromises and
increase the resample spacing, which has impacted the performance of model
for small-scale targets. Exploring alternative resample strategies and optimiz-
ing this process could enhance the segmentation accuracy. Additionally, we have
not investigated more complex neural network structures, such as the cascade
3D U-Net, which could potentially improve the ability of model to handle small
targets. Future work should also include exploring advanced data augmentation
techniques, such as CutMix, and employing sophisticated post-processing meth-
ods to further enhance the model’s performance and robustness. Furthermore,
the segmentation of organs and tumors is currently performed by two separate
models, leading to low inference efficiency. Moving forward, our focus should be
directed towards the integration of these two distinct models, with the overar-
ching objective of attaining a unified framework proficient in undertaking both
tasks. Addressing these limitations will contribute to refining and improving the
applicability of our model.

5 Conclusion

This paper presents a semi-supervised learning framework based on nnU-Net,
which leverages unlabeled data to enhance model performance and generaliza-
tion. Additionally, we have made improvements to nnU-Net and compressed it to
improve model inference efficiency while maintaining high accuracy to meet the
requirements of the competition. Experimental results on the FLARE 2022 val-
idation dataset demonstrate that, with an average inference time of 29 seconds
for the lightweight nnU-Net, incorporating unlabeled data leads to an increase
of 0.0310 in the DSC metric and 0.0397 in the NSD metric for the organ segmen-
tation model, compared to models trained solely on labeled data. Ultimately, we
have successfully developed a low-resource, fast-processing model for abdominal
CT organ and tumor segmentation.
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