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ABSTRACT

Recent research pinpoints that different diffusion methods and architectures
trained on the same dataset produce similar results for the same input noise. This
property suggests that they have some preferable noises for a given sample. By
visualizing the noise-sample pairs of rectified flow models and stable diffusion
models in two-dimensional spaces, we observe that the preferable paths, con-
necting preferable noises to the corresponding samples, are better organized with
significant fewer crossings compared with the random paths, connecting random
noises to training samples. In high-dimensional space, paths rarely intersect. The
path crossings in two-dimensional spaces indicate a shorter inter-path distance in
the corresponding high-dimensional spaces. Inspired by this observation, we pro-
pose the Distance-Aware Noise-Sample Matching (DANSM) method to lengthen
the inter-path distance for speeding up the model training. DANSM is derived
from rectified flow models, which allow using a closed-form formula to calcu-
late the inter-path distance. To further simplify the optimization, we derive the
relationship between inter-path distance and path length, and use the latter in the
optimization surrogate. DANSM is evaluated on both image and latent spaces by
rectified flow models and diffusion models. The experimental results show that
DANSM can significantly improve the training speed by 30% ∼ 40% without
sacrificing the generation quality. Code: https://github.com/shifengxu/DANSM.

1 INTRODUCTION

Diffusion-based generative models, such as diffusion models (Ho et al., 2020; Nichol & Dhariwal,
2021; Song et al., 2021a; Dhariwal & Nichol, 2021; Rombach et al., 2022) and rectified flow models
(Liu et al., 2023a;b; Liu, 2022; Lipman et al., 2022), have garnered considerable attention due to
their high-quality generation and broad range of applications. Training diffusion-based generative
models is in fact establishing a mapping between the noise space and sample space. Recent re-
search discovers that when training on the same dataset, different diffusion methods using different
architectures result in a similar mapping. In other words, given the same input noise, the trained
models generate similar resultant samples. Fig. 1 demonstrates such mappings. This phenomenon,

Figure 1: Images generated by well-trained rectified flow model (RFM) (Liu et al., 2022) and diffu-
sion model (DM) (Ermongroup, 2021). Images in the same group are derived from the same noise.
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(a) CIFAR-10 images (b) Bedroom images (c) Latents of Bedroom (d) Latents of SD

Figure 2: Visualization of samples and noises using t-SNE (Van der Maaten & Hinton, 2008). Each
sample and its corresponding noise are connected with dashed line. The lines in the top row are
messy with multiple intersections, while the bottom row illustrates well-organized lines.

known as “consistent model reproducibility” in Zhang et al. (2024), has been discussed in some
prior works (Song et al., 2021b; Liu et al., 2023a). They attempt to understand this phenomenon
from the denoising score matching perspective (Vincent, 2011).

The consistent model reproducibility phenomenon suggests that given a clean or generated sample,
there exists some preferable noises, from which the well-trained models can generate the sample.
Fig. 2 visualizes the clean samples, preferable noises, and random noises through t-SNE (Van der
Maaten & Hinton, 2008). The preferable noises (the green dots in the second row) are obtained from
well-trained rectified flow models and stable diffusion model through a sample-to-noise process.
The gray lines in the first row represent the random paths connecting the random noise and clean
samples of training process, and the blue lines in the second row denote the preferable paths linking
preferable noises and their corresponding samples. Fig. 2 shows clearly that the random paths used
in model training are very messy with many intersections, but the preferable paths obtained from
fully training models are well-organized. We argue that the complex random path patterns hamper
the training process and significantly slow it down. This aligns the analysis in Li et al. (2024).
Notice that in a high-dimensional space, intersections of two path are very rare. The intersections
in the two-dimensional visualization imply that the paths are closer in those regions in the original
high dimensional space. Inspired by the difference between the messy random path pattern used
in training process and the well-structured preferable path pattern from fully trained model, we
propose the Distance-Aware Noise-Sample Matching (DANSM) method to improve training speed.
In this work, we concentrate on rectified flow models in DANSM derivation, because its paths are
straight-line segments, which provide an effective closed-form solution for the inter-path distance
calculation. We further deduce the negative correlation between inter-path distance and path length,
and use it in the DANSM optimization surrogate. Although DANSM is derived from rectified flow
models, we also test it on diffusion models, because of their popularity. Extensive experiments are
conducted on image and latent spaces of rectified flow models and diffusion models. The results
show that DANSM significantly enhances the training process up to 30%∼40%.

The contributions of this work are summarized as follows:

• Inspired by the difference between random paths used in training and preferable paths
from well-trained models, we propose DANSM method aiming to increase the inter-path
distance and enhance the training process.

• Based on the straight paths of rectified flow models, we first derive a closed-from formula
to calculate inter-path distance. Furthermore, we prove the negative correlation between
inter-path distance and path length, and use the latter in the optimization surrogate of the
DANSM method.

• Extensive experiments are conducted on image and latent spaces of rectified flow models
and diffusion models, which demonstrate DANSM’s outstanding capabilities for speeding
up the training process.
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2 PRELIMINARIES AND RELATED WORKS

Without loss of generality, let x be a data sample from distribution π0, z be a noise from standard
Gaussian noise N (0, I), and t ∈ [0, 1] be the timestep. x and z can be transformed into each other
with t. This paper assumes a continuous transformation between x and z, x(t) := x(t), where
x(0) = x and x(1) = z.

2.1 RECTIFIED FLOW MODELS

Rectified Flow Models (RFM) utilize Ordinary Differential Equations (ODE) to approximate the
straight paths between noises and samples. They offer a unique solution to generative modeling from
the perspective of optimal transport (Villani, 2009; 2021). In RFM, each point on the noise-sample
path is a linear interpolation between them.

x(t) = (1− t)x+ tz,
dx(t)

dt
= z − x, t ∈ [0, 1]. (1)

It is worth noting that the expression of x(t) in Eq. 1 is straightforward and its gradient remains
stable. In fact, Esser et al. (2024) also mentioned that RFM provides better theoretical properties
and conceptual simplicity compared to classic diffusion models (Song et al., 2021a; Ho et al., 2020).
When training RFM, the model θ is expected to drive the flow to follow the interpolation between x
and z. It can be achieved by solving a simple least squares regression problem (Liu et al., 2023a):

LRFM (x, z, t; θRFM ) = Ex∼π0,z∼N (0,I),t∼U(0,1)

[
∥(z − x)− θRFM (x(t), t)∥22

]
, (2)

where U(0, 1) is the uniform distribution between 0 and 1.

In Eq. 2, the sample x and noise z are randomly paired for loss calculation. However, as mentioned
in the introduction, well-trained RFM have some preferable noises for a given sample. This implies
that in most cases, the sample x is not paired up with its preferable noise, which can significantly
hinder the model training process. This paper aims to explore this issue and propose an optimization
solution to address it.

2.2 CONSISTENT MODEL REPRODUCIBILITY

In the realm of diffusion-based generative modeling, the consistent model reproducibility phe-
nomenon has been discussed by several works. The concept of “uniquely identifiable encoding”,
as discussed in Song et al. (2021b) (page 7), suggests that the encoding (sample) for an input (noise)
is uniquely determined by the data distribution. Zhang et al. (2024) introduce the concept of “consis-
tent model reproducibility” and state that when trained on the same dataset, various diffusion-based
models generate similar data samples. However, they did not utilize it to ease the model training
process.

Theoretically, the consistent model reproducibility phenomenon can be understood through the lens
of denoising score matching (Vincent, 2011), as interpreted via Tweedie’s formula. Here, x(0) is
a clean sample with no noise, and x(t) is a noisy variable with noise level σt. The objective of
model training is to estimate E[x(0)|x(t)], which represents the mean of all clean samples that could
produce x(t) when perturbed by noise of level σt. Since the clean samples used for training are
fixed, the mapping between x(t) and x(0) should remain consistent. We would like to highlight that
the aim of this paper is not to analyze consistent model reproducibility. However, it inspires us to
maximize the inter-path distance to speed up the training.

3 METHOD

In this section, we first provide a closed-form formula to calculate the inter-path distance for RFM.
Next, we explain how inter-path distance influences the quality of training data and the overall
training process. Finally, we introduce the DANSM method, which lengthens the inter-path distance,
thereby accelerating the model training process.
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3.1 INTER-PATH DISTANCE

In RFM, the path between noise and sample is represented by a linear interpolation between them.
When calculating the inter-path distance, the timestep t should be taken into account, as it determines
the proportion of noise and sample at each point along the interpolation. Therefore, the distance
between two paths can be considered as a function of t. Given two noise-sample pairs, (z1, x1) and
(z2, x2), where z1 and z2 are noises and x1 and x2 are samples, the paths are defined with timestep
t as follows: {

r1 = (1− t)x1 + tz1
r2 = (1− t)x2 + tz2

t ∈ [0, 1]. (3)

Let V = x2 − x1 and U = z2 − z1. The distance between r1 and r2 is an interpolation of V and U :
fr1,r2(t) = ∥(1− t)V + tU∥2. Since t ∈ [0, 1], the minimal value occurs at timestep t∗:

t∗ =


0 if t̂ ≤ 0

t̂ if t̂ ∈ [0, 1]

1 otherwise
, where t̂ =

V ⊤(V − U)

(V − U)⊤(V − U)
. (4)

The detailed deduction of Eq. 4 is given in appendix A.1. Computing t̂ requires one vector sub-
traction, two dot products and one division, and calculating fr1,r2(t) requires additional one vector
addition, two scalar multiplications and one norm computation. Directly using fr1,r2(t) to compute
all possible inter-path distances of n paths is inefficient due to the complicated operations. There-
fore, in this paper, the distance of two paths w.r.t. timestep t is defined as the minimal distance on
timestep t∗:

dist(r1, r2) = min
t∈[0,1]

fr1,r2(t) = fr1,r2(t
∗). (5)

3.2 INTER-PATH DISTANCE MATTERS IN TRAINING PROCESS

In the training process of RFM, the training data are actually the points in the noise-sample paths.
The quality of these paths is significantly influenced by the inter-path distances. To elucidate this,
we consider an extreme case on RFM models. Consider two paths, P1 = (z1, x1) and P2 = (z2, x2),
that intersect at a specific timestep t∗. At t∗, the state of the noisy sample satisfies such equation:

x(t∗) = (1− t∗)x1 + t∗z1 = (1− t∗)x2 + t∗z2. (6)

However, when training the model θ on x(t∗) and t∗, the expected outputs differ based on the paths
being followed as shown in Eq. 7. This discrepancy confuses the model training, as different paths
lead to different gradients. To avoid such conditions, sufficient inter-path distance is necessary.

Expected model prediction: θ
(
x(t∗), t∗

)
=

{
z1 − x1 if training on path P1

z2 − x2 if training on path P2
. (7)

To analyse how the inter-path distances impact model training, we delve deeper into the inter-path
distances. For better elaboration, we define the terms as below.

• preferable path: The path between a sample and its preferable noise, which is obtained by
sample-to-noise process (the inverted sampling process) on fully trained model.

• random path: The path between a sample and any random noise.
• average distance: For n paths, there are c = n(n−1)/2 path pairs, resulting in c inter-path

distances. The average of these distances is termed the average distance of the n paths.
• minimal distance: For n paths, each path has a nearest path, yielding n minimal distances.

The mean of those distances is called the minimal distance of the n paths.
• training loss: For RFM, the ground-truth gradient is z − x as in Eq. 1, and the predicted

gradient is denoted as g̃. The squared ℓ2 norm ∥(z − x)− g̃∥2 is called training loss.

As shown in Fig. 4 of Sec. 5.1, when comparing by both average and minimal distances, the
preferable paths exhibit greater inter-path distances than random paths. Additionally, as the inter-
path distances increase, the training losses decrease, indicating an improvement in the quality of
noise-sample paths. This aligns with our argument that shorter inter-path distances imply lower path
quality, thereby making the training process difficult.
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3.3 DISTANCE-AWARE NOISE-SAMPLE MATCHING

DANSM’s problem setting is defined as follows. Given a set of n sample points and a set of n noise
points, the goal is to establish a one-to-one mapping between the two sets, resulting in n paths. Let
pi,j be the path from the i-th noise point to the j-th sample point. The objective of DANSM is
to maximize the inter-path distances of those paths while ensuring the process can be completed
within in a reasonable amount of time. In this paper, the sample (or noise) set size n is referred as
match-size, which serves as a key parameter. The objective is defined as:

max
σ

2

n(n− 1)

n∑
i=1

n∑
j=i+1

dist(pi,σ(i), pj,σ(j)), (8)

where σ is a permutation with input from 1, 2, · · · , n, and dist(pi,σ(i), pj,σ(j)) is the distance be-
tween the paths pi,σ(i) and pj,σ(j), as specified in Eq. 5. It is worth noting that the noise set has the
same size as the sample set, ensuring that all noises are utilized in the training process without any
being discarded. This is crucial because if the noise set contains more points than the sample set,
certain noises will inevitably be excluded from the model training. Due to the relationship between
inter-path distance and path length, the unused noises are those that are farthest from the samples,
meaning certain regions in the noise space remain untrained. This lack of training in specific noise
space areas can negatively impact the overall generation performance.

Although the objective of the DANSM method is clear, calculating the inter-path distance for multi-
ple paths in high-dimensional space is computationally expensive, especially for a large number of
paths. To address this issue, we identified a surrogate approach to manipulate the inter-path distance
without calculating it. This approach is elaborated in Sec. 4.

4 OPTIMIZATION SURROGATE

To further analyze the inter-path distance, we introduce the path length, which is the length of the
path between noise and sample. In this section, we prove the negative correlation between inter-path
distance and path length. Building on this insight, we propose an optimization surrogate of DANSM,
which aims to shorten the path lengths, thereby increasing the inter-path distances accordingly.

4.1 NEGATIVE CORRELATION BETWEEN INTER-PATH DISTANCE AND PATH LENGTH

Note that the noises and samples of RFM have the same dimension and therefore, they can be
considered from the same high-dimensional space Rd, which encompasses both noise space and
sample space. We elaborate the correlation between inter-path distance and path length in Rd. The
path of RFM is the line segment between noise point and sample point, while the inter-path distance
is defined in Sec. 3.1.

We begin with a simple scenario containing only two paths. Let the sample points be x1 and x2, and
the noise points be z1 and z2. Consequently, the paths between samples and noises have two cases:
P1 = (z1, x1), P2 = (z2, x2) and Q1 = (z1, x2), Q2 = (z2, x1). Following Sec. 3.1, we define the
vectors U = z2 − z1, V = x2 − x1 and V = x1 − x2. Notably, V = −V and ∥V ∥ = ∥V ∥, where
∥ · ∥ means the length of a vector or line segment. These variables are illustrated in Figs. 3a and 3b.

As shown in Sec. 3.1, the inter-path distance between P1 and P2 is an interpolation of U and
V . Similarly, the inter-path distance between Q1 and Q2 is an interpolation of U and V . These
relationships are shown in Figs. 3c and 3d. Let ∠ecf = γ and ∠gcf = γ. Since V = −V , γ and γ
are supplementary angles for each other. Using the law of cosine, we derive:

cos γ =
∥U∥2 + ∥V ∥2 − ∥U − V ∥2

2∥U∥ · ∥V ∥
=

∥q1∥2 + ∥q2∥2 − (∥p1∥2 + ∥p2∥2)
2∥U∥ · ∥V ∥

, (9)

where p1 = x1 − z1, p2 = x2 − z2, q1 = x2 − z1 and q2 = x1 − z2. The detailed derivation of Eq.
9 is provided in the appendix A.2. In the same way, we have:

cos γ =
∥U∥2 + ∥V ∥2 − ∥U − V ∥2

2∥U∥ · ∥V ∥
=

∥p1∥2 + ∥p2∥2 − (∥q1∥2 + ∥q2∥2)
2∥U∥ · ∥V ∥

= −cos γ. (10)
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(a) Case 1 (b) Case 2 (c) Distance in case 1 (d) Distance in case 2

Figure 3: Inter-path distances in a simple scenario of two sample points and two noise points.

Algorithm 1 Surrogate method of DANSM
Input: a noise set Z of size n, and a sample set X of size n.
Output: a noise-sample path set P of size n.

1: Initialize path set P = ϕ
2: for each sample x in X do
3: From Z , find z who has shortest path length with x ▷ search all in Z
4: Remove noise z from Z ▷ each noise is used only once
5: Add path p(z, x) into P
6: end for

This reveals the relationship between the path lengths and the inter-path distances. For case 1, as
shown in Figs. 3a and 3c, the inter-path distance between P1 and P2 is ∥c − d∥, where cd ⊥ ef
and d is the foot of the perpendicular. Similarly for case 2, as illustrated in Figs. 3b and 3d, the
inter-path distance of Q1 and Q2 is ∥c−h∥. Assume that ∥p1∥2+ ∥p2∥2 < ∥q1∥2+ ∥q2∥2, we have
cos γ > 0 and cos γ < 0, indicating that ∥c− d∥ > ∥c− h∥. This conclusion is proved in appendix
A.3.

Based on the above deduction, we can conclude that between two samples and two noises, the paths
with shorter lengths result in longer inter-path distance, while the paths with longer lengths lead to
shorter inter-path distance.

4.2 SURROGATE METHOD OF DANSM

As proved in Sec. 4.1, the path length is negatively correlated with the inter-path distance, indicating
that decreasing the former will increase the latter accordingly. This relationship can be utilized in
the surrogate method of DANSM. When assigning noises to samples, we aim to shorten the noise-
sample path lengths, which in turn lengthen the inter-path distances. The minimization objective is
defined in Eq. 11, with a lower computational complexity than the maximization objective in Eq. 8.

min
σ

1

n

n∑
i=1

∥pi,σ(i)∥. (11)

To further reduce processing time, a greedy algorithm is employed to pair up noise and sample.
Specifically, for each sample in X , it selects the nearest available noise from Z for pairing. The
detailed steps are shown in Alg. 1. In this way, we do not need to calculate the exact inter-path
distance and significantly reduce the computation time. This surrogate method is simple, straight-
forward, and most importantly, fast. Its Euclidean distance calculation is highly suitable for GPU
parallelization, allowing it to be executed efficiently.

A recent work, Immiscible Diffusion (Li et al., 2024), employs a similar approach to our surro-
gate method for assigning noises to samples. It aligns with the goal of our DANSM method, but
its algorithm functions as another surrogate of DANSM and has not been evaluated on RFM. It is
grounded in physics intuition and analogy, lacking a rigorous mathematical foundation. While its
noise and image batches have the same size, it does not provide a clear rationale that why “equal-
sized” batches are necessary. It focuses on shortening noise-sample path lengths but fails to establish
the negative correlation between path length and inter-path distance. In summary, although Immis-
cible Diffusion identifies an effective method, it does not offer deeper explanations for its findings.
Further comparison is given in Sec. 5.6.
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(a) Inter-path distance (b) Minimal inter-path distance (c) Average inter-path distance

Figure 4: Inter-path distances of CIFAR-10 data from well-trained RFM. (a) Minimal and average
inter-path distances of the preferable and random paths. (b),(c): Training losses vs. distances.

(a) Minimal inter-path distance (b) Average inter-path distance (c) Training loss

Figure 5: Path length analysis from well-trained RFM on CIFAR-10. (a), (b): Relationship between
path length and inter-path distances. (c): Relationship between path length and training loss.

5 EXPERIMENTS

To verify the effectiveness of the DANSM method on RFM, experiments are conducted on both
image space and latent space. For image space, three datasets CIFAR-10 (Krizhevsky et al., 2009),
ImageNet64 (Deng et al., 2009), and LSUN Bedroom (Yu et al., 2015) are tested. They have image
size of 32×32, 64×64, and 256×256, respectively. For latent space, the autoencoder of Stable Dif-
fusion (SD) (Rombach et al., 2022) is utilized for the encoding and decoding between images and
latent variables. The latent variables serve as clean samples in the training and sampling processes.
Once sampling is completed, the generated latent variables are decoded into real images for evalua-
tion. Throughout the experiments, the noises z ∼ N (0, I), the image pixel values are normalized to
the range of [−1, 1], and the latent variables are kept as their original values without scaling.

5.1 INTER-PATH DISTANCE MATTERS IN TRAINING PROCESS

In this paper, we propose to ease the training of rectified flow models by lengthening the inter-path
distance. Therefore, when conducting the experiments, we firstly validate the importance of inter-
path distance in the training process. We compare the inter-path distance of preferable path and
random path in Fig. 4a. The definitions of preferable and random paths can be found in Sec. 3.2.
Based on the well-trained RFM (Liu et al., 2022) for CIFAR-10, the average inter-path distance
of preferable paths is 35.5, which is greater than that of random paths — 33.9. Similar results
are disclosed for minimal inter-path distance. Moreover, Figs. 4b and 4c depict how training loss
evolves as the inter-path distance changes: with distance increasing, the training loss of RFM model
decreases accordingly. These results offer the basis that inter-path distance plays a critical role in
reducing training loss and improving the model training process.

5.2 NEGATIVE CORRELATION BETWEEN INTER-PATH DISTANCE AND PATH LENGTH

As discussed in Sec. 4.1, path length is negatively correlated with inter-path distance, which is why
we can use path length as the optimization surrogate. In this section, we validate this relationship
through experiments with RFM on CIFAR-10 dataset. As shown in Fig. 5, when path lengths de-
crease, the related minimal and average inter-path distances increase, and the training loss decreases
accordingly. The decreasing training losses shown in Fig. 5c highlight that shortening the path
lengths improves the training data quality, which can, in turn, ease the model’s training process.
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Table 1: FID↓ comparison during RFM training at different epochs and DANSM match-sizes (“ms”).

CIFAR-10 (10-step sampling) ImageNet64 (5-step sampling) Bedroom (10-step sampling)

epoch 100 200 300 400 500 epoch 40 80 120 160 200 epoch 20 40 60

baseline 24.1 19.9 18.2 17.2 16.5 baseline 74.2 68.4 64.3 60.8 57.1 baseline 84.3 68.0 34.7
ms=1,000 20.9 16.6 14.8 14.2 13.5 ms=100 74.1 67.5 61.2 57.6 54.7 ms=100 69.6 67.3 28.9
ms=10,000 17.5 12.7 11.1 10.3 9.7 ms=1,000 72.2 64.5 58.1 54.5 52.2 ms=500 40.3 27.6 25.2

(a) FID vs. epoch (b) FID vs. training time (c) Baseline (d) ms:100 (e) ms:10K

Figure 6: Comparisons between baseline RFM and DANSM with various match-size(“ms”) on latent
space of LSUN dataset by 10-step sampling. (c)-(e) Example images generated by different training
models at the same training time (15.4 hours). A.5 includes more comparisons.

5.3 THE PERFORMANCE OF DANSM IN IMAGE SPACE

When training in image space, the DANSM method exhibits superior performance in RFM models
compared to the vanilla baseline. To quantify this performance improvement, we evaluate the mod-
els at various stages during the training process. At specific epochs, when the model has not yet fully
converged, we generate samples using the model and compute FID scores to compare the effective-
ness of DANSM against the baseline. Tab. 1 reports FID scores across different epochs (in columns)
and match-sizes (in rows) on different datasets. The last two rows of the table are DANSM models
saved out on the specific epochs. The DANSM method consistently achieves lower FID scores com-
pared to the baseline, with the lowest FID scores highlighted in bold font. On CIFAR-10, DANSM
with match-size 10,000 yields best performance, reducing the FID from 16.5 to 9.7. Similarly, on
Bedroom dataset, the DANSM method achieves lower FID scores than the baseline method, demon-
strating its effectiveness on large images.

5.4 THE PERFORMANCE OF DANSM IN LATENT SPACE

We evaluate the DANSM method in the latent space by using autoencoder of SD for image synthesis.
In the experiments, the dimension of latent space is 4×32×32, and the latent variables are encoded
from 50,000 LSUN Bedroom images with the resolution of 256×256. To evaluate the effectiveness
of the DANSM method, we train the models from scratch with different match-sizes. At specific
epochs during the training process, latent samples are generated by the model and decoded into real
images by the decoder of SD to calculate FID scores. Additionally, we track the training time to
evaluate the improvement in training efficiency. The FID scores over epoch and training time are
given in Fig. 6. As shown in the figure, DANSM achieves same FID in significantly less number of
epochs and shorter training time for RFM, where match-size of 10K has the best performance.

5.5 TRAINING PROCESS ACCELERATION

The DANSM method aims to lengthen the inter-path distance, which eases the training process and
reduces training time. However, DANSM itself introduces computational overhead as well, which
needs to be carefully managed. A critical consideration is whether the performance gained from
DANSM can justify the additional computational overhead it introduces.

To evaluate above points, the experiments are performed on latent space of LSUN Bedroom images,
which are constructed in the same way as Sec. 5.4. Throughout the training process, we record the
training time and calculate the FID scores of 10-step sampling at specific epochs. As illustrated in
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(a) FID of match-size 10 & 100 (b) FID of match-size 1K & 10K (c) Training time vs. match-size

Figure 7: Comparison of DANSM and Immiscible Diffusion on the latent space of LSUN Bedroom.

Table 2: Path lengths and inter-path distances across different match-sizes (“ms”). The “length” is
path length, and “baseline” refers to random paths of RFM without DANSM. Meanwhile, “davg”
and “dmin” represent the average inter-path distance and minimal inter-path distance, respectively.

50K CIFAR-10 images (3×32×32) 50K Bedroom latent variables (4×32×32) 2K Bedroom (3×256×256)

ms baseline 10 100 1K 10K 100K baseline 10 100 1K 10K 100K baseline 10 100 1K

length 62.04 61.73 61.36 61.06 60.83 60.64 83.47 82.97 82.40 81.92 81.53 81.19 502.89 502.57 502.18 501.85
davg 33.97 34.01 34.09 34.24 34.36 34.45 55.74 56.06 56.48 56.77 57.03 57.28 281.63 281.82 282.05 282.24
dmin 17.99 18.02 18.06 18.10 18.13 18.17 47.65 47.88 48.17 48.41 48.62 48.79 192.43 192.46 192.54 192.64

Fig. 6b, the DANSM method significantly reduces training time compared to the baselines. For
example, when baseline RFM reaching the FID score of 15.3, the DANSM method with match-
size 10,000 cuts training time from 25.5 to 15.4 hours, saving 39.6% of the total training time. It
demonstrates that the DANSM method can reduce training time by a large margin.

5.6 COMPARISON WITH IMMISCIBLE DIFFUSION

Immiscible Diffusion (Li et al., 2024) has the same goal as DANSM but utilizes the Hungarian algo-
rithm (Kuhn, 1955) as its optimization method. Given n noises and n samples, Immiscible Diffusion
incurs a time complexity of O(n3) in the noise-sample matching procedure while DANSM obtains
a more efficient O(n2) complexity. For fair comparison, two identical RFM models are trained from
scratch for 500 epochs on the latent space of LSUN Bedroom by the two methods. Throughout
the training process, FID scores are calculated for 10-step sampling results at specific epochs: 100,
200, 300, 400, and 500, and total training time is tracked to analyze the overhead introduced by the
noise-sample matching. The dots in Fig. 7 represent the epochs at which FID scores are calculated.
As shown in the figure, DANSM achieves comparable FID scores with Immiscible Diffusion but
requires less training time, especially with match-size of 10,000. Further analysis is provided in
A.4.

5.7 ABLATION

Ablation studies are conducted on the only hyperparameter of DANSM — match-size. Tab. 2
shows how the match-size influences the path lengths and inter-path distances (both average and
minimal) across three datasets: CIFAR-10, Bedroom latent, and Bedroom image. For CIFAR-10,
the path length starts at 62.04 and decreases gradually as match-size increases to 100K, where the
path length becomes 60.64. The average inter-path distance (davg) and minimal inter-path distance
(dmin) follow a slightly upward trend, with davg increasing from 33.97 to 34.45, and dmin from
17.99 to 18.17. The similar trends are shown for Bedroom latent and Bedroom image datasets. It
should be highlighted that even slight shortening in path length, or slight increasing in inter-path
distance, can contribute to speed up the training process significantly.

Furthermore, to better disclose the mechanism of DANSM, we report the t∗ timestep (Eq. 4) that
DANSM finds. As explained in Sec. 3.1, t∗ is the timestep at which the closest inter-path dis-
tance occurs. t = 0 corresponds to clean sample and t = 1 represents pure noise. Meanwhile,
different datasets have different data distributions, which leads to different t∗ values. For example,
the CIFAR-10 image pixel values are scaled to the range [−1, 1], resulting in mean-variance values
of (−0.053, 0.253). In contrast, the latent space variables in SD exhibit mean-variance values of
(0.13, 0.68). Their t∗ values are compared in Tab. 3, which also shows the contrasts of path lengths
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Table 3: Data of preferable and random paths on different datasets. The terms “davg” and “dmin”
refer to the average and minimal inter-path distances, respectively, while “t∗avg” and “t∗min” represent
the timesteps where the average and minimal distances occur.

50K CIFAR-10 images (3×32×32) 50K Bedroom latent (4×32×32) 10K SD latent (4×64×64)

length davg t∗avg dmin t∗min length davg t∗avg dmin t∗min length davg t∗avg dmin t∗min

preferable 49.88 35.50 0.1645 18.52 0.0075 55.10 68.76 0.2004 56.51 0.0100 129.27 130.83 0.2882 115.08 0.1559
random 62.04 33.97 0.1916 17.99 0.0557 83.47 55.74 0.3803 47.65 0.2870 165.91 110.93 0.3761 98.69 0.2993

(a) FID vs. epoch (b) FID vs. training time (c) Baseline (d) ms:100 (e) ms:10K

Figure 8: DM on latent of Bedroom by 10-step sampling: comparison between baseline and
DANSM with various match-sizes (“ms”). (c)-(e) images are generated by models at the same
training time (5.37 hours) but with different training methods.

and inter-path distances between preferable and random paths. These results show that the prefer-
able paths have shorter lengths, greater average and minimal inter-path distances, and lower t∗ values
compared to random paths. Another notable finding is that t∗ values are small in both preferable
and random paths, indicating the closest inter-path distance happens near the clean sample.

5.8 GENERALIZATION TO GENERAL DIFFUSION MODELS

Table 4: FID↓ comparison be-
tween different epochs of DM
with DANSM.

DM with DANSM on CIFAR-10
(3-step sampling)

epoch 200 400 600 800 1,000

baseline 120 106 99 94 93
ms=1,000 89 70 62 59 58
ms=5,000 142 108 89 79 73

DANSM is proposed based on rectified flow models. However, it
can be generalized to diffusion models (DM) (Song et al., 2021a)
without any extra adaptation. On CIFAR-10 and latent Bedroom
datasets, DANSM outperforms baseline in DM model. Tab. 4
shows that on CIFAR-10, it yields best performance with match-
size 1,000, reducing the FID from 93 to 58. Moreover, Fig. 8
shows the improvement on latent Bedroom. To reach FID of 27.8,
the baseline requires 8.55 hours whereas DANSM with match-size
100 takes only 5.37 hours (as shown in Fig. 8b), resulting in a
37.2% reduction in training time.

6 CONCLUSION

In this paper, we aim to ease the training process by increasing inter-path distance. Using the straight
path property of rectified flow models, we first derive a closed-form formula to calculate the inter-
path distance and propose our method, DANSM. Furthermore, we derive the negative correlation
between inter-path distance and path length. Based on this relationship, we use path length as a sur-
rogate of DANSM. Although DANSM is developed based on rectified flow models, the experimental
results show that it provides excellent speed up for both rectified flow models and diffusion models.
DANSM is simple, scalable, and fast, leading to substantial improvements in training efficiency.
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A APPENDIX

A.1 INTER-PATH DISTANCE DEDUCTION

Given two noise-sample pairs, (z1, x1) and (z2, x2), the paths are defined by the timestep t as
follows: {

r1 = (1− t)x1 + tz1
r2 = (1− t)x2 + tz2

t ∈ [0, 1]. (12)

Furthermore, the distance between r1 and r2 is defined as the Euclidean distance between the points
corresponding to t:

fr1,r2(t) = ∥r2 − r1∥2
= ∥(1− t)x2 + tz2 − (1− t)x1 − tz1∥2
= ∥(1− t)(x2 − x1) + t(z2 − z1)∥2.

(13)

In the following derivation, we simplify the notation by using f(t) to present fr1,r2(t). Let V =
x2 − x1 and U = z2 − z1, we get a new expression of f(t):

f(t) = ∥(1− t)V + tU∥2
= ∥V + t(U − V )∥2.

(14)

Its derivative w.r.t. timestep t is:

f ′(t) =
df(t)

dt

=

(
V + t(U − V )

)⊤(
U − V

)
∥(1− t)V + tU∥2

.

(15)

As f(t) is a concave parabola, its minimal value occurs when the derivative f ′( t̂ ) = 0.

t̂ =
V ⊤(V − U)

(V − U)⊤(V − U)
. (16)

A.2 DEDUCTION OF EQ. 9

Using the law of cosine, we derive cos γ as:

cos γ =
∥U∥2 + ∥V ∥2 − ∥U − V ∥2

2∥U∥ · ∥V ∥

=
2UV

2∥U∥ · ∥V ∥

=
2(z2 − z1)(x2 − x1)

2∥U∥ · ∥V ∥

=
2z2x2 + 2z1x1 − 2z2x1 − 2z1x2

2∥U∥ · ∥V ∥

=
x2
1 + z21 + x2

2 + z22 − 2z2x1 − 2z1x2 − (x2
1 + z21 + x2

2 + z22 − 2z2x2 − 2z1x1)

2∥U∥ · ∥V ∥

=
∥x2 − z1∥2 + ∥x1 − z2∥2 − (∥x1 − z1∥2 + ∥x2 − z2∥2)

2∥U∥ · ∥V ∥

=
∥q1∥2 + ∥q2∥2 − (∥p1∥2 + ∥p2∥2)

2∥U∥ · ∥V ∥
.

(17)
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(a) Point d locates in line segment ef (b) Point d locates out of line segment ef

Figure 9: Comparing the inter-path distances between case 1 and case 2 of Fig. 3.

A.3 COSINE VALUE VS. INTER-PATH DISTANCE

In this section, we compare the inter-path distances of case 1 and case 2 from Fig. 3 of Sec. 4.1.
The basic setup is illustrated in Fig. 9a. Case 1 involves the triangle △cfe, where ∠fce = γ,
cd ⊥ ef and point d is the foot of the perpendicular. Similarly, case 2 involves the triangle △cfg,
where ∠fcg = γ, ch ⊥ fg and point h is the foot of the perpendicular. Given that the vectors
V = −V , we have ∥V ∥ = ∥V ∥, and both V and V lie on the same straight line. Consequently,
the two triangles have equal areas, △cfe = △cfg. On the other hand, as concluded in Sec. 4.1,
cos γ < 0 and cos γ > 0. Therefore, the angles γ > γ. All these variables are shown in Fig. 9. The
lengths of the line segments have the following relationship:{

△cfg = △cfe

γ > γ

⇒
{
∥c− h∥ · ∥g − f∥ = ∥c− d∥ · ∥e− f∥
∥g − f∥ > ∥e− f∥

⇒∥c− h∥ < ∥c− d∥.

(18)

Meanwhile, since γ is an acute angle, the perpendicular foot d may occupy different positions
relative to the line segment ef . It could lie on ef , as shown in Fig. 9a, or fall outside of ef ,
as illustrated in Fig. 9b. In the latter scenario, the inter-path distance is ∥c − e∥. Notably,
∥c − h∥ < ∥c − d∥ < ∥c − e∥, thus confirming that the inter-path distance in case 1 is greater
than that in case 2.

A.4 COMPARISON WITH IMMISCIBLE DIFFUSION

The key feature of Immiscible Diffusion (Li et al., 2024) is the noise-sample assignment by “one
line of code”, which stems from Scipy (Virtanen et al., 2020) library. The code snippet is:

scipy.optimize.linear_sum_assignment()

However, the above code operates only at the CPU level and is incompatible with GPU acceleration.
This limitation prevents it from leveraging parallel processing techniques, making it unsuitable for
efficiently handling large-scale inputs. Therefore, as the match-size increases, such as 10,000 in
Fig. 7c, the computational overhead of noise-sample assignment (referred to as overhead) rises
significantly, becoming a major bottle neck of the training process. Unfortunately, the Immiscible
Diffusion paper evaluates their generation quality solely based on the number of training epochs
(as shown in their figures 4, 6, and 8), without considering the overhead. Our DANSM method
takes computational overhead into account, ensuring a thorough and fair evaluation by comparing
generation quality based on total training time, including the overhead (as in Figs. 6b, 7, and 8b).

It is worth noting that in Fig. 7c, Immiscible Diffusion requires much more time than DANSM with
match-size of 10. The reason is closely related to the batch size used in the experiment, which is
set to 250. Consequently, for each batch, Immiscible Diffusion performs 25 CPU-based operations
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to optimize the noise-sample matching. These repeated CPU calls become the primary source of
overhead, impacting the overall computation efficiency.

Additionally, we present FID comparison results based on training epochs. This evaluation excludes
the computational overhead of the noise-sample matching procedures and focuses solely on the
effects of data optimization. As shown in Fig. 10, both methods exhibit comparable effectiveness in
optimizing noise-sample matching.

Figure 10: FID↓ comparison between DANSM and Immiscible Diffusion for RFM models on the
latent space of the LSUN Bedroom dataset. The FID values are computed based on a 10-step
sampling process. Both methods demonstrate similar FID scores across various match-sizes.

15



Published as a conference paper at ICLR 2025

A.5 VISUAL COMPARISON OF DIFFERENT METHODS TRAINED ON LATENT OF BEDROOM

(a) Vanilla (b) ms:100 (c) ms:10K (d) Vanilla (e) ms:100 (f) ms:10K

Figure 11: RFM on latent of Bedroom. Visual comparison of images generated by RFM models.
The models are trained on the same latent space using different methods: vanilla RFM (columns
a and d), DANSM with match-size 100 (columns b and e), and DANSM with match-size 10K
(columns c and f ). Different rows are generated by different sampling steps: 3-step (rows 1 and 5),
4-step (rows 2 and 6), 5-step (rows 3 and 7), and 10-step (rows 4 and 8).
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A.6 VISUAL COMPARISON OF DIFFERENT METHODS TRAINED ON IMAGENET

Vanilla ms:100 ms:1K Vanilla ms:100 ms:1K Vanilla ms:100 ms:1K Vanilla ms:100 ms:1K

Figure 12: Visual comparison of ImageNet images (64×64) generated by RFM models. The models
are trained on the same dataset using different methods: vanilla RFM, DANSM with match-size 100
(“ms:100”), and DANSM with match-size 1000 (“ms:1K”). Different rows are generated by different
sampling steps: 3-step (rows 1, 5, 9 and 13), 4-step (rows 2, 6, 10 and 14), 5-step (rows 3, 7, 11 and
15), and 10-step (rows 4, 8, 12 and 16).
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A.7 COMPARISON OF DIFFERENT METHODS TRAINED ON FFHQ

Table 5: FID↓ comparison between different epochs of RFM training processes on FFHQ(256×256)
images, where “ms” means match-size of DANSM. The FID scores are calculated on images gener-
ated by 10-step sampling process.

epoch 20 40 60 80 100

baseline 121.92 104.59 97.25 89.97 86.76
ms=100 102.51 95.08 86.64 69.24 58.58

ms=1,000 95.46 87.24 78.18 75.27 66.95

(a) Vanilla (b) ms:100 (c) ms:1000 (d) Vanilla (e) ms:100 (f) ms:1000

Figure 13: RFM on FFHQ. Visual comparison of images generated by RFM models. The models are
trained on the same dataset using different methods: vanilla RFM (columns a and d), DANSM with
match-size 100 (columns b and e), and DANSM with match-size 1000 (columns c and f ). Different
rows are generated by different sampling steps: 3-step (rows 1), 4-step (rows 2), 5-step (rows 3),
and 10-step (rows 4).

A.8 FID COMPARISON WITH FEWER STEPS

Table 6: FID↓ comparison of RFM model training at different epochs and match-sizes (“ms”).

RFM with DANSM on CIFAR-10
(2-step sampling)

RFM with DANSM on Bedroom
(2-step sampling)

epoch 100 200 300 400 500 epoch 20 40 60 80 100

baseline 171 171 170 169 165 baseline 280 243 215 199 188
ms=5,000 88.13 87.91 84.61 83.67 82.41 ms=100 248 203 184 173 186
ms=50,000 74.42 73.42 74.15 73.53 73.52 ms=500 209 188 186 164 163
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