
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SQL-GEN: BRIDGING THE DIALECT GAP FOR TEXT-
TO-SQL VIA MULTI-DIALECT SYNTHETIC DATA AND
MODEL MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-to-SQL systems, that convert natural language queries into SQL programs,
have seen significant progress with recent breakthroughs. However, these have
been primarily for the SQLite dialect and adapting Text-to-SQL systems to other
SQL dialects like BigQuery and PostgreSQL remains a challenge due to the di-
versity in SQL syntaxes and functions, along with the high cost of collecting
and curating SQL-specific training data. To this end, we introduce SQL-GEN,
a framework for generating high-quality synthetic data for any dialect guided by
dialect-specific tutorials. We demonstrate the effectiveness of SQL-GEN in cre-
ating training data to significantly improve the downstream Text-to-SQL perfor-
mance for other dialects – it improves the execution accuracy by up to 20% over
previous methods, and reduces the gap with large-scale human-annotated data
on unseen real world multi-dialect benchmarks. Moreover, combining our syn-
thetic data with human-annotated data provides additional performance boosts up
to 5.6%. Towards unifying the multi-dialect capability in a single system, we also
introduce a novel Mixture of Experts (MoE) initialization method that integrates
dialect-specific models by merging self-attention layers and initializing the gates
with dialect-specific keywords, yielding one unified and versatile model adept for
multiple SQL dialects, further enhancing performance across different SQL di-
alects. By leveraging shared core features of multiple dialect-specific models, our
MOE demonstrated superior performance compared with models trained on indi-
vidual dialects alone.

1 INTRODUCTION

Text-to-SQL systems translate natural language questions into executable SQL queries, enabling
users to interact with databases using natural language. This transformation is crucial as it links
the intuitive nature of human communication with the structured precision of SQL, the standard
language for querying databases (Androutsopoulos et al., 1995; Hristidis et al., 2003; Li & Jagadish,
2014). Text-to-SQL plays a significant role for conversational agents, empowering them to process
complex queries within large-scale databases efficiently (Yu et al., 2019; Gu et al., 2022; Pérez-
Mercado et al., 2023). Such systems serve as a copilot for data science professionals to enhance
productivity, beyond being valuable for non-technical users who wish to derive business insights
without SQL expertise (Li et al., 2023; Sun et al., 2023a;b; Wang et al., 2019).

SQL has been adopted by each database product (e.g. PostgreSQL, MySQL, and SQLite) to suit their
specific needs. Despite their common foundations, these SQL dialects differ significantly in their
syntax, functions, and capabilities, which even make the automated translation of queries across di-
alects a complex task that often requires human intervention (Zmigrod et al., 2024; Ngom & Kraska,
2024). Figure 1 exemplifies a question that can be answered with different SQL keywords across
different dialects with their own unique keywords that are distinct from one another. Additionally
in Appendix A.7, we provide some of the dialect specific keywords for BigQuery, PostgreSQL, and
SQLite, which are not supported across all of them. In the realm of Text-to-SQL, most benchmarks
are based on the SQLite dialect, chosen for its simplicity and self-contained nature (Li et al., 2024b;
Yu et al., 2018b; Zhong et al., 2017; Chang et al., 2023; Gan et al., 2021). This dialect dependency
poses a significant challenge, as models trained on SQLite-specific syntax are prone to generating

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

erroneous queries in other dialects. A conventional solution involves translating queries across di-
alects before training, using tools like SQLglot parser or tools offered by cloud providers (Li et al.,
2024b; Mao, 2023; Zmigrod et al., 2024). However, most of these tools are not 100% successful in
translating the queries between dialects Zmigrod et al. (2024). For example, during the translation of
the BIRD benchmark (Li et al., 2024b) from SQLite to BigQuery, approximately 20% of the queries
encountered errors using the SQLGlot parser. Additionally, this approach fails to leverage the unique
capabilities of each SQL dialect, as queries originally written for SQLite may not fully exploit the
potential of the target dialects due to the absence of support for specific functions and keywords in
the source dialect. For example, REGEX operations are supported in BigQuery but not in SQLite,
so we cannot get this REGEX support by translating queries from SQLite. To overcome this, we
propose a dialect-agnostic method for generating synthetic Text-to-SQL pairs for any database.

Figure 1: Exemplification of a question being answered using different SQL keywords for different dialects,
BigQuery, PostgreSQL,and SQLite.

SQL-GEN consists of a three-step pipeline. Initially, we begin with a small collection of seed SQL
templates. These retain only the SQL keywords, abstracting away the specific database schema and
values. Accompanying these templates, we provide dialect-specific tutorials that explain the usage
of each SQL keyword across different dialects. In the first stage of our pipeline, we leverage a Large
Language Model (LLM) to expand the seed templates, using the tutorials to adapt the keywords
and function to various SQL dialects. In the second stage, these database-independent templates are
populated with actual values and schema elements from any given database. The final stage involves
a rigorous quality checks to ensure that the generated pairs accurately match each other.

We perform comprehensive evaluations on the effectiveness of SQL-GEN in teaching models new
dialects, specifically focusing on dialect-specific characteristics like keywords. We assess the quality
of synthetic samples by comparing them against both prior synthetic and human-annotated datasets.
We construct synthetic datasets for three dialects and evaluate various LLMs (of sizes 7B-22B),
trained on these pairs as well as other baselines. We show that all LLMs trained on our synthetic data
exhibit a performance increase ranging from 4% to 27%, surpassing those trained on earlier synthetic
and human-annotated data. In addition, for under-explored dialects of PostgreSQL and BigQuery,
we focus on evaluations on real-world data, specifically designed for PostgreSQL and BigQuery. We
demonstrate that models trained with synthetic data generated by SQL-GEN consistently outperform
others by a significant margin, approximately 7.5% on BigQuery and 2.5% on PostgreSQL dialect-
specific datasets. This highlights the generalizability of our approach to unseen datasets due to
its broad coverage. We also explore data augmentation for cross-domain Text-to-SQL scenario as
another use case of synthetic queries. By integrating synthetic queries with training samples from
other databases, we show improvements in models’ ability to adapt across domains. We test the
proposed data augmentation approach using the BIRD development set by combining synthetic
and training data, aiming to improve performance on the target databases. We show consistent
performance improvements of up to ∼5.7% when fine-tuning with the augmented data.

As noted earlier, each SQL dialect has distinct keywords and functions, rendering a model trained
on a specific dialect uniquely specialized. A significant challenge arises when Text-to-SQL users
manage databases across multiple dialects, as deploying multiple dialect-specific models can be
computationally demanding. Moreover, we hypothesize that multi-dialect datasets share common
SQL features, leading to some overlap in the features learned by the models. By merging models,
we believe they can gain a deeper understanding of core features as they appear across multiple
dialects. To overcome this, we introduce a novel method for utilizing the Mixture of Experts (MoE)
architecture (Fedus et al., 2022b; Riquelme et al., 2021; Jiang et al., 2024). Specifically, our ap-
proach is based on initializing the MoE model using the layers of the dialect-expert models, while
the sub-layers are initialized using a two-by-two Spherical Linear Interpolation (SLERP) of self-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

attentions from the dialect experts, as approaches for efficient merging. Additionally, to harness
dialect-specific expertise effectively, we initialize the routers with hidden states corresponding to
dialect-specific keywords. We demonstrate an improvement of 2.5% in average performance com-
pared to other model merging approaches, as well as superior performance in SQLite and BigQuery
dialects, outperforming the expert models by 0.68% and 7.25%, respectively. We also show perfor-
mance outperformance of a MoE model initialized without our dialect-aware model merging, trained
for the same number of steps.

2 METHODOLOGY

We first introduce the SQL-GEN pipeline, designed to generate high-quality, dialect-specific Text-
to-SQL samples, as illustrated in Figure 2 and detailed in Algorithm 1. The generation of multi-
dialect Text-to-SQL synthetic data addresses the critical issue of insufficient high-quality data for
training models tailored to specific SQL dialects. However, since users of Text-to-SQL systems
often work with databases across various dialects, serving models in a multi-dialect environment
presents a unique challenge. Additionally, many SQL dialects adhere to standard SQL and share
common syntaxes, making the concept of information sharing particularly compelling. To this end,
we propose a model merging method that combines dialect-specific models into a single, unified
MoE model capable of serving multiple SQL dialects effectively.

Algorithm 1 SQL-GEN: Dialect-Specific Synthetic Question-SQL Pair Generation.
Require: set of target databases D, set of dialect-specific tutorials for each SQL keyword T , LLM M1, qual-

ity assurance LLMM2, number of SQL templates threshold θ, number of question-SQL pairs threshold β,
template expansion prompt PTempGen Figure 9, question-SQL sample generation prompt PGen Figure 10,
quality assurance prompt PQuality Figure 12, SQL templates parsing filter Filter1(.), question-SQL pairs
heuristic-based filters Filter2(.), template extractor function G(.)

1: Initialization:
2: S ← G(SeedQueries) // Generate initial set of SQL templates using a set of dialect-specific seeds
3: T ← Dialect Specific Tutorials // Scrape a set of dialect-specific SQL tutorials
4: while len(S) < θ do
5: // Generating new SQL templates using tutorials
6: template← sample(S)
7: tutorial← sample(T )
8: S ← S ∪ {Filter1(M1(PTempGen(template, tutorial)))}
9: end while

10: Q← ∅ // set of generated question-SQL pairs
11: while len(Q) < β do
12: // Generating question-SQL pairs
13: template← sample(S)
14: db← sample(D)
15: candidate← Filter2(M1(PGen(template, db)))
16: try
17: results← executeQuery(candidate) // quality assurance check
18: if isError(results) then
19: continue // Skip to the next iteration if error
20: end if
21: Q← Q ∪ {Filter2(M2(PQuality(candidate, results)))}
22: end while

Figure 2: SQL-GEN to generate diverse and high-quality synthetic Text-to-SQL samples for any database.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.1 SYNTHETIC TEXT-TO-SQL DATA GENERATION

The initial step of SQL-GEN involves creating a pool of simple queries by extracting template
question-SQL pairs. Building on this, we expand the templates using LLMs and dialect-specific
tutorials, rather than relying solely on extracted templates. After expanding these templates, each
one is converted into an actual SQL query, and a corresponding question is generated by passing
a sample database to the LLM. Subsequently, all generated question-SQL pairs, along with their
execution results, undergo a quality-checking step to ensure they accurately match each other and
effectively extract valuable information from the database. Throughout this process, we apply filter-
ing to remove low-quality samples at each step, to ensure the overall generated data would be high
quality.

Extraction of Seed Templates: Similar to Wu et al. (2021); Yu et al. (2020), we extract SQL
templates by abstracting all of the schema mentions in the queries from the Spider dataset to serve
as a foundational pool for generating more diverse queries. Since the seed queries are initially in
SQLite, for the other dialects, we transpile these queries using the SQLGlot parser (Mao, 2023)
before extracting their SQL query templates.

Templates Expansion From Tutorials: The initial pool of query templates created in the pre-
vious step presents two main challenges. First, the extracted templates are derived from sim-
ple SQL queries, which are relatively basic compared to the queries found in other SQLite
benchmarks like BIRD (Li et al., 2024b). Second, for dialects other than SQLite, the seed

Figure 3: An example of template expansion using
BigQuery tutorials and seed templates.

templates—originally designed for SQLite
would not have complete coverage for all the
dialect-specific SQL functions from other di-
alects. To address these, we expand the tem-
plates for each dialect using LLMs with in-
context learning (Brown et al., 2020; Wei et al.,
2022). To prepare the LLMs for template ex-
pansion, we first scrape online tutorials for each
target dialect, focusing on the use of dialect-
specific SQL functions and keywords. We
then randomly select a seed template from the
pool, pairing it with a random tutorial docu-
ment about a dialect-specific keyword or func-
tion, and prompt the LLM to increase the com-
plexity of the template, drawing inspiration from the document. To ensure the validity of the tem-
plates for all of the different dialects, we parse all generated SQL templates using dialect-specific
parser (from SQLglot (Mao, 2023)). Figure 3 demonstrates an examples of this template expansion
step for the BigQuery dialect. Additionally, Appendix A.9.1 provides the prompt that has been used
for template expansion.

Sample Generation: After generating the SQL templates, our next step is to convert them into
valid question-SQL pairs. For this process, we select a template along with a database schema with
a random row from any given database. Random database rows are necessary since the LLM should
be able to fill conditions with actual database values. The database schemas can be sourced from
different datasets (e.g. publicly-available Spider or BIRD). As these are originally in SQLite, these
databases are migrated to each target dialect for dialects other than SQLite. The combination is
then passed to an LLM, instructing it to integrate schema mentions into the templates and gener-
ate corresponding questions that align with the SQL queries. After generating the SQL queries,
heuristic-based semantic and syntactic filters are applied to ensure the high quality of both the
queries and questions. The specifics of these filters are detailed in the Appendix A.6. Addition-
ally, Appendix A.9.2 includes the detailed prompt which is used in this step.

Data Quality Check: To ensure high quality generation of question-SQL pairs, we present the
question-SQL pairs alongside the first K rows of their execution results over the database to an
LLM. This LLM is tasked with verifying that the question and SQL pair match appropriately and that
the question is free of ambiguity. To avoid repeating the same errors, we employ a different LLM,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

not used in previous steps, to act as the judge. Appendix A.4.1 provides a detailed analysis of the
importance of utilizing a secondary LLM and highlights the importance of this step. Appendix A.9.3
provides the prompt that has been used for quality checking.

2.2 DIALECT EXPERTS MERGING: MULTI-DIALECTS MIXTURE OF EXPERT (MOE)

With SQL-GEN, we can generate question-SQL pairs for various dialects and train corresponding
dialect-specific models. However, in real-world scenarios, users often manage databases across dif-
ferent dialects, necessitating the deployment of multiple models, which can come with practical
challenges, including increased model serving costs and overhead of managing multiple check-
points. Additionally, while each dialect features unique keywords and functions, there is common-
ality across some SQL keywords across dialects that can be exploited for cross-dialect information
transfer. By merging these dialect experts into a single model, not only we mitigate the practical
serving challenges, but we can improve the performance of each facilitating sharing of common
knowledge. As model merging approaches, we introduce our proposed method utilizing the Mixture
of Experts (MoE) architecture.

MoE: In a Mixture of Experts (MoE) model, each layer contains multiple MLP blocks, or “ex-
perts,” and a router network selects specific experts to process each token at every position, com-
bining their outputs. This architecture enhances the traditional MLP sub-layer within Transformer
blocks by replacing it with multiple experts, each with its own set of parameters (Jiang et al., 2024;
Fedus et al., 2022a). MoE-based LLMs route tokens to different experts, increasing modeling ex-
pressiveness without significantly increasing the compute budget, as only a subset of experts is
activated for each token. With different Transformer-based expert models, we can combine them
into a single MoE model that leverages the expert-specific MLP layers. By initializing the router
to select the corresponding expert for each token, we can combine the knowledge of expert models
by activating multiple experts and merging the self-attention layers. This approach aligns well with
our setting, where we have dialect-specific expert models that already have prior knowledge of SQL
syntax. For dialect-specific keywords, we can use the router to select the appropriate MLP layer,
which allows us to integrate three models into a single one without the need to train a new model
from scratch. Figure 4 illustrates one Transformer block with the proposed method for constructing
an MoE model from three distinct dialect expert models.

Figure 4: Our proposed method to initialize one Transformer block of a MoE model from different dialect
experts, exemplified here for Postgres, SQLite, and BigQuery dialects to create an all in one model to address
all. Objects in yellow demonstrate multi-dialect models

Key-words based multi-dialects gating (routing): An important aspect of the MoE framework
is the gating (routing) mechanism. In MoE, the output for a given input x is computed as a weighted
sum of the expert networks’ outputs, with the weights determined by the gating network (Jiang et al.,
2024). Given n expert networks {E1, Ei, ..., En} The output is

n−1∑
i=0

G(x)iEi(x)

where the gates’ outputs are determined based on the dot product of the input x and the gate weights
Wg as follows:

G(x) = Softmax(TopK(dot(x,Wg)))

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We propose to initialize these gates at each layer by averaging the hidden vectors of the dialect-
specific keywords, derived from the training data of each model and based on the top K most
frequently occurring dialect-specific keywords from generated question-SQL pairs. This process
begins by cataloging all dialect-specific keywords from our generated SQL queries, sorting them
by frequency, and selecting the top-k keywords. These keywords are then processed by the model,
where the hidden representations from the self-attention sub-modules for all tokens of these key-
words are used to initialize the gates. The formula below provides the described method for initial-
izing the gate weights:

Wg(i) =
1

K

K∑
k=1

kt∑
j=1

hkj

, where Wg(i) is the ith column of the gate weight matrix corresponding to ith expert, kt is the
number of tokens for the kth dialect keyword, and hkj is the hidden representation of the j-th token of
the k-th keyword. This approach increases the dot product between dialect-specific input keywords
and their corresponding gate weight matrix columns, thereby boosting the weight for the dialect-
specific expert. Although this method shows improved performance even without further training
compared to other model merging approaches, we show superior joint modeling of the sub-models
by further fine-tuning the MoE architecture on a mixed dataset from various dialects.

SLERP-based self-attention merging: In our proposed methodology, the MLP layers of each
expert within the MoE model are initialized using the MLP sub-layers from models previously
trained on distinct dialects. For the self-attention sub-layers of the MoE model, we employ Spherical
Linear Interpolation (SLERP) (Goddard et al., 2024; Shoemake, 1985) to merge the initial weights
of the self-attention layers (Key, Value, and Query projections) across multiple dialects. SLERP
allows for smooth, non-linear transitions between two weight vectors while preserving the intrinsic
geometric properties of the spherical space. The process begins by normalizing the weights of the
Key, Value, and Query layers from different dialect models to unit magnitude, ensuring that they
lie on the surface of a unit sphere. Once normalized, the angle (θ) between the weight vectors is
computed using the dot product. If the vectors are nearly collinear (i.e., the dot product is close to
1), the merging process defaults to linear interpolation (LERP) for efficiency. Otherwise, SLERP
calculates the scale factors based on the interpolation parameter t and the angular separation between
the vectors:

SLERP(t,v0,v1) =
sin((1− t)θ)

sin(θ)
v0 +

sin(tθ)

sin(θ)
v1

Where v0 and v1 represents the normalized weight vectors of the models. By merging the self-
attention weights through SLERP, we can smoothly integrate the knowledge from different dialect-
specific models into the initialization of the MoE model’s self-attention layers, providing a more
effective starting point for model training.

3 EXPERIMENTS

Datasets: We use benchmark datasets tailored for three dialects. For SQLite, we use two datasets
from BIRD: 1) the development set and 2) the mini development set. For PostgreSQL, we utilize
three benchmarks: 1) BIRD queries transpiled to PostgreSQL, 2) BIRD PostgreSQL mini develop-
ment set, and 3) Pagila—a dataset specific to PostgreSQL containing real-world queries originally
written for PostgreSQL, which are extracted from online resources. For BigQuery, we use two
datasets: 1) BIRD queries transpiled to BigQuery, and 2) the GitHub repositories dataset, a public
BigQuery dataset featuring BigQuery-specific sample question/SQL pairs obtained from tutorials
and online resources. Further details of the datasets are provided in Appendix A.2.

Baselines: In order to evaluate the quality of the synthetic queries generated with SQL-GEN,
we compare the performance of the models trained on synthetic data considering the following
datasets: 1) Gretel (Gretel, 2024): Gretel Text-to-SQL dataset consists >100K high-quality syn-
thetic Text-to-SQL samples with a coverage across 100 distinct domains. 2) SQL create context
(b mc2, 2023): This dataset consists ∼78K samples, obtained from the Spider (Yu et al., 2018b)
and WikiSQL (Zhong et al., 2017) datasets by cleaning these sources. All queries were generated
through a human-in-the-loop process, making it a strong baseline for comparing LLM-generated

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

data with human-annotated data. 3) BIRD train set (Li et al., 2024b): This dataset consists of ∼10k
human-annotated samples. Queries are considered more complex in comparison to the Spider and
WikiSQL benchmarks.

For dialects other than SQLite, all queries from the baselines are transpiled to the target dialects to
ensure their validity. Details of the models and metrics are provided in Appendix A.3 and details of
the seed templates and tutorials are provided in Appendix A.4.

3.1 DIALECT-SPECIFIC SQL KEYWORDS CONVERGE IMPROVEMENT

We compare our generated SQL queries with two baseline datasets in terms of the diversity of
queries, focusing on the use of unique SQL keywords and the frequency of dialect-specific queries.
The results are presented in Figure 5. For an equitable comparison, we sample 60K queries from
each baseline. Since our Text-to-SQL dataset exclusively contains SELECT queries, we exclude
samples that do not start with the SELECT keyword. According to the results, our dataset exhibits
the highest diversity and the greatest number of dialect-specific queries compared to the baselines.
Interestingly, the SQL create context dataset, which is intended to be a SQLite dataset, contains
several queries using the STRUCT() keyword, which is supported by BigQuery, not SQLite.

Figure 5: Comparison between queries generated by our method with the baselines in terms of diversity of the
SQL keywords and number of dialect-specific queries in each of them.

3.2 POSTGRESQL RESULTS

For PostgreSQL, we train LoRA adapters for the CodeLlama 7B and Codestral 22B model on the
transpiled baseline datasets and compared its performance against our proposed method. As shown
in Table 1, our method achieves the highest performance on the PostgreSQL BIRD and Minidev
benchmarks compared to other baselines, except for the BIRD train set. While training a model
on the original BIRD training split delivers the highest performance on the BIRD development
split, it significantly underperforms when evaluated on other PostgreSQL datasets, such as Pagila
(as seen in the third row). This highlights the importance of diversity in training data to prevent
overfitting to a specific distribution. In contrast, our approach achieves consistently high accuracy
when evaluated on both the BIRD development split and other PostgreSQL datasets, demonstrating
outstanding generalization ability. Moreover, these results demonstrate the importance of dialect
specific datasets as the other transpiled queries couldn’t match the performance of our method.

Table 1: Execution Accuracy (EX) of PostgreSQL Models on the three PostgreSQL benchmarks using CodeL-
lama 7B and Codestral 22B. ”-” denotes the zero-shot performance of the models.

Training Dataset Benchmark Model EX (%) ∆EX Model EX (%) ∆EX

Bird train set PostgreSQL BIRD CodeLlama 7B 44.37 +20.08 Codestral 22B 52.26 +5.68
Our synthetic dataset PostgreSQL BIRD CodeLlama 7B 39.22 +14.93 Codestral 22B 49.84 3.26
Gretel Text-to-SQL PostgreSQL BIRD CodeLlama 7B 28.05 +3.76 Codestral 22B 40.55 -6.03
SQL Create Context PostgreSQL BIRD CodeLlama 7B 13.35 -10.94 Codestral 22B 36.17 -10.41
- PostgreSQL BIRD CodeLlama 7B 24.29 0 Codestral 22B 46.58 0

Bird train set PostgreSQL Minidev CodeLlama 7B 31.0 +17.8 Codestral 22B 36.0 +4.2
Our synthetic dataset PostgreSQL Minidev CodeLlama 7B 25.4 +12.2 Codestral 22B 33.0 +2.2
Gretel Text-to-SQL PostgreSQL Minidev CodeLlama 7B 14.6 +1.4 Codestral 22B 23.0 -8.8
SQL Create Context PostgreSQL Minidev CodeLlama 7B 7.8 -5.4 Codestral 22B 25.2 -6.6
- PostgreSQL Minidev CodeLlama 7B 13.2 0 Codestral 22B 31.8 0

Bird train set Pagila CodeLlama 7B 19.56 -4.35 Codestral 22B 43.47 -6.53
Our synthetic dataset Pagila CodeLlama 7B 39.13 +15.22 Codestral 22B 50 0.0
Gretel Text-to-SQL Pagila CodeLlama 7B 36.95 +13.04 Codestral 22B 50 0
SQL Create Context Pagila CodeLlama 7B 8.69 -15.22 Codestral 22B 36.95 -13.05
- Pagila CodeLlama 7B 23.91 0 Codestral 22B 50 0

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.3 BIGQUERY RESULTS

Similar to the PostgreSQL experiments, we present the results of the CodeLlama 7B and Codestral
22B model trained on various baseline datasets and evaluated on two BigQuery benchmark datasets:
BIRD and the GitHub Repository database. Looking at the results provided in Table 2, consistent
with the trends observed for the PostgreSQL dialect, on BigQuery BIRD, the model trained on our
generated samples achieves the second highest performance, following the BIRD train set. For the
GitHub Repository database, which is a BigQuery dialect specific dataset, our model outperforms
the second-best model by a 10% margin, further demonstrating the effectiveness of our method to
train dialect specific models.

Table 2: Execution Accuracy (EX) of BigQuery Models on the two BigQuery benchmarks using CodeLlama
7B and Codestral 22B. ”-” denotes the zero-shot performance of the models.

Training Dataset Benchmark Model EX (%) ∆EX Model EX (%) ∆EX

Bird train set BigQuery BIRD CodeLlama 7B 38.04 +21.47 Codestral 22B 47.74 +9.55
Our synthetic dataset BigQuery BIRD CodeLlama 7B 33.53 +16.96 Codestral 22B 47.24 +9.05
Gretel Text-to-SQL BigQuery BIRD CodeLlama 7B 26.73 +11.16 Codestral 22B 36.74 -1.45
SQL Create Context BigQuery BIRD CodeLlama 7B 10.84 -5.73 Codestral 22B 39.19 +1.0
- BigQuery BIRD CodeLlama 7B 16.57 0 Codestral 22B 38.19 0

Bird train set Github Repository CodeLlama 7B 7.5 -7.5 Codestral 22B 7.5 -12.5
Our synthetic dataset Github Repository CodeLlama 7B 25.0 +10.0 Codestral 22B 30.0 +10.0
Gretel Text-to-SQL Github Repository CodeLlama 7B 17.5 +2.5 Codestral 22B 22.5 +2.25
SQL Create Context Github Repository CodeLlama 7B 0.0 -15.00 Codestral 22B 20.0 0
- Github Repository CodeLlama 7B 15 0 Codestral 22B 20.0 0

3.4 SQLITE RESULTS

Utilizing SQL-GEN, we generate 20K samples for the SQLite dialect. Appendix A.4.2 studies the
impact of the number of samples. We train three different models with different sizes from 7B to
22B on these samples. For a fair comparison with the baselines, we only use the Spider databases
for generating the synthetic data. For this comparison, we train models on: 1) The entire BIRD
training set; 2) 20K samples from the SQL Create Context (b mc2, 2023); and 3) 20K samples from
the Gretel Text-to-SQL datasets (Gretel, 2024). We assess the Text-to-SQL performance of these
models on the BIRD development set and minidev set (see Table 3). Additionally, we evaluate the
zero-shot performance of each model and calculate the performance gains for each method relative
to zero-shot.

SQL-GEN generated samples significantly surpass the Gretel dataset, achieving a large performance
gain of approximately 10% across all model sizes. Furthermore, LLMs trained on SQL-GEN syn-
thetic data consistently outperform those trained on the human-annotated SQL Create Context data,
underscoring the high quality of SQL-GEN synthetic data. While LLMs trained on the BIRD dataset
consistently exhibit the highest performance on BIRD development sets, this outcome is likely due
to overfitting to the canonical input distribution of the BIRD train set which is similar to its devel-
opment set (Yu et al., 2020).

Table 3: Execution Accuracy (EX) of SQLite Models on the BIRD development set and minidev set using
CodeLlama 7B, CodeGemma 7B, and Codestral 22B Models. ”-” denotes the zero-shot performance of the
models.

Training Dataset Model Dataset EX (%) ∆EX Dataset EX (%) ∆EX

Bird train set CodeLlama 7B dev set 40.22 +22.36 minidev set 38.4 +24.8
Our synthetic dataset CodeLlama 7B dev set 38.33 +20.47 minidev set 30.00 +16.4
Gretel Text-to-SQL CodeLlama 7B dev set 26.01 +8.15 minidev set 19.6 +6.0
SQL Create Context CodeLlama 7B dev set 18.31 +0.45 minidev set 12.6 -1.0
- CodeLlama 7B dev set 17.86 0 minidev set 13.6 0.0

Bird train set CodeGemma 7B dev set 45.63 +11.87 minidev set 40.4 +10.4
Our synthetic dataset CodeGemma 7B dev set 42.37 +8.64 minidev set 36.4 +6.4
Gretel Text-to-SQL CodeGemma 7B dev set 30.83 -2.93 minidev set 30.6 +0.6
SQL Create Context CodeGemma 7B dev set 28.87 -4.89 minidev set 29.6 -0.4
- CodeGemma 7B dev set 33.76 0 minidev set 30.0 0.0

Bird train set Codestral 22B dev set 53.12 +8.6 minidev set 50.4 +10.0
Our synthetic dataset Codestral 22B dev set 50.45 +5.93 minidev set 46.6 +6.2
Gretel Text-to-SQL Codestral 22B dev set 37.87 -6.65 minidev set 30.8 -9.6
SQL Create Context Codestral 22B dev set 40.80 -3.72 minidev set 36.8 -3.6
- Codestral 22B dev set 44.52 0 minidev set 40.4 0.0

To pinpoint whether the gains are consistent across, we evaluate different models on different SQL
query complexity levels: simple, medium, or challenging, as presented in Appendix A.5.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Database Adaptation: SQL-GEN operates independently of specific databases, enabling the gen-
eration of high-quality synthetic data for any database. Therefore, as another use case of synthetic
data, we introduce Database Adaptation, to improve the performance in cross-domain Text-to-SQL
setting. This involves generating synthetic queries for databases for which no pre-existing question-
SQL pairs are available. We apply this training in two distinct ways: (1) in-context learning, which
leverages the generated queries directly within the model’s input context as demonstrations, and (2)
model tuning, which involves supervised fine-tuning of the model weights:

Database Adaptation With Model Tuning: Our synthetic data generation pipeline is designed
to generate question-SQL pairs for any database. To demonstrate this, we generated 10K pure syn-
thetic question-SQL pairs across the 11 databases in the BIRD development set and separately 10K
samples for the entire databases in the BIRD training set using Gemini-1.5-pro. We then compared
the performance of two model against a model trained on the original 10K training samples from the
BIRD benchmark. The results are detailed in Section 3.4. The table indicates that our synthetic gen-
eration approach on the BIRD development set databases achieves performance comparable to the
original BIRD training set with only 1.5% gap. This is particularly noteworthy given that generat-
ing synthetic samples is significantly less resource- and cost-intensive compared to creating 10,000
human-annotated samples. The latter involves 11 crowd-source workers to annotate the samples.
Additionally, synthetic data generation on development split outperforms train split showing that
SQL-Gen helps to learn unseen database and improve performance.

Training Data EX (%) ∆EX

BIRD train set 40.22 +22.36
Synthetic sample on BIRD dev dbs 38.78 +20.92
Synthetic sample on BIRD train dbs 34.68 +16.82
Zero-shot (no training) 17.86 0

Table 4: Using our proposed pipeline to generate 10K
synthetic data for BIRD development set databases.

#ICL Model EX (%) ∆EX

Zero-shot CodeLlama 12.35 0.0
1 CodeLlama 17.97 +5.62
5 CodeLlama 20.22 +7.87
10 CodeLlama 22.47 +10.12

Table 5: Using SQL-GEN to generate syn-
thetic data for the given database. #ICL de-
notes the number of in-context learning sam-
ples used in the prompts.

Database Adaptation with In-context Learning: An alternative method to enhance the perfor-
mance of LLMs on task-specific datasets is through in-context learning (Brown et al., 2020). We
explore the concept of database adaptation through in-context learning, using synthetic queries as
few-shot in-context samples without additional model training. To evaluate this approach, we gen-
erate 500 synthetic samples for the California schools database from the BIRD development set.
We then test the model’s performance on 89 samples from this database using different numbers of
in-context samples. The results, presented in Section 3.4. For selecting the few-shot samples, we
use cosine similarity between question embeddings. These results demonstrate that we can achieve
a 10% improvement in accuracy without any training.

Table 6: Performance comparison of the data augmentation
method on the BIRD development set using different LLMs.

Training Dataset Model EX (%) ∆EX

BIRD train set CodeLlama 7B 40.22 0
BIRD Train + synthetic CodeLlama 7B 45.82 +5.6

BIRD train set CodeGemma 7B 45.63 0
BIRD Train + synthetic CodeGemma 7B 51.10 +5.47

BIRD train set Codestral 22B 53.12 0
BIRD Train + synthetic Codestral 22B 56.45 +3.33

Data Augmentation: Beyond merely
creating a pool of pure synthetic
question-SQL pairs for training, syn-
thetic data generation offers the poten-
tial to augment existing datasets (e.g.
mixing with original dataset), thereby
enhancing model performance beyond
what is achievable with solely the avail-
able data. We consider integrating syn-
thetic data generated for specific tar-
get databases (as discussed in Database
Adaptation, see Section 3.4) with pre-existing training datasets. To this end, we merge 10K syn-
thetic question-SQL pairs generated on the BIRD development databases with the 10K pairs from
the BIRD training set. We then train various models using this combined dataset and compared
their performance to models trained solely on the original BIRD training set. For a balanced com-
parison, models using the combined datasets are trained for only one epoch, whereas those trained
exclusively on the BIRD training set are trained fro two epochs. As shown in Table 6, augmenting

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

training data results in a performance improvement of up to 5.6%, a significant enhancement com-
pared to previous work, such as Yang et al. (2024) (which demonstrated only a 1.5% improvement
in performance after augmentation on the same base model CodeLLama 7B).

3.5 EXPERTS MERGING RESULTS

We evaluate various expert merging approaches for integrating dialect-specific models into a sin-
gle unified model and compare to our method based on the Mixture of Experts (MoE) architecture.
We utilize three expert CodeLlama 7B models, each trained on synthetic question-SQL pairs for
SQLite, PostgreSQL, and BigQuery. We consider three popular model merging techniques: DARE
(Yu et al., 2024), TIES (Yadav et al., 2024), and SLERP. Unlike the first two, SLERP can only merge
two models at a time. Therefore, we initially merge the SQLite and PostgreSQL experts and then
combined the resulting model with the BigQuery expert. Additionally, we fine-tune a generalist
(not dialect-specific) CodeLlama 7B and MoE 3x7B model on 40K samples from a mix of differ-
ent dialects to establish a baseline for comparison. The generalist MoE baseline is a MoE 3x7B
model initialized from CodeLlama 7B model and trained with 40K combined dialect samples for 1
epoch. We compare all these methods to the proposed method for initializing the MoE model which
is trained only for one epoch of 20K samples from different dialects. We train for a single epoch
to promote effective collaboration among the submodules. We also include the performance of the
proposed MoE model before the single epoch fine-tuning to better understand understand the effec-
tiveness of our proposed initialization method. We assess the performance of the different models on
PostgreSQL’s Pagila, BigQuery’s Github Repository, and 10% of random samples from the SQLite
BIRD dev set, with results detailed in Table 7. The table demonstrates that the proposed MoE model
overall outperforms others, even exceeding the performance of the individual dialect experts, high-
lighting the effectiveness of our approach in sharing common SQL knowledge across dialects while
preserving dialect-specific expertise. The MoE architecture also enhances the model’s learning ca-
pacity, contributing to improved overall performance. Notably, our initialization method is more
effective at maintaining high dialect-specific performance compared to the generalist MoE 3x7B
model. Among all merging techniques, SLERP achieves the highest performance, surpassing even
the generalist model trained on the combined dialect-specific datasets, which is the main reason for
initializing the self-attention sub-layers. Moreover, the results suggest that our proposed method for
initialization even before fine-tuning provide a strong baseline surpassing TIES and DARE methods
for model merging. In Appendix A.8, we provide detailed analysis of token-level routing for MoE
architecture.

Table 7: Comparison between different dialect expert merging approaches and our proposed MoE for dialect
benchmarks. Generalist model refers to CodeLlama trained on the combination of the dialect datasets.

Model BIRD SQLite PostgreSQL Pagila BigQuery BIRD Overall

CodeLlama 7B SQLite expert 34.01 39.13 25 32.71
CodeLlama 7B Postgres expert 29.93 39.13 20 29.68
CodeLlama 7B BigQuery expert 33.33 32.60 27.5 31.14

CodeLlama 7B generalist 33.33 32.66 32.25 32.83

Merged experts + SLERP 34.69 39.13 27.5 33.77
Merged experts + TIES 35.37 30.43 27.5 31.1
Merged experts + DARE 35.37 36.95 17.5 29.94

MoE 3x7B (ours) 36.05 39.13 22.5 32.56
MoE 3x7B fine-tuned (ours) 34.69 39.13 32.25 35.44
MoE 3x7B generalist 34.01 41.3 25 33.43

4 CONCLUSIONS

We present a novel framework for generating dialect-specific synthetic data to tackle the diverse
SQL dialect modeling challenges for Text-to-SQL. The proposed framework addresses the unique
challenges such as keywords and functions being different for each SQL dialect, constituting a
scalable approach. It significantly narrows the performance gap with human-annotated datasets
and creates the highest quality datasets for other dialects. Our comprehensive evaluations across
three models and multiple benchmarks, showcase the effectiveness of the proposed data generation
framework. Additionally, our innovative approach integrates dialect-specific experts into a unified
model, enhancing performance by promoting effective information sharing among them.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Codegemma report. https://storage.googleapis.com/deepmind-media/gemma/
codegemma_report.pdf. Accessed: 2024-06-10.

Meta llama 3. https://ai.meta.com/blog/meta-llama-3/. Accessed: 2024-06-10.

Ion Androutsopoulos, Graeme D Ritchie, and Peter Thanisch. Natural language interfaces to
databases–an introduction. Natural language engineering, 1(1):29–81, 1995.

b mc2. sql-create-context dataset, 2023. URL https://huggingface.co/datasets/
b-mc2/sql-create-context. This dataset was created by modifying data from the fol-
lowing sources: Zhong et al. (2017); Yu et al. (2018b).

Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. Tabel: Entity linking in web
tables. In International Semantic Web Conference, pp. 425–441. Springer, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Shuaichen Chang, Jun Wang, Mingwen Dong, Lin Pan, Henghui Zhu, Alexander Hanbo Li, Wuwei
Lan, Sheng Zhang, Jiarong Jiang, Joseph Lilien, et al. Dr. spider: A diagnostic evaluation bench-
mark towards text-to-sql robustness. arXiv preprint arXiv:2301.08881, 2023.

Google Cloud. Github on bigquery: Analyze all the open-source code.
https://cloud.google.com/blog/topics/public-datasets/
github-on-bigquery-analyze-all-the-open-source-code. Accessed:
2024-06-10.

MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: Scaling multi-task model
merging with sparse masks. arXiv preprint arXiv:2312.06795, 2023.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning.
arXiv preprint arXiv:2209.01667, 2022a.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022b.

Yujian Gan, Xinyun Chen, and Matthew Purver. Exploring underexplored limitations of cross-
domain text-to-sql generalization. arXiv preprint arXiv:2109.05157, 2021.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

John Goddard. Clown moe: Moe gates without training. https://goddard.blog/posts/
clown-moe/#moe-gates-without-training, 2024. Accessed: 2024-08-27.

Gretel. Synthetic text-to-sql dataset, 2024. URL https://gretel.ai/blog/
synthetic-text-to-sql-dataset.

Yu Gu, Xiang Deng, and Yu Su. Don’t generate, discriminate: A proposal for grounding language
models to real-world environments. arXiv preprint arXiv:2212.09736, 2022.

Devrim Gunduz. Pagila. https://github.com/devrimgunduz/pagila. Accessed:
2024-06-10.

Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin, Hong Chi, James Cao, Peng Chen, and Ming
Zhou. Question generation from sql queries improves neural semantic parsing. arXiv preprint
arXiv:1808.06304, 2018.

Vagelis Hristidis, Yannis Papakonstantinou, and Luis Gravano. Efficient ir-style keyword search
over relational databases. In Proceedings 2003 VLDB Conference, pp. 850–861. Elsevier, 2003.

11

https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://ai.meta.com/blog/meta-llama-3/
https://huggingface.co/datasets/b-mc2/sql-create-context
https://huggingface.co/datasets/b-mc2/sql-create-context
https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
https://goddard.blog/posts/clown-moe/#moe-gates-without-training
https://goddard.blog/posts/clown-moe/#moe-gates-without-training
https://gretel.ai/blog/synthetic-text-to-sql-dataset
https://gretel.ai/blog/synthetic-text-to-sql-dataset
https://github.com/devrimgunduz/pagila


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer.
Learning a neural semantic parser from user feedback. arXiv preprint arXiv:1704.08760, 2017.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Fei Li and Hosagrahar V Jagadish. Constructing an interactive natural language interface for rela-
tional databases. Proceedings of the VLDB Endowment, 8(1):73–84, 2014.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 13067–13075, 2023.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql. Proceedings of the ACM on Management of Data, 2(3):1–28, 2024a.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2024b.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Toby Mao. Sqlglot. https://github.com/tobymao/sqlglot, 2023. Accessed: 2024-06-
09.

Mistral. Codestral. https://mistral.ai/news/codestral/, 2024. Accessed: date.

Amadou Latyr Ngom and Tim Kraska. Mallet: Sql dialect translation with llm rule generation.
In Proceedings of the Seventh International Workshop on Exploiting Artificial Intelligence Tech-
niques for Data Management, pp. 1–5, 2024.

Rubén Pérez-Mercado, Antonio Balderas, Andrés Muñoz, Juan Francisco Cabrera, Manuel Palomo-
Duarte, and Juan Manuel Dodero. Chatbotsql: Conversational agent to support relational database
query language learning. SoftwareX, 22:101346, 2023.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Information Processing Systems, 36, 2024.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of the 12th annual
conference on Computer graphics and interactive techniques, pp. 245–254, 1985.

12

https://github.com/tobymao/sqlglot
https://mistral.ai/news/codestral/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ruoxi Sun, Sercan Ö Arik, Alex Muzio, Lesly Miculicich, Satya Gundabathula, Pengcheng Yin,
Hanjun Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang, et al. Sql-palm: Improved large
language model adaptation for text-to-sql (extended). arXiv preprint arXiv:2306.00739, 2023a.

Ruoxi Sun, Sercan Ö Arik, Rajarishi Sinha, Hootan Nakhost, Hanjun Dai, Pengcheng Yin, and
Tomas Pfister. Sqlprompt: In-context text-to-sql with minimal labeled data. arXiv preprint
arXiv:2311.02883, 2023b.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
Chess: Contextual harnessing for efficient sql synthesis. arXiv preprint arXiv:2405.16755, 2024.

Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task
models via weight-ensembling mixture of experts. arXiv preprint arXiv:2402.00433, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. Rat-
sql: Relation-aware schema encoding and linking for text-to-sql parsers. arXiv preprint
arXiv:1911.04942, 2019.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caiming Xiong. Learning to synthesize data for
semantic parsing. arXiv preprint arXiv:2104.05827, 2021.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and
Zhoujun Li. Mac-sql: Multi-agent collaboration for text-to-sql. arXiv preprint arXiv:2312.11242,
2023.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code
is all you need. arXiv preprint arXiv:2312.02120, 2023.

Kun Wu, Lijie Wang, Zhenghua Li, Ao Zhang, Xinyan Xiao, Hua Wu, Min Zhang, and Haifeng
Wang. Data augmentation with hierarchical sql-to-question generation for cross-domain text-to-
sql parsing. arXiv preprint arXiv:2103.02227, 2021.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. Advances in Neural Information Processing Systems,
36, 2024.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing text-
to-sql data from weak and strong llms. arXiv preprint arXiv:2408.03256, 2024.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
sorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and Dragomir Radev.
Syntaxsqlnet: Syntax tree networks for complex and cross-domaintext-to-sql task. arXiv preprint
arXiv:1810.05237, 2018a.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, et al. Cosql: A conversational text-to-sql challenge towards cross-domain natural
language interfaces to databases. arXiv preprint arXiv:1909.05378, 2019.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi Yang, Dragomir
Radev, Richard Socher, and Caiming Xiong. Grappa: Grammar-augmented pre-training for table
semantic parsing. arXiv preprint arXiv:2009.13845, 2020.

Yiyun Zhao, Jiarong Jiang, Yiqun Hu, Wuwei Lan, Henry Zhu, Anuj Chauhan, Alexander Li, Lin
Pan, Jun Wang, Chung-Wei Hang, et al. Importance of synthesizing high-quality data for text-to-
sql parsing. arXiv preprint arXiv:2212.08785, 2022.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

Ran Zmigrod, Salwa Alamir, and Xiaomo Liu. Translating between sql dialects for cloud migra-
tion. In Proceedings of the 46th International Conference on Software Engineering: Software
Engineering in Practice, pp. 189–191, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 RELATED WORK

A.1.1 SYNTHETIC DATA GENERATION

Early work for data augmentation for Text-to-SQL largely rely on human annotations to verify the
generated SQL queries or extract high-quality question-SQL pairs (Iyer et al., 2017; Yu et al., 2018a).
Guo et al. (2018) use a pattern-based approach to generate SQL queries and utilize a copy-based
Seq2Seq model to directly translate SQL queries into natural language questions. Some of the
recent methods (Wu et al., 2021; Yu et al., 2020; Zhao et al., 2022; Wang et al., 2021) rely on
grammar-based approaches to generate question-SQL pairs. Wu et al. (2021) use an abstract syntax
tree grammar to generate SQL queries and then employs a hierarchical SQL-to-question generation
model to obtain questions for the SQL queries. Similarly, Yu et al. (2020) extract and manually
annotate question and SQL templates from Spider (Yu et al., 2018b) to induce a grammar, then use
the grammar to generate synthetic samples for databases in Spider and WikiTables (Bhagavatula
et al., 2015). However, all methods relying on grammars have the drawback of generating samples
that lack diversity and highly depend on the grammar used (Yu et al., 2020), which makes them not
suitable for tasks that require generalization to new schemas.

Recently, Li et al. (2024a) propose a bidirectional method with question-to-SQL and SQL-to-
question augmentation. In the former, they use some human-annotated samples with in-context
learning with LLMs to generate queries for a new database, and in the latter, they extract templates
from Spider and fill those templates with the schema of a given database. This method has the lim-
itation that the diversity of the question and SQL pairs is restricted to either templates or in-context
samples. Concurrently with our work, SENSE (Yang et al., 2024) proposed a two-step synthetic
data generation process to enhance the performance of open-source text-to-SQL models. In the first
step, they utilize a robust LLM to generate a supervised fine-tuning dataset with a single LLM call.
In the second stage, they employ a smaller, weaker LLM to produce some incorrect SQL queries,
which are then used to construct a preference dataset. The initial phase of their method is similar
to our proposed approach; however, their method’s simplicity, which lacks execution result filtering
or conditioning on externally provided SQL keywords and relies solely on the LLMs’ parametric
knowledge, contrasts with our method that incorporates external knowledge to craft diverse queries.
Lastly, Gretel (2024) release a high-quality large dataset of 100K question-SQL pairs from different
domains.1 Overall, none of the previously mentioned approaches consider different dialects and
they are proposed for SQLite 2, which is a significant drawback of their work.

In the domain of synthetic data generation for code, recent work such as Reflexion (Shinn et al.,
2023) leverage external or internal feedback signals to enhance the code reasoning capabilities of
language models. Code Alpaca features a dataset of 20K code instructions automatically generated
by applying SELF-INSTRUCT (Wang et al., 2022) to LLMs across different seed tasks. Wizard-
Coder (Luo et al., 2023) introduces Code Evol-Instruct, which uses manually crafted prompts to
guide LLMs, thereby increasing the complexity and diversity of the synthetic data. Similarly, Magi-
coder (Wei et al., 2023) proposes OSS-INSTRUCT, which consists 75K diverse synthetic instruction
samples from open-source code snippets that are used as the seeds to both increase diversity and also
control the data generation process.

A.1.2 MODEL MERGING

Training specialized, task-specific models presents several challenges, including the storage costs
associated with maintaining multiple models, the substantial memory requirements for deploy-
ing these models, and the rapid obsolescence of models as training datasets age. One proposed
solution to mitigate these issues is model merging (Goddard et al., 2024). Initial approaches to
model merging, such as Task Arithmetic (Ilharco et al., 2022), involve calculating task-specific vec-
tors by determining the weight differences between the fine-tuned model and its base counterpart.
These vectors are then linearly combined and reintegrated with the original base model. Subse-
quent methodologies like DARE, TIES, and Model BreadCrumbs (Yadav et al., 2024; Yu et al.,

1The methodology to generate the pairs is not publicly available.
2Gretel dataset doesn’t specify the dialect.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2024; Davari & Belilovsky, 2023) have aimed to minimize interference among task-specific models
through techniques such as sparsification, sign consensus algorithms, and the exclusion of extreme
values. Additionally, DARE introduces random pruning to align more closely with the base model’s
performance (Goddard et al., 2024). More recently, the integration of model merging with Mixture
of Experts (MoE) architectures has been explored. This method, termed FrankenMoEs, initializes
MoE MLP layers using weights from task-specific models (Goddard, 2024; Tang et al., 2024). Our
work extends these efforts by specifically leveraging features from dialect-specific models for gate
initialization and merging self-attention sublayers within transformer architectures.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2 DATASETS DETAILS

A.2.1 SQLITE

To the best of our knowledge, the majority of large-scale, cross-domain Text-to-SQL datasets are
tailored for the SQLite dialect. Among these, the Spider (Yu et al., 2018b) and BIRD Li et al. (2024b)
datasets are two popular benchmarks used to evaluate Text-to-SQL model performance (Pourreza &
Rafiei, 2024; Wang et al., 2023; Talaei et al., 2024; Li et al., 2024a), establishing them as primary
standards in this area. We use the Spider training set to derive seed templates. To ensure a fair
comparison, we report the results using the BIRD benchmark for the SQLite dialect, with the Spider
dataset serving as a baseline to assess the quality of our synthetic samples. The BIRD benchmark
includes two development sets: the original dev set, which contains 1534 question-SQL pairs with
some incorrect SQL queries Li et al. (2024a), and the minidev set, which features smaller size of
500 higher quality question-SQL pairs. We evaluate on both.

A.2.2 POSTGRESQL

As mentioned in the previous section, there is a shortage of human-annotated benchmarks for di-
alects other than SQLite. Therefore, for PostgreSQL dialect, we use the following datasets to com-
pare the performance of the models:

PostgreSQL BIRD: All 11 databases in the BIRD development set are migrated from SQLite
to PostgreSQL, and their SQL queries are transpiled to PostgreSQL using Mao (2023). This mi-
gration and transpilation are conducted under a best-effort setting. However, some challenges are
encountered: a few databases have foreign key violations, and some queries cannot be successfully
transpiled to PostgreSQL. Out of the 1534 samples in the development set, 951 queries are success-
fully migrated for PostgreSQL.

PostgreSQL MiniDev: Similar to the approach we use for the PostgreSQL BIRD dataset, the
authors of BIRD transpile queries in the minidev set, manually annotating any pairs that cannot be
directly translated from SQLite to PostgreSQL. This dataset comprises 500 question-SQL pairs.

Pagila: Since the BIRD benchmark was originally developed for SQLite, the transpiled queries
do not utilize many PostgreSQL-specific functions and keywords. To address this, we created a
PostgreSQL-specific benchmark, Pagila (Gunduz). The Pagila database mimics a real-world busi-
ness by modeling a DVD rental store. It includes tables for films, actors, customers, inventory, rental
transactions, and more, making it a useful resource for educational purposes. This database is de-
signed to provide a standard schema for use in books, tutorials, and articles. We gathered a dataset
of 46 human-annotated question-SQL pairs, which were validated and extracted from open-source
resources for this database.

A.2.3 BIGQUERY

We use the following baselines for reporting the performance for BigQuery dialect:

BigQuery BIRD: Similar to the approach mentioned for PostgreSQL, all 11 databases in the
BIRD development set are migrated from SQLite to BigQuery, and their SQL queries are transpiled
to BigQuery using Mao (2023). Out of the 1534 samples in the development set, 1309 queries are
successfully migrated for BigQuery.

Github Repositories: In our work, for the BigQuery-specific database, we utilized one of the
publicly available and widely used databases, the GitHub repositories (Cloud). This database allows
for monitoring and analyzing GitHub’s activity since 2011. We gathered a dataset of 40 human-
annotated question-SQL pairs, validated and extracted from open-source resources for this database.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 MODELS & METRICS

A.3.1 MODELS

To evaluate the quality of the generated samples, we fine-tune models from different families, in-
cluding CodeLlama 7B (Roziere et al., 2023), CodeGemma 7B (cod), and Codestral 22B (Mistral,
2024), using LoRA adapters for all linear layers (Hu et al., 2021) with a rank of 128 and alpha
of 256. For the synthetic data generation process we use Gemini 1.5 pro as the main model and
Gemini 1.5 flash as the quality check model. To ensure the data generation process is affordable
and replicable, we also include high-performing, open-source LLMs for synthetic data generation.
For template expansion and filling, we employ Llama-3-70B (met), and for quality check step, we
employ Mixtral-8x7B (Jiang et al., 2024).

A.3.2 METRICS

We primarily focus on execution accuracy (EX) as the main metric, which is widely accepted as the
standard for all Text-to-SQL benchmarks (Yu et al., 2018b; Li et al., 2024b).

A.4 METHOD SEEDS

In this section, we present details regarding the number of seed SQL templates extracted from the
Spider train set, which comprises 8,659 training examples across 146 databases. To generate seed
templates for dialects other than SQLite, we transpiled the queries from SQLite to the target dialects
using SQLGlot. Table 8 provides the counts of seed SQL queries for each dialect. Moreover, for
scraping the tutorials we used the following websites for each dialect:

• SQLite: SQLite tutorial
• PostgreSQL: PostgreSQL tutorial
• BigQuery: BigQuery syntax

Table 8: Number of seed SQL templates extracted from the Spider training dataset for three dialects of SQLite,
BigQuery, PostgreSQL.

Dialect Number of templates

SQLite 1458
BigQuery 1665
PostgreSQL 1293

18

https://www.javatpoint.com/sqlite-tutorial
https://www.javatpoint.com/postgresql-tutorial
https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.4.1 QUALITY CHECK ABLATION

In our proposed method, we opted to use a secondary LLM to act as a judge in the quality check
step, ensuring the high quality of the generated samples and avoiding repetition of previous errors.
In this section, we assess this approach by comparing two scenarios: one where the same LLM acts
as judge, and another where a secondary LLM performs the judging role. The results, presented in
Table 9, demonstrate that the CodeLlama 7B model trained on the dataset filtered by a secondary
model achieved higher performance on the BIRD development set, thus validating our strategy.
Moreover, Table 10 provides the result of removing the quality check step and shows a performance
drop in accuracy, validating the importance of this step to remove low quality samples.

Table 9: Performance comparison between two scenarios, when the same model generates and filters candidate
samples, and another when a secondary model is used for filtering.

Base Model Judge Model EX (%)

Mixtral 8x7B Mixtral 8x7B 32.59
Llama 3 70B Llama 3 70B 33.41
Llama 3 70B Mixtral 8x7B 34.55

Table 10: Performance on the ablation of the quality checker model with Codellama 7B on BIRD dev set. OS
refers to using open-source models like Llama3 and Mixtral for data generation.

Pipeline EX (%)

Pipeline without quality check (OS) 32.85
Full pipeline (OS) 34.55

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.4.2 THE IMPACT OF THE SAMPLE SIZE

Due to the limited availability of large-scale benchmarks for dialects other than SQLite, our ablation
studies focus solely on the SQLite dialect. For each target dialect, we use our method to generate
20K samples. We assess the impact of varying sample sizes on the final performance of the model.
Table 11 presents the performance with the CodeLlama 7B model when trained on different sample
sizes generated by Llama 3 and Mixtral models, and tested on the BIRD development set. As
indicated, there is diminishing return in performance as the sample size increases.

Table 11: Evaluating the performance of CodeLlama 7B using different sample sizes on BIRD development
set. ”-” denotes the zero-shot performance of the model

#Samples Model EX (%) ∆EX

- CodeLlama 17.86 0
5000 CodeLlama 32.59 + 14.73
10000 CodeLlama 33.57 +15.71
20000 CodeLlama 34.55 +16.69

A.5 COMPLEXITY ANALYSIS

For complexity analysis we used official BIRD classification based on the number and type of the
SQL keywords used in the ground truth SQL query for each question in BIRD development set. The
results are provided in the Table 12 for the two synthetic and human annotated baselines together
with the zero-shot performance of CodeLlama 7B model. Based on the results model trained on
our synthetic data has the highest performance across all of the complexity levels. Interstingly, due
to the simplisity of the samples in the SQL create context dataset performance on the challenging
samples is even lower than the zero-shot baseline.

Table 12: Comparison of different datasets across varying SQL query complexities on the BIRD development
set for CodeLlama 7B trained on each dataset. ”-” denotes the zero-shot performance of the models

Training Dataset Model simple EX (%) moderate EX (%) challenging EX (%)

Our synthetic dataset (Gemini) CodeLlama 49.51 24.08 12.5
Gretel Text-to-SQL CodeLlama 31.78 11.61 11.8
SQL Create Context CodeLlama 25.18 9.67 2.08
- CodeLlama 24.1 7.95 9.72

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.6 SAMPLE GENERATION FILTERS

A.6.1 EXECUTION CHECK

Unlike the template expansion step, SQL queries in this stage are generated from actual databases,
allowing us to execute the queries over the databases. This capability enables us to utilize dialect-
specific database engines to discard samples that are syntactically incorrect. This method is more
robust than the parsing checks with SQLglot, as employed in Gretel (2024), providing a more effec-
tive way to ensure the accuracy of our SQL queries.

A.6.2 QUESTION-SQL MISMATCH

During the query generation process using various LLMs such as Gemini (Team et al., 2023), GPT-
3.5 Turbo, and Llama-3-70B (met), we observe a recurring issue where some mismatches occurred
between the conditions in the generated SQL queries and the corresponding questions. To minimize
these mismatches, we develope a set of validator functions to detect inconsistencies. For each gener-
ated SQL query, we extract all conditions that correspond to database values using a SQL parser. We
then calculate the maximum semantic similarity and the minimum edit distance between these con-
ditions and all keywords in the question. SQL queries where a keyword’s minimum distance exceeds
a threshold β1 or whose maximum semantic similarity is below another threshold β2 are discarded.
Figure 6 illustrates an example of question-SQL pair which is rejected because of mismatch between
questions and SQL outputs.

Figure 6: An example of a filtered question-SQL pair due to question and SQL mismatch.

A.6.3 AGGREGATION CHECK

Another consistent issue with the LLMs was the inappropriate use of aggregation functions on
columns that already contain aggregated values. For example, in response to the question, “What
are the average ages of singers?” the LLM might generate: “SELECT AVG(average age) FROM
singer”, where there is a redundant aggregation function. To address these cases, we examine the
SQL queries for aggregation functions. If the column name already includes an aggregation function
in its name, we discard those queries.

A.6.4 DEDUPLICATION AND LENGTH CHECK

Similar to the approaches proposed in Wei et al. (2023); Wang et al. (2022), we discard duplicated
SQL queries and pairs where the question length exceeds a specific threshold, α1.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.7 DIALECT SPECIFIC KEYWORDS

This section presents some examples of dialect-specific keywords for BigQuery, PostgreSQL, and
SQLite. These keywords, listed in Table 13, are not supported interchangeably among the three
dialects. These keywords are just samples of dialect specific keywords and there are many more
dialect specific keywords and functions.

Table 13: List of some of SQL keywords that are not supported entirely across all three dialects of BigQuery,
PostgreSQL, and SQLite.

Keyword SQLite PostgreSQL BigQuery

CREATE MODEL × × X
ML.TRANSLATE × × X
ML.GENERATE TEXT × × X
ML.ANNOTATE IMAGE × × X
SAFE × × X
QUALIFY × × X
WITH OFFSET × × X
ARRAY AGG × X X
STRUCT × × X
ILIKE × X ×
LATERAL × X ×
SERIAL × X ×
CTID × X ×
PRAGMA X × ×
REGEXP CONTAINS × × X
REGEXP MATCHES × X ×
GLOB X × ×
JULIANDAY X × ×
DATE TRUNC × X ×
TIMESTAMP TRUNC × × X

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.8 MOE ANALYSIS

We analyze the hidden representations of our proposed MoE model and compare it with the baseline
generalist MoE model across three distinct layers: Layer 1, Layer 16, and Layer 32. Although both
MoE models are trained with a load balancing loss, our initialization approach for the gates leads to
an expert collapse in the middle layers. This issue primarily stems from the high similarity in the
hidden representations of the positive prompts for each dialect expert across all layers. Additionally,
similar to the experiments conducted with the original Mixtral model (Jiang et al., 2024), there is
no distinct expert associated with different token types in either our MoE model or the baseline
generalist MoE model.

Figure 7: Token routing for the MoE model, initialized from CodeLlama and trained on a 40K samples dataset.
The top figure illustrates Layer 1, the middle figure shows Layer 16, and the bottom figure corresponds to Layer
32.

Figure 8: Token routing for our proposed method for initializing the MoE model, and trained on a 20K samples
dataset. The top figure illustrates Layer 1, the middle figure shows Layer 16, and the bottom figure corresponds
to Layer 32.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.9 PROMPT TEMPLATES

This section provides the detailed prompts used in this work for each of the step in our work.

A.9.1 TEMPLATE EXPANSION

This section provides the prompt for template expansion step, Figure 9, where a seed template
together with a sampled dialect-specific tutorial is passed to the LLM and asked to generate a new
dialect-specific template. Additionally Figure 3 provides an example of template expansion for
BigQuery dialect.

You are an agent expert in data science and SQL.

Your are tasked with increasing the complexity of a given SQL
query template by inspiring from a sample tutorial document for
{DIALECT} SQL.

A query template is defined as a SQL query with placeholders
for columns, tables, and literals. For each template, you will
be provided with:
1. SQL keywords and functions.
2. column or alias.column which is a placeholder for a column
name.
3. table which is a placeholder for a table name.
4. literal which is a placeholder for a literal value that can
be a string, number, or date.

Next you will be provided with a tutorial doc for {DIALECT} SQL
and a SQL query template. You have to increase the complexity
of the query template by adding more SQL keywords and functions
inspired from the tutorial doc.

Tutorial:
{TUTORIAL}

Query template:
{QUERY TEMPLATE}

Your response should be a valid {DIALECT} SQL template with
column, table, and literal placeholders. Do not fill the
placeholders.

Your response should be only a valid JSON object as follows
without any additional text:
{{
reasoning: Your step by step reasoning for increasing the
complexity of the query template by using the tutorial doc.,
query template: A valid SQL query template with placeholders
}}

Figure 9: Prompt used for the template expansion step (PTempGen)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.9.2 SAMPLE GENERATION

In this section, we provide the prompt for the sample generation step, Figure 10, where a dialect-
specific template together with a database schema are passed to the LLM and asked to generate
question/SQL pair. Additionally Figure 11 provides an example of sample generation step.

You are an agent expert in data science and SQL.

You are provided with a database schema together with a
{DIALECT} SQL template with placeholders.
Your job is to create synthetic data for training a Text-to-SQL
model.
Having the database schema and the SQL template, you should get
inspired by the SQL template to generate a business question
that a user might ask from the given database.

Always make sure that the SQL query is in the correct syntax
and it extracts meaningful and logical information for analysis.
The final SQL query should be a valid {DIALECT} SQL query
without any placeholders.
Make any necessary changes to the SQL template to fit the
database schema. The SQL query should be able to answer the
business question.
You will be penalized for useless or meaningless queries.
The question should be generated as if it is asked by a user
who do not know the database schema and it should be clear and
concise.
You don’t have to use all of the keywords in the SQL template,
but you should use at least some of them that are relevant to
the business question.
Make sure all of the conditions are correct, specificallty when
you are using operators, make sure types are compatible.
All of the conditions in the SQL query should be explicitly
mention in the question and avoid unnecessary conditions.
Question shouldn’t be too simple or too complex. It should be
meaningful and exact without any ambiguous terms.

Datbase schema:
{DATABASE SCHEMA}

{DIALECT} SQL template to get inspired by:
{SQL TEMPLATE}

Thank step by step about how to effectively generate a
meaningful business question from the SQL template and the
database schema.
{{
question: The bussiness question that a user might from the
given database and the answer expects a SQL query similar to the
SQL template provided.,
sql query: A valid {DIALECT} SQL query that answers the business
question.
}}

Figure 10: Prompt used for the sample generation (PGen)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 11: An example of sample generation using a random database and sampled SQL template.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A.9.3 QUALITY CHECK

This section outlines the template for the quality check prompt, Figure 12. The template receives
a database schema, a generated question, a generated SQL query, and the execution result of the
query. It then identifies and resolves any semantic discrepancies between the pair.

You are a meticulous data quality assurance professional.

Your job is to ensure that a dataset has high quality since it
is going to be used for training models.
You are presented with a database schema and a {DIALECT} SQL
query, its results, and a question.
If the pair needs fixing, you should fix the question or SQL
query to make it acceptable.

You have to make sure the following items are satisfied:
1. Question should match the {DIALECT} SQL query, and it
shouldn’t be ambiguous. The question should be asked as if a
non-technical person without access to the database is asking
it.
2. The SQL query should exactly answer what is mentioned in the
question, without any additional or irrelevant information.

If question is not answerable or is ambiguous, change the
question based on the database schema, then answer the new
question with a new SQL query.
If SQL query is not correct, fix the SQL query based on the
database schema, then answer the question with the fixed SQL
query.

DATABASE SCHEMA:
{DATABASE SCHEMA}

Question:
{QUESTION}

{DIALECT} SQL Query:
{SQL QUERY}

{DIALECT} SQL Query Result:
{SQL QUERY RESULT}
Your response should be only a valid JSON object as follows
without any additional text:
{{ reasoning: Your step by step reasoning for deciding if the
question or SQL query needs fixing.
fixing needed: YES or NO,
fixed question: If the question is not acceptable, provide a
fixed version of the question.,
fixed sql query: If the SQL query is not acceptable, provide a
fixed version of the SQL query.
}}

Figure 12: Prompt used for the Quality Check step (PQuality)

27


	Introduction
	Methodology
	Synthetic Text-to-SQL Data Generation
	Dialect Experts Merging: Multi-dialects Mixture of Expert (MoE)

	Experiments
	Dialect-specific SQL keywords converge improvement
	PostgreSQL Results
	BigQuery Results
	SQLite Results
	Experts Merging Results

	Conclusions
	Appendix
	Related Work
	Synthetic Data Generation
	Model Merging

	Datasets Details
	SQLite
	PostgreSQL
	BigQuery

	Models & Metrics
	Models
	Metrics

	Method Seeds
	Quality Check Ablation
	The Impact of the Sample Size

	Complexity Analysis
	Sample Generation Filters
	execution check
	Question-SQL Mismatch
	Aggregation Check
	Deduplication And Length Check

	Dialect Specific Keywords
	MoE Analysis
	Prompt Templates
	Template Expansion
	Sample Generation
	Quality Check



