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Abstract

Unsupervised Graph Domain Adaptation (UGDA)
leverages labeled source domain graphs to achieve
effective performance in unlabeled target do-
mains despite distribution shifts. However, ex-
isting methods often yield suboptimal results due
to the entanglement of causal-spurious features
and the failure of global alignment strategies.
We propose SLOGAN (Sparse Causal Discovery
with Generative Intervention), a novel approach
that achieves stable graph representation transfer
through sparse causal modeling and dynamic in-
tervention mechanisms. Specifically, SLOGAN
first constructs a sparse causal graph structure,
leveraging mutual information bottleneck con-
straints to disentangle sparse, stable causal fea-
tures while compressing domain-dependent spuri-
ous correlations through variational inference. To
address residual spurious correlations, we innova-
tively design a generative intervention mechanism
that breaks local spurious couplings through cross-
domain feature recombination while maintaining
causal feature semantic consistency via covari-
ance constraints. Furthermore, to mitigate error
accumulation in target domain pseudo-labels, we
introduce a category-adaptive dynamic calibra-
tion strategy, ensuring stable discriminative learn-
ing. Extensive experiments on multiple real-world
datasets demonstrate that SLOGAN significantly
outperforms existing baselines.
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1. Introduction
Graph Neural Networks (GNNs) have demonstrated their
effectiveness in graph-structured data analysis, including
molecular structures (Turutov & Radinsky, 2024; Kim et al.,
2023), social networks (Kumar et al., 2020; Li et al., 2021),
traffic networks (Chowdhury et al., 2024) and RAG (Jiang
et al., 2024; Luo et al., 2025). Graph classification is an
important task in graph learning, which targets at predicting
the labels of the entire graphs (Ying et al., 2018; Ranjan
et al., 2020; Zhang et al., 2018). GNN-based graph classifi-
cation approaches typically use a message-passing network
in conjunction with a readout operator to aggregate the
node features into graph-level representations, followed by
a classifier for downstream tasks such as molecular property
prediction in drug and material science (Xu et al., 2021).

Despite the effectiveness of existing approaches, their as-
sumption of consistent distribution between training and
inference datasets rarely holds, especially in real-world sce-
narios. This mismatch leads to out-of-distribution (OOD)
challenges (Wu et al., 2020; Lin et al., 2023; You et al.,
2022). In addition, the scarcity of labeled data in the target
domain brings extra challenges, making supervised meth-
ods infeasible (Hao et al., 2020; Suresh et al., 2021). One
typical method to tackle this problem is Unsupervised Do-
main Adaptation (UDA), which leverages labeled data from
a source domain to enable task performance in an unlabeled
target domain (Deng et al., 2021; Long et al., 2018).

UDA has been extensively studied in the context of Eu-
clidean data (e.g., images) through self-learning (Wei et al.,
2021a; Xiao & Zhang, 2021), adversarial domain trans-
fer (Ganin et al., 2016; Saito et al., 2018), or domain
discrepancy minimization techniques (Lee et al., 2019a).
However, it is non-trivial to develop a UDA approach
for non-Euclidean graph data. There are significant chal-
lenges due to the complex topology and rich semantics of
graphs (Velickovic et al., 2019; Huang & Zitnik, 2020),
which are mainly attributed to: (1) Feature entanglement
and persistent spurious correlations. Graph data inherently
encodes both causal relationships and statistical correlations.
Traditional methods that rely solely on semantic labels for
model training often fail to distinguish between these two
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Figure 1. Illustration of causal and spurious factors using the PTC
dataset. Causal factors (above) represent inherent molecular struc-
tures that directly determine carcinogenicity properties. Spurious
factors (below) exhibit statistical correlations but lack causal rela-
tionships, potentially hindering cross-domain generalization.

types of relationships, leading to the entanglement of causal
and spurious factors. For instance, in the Predictive Toxi-
cology Challenge (PTC (Helma et al., 2001)) illustrated in
Figure 1, while specific molecular structures serve as causal
factors for carcinogenicity determination, experimental vari-
ables such as gender and species merely exhibit statistical
correlations with the labels. Without explicit disentangle-
ment, these spurious factors can interfere with cross-domain
generalization through residual correlations, causing the
model to rely on unstable mechanisms in the target do-
main. (2) Alignment collapse and global strategy failure.
Existing methods typically rely on adversarial learning to
align domain distributions (Dai et al., 2022; Shen et al.,
2020). However, their global alignment strategy can lead
to information collapse, discarding crucial carriers like rare
substructures, while failing to suppress spurious factors ef-
fectively. These challenges are particularly severe in graph
data due to their complex structure and high-dimensional
sparsity, necessitating explicit intervention mechanisms.

To address the above challenges in graph domain adapta-
tion, we propose Sparse Causal Discovery with Generative
Intervention (SLOGAN) for Unsupervised Graph Domain
Adaptation. SLOGAN leverages sparse causal discovery
and dynamic intervention learning to extract stable causal
mechanisms while suppressing spurious correlations. Our
framework consists of three key components: First, SLO-
GAN focuses on causal-spurious feature disentanglement,
based on the structural causal model and Information Bot-
tleneck (IB) principle, we decompose graph representations
into causal and spurious features. This decomposition com-
presses label-irrelevant spurious information while preserv-
ing sparse, stable causal patterns. Second, SLOGAN intro-
duces a generative intervention mechanism, to avoid global
alignment collapse. We design a generative model to recon-
struct original graph representations with a cross-domain
spurious feature exchange strategy. By perturbing local cou-
pling of spurious features, this approach forces the model to
rely solely on causal features for reconstruction, effectively
suppressing spurious residuals. Third, SLOGAN introduces

dynamic stability optimization to address error propagation
risks in target domain pseudo-labels. We propose category-
adaptive confidence thresholds for dynamic and balanced
sample selection. Through cross-domain joint optimization,
SLOGAN achieves progressive alignment of causal features,
enhancing the framework’s robustness. Extensive experi-
ments on 6 benchmark datasets demonstrate SLOGAN’s
consistently superior performance over existing methods.

The contribution of this paper is summarized as follows.
(1) We focus on sparse stability and dynamic robustness in
UGDA, proposing a framework based on stable learning and
causal intervention that effectively extracts domain-invariant
representations. (2) We introduce SLOGAN, which intro-
duces stable causal feature extraction with generative inter-
ventions and adaptive pseudo-label calibration to achieve
high-performance. (3) We provide theoretical guarantees for
the optimization error bound in the target domain. (4) We
conduct extensive experiments to demonstrate SLOGAN’s
superior performance and varfied our motivation.

2. Preliminaries

Unsupervised Graph Domain Adaptation. For each graph
sample G = (V, E), V denotes the set of nodes and
E ⊆ V × V represents the edge set. The node feature
matrix is X ∈ R|V|×d, where each row xv ∈ Rd is the
feature representation for node v ∈ V . d denotes the
dimension of node features. A labeled source dataset is
Dso = {(Gsoi , ysoi )}Nso

i=1 , comprising Nso graph examples
Gsoi with corresponding labels ysoi . An unlabeled target
dataset is Dta = {Gtaj }

Nta
j=1, which contains Nta graph ex-

amples Gtaj without label. These two domains have the same
label space {1, · · · , C}; however, their data distributions
have a huge gap. Our goal is to transfer knowledge from the
labeled source graphs to the unlabeled target graphs.

Graph Neural Networks. Given a graph G = (V, E) with
node features X , a GNN learns node representations via
message passing. For each node v at layer l:

h(l)v = UPDATE
(
h(l−1)
v ,AGG

(
{h(l−1)

u | u ∈ N (v)}
))

,

(1)
where AGG aggregates neighbor features and UPDATE up-
dates node features. The final graph representation is:

p = CLA
(

READOUT
(
{h(L)v | v ∈ V}

))
, (2)

where READOUT pools node features and CLA generates
predictions. The model is trained with cross-entropy loss:

Lso = − 1

|Dso|
∑

Gso
i ∈Dso

logpsoi [ysoi ] . (3)

Motivation & Challenges. Existing UGDA methods face
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Figure 2. Overview of SLOGAN. The framework consists of three key components: (1) A structural causal model to disentangle causal
and spurious factors from graph representations. (2) An unbiased discriminative learning module with category-adaptive calibration. (3) A
generative intervention mechanism with covariance constraints to suppress the influence of spurious factors across domains.

two fundamental limitations. First, deep entanglement of
causal and spurious features leads models to rely on domain-
specific correlations, compromising cross-domain general-
ization. Second, global alignment strategies often cause
alignment collapse by disrupting critical causal substruc-
tures while preserving spurious couplings. These challenges
necessitate explicit causal-spurious disentanglement and lo-
cal stability preservation, which motivates our sparse causal
graph construction and generative intervention mechanism.

3. Methodology
3.1. Framework Overview

In this paper, we introduce SLOGAN, as shown in Fig. 2,
which achieves reliable knowledge transfer through three
complementary stability-enhancing components: (1) Sparse
causal discovery through feature disentanglement, (2) Pro-
gressive stable alignment via discriminative learning with
confidence calibration, and (3) Generative intervention with
covariance constraints for spurious feature suppression.

3.2. Sparse Causal Discovery via Feature
Disentanglement

We address domain shift in UGDA through sparse stability
learning, where the key challenge lies in identifying stable
causal features (Zc) that remain predictive across domains
while suppressing unstable spurious features (Zs). Our
approach implements sparse variable independence (SVI)
through three stability-enforcing mechanisms:

Stable Causal Graph Construction. As illustrated in Fig. 3,
the structural causal model establishes sparse dependencies
between variables to ensure stability (Yu et al., 2023). The
graph depicts key causal relationships where L represents

Suppressed 
Dependencies

Stability Guarantees

Sparse Independence

Local Covariance Control
β

Predictive Stability
ε

Figure 3. Causal graph for UGDA. Dashed arrows indicate sup-
pressed dependencies through sparse stability constraints.

labels, C denotes causal features, S is spurious features, and
PL represents pseudo-labels. The dashed arrows highlight
suppressed dependencies through stability constraints. This
causal structure enables three key mechanisms:

• Sparse Feature Generation: C → G ← S enforces min-
imal sufficient causal pathways while allowing residual
spurious correlations

• Label Stability: L → C ← PL creates cross-domain
stability through pseudo-label constrained learning

• Domain Sparsity: Dso → S ← Dta isolates domain-
specific variations to spurious features

Stability-Aware Disentanglement Learning. Using GNN-
derived features z, we implement sparse variable indepen-
dence (SVI) through:

max I(Y ;Zc)︸ ︷︷ ︸
Stable Prediction

− βI(Zs;Z)︸ ︷︷ ︸
Residual Control

+ min I(Zs;Y )︸ ︷︷ ︸
Spurious Suppression

. (4)

This objective comprises three key components: (1) max-
imizing mutual information between causal features and
labels ensures stable prediction across domains, (2) control-
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ling residual information between spurious features and orig-
inal representations prevents feature collapse, and (3) mini-
mizing mutual information between spurious features and
labels reduces the impact of domain-specific variations.

Causal Feature Extraction. To improve the extraction of
causal features, the objective is to maximize the mutual
information between the causal feature zc and the semantic
label y (Wang et al., 2024a). We employs InfoNCE (He
et al., 2020), which samples positive pairs from the joint
distribution p (zc,y) and negative pairs from the marginal
distributions p (zc) p (y). We disentangle the causal feature
zc with:

minLcMI = Ep(zc,y)[ξ]− logEp(zc)p(y)[e
ξ] , (5)

where ξ = F c(zc,y) implements a bilinear mapping
F c(zc,y) = zcTWy with learnable parameter matrix W .
This bilinear form captures pairwise interactions between
causal features and labels while maintaining computational
efficiency.

Spurious Feature Suppression. To effectively disentan-
gle spurious features, we minimize the mutual information
between spurious features zs and semantic labels y while
maintaining residual information through a constrained op-
timization:

minLsMI = I(zs,y)− βI(zs, z) , (6)

where β balances the competing objectives. We adopt the
Variational Information Bottleneck (VIB) framework due
to its effectiveness in learning compressed representations
while maintaining relevant information. Using VIB, we
derive variational bounds to control spurious correlations:

I(zs,y) ≤ Ep(zs,y)[log q(y|zs)]−Ep(zs)p(y)[log q(y|zs)] ,
(7)

where q approximates the true conditional distribution. For
the mutual information between spurious and graph-level
features, we employ a bilinear estimator ψ to derive:

I(zs, z) ≤ Ep(zs,z)[ψ]− log(Ep(zs)p(z)[e
ψ]) . (8)

The reconstruction constraint I(zs, z) ≤ Ic prevents com-
plete feature collapse while breaking domain-specific cou-
plings, enabling effective spurious feature suppression dur-
ing adaptation.

Stability Guarantees. Our formulation ensures three fun-
damental stability properties. First, sparse indepen-
dence (Zc ⊥ D|Y ) is achieved through domain-invariant
contrastive learning, ensuring that causal features remain
independent of domain shifts conditioned on labels. Second,
local covariance control maintainsCov(Zc, Zs) ≤ β−1 via
Lagrange optimization, preventing excessive entanglement

between causal and spurious features while allowing neces-
sary correlations. Third, predictive stability is guaranteed
as I(Y ;Zc) ≥ I(Y ;X) − ϵ through feature compression,
where ϵ controls information loss during causal feature ex-
traction, ensuring that causal features preserve essential
predictive information from the input.

The composite stability objective Ldis = LcMI + LsMI is
minimized to disentangle causal features from spurious ones,
ensuring domain-invariant representations while preserving
semantic information.

3.3. Unbiased Discriminative Learning

To overcome target domain data scarcity while preventing
overconfidence in pseudo-labels (Karim et al., 2022), we
develop a stability-preserving discriminative learning mech-
anism. Our approach combines causal feature reliability
with adaptive sample selection to maintain class-balanced
supervision:

We first leverage causal features to determine the distribu-
tion of graph classification,

ptai = ϕ
(
zc tai

)
, (9)

where ϕ projects causal features zc ta to label space. We
quantify prediction certainty through maximum class proba-
bility:

stai = max
c

ptai [c] , (10)

where stai is the confidence score. Subsequently, to achieve
unbiased pseudo-label estimation, we introduce adaptive
confidence thresholds. The class-adaptive coefficients are:

Mc = max{stai |argmax
c′

ptai [c′] = c} . (11)

Therefore, the class-unbiased threshold for class c is:

τc =Mc · τ , (12)

where τ is the initial confidence score threshold, which is
set to 0.95 following (Sohn et al., 2020). Then, we obtain
the refined confident set C as:

C = {Gtai |c = argmax
c′

ptai , stai > τc} . (13)

Cross-domain stability is enforced through optimization:

Lta = − 1

|C|
∑

Gta
i ∈C

logptai
[
ŷtai

]
, (14)

where ŷtai denotes the pseudo-label of Gtai . We also optimize
source data using Eqn. 3 with causal features to mitigate
overconfidence. The supervised loss is Lsup = Lso + Lta.
This dual-domain strategy ensures: (1) causal feature preser-
vation via Lso, (2) error-resistant adaptation via Lta, and
(3) class-balanced learning via adaptive thresholding, com-
plementing the feature disentanglement from Section 3.2.
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3.4. Generative Intervention with Covariance
Constraints

Our method uses a targeted approach to ensure models don’t
rely on misleading patterns that vary across domains. Con-
sider social network analysis: when classifying discussion
topics, our method can distinguish between fundamental net-
work structures (like community clusters and information
flow patterns) and platform-specific features (like temporary
trending hashtags or regional engagement patterns).

We achieve this through a generative intervention mecha-
nism that deliberately exchanges domain-specific features
between samples while preserving essential structural pat-
terns. This forces the model to focus only on truly predic-
tive patterns that work consistently across different environ-
ments, establishing two key stability properties: (1) indepen-
dence from spurious domain-specific correlations through
controlled feature swapping, and (2) preservation of essen-
tial causal patterns through reconstruction consistency.

Specifically, we use a generative model G (·, ·) to recon-
struct graph representations based on causal and spurious
features. The reconstruction model is a two-layer MLP. The
reconstruction function is optimized by L2 distance as:

Lge = E ∥z−G (zc, zs)∥22 . (15)

Here, z is the graph representation, zc and zs are the causal
and spurious features. During the adaptation process, to
break local correlations, we swap the spurious parts of sam-
ples from different domains within a mini-batch B, generat-
ing new composite samples:

z+ki = G (zci , z
s
k) , (16)

where z+ki represents the composite representation combin-
ing causal features zci from sample i with spurious features
zsk from sample k in different domains. Then, we enforce
intervention invariance through dual constraints:

Linv = Lre + Ezi∈Bso,zk∈Bta∥z+ki − zi∥2 , (17)

where Lre is the reconstruction loss. Using invariant learn-
ing under intervention, we achieve robust cross-domain
representations by eliminating spurious factors. The recon-
struction loss Lre maintains reconstruction capability while
the intervention term ensures robustness. This achieves:
(1) elimination of domain-specific spurious couplings via
feature recombination, and (2) preservation of causal fea-
tures through consistent predictions.

Overall Optimization. In a nutshell, the overall adaptation
training objective is:

L = Lsup + γLdis + ηLinv . (18)

where γ and η serve as hyperparameters to balance the
contributions of the submodules, which is anlyzed in Sec-
tion 4.6. Here, we first warm up our framework on source

samples. Afterwards, the target domain is considered for
optimization. The summarized overall algorithm can be
found in the Appendix A.

3.5. Theoretical Guarantees

Our theoretical analysis establishes a probabilistic bound on
the target domain error through three stability conditions.

Theorem 3.1. Under a stable causal graph construction,
assume the following conditions hold: (1) Causal Suffi-
ciency: I(Y ;Zc) > Ic, where Zc is the causal variable
and Ic is an information contraint. (2) Spurious Suppres-
sion: I(Y ;Zs) ≤ ϵ1, where Zs is the spurious variable.
(3) Generative Intervention: E||Z − G(Zc, Zs)||22 ≤ ϵ2,
where G is the generation model. Then, for any predictor
h ∈ H, with probability at least 1 − δ, the target domain
error ϵT (h) is bounded as follows:

ϵT (h) ≤ ϵ̂S(h) + C
√
ϵ1 + L

√
ϵ2 + C(nS , δ), (19)

where L is the lipschitz constant of the loss function, C is
a constant, and nS is the sample size in the source domain.
Here, ϵT (h) represents the error in the target domain, while
ϵ̂S(h) denotes the empirical error in the source domain.

The proof sketch follows three key steps: (1) bounding
feature reconstruction error via the generator’s fidelity, (2)
quantifying spurious correlation suppression in domain dis-
crepancy through mutual information constraints, and (3)
incorporating statistical generalization error to establish a
bound through empirical risk. Detailed proof is provided in
Appendix B.

Complexity Analysis. The computing complexity is mainly
introduced by GNN. For given graph G = (V, E), d is the
feature dimension, |V | denotes the number of nodes, and L
represents the number of GNN layers. The complexity of
our GNN is O(L|V |d2), i.e., linear to |V |.

4. Experiments
4.1. Experimental Settings

4.1.1. DATASETS

We investigate unsupervised graph domain adaptation lever-
aging benchmark datasets, adopting both cross-dataset and
dataset split scenarios for a thorough evaluation. For
cross-dataset scenarios we achieve domain adaptation on
PTC (Helma et al., 2001). PTC are inherently unbiased
across sub-datasets. For dataset-split scenarios, we follow
previous works (Ding et al., 2018; Yin et al., 2022; Lu et al.,
2023) to split the dataset by graph density. The dataset
splitting experiments are performed on the TWITTER-Real-
Graph-Partial (Pan et al., 2015), NCI1 (Wale & Karypis,
2006) and Letter-Med (Riesen & Bunke, 2008), using their
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Table 1. The classification results (in %) on PTC (source→target).
Methods MR→MM MM→MR MR→FM FM→MR MR→FR FR→MR MM→FM FM→MM MM→FR FR→MM FM→FR FR→FM Avg.

GIN 61.8 64.3 57.7 56.5 45.7 53.5 37.7 42.6 44.5 59.4 66.2 54.3 53.7
GCN 63.2 62.9 66.2 55.1 45.7 67.6 62.3 54.4 64.8 58.0 60.3 52.0 59.4
GAT 60.0 46.0 70.7 57.1 46.3 65.9 54.5 53.8 53.2 69.0 65.9 51.7 57.8
SAGE 58.8 55.1 67.6 56.5 47.4 66.2 48.1 48.2 45.1 58.0 63.2 52.6 55.6
MeanTeacher 61.8 61.4 73.2 60.9 52.9 50.7 65.2 44.1 35.1 66.7 55.9 42.9 55.9
InfoGraph 63.2 60.0 66.2 59.4 48.6 67.6 55.1 56.4 64.8 63.8 69.1 54.3 60.7
DANN 67.5 64.3 69.0 63.8 55.7 73.2 50.7 48.5 66.2 71.0 70.6 52.9 62.8
ToAlign 70.5 45.7 67.6 66.7 54.3 67.6 58.0 50.0 67.6 71.0 76.5 55.7 62.6
DUA 62.0 63.1 73.6 52.2 54.3 63.4 53.7 55.9 60.6 69.4 63.2 54.3 60.5
DARE-GRAM 61.8 54.3 73.3 53.6 55.7 66.2 56.4 54.1 59.4 69.6 66.2 55.7 60.5
CoCo 65.1 63.8 73.0 60.3 55.2 72.8 62.1 55.9 63.2 70.5 70.1 54.2 63.8
MTDF 65.9 64.8 76.9 61.2 56.0 73.9 62.6 56.8 69.0 71.1 71.6 56.0 65.5

Ours 71.1 65.7 74.6 66.8 55.4 71.8 66.7 59.1 70.4 78.3 76.6 57.1 67.8

Table 2. The classification results (in %) on NCI1 (source→target). N0, N1, N2, and N3 are sub-datasets.
Methods N0→N1 N0→N2 N0→N3 N1→N0 N1→N2 N1→N3 N2→N0 N2→N1 N2→N3 N3→N0 N3→N1 N3→N2 Avg.

GIN 66.0 60.6 50.3 68.0 68.4 69.9 61.0 65.6 73.1 48.3 59.4 62.9 62.8
GCN 55.8 59.1 54.0 73.3 65.0 70.7 73.5 60.7 70.2 67.8 54.5 55.1 63.3
GAT 63.4 60.0 41.7 70.1 68.2 70.1 73.2 63.1 69.3 56.6 56.3 60.5 62.7
SAGE 54.9 55.8 50.1 74.5 59.7 66.0 76.2 59.7 71.7 70.6 57.2 64.8 63.4
MeanTeacher 54.9 45.2 51.6 73.8 45.2 50.7 73.3 54.9 50.2 72.8 55.8 47.1 56.3
InfoGraph 66.5 61.0 57.6 62.7 64.6 64.1 75.7 62.6 67.1 69.9 60.7 50.2 63.6
DANN 64.1 58.7 45.6 76.2 69.8 63.6 71.3 70.9 70.0 70.4 58.3 67.5 65.5
ToAlign 65.5 61.7 47.1 73.3 69.9 59.7 71.4 69.9 69.9 68.0 59.2 63.1 64.9
DUA 69.9 60.7 58.5 71.3 69.9 68.4 67.5 68.0 70.9 56.1 50.5 66.5 64.9
DARE-GRAM 69.4 59.2 55.8 69.9 69.4 61.2 68.9 70.4 68.9 60.1 57.6 65.0 64.7
CoCo 70.9 64.0 68.7 70.0 68.5 71.2 75.1 61.2 72.8 74.6 59.6 56.4 67.7
MTDF 67.5 70.9 71.8 76.7 65.0 73.1 77.2 62.5 74.3 75.9 61.0 57.8 69.5

Ours 71.4 64.1 63.1 71.8 72.3 72.8 76.7 72.5 73.3 76.3 61.7 70.9 70.6

diverse nature to evaluate our domain adaptation capability.
The details and statistics of the datasets are provided in the
Appendix C.1.

4.1.2. BASELINES

We employ a wide range of state-of-the-art baselines: (1)
Graph neural networks, including GCN (Welling & Kipf,
2016), GIN (Xu et al., 2018), GAT (Veličković et al.,
2018), and GraphSAGE (Hamilton et al., 2017). (2) Semi-
supervised graph methods, including InfoGraph (Sun et al.,
2020) and Mean-Teacher (Tarvainen & Valpola, 2017). (3)
Domain adaptation methods, including ToAlign (Wei et al.,
2021b), DANN (Ganin et al., 2016), DUA (Mirza et al.,
2022) and DARE-GRAM (Nejjar et al., 2023). (4) Graph
adaptation methods, including CoCo (Yin et al., 2023) and
MTDF (Tang et al., 2024), the latest state-of-the-art method
for UGDA. More details are available in the Appendix C.2.

4.1.3. IMPLEMENTATION DETAILS

The baseline methods follow the same settings as the orig-
inal papers. We use a 2 layer GCN encoder with a hidden
dimension of 128. We use Adam optimizer for 100 epochs
source domain training with a learning rate of 0.001 and
batch size of 128. For the target domain, adaptation is per-
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Figure 4. Scalability analysis on NCI1. Circle radius indicates pa-
rameter count. SLOGAN achieves best performance with minimal
latency and parameters.

formed over 30 epochs. The loss weight, γ and η, are set
to 0.003 and 0.1, according to the sensitivity experiments.
More details are available in the Appendix C.1.

4.2. Performance Comparison

In this section, we compare SLOGAN with baselines, as
shown in Table 1, 3 and 2. The observations are as follows:
(1) Our experiments demonstrate a notable advantage of do-
main adaptation methods in most cases. This highlights the
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Table 3. The classification results (in %) on TWITTER-Real-Graph-Partial (source→target). T0, T1, T2, and T3 are sub-datasets.
Methods T0→T1 T0→T2 T0→T3 T1→T0 T1→T2 T1→T3 T2→T0 T2→T1 T2→T3 T3→T0 T3→T1 T3→T2 Avg.

GIN 59.7 62.8 60.4 64.2 62.2 61.3 61.7 63.2 61.0 62.3 61.8 62.4 61.9
GCN 62.0 62.9 59.7 64.1 63.4 59.8 64.2 62.8 60.5 62.7 61.4 62.7 62.2
GAT 60.6 63.2 60.0 63.1 61.6 59.8 63.5 61.6 59.5 63.4 62.1 63.7 61.9
SAGE 61.0 64.6 62.1 61.9 61.9 60.8 62.9 62.6 60.9 61.7 60.9 63.4 62.1
MeanTeacher 52.2 49.2 46.1 49.0 50.7 46.1 49.5 51.7 52.6 48.1 48.0 51.1 49.5
InfoGraph 63.9 65.1 61.6 65.6 65.0 59.2 64.3 63.3 60.8 63.3 62.4 63.3 63.2
DANN 58.4 60.0 58.0 59.0 59.4 57.4 57.7 58.1 58.4 58.2 57.9 60.4 58.6
ToAlign 58.6 59.5 55.5 57.7 58.1 56.1 56.3 57.2 57.8 57.7 57.6 60.2 57.7
DUA 64.2 64.8 62.1 65.8 56.0 62.0 65.3 63.6 60.8 64.2 63.4 64.7 63.1
DARE-GRAM 61.7 65.7 61.6 65.7 64.4 62.1 64.0 64.3 60.0 64.9 64.2 64.3 63.6
CoCo 64.5 66.1 62.1 64.0 64.6 61.6 64.5 63.5 62.1 62.8 62.5 63.5 63.5
MTDF 64.5 66.4 65.1 64.7 65.2 62.2 64.9 63.5 63.2 63.2 63.4 64.4 64.2

Ours 65.1 66.5 62.3 66.2 65.4 62.4 66.6 64.4 62.2 65.8 64.4 65.1 64.7

Table 4. The classification results (in %) on Letter-Med (source→target). L0, L1, L2, and L3 are sub-datasets.
Methods L0→L1 L0→L2 L0→L3 L1→L0 L1→L2 L1→L3 L2→L0 L2→L1 L2→L3 L3→L0 L3→L1 L3→L2 Avg.

GIN 54.0 54.0 47.8 31.0 48.7 46.0 23.9 38.1 58.4 19.5 26.5 51.3 41.6
GCN 57.2 59.3 59.6 43.4 51.9 51.9 40.4 54.3 51.9 45.1 34.5 60.8 50.9
GAT 79.6 71.7 67.3 61.9 75.2 76.1 55.8 78.8 75.2 54.0 69.9 70.8 69.7
SAGE 81.4 71.7 66.4 66.4 78.8 70.8 51.3 77.0 72.6 50.4 65.5 77.9 69.2
MeanTeacher 70.8 73.5 58.4 62.8 76.1 57.5 38.1 75.2 51.3 54.0 54.0 56.6 60.7
InfoGraph 80.5 66.4 62.8 51.3 74.3 69.0 42.5 63.7 62.0 54.3 59.3 69.0 62.9
DANN 70.8 73.3 53.1 53.1 73.5 50.4 38.9 77.9 60.2 50.4 61.1 63.7 60.5
ToAlign 74.3 72.5 62.8 64.6 76.1 50.4 62.8 73.5 59.3 50.6 54.9 54.0 63.0
DUA 79.6 71.7 67.3 61.9 75.2 76.1 55.8 78.6 75.2 54.8 69.9 70.8 69.7
DARE-GRAM 81.4 71.7 66.4 66.4 78.8 70.8 51.3 77.0 72.6 50.4 65.5 77.9 69.2
CoCo 76.5 70.3 68.8 68.3 80.2 72.8 55.3 77.6 75.3 59.5 68.1 79.2 71.0
MTDF 78.8 72.1 68.0 68.1 79.0 71.3 56.9 75.2 78.1 60.0 69.9 78.7 71.3

Ours 83.2 73.6 69.9 68.1 79.6 77.0 57.5 78.8 80.1 60.2 74.3 79.6 73.5

challenge of the UGDA task. (2) Semi-supervised methods,
such as InfoGraph, generally outperform better. However,
their relative underperformance in certain scenarios can be
attributed to a lack of specific mechanisms to handle domain
shifts. (3) UDA methods (e.g., DANN) exhibit superior per-
formance in unsupervised domain adaptation tasks (e.g.,
BM→ B). However, their effectiveness is sometimes dimin-
ished in graph data, especially when dealing with complex
datasets. (4) SLOGAN shows significant improvements
in dataset splitting and cross-dataset scenarios, standing
out, especially in cases where other methods falter. The
improvement in accuracy reaches up to 2.3% across these
datasets.

4.3. Scalability Analysis

As shown in Figure 4, SLOGAN shows superior efficiency
and performance. It shows SLOGAN’s potential for practi-
cal applications where computational resources are limited.

4.4. Visualization

We use t-SNE to visualize causal and spurious features, as
shown in Figure 5 and 6. We make the following observa-
tions: (1) Causal features are domain-agnostic. As shown in
Figure 5, spurious features exhibit a significant bifurcation,
aligning with either the source or the target domain. Con-

Source
Target

(a) Spurious feature

Source
Target

(b) Causal feature

Figure 5. Visualization of causal and spurious features distin-
guished by domains. Best viewed in color.

versely, causal features maintain a consistent distribution
across both domains, underscoring their domain-agnostic
nature. (2) Causal features are more aligned to semantic
labels. As shown in Figure 6, the causal features are signifi-
cantly partitioned according to positive and negative labels,
illustrating their critical role in label prediction.

4.5. Ablation Study

Table 5 presents our ablation study results on the NCI1
dataset, detailing the model’s performance without specific
components. We find that each component: Disentangle-
ment of causal and spurious features (Ldis), unbiased dis-
criminative learning using causal features (Lsup), invariant
learning under intervention (Linv). The absence of any one
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Table 5. The Ablation Study classification results (in %) on NCI1 (source→target). N0, N1, N2, and N3 are sub-datasets.
Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

Baseline 55.8 59.1 54.0 73.3 65.0 70.7 73.5 60.7 70.2 67.8 54.5 55.1 63.3
SLOGAN w/o Lsup 71.0 59.7 53.9 72.3 72.3 69.4 73.8 69.4 71.4 67.8 58.7 69.9 67.5
SLOGAN w/o Linv 70.4 61.2 63.1 71.4 72.3 70.9 75.3 71.8 72.3 74.9 59.8 70.4 69.5
SLOGAN w/o Ldis 71.1 63.7 61.3 73.5 73.8 71.4 75.3 72.3 71.4 71.6 59.3 70.0 69.6

Ours 71.4 64.1 63.1 71.8 72.3 72.8 76.7 72.5 73.3 76.3 61.7 70.9 70.6

Negative
Positive

(a) Spurious feature

Negative
Positive

(b) Causal feature

Figure 6. Visualization of causal and spurious features distin-
guished by labels. Best viewed in color.
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Figure 7. Sensitivity analysis on loss weight γ and η.

component leads to a decrease in accuracy, with the removal
of Ldis showing the most considerable impact, followed by
Lsup and Linv. This shows the critical role each plays in
the model’s overall effectiveness.

4.6. Sensitivity Analysis

We test loss weight γ and η, as shown in Figure 7.
We varied γ ∈ {0.003, 0.01, 0.03, 0.1, 0.3} and η ∈
{0.01, 0.03, 0.1, 0.3, 1}, indicate a marginal impact on the
accuracy across different datasets. The results show that
SLOGAN is robust to the hyper-parameters. The stability
across a broad range of weights suggests that while the Lsup
and Linv components are essential, their performances are
robust to weight variations. We set γ = 0.003 and η = 0.1
as the default value according to the experiments.

5. Related Works

Graph classification (Ma et al., 2023; Jiang et al., 2023;
Zhang et al., 2022) has emerged as fundamental task for
structured data analysis with applications spanning social
networks (Liu et al., 2021; Li et al., 2021), bioinformat-

ics (Borgwardt et al., 2005), and cheminformatic (Hansen
et al., 2015; Kojima et al., 2020; Gilmer et al., 2017). Mod-
ern GNNs employ message-passing mechanisms with hier-
archical pooling operations (Lee et al., 2019b; Wang et al.,
2024b) for graph classification.

Unsupervised domain adaptation (UDA) has become a piv-
otal approach for knowledge transfer from labeled source
data to unlabeled target domains (Shi et al., 2022; He et al.,
2022; Zhang et al., 2023; Pilancı & Vural, 2022), with ex-
tensive applications, e.g., in computer vision (Long et al.,
2018; Zou et al., 2018). The primary strategies in UDA in-
clude domain alignment (Yan et al., 2017; Lee et al., 2019a)
and self-learning (Wei et al., 2021a; Xiao & Zhang, 2021).
Self-learning methods, enhanced by semi-supervised learn-
ing techniques, aim to improve target domain performance
through methods like pseudo-labeling (Sohn et al., 2020).

Graph Domain Adaptation (GDA) (Ju et al., 2024) remains
under-explored compared to its Euclidean counterparts.
While node-level adaptation has seen initial progress (Wu
et al., 2020; Zhang et al., 2021), graph-level adaptation faces
unique challenges due to structural complexity and seman-
tic richness (Zeng et al., 2024; Yin et al., 2023; Luo et al.,
2024a). Existing approaches can be categorized into two
main streams: (1) Global alignment methods (Dai et al.,
2022; Shen et al., 2020) that directly minimize domain dis-
crepancy through adversarial learning, but risk discarding
crucial substructures while preserving spurious correlations;
(2) Self-training approaches (Wei et al., 2021a; Luo et al.,
2024b) that leverage pseudo-labels for target domain super-
vision, but suffer from error propagation and confirmation
bias. These methods often struggle with feature entangle-
ment between causal and spurious factors, leading to unsta-
ble adaptation performance. SLOGAN tackles these limita-
tions through a novel perspective of sparse causal discovery
and generative intervention.

Causal Discovery & Disentanglement provides theoreti-
cal foundation for stable representation learning (Arjovsky
et al., 2019; Zhao et al., 2023; Wang et al., 2024a) and
stable learning (Yu et al., 2023). Recent works in graph
learning (Chen et al., 2022; Yang et al., 2023; Cheng et al.,
2024) combine causal inference with graph neural architec-
tures, while disentanglement methods (Zhou et al., 2023)
aim to separate domain-invariant factors. Our work ad-
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vances this line by introducing sparse causal graphs and
generative interventions specifically designed for graph-
structured domain shifts. While IDEA (Wang et al., 2024a)
applies causal disentanglement to image retrieval, SLOGAN
uniquely addresses unsupervised graph domain adaptation
through sparse causal modeling and a generative interven-
tion based on cross-domain feature recombination.

6. Conclusion
This paper addresses causal-spurious feature entanglement
and global alignment collapse in unsupervised graph do-
main adaptation. Our sparse causal modeling framework
achieves stable knowledge transfer through innovations in
causal graph construction, generative intervention mecha-
nisms, and pseudo-label calibration. Extensive experiments
demonstrate superior performance, with theoretical analysis
proving our method’s target error bound inversely corre-
lates with causal feature retention. Future directions include
theoretically quantifying intervention impacts, extending
the framework to graph generation and temporal prediction,
and exploring source-free graph domain adaptation, which
has garnered increasing attention for its independence from
source domain data.

Impact Statement
This work advances unsupervised graph domain adaptation
by addressing causal-spurious feature entanglement and
alignment collapse through a novel sparse causal discovery
framework. Our approach enables reliable knowledge trans-
fer via causal graph construction, generative interventions,
and pseudo-label calibration. We provide theoretical guaran-
tees through target error bounds and demonstrate practical
applications in molecular property prediction, social net-
work analysis, and urban traffic modeling. By disentangling
causal mechanisms from spurious correlations, our method
enhances the reliability of graph learning systems in critical
domains such as healthcare and autonomous systems.

Acknowledgment
This paper is partially supported by grants from the Na-
tional Key Research and Development Program of China
with Grant No. 2023YFC3341203 and the National Nat-
ural Science Foundation of China (NSFC Grant Number
62276002).The authors are grateful to the anonymous re-
viewers for their efforts and insightful suggestions to im-
prove this article.

References
Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-

Paz, D. Invariant risk minimization. arXiv preprint

arXiv:1907.02893, 2019.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan,
S., Smola, A. J., and Kriegel, H.-P. Protein function
prediction via graph kernels. Bioinformatics, 2005.

Chen, Y., Zhang, Y., Yang, H., Ma, K., Xie, B., Liu, T.,
Han, B., and Cheng, J. Invariance principle meets out-
of-distribution generalization on graphs. arXiv preprint
arXiv:2202.05441, 2022.

Cheng, D., Li, J., Liu, L., Liu, J., and Le, T. D. Data-
driven causal effect estimation based on graphical causal
modelling: A survey. ACM Computing Surveys, 56(5):
1–37, 2024.

Chowdhury, J., Shivaraman, V., Sundaram, S., and Sujit,
P. Graph-based prediction and planning policy network
(gp3net) for scalable self-driving in dynamic environ-
ments using deep reinforcement learning. In Proc. of
Association for the Advancement of Artificial Intelligence
(AAAI), volume 38, pp. 11606–11614, 2024.

Dai, Q., Wu, X.-M., Xiao, J., Shen, X., and Wang, D. Graph
transfer learning via adversarial domain adaptation with
graph convolution. 2022.

Deng, W., Cui, Y., Liu, Z., Kuang, G., Hu, D., Pietikäinen,
M., and Liu, L. Informative class-conditioned feature
alignment for unsupervised domain adaptation. In Proc.
of ACM International Conference on Multimedia (MM),
2021.

Ding, M., Tang, J., and Zhang, J. Semi-supervised learning
on graphs with generative adversarial nets. 2018.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. Journal
of Machine Learning Research, 2016.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proc. of International Conference on Machine
Learning (ICML), 2017.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Proc. of Neural
Information Processing Systems (NeurIPS), 2017.

Hansen, K., Biegler, F., Ramakrishnan, R., Pronobis, W.,
Von Lilienfeld, O. A., Müller, K.-R., and Tkatchenko,
A. Machine learning predictions of molecular proper-
ties: Accurate many-body potentials and nonlocality in
chemical space. The journal of physical chemistry letters,
2015.

9



Sparse Causal Discovery with Generative Intervention for Unsupervised Graph Domain Adaptation

Hao, Z., Lu, C., Huang, Z., Wang, H., Hu, Z., Liu, Q., Chen,
E., and Lee, C. Asgn: An active semi-supervised graph
neural network for molecular property prediction. In Proc.
of ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD), 2020.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proc. of Computer Vision and Pattern Recog-
nition (CVPR), 2020.

He, T., Shen, L., Guo, Y., Ding, G., and Guo, Z. Secret:
Self-consistent pseudo label refinement for unsupervised
domain adaptive person re-identification. In Proc. of
Association for the Advancement of Artificial Intelligence
(AAAI), 2022.

Helma, C., King, R. D., Kramer, S., and Srinivasan, A. The
Predictive Toxicology Challenge 2000–2001 . Bioinfor-
matics, 2001.

Huang, K. and Zitnik, M. Graph meta learning via local sub-
graphs. Proc. of Neural Information Processing Systems
(NeurIPS), 2020.

Jiang, X., Qin, Z., Xu, J., and Ao, X. Incomplete graph
learning via attribute-structure decoupled variational auto-
encoder. In Proc. of ACM International Conference on
Web Search and Data Mining (WSDM), pp. 304–312.
2023.

Jiang, X., Qiu, R., Xu, Y., Zhang, W., Zhu, Y., Zhang, R.,
Fang, Y., Chu, X., Zhao, J., and Wang, Y. Ragraph: A gen-
eral retrieval-augmented graph learning framework. Proc.
of Neural Information Processing Systems (NeurIPS),
2024.

Ju, W., Yi, S., Wang, Y., Long, Q., Luo, J., Xiao, Z., and
Zhang, M. A survey of data-efficient graph learning.
In Proc. of International Joint Conference on Artificial
Intelligence (IJCAI), pp. 8104–8113, 2024.

Karim, N., Rizve, M. N., Rahnavard, N., Mian, A., and Shah,
M. Unicon: Combating label noise through uniform
selection and contrastive learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 9676–9686, 2022.

Kim, S., Lee, D., Kang, S., Lee, S., and Yu, H. Learning
topology-specific experts for molecular property predic-
tion. In Proc. of Association for the Advancement of
Artificial Intelligence (AAAI), 2023.

Kojima, R., Ishida, S., Ohta, M., Iwata, H., Honma, T., and
Okuno, Y. kgcn: a graph-based deep learning framework
for chemical structures. Journal of Cheminformatics,
2020.

Kumar, C., Ryan, R., and Shao, M. Adversary for social
good: Protecting familial privacy through joint adversar-
ial attacks. In Proc. of Association for the Advancement
of Artificial Intelligence (AAAI), volume 34, pp. 11304–
11311, 2020.

Lee, C.-Y., Batra, T., Baig, M. H., and Ulbricht, D. Sliced
wasserstein discrepancy for unsupervised domain adapta-
tion. In Proc. of Computer Vision and Pattern Recognition
(CVPR), 2019a.

Lee, J., Lee, I., and Kang, J. Self-attention graph pooling. In
Proc. of International Conference on Machine Learning
(ICML), 2019b.

Li, Y., Ji, Y., Li, S., He, S., Cao, Y., Liu, Y., Liu, H., Li, X.,
Shi, J., and Yang, Y. Relevance-aware anomalous users
detection in social network via graph neural network.
In International Joint Conference on Neural Networks
(IJCNN), 2021.

Lin, M., Li, W., Li, D., Chen, Y., Li, G., and Lu, S. Multi-
domain generalized graph meta learning. In Proc. of
Association for the Advancement of Artificial Intelligence
(AAAI), 2023.

Liu, Y., Zeng, K., Wang, H., Song, X., and Zhou, B. Content
matters: A gnn-based model combined with text seman-
tics for social network cascade prediction. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining.
Springer, 2021.

Long, M., Cao, Z., Wang, J., and Jordan, M. I. Condi-
tional adversarial domain adaptation. In Proc. of Neural
Information Processing Systems (NeurIPS), 2018.

Lu, B., Gan, X., Zhao, Z., Liang, S., Fu, L., Wang, X.,
and Zhou, C. Graph out-of-distribution generalization
with controllable data augmentation. arXiv preprint
arXiv:2308.08344, 2023.

Luo, J., Gu, Y., Luo, X., Ju, W., Xiao, Z., Zhao, Y., Yuan, J.,
and Zhang, M. Gala: Graph diffusion-based alignment
with jigsaw for source-free domain adaptation. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2024a.

Luo, J., Xiao, Z., Wang, Y., Luo, X., Yuan, J., Ju, W., Liu, L.,
and Zhang, M. Rank and align: towards effective source-
free graph domain adaptation. In Proc. of International
Joint Conference on Artificial Intelligence (IJCAI), pp.
4706–4714, 2024b.

Luo, J., Zhang, W., Yuan, Y., et al. Large language model
agent: A survey on methodology, applications and chal-
lenges. arXiv preprint arXiv:2503.21460, 2025.

10



Sparse Causal Discovery with Generative Intervention for Unsupervised Graph Domain Adaptation

Ma, X., Wu, J., Yang, J., and Sheng, Q. Z. Towards graph-
level anomaly detection via deep evolutionary mapping.
In Proc. of ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), 2023.

Mirza, M. J., Micorek, J., Possegger, H., and Bischof, H.
The norm must go on: Dynamic unsupervised domain
adaptation by normalization. In Proc. of Computer Vi-
sion and Pattern Recognition (CVPR), pp. 14765–14775,
2022.

Nejjar, I., Wang, Q., and Fink, O. Dare-gram: Unsuper-
vised domain adaptation regression by aligning inverse
gram matrices. In Proc. of Computer Vision and Pattern
Recognition (CVPR), pp. 11744–11754, 2023.

Pan, S., Wu, J., and Zhu, X. Cogboost: Boosting for fast
cost-sensitive graph classification. 2015.

Pilancı, M. and Vural, E. Domain adaptation on graphs by
learning aligned graph bases. 34(2):587–600, 2022.

Ranjan, E., Sanyal, S., and Talukdar, P. Asap: Adaptive
structure aware pooling for learning hierarchical graph
representations. In Proc. of Association for the Advance-
ment of Artificial Intelligence (AAAI), volume 34, pp.
5470–5477, 2020.

Riesen, K. and Bunke, H. Iam graph database repository
for graph based pattern recognition and machine learning.
In Proceedings of Structural, Syntactic, and Statistical
Pattern Recognition: Joint IAPR International Workshop,
pp. 287–297, 2008.

Rosenfeld, E. and Garg, S. (almost) provable error bounds
under distribution shift via disagreement discrepancy. Ad-
vances in Neural Information Processing Systems, 36:
28761–28784, 2023.

Saito, K., Watanabe, K., Ushiku, Y., and Harada, T. Max-
imum classifier discrepancy for unsupervised domain
adaptation. In Proc. of Computer Vision and Pattern
Recognition (CVPR), 2018.

Shen, X., Dai, Q., Chung, F.-l., Lu, W., and Choi, K.-S.
Adversarial deep network embedding for cross-network
node classification. In Proc. of Association for the Ad-
vancement of Artificial Intelligence (AAAI), 2020.

Shi, W., Zhu, R., and Li, S. Pairwise adversarial training
for unsupervised class-imbalanced domain adaptation.
In Proc. of ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), 2022.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H.,
Raffel, C. A., Cubuk, E. D., Kurakin, A., and Li, C.-L.
Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. In Proc. of Neural Informa-
tion Processing Systems (NeurIPS), 2020.

Sun, F.-Y., Hoffmann, J., Verma, V., and Tang, J. Info-
graph: Unsupervised and semi-supervised graph-level
representation learning via mutual information maximiza-
tion. In Proc. of International Conference on Learning
Representations (ICLR), 2020.

Suresh, S., Li, P., Hao, C., and Neville, J. Adversarial
graph augmentation to improve graph contrastive learn-
ing. In Proc. of Neural Information Processing Systems
(NeurIPS), 2021.

Tang, Y., Luo, J., Yang, L., Luo, X., Zhang, W., and Cui,
B. Multi-view teacher with curriculum data fusion for
robust unsupervised domain adaptation. In Proc. of IEEE
International Conference on Data Engineering (ICDE),
pp. 2598–2611, 2024.

Tarvainen, A. and Valpola, H. Mean teachers are better role
models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Proc. of Neural
Information Processing Systems (NeurIPS), 2017.

Turutov, S. and Radinsky, K. Molecular optimization model
with patentability constraint. In Proc. of Association
for the Advancement of Artificial Intelligence (AAAI),
volume 38, pp. 257–264, 2024.
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A. Algorithm
The overall algorithm of SLOGAN is summarized in Algorithm 1. We use the structural causal model to disentangle
causal factors and spurious factors, with the information bottleneck principle. For causal factors, we employ an unbiased
pseudo-labeling for discriminative learning on the target domain. For spurious factors, we utilize a generative model for
invariant learning to mitigate their influence.

Algorithm 1 Optimization Algorithm of SLOGAN

Input: Source dataset Dso; target dataset Dta;
Output: GNN-based classifier Φ(·);

1: Pre-train Φ(·) using Dso;
2: for epoch = 1, 2, · · · do
3: for each batch do
4: Sample mini-batch Bso and Bta from Dso and Dta;
5: Generate confident target graphs Cta;
6: Generate reconstruction samples;
7: Calculate the loss objective using;
8: Update parameters of Φ(·) by back-propagation;
9: end for

10: end for

B. Proof of Target Domain Error Bound
Theorem B.1. (Generalization Bound) Under a stable causal graph construction, assume the following conditions hold:
(1) Causal Sufficiency: I(Y ;Zc) > Ic, where Zc is the causal variable and Ic is an information contraint. (2) Spurious
Suppression: I(Y ;Zs) ≤ ϵ1, where Zs is the spurious variable. (3) Generative Intervention: E||Z −G(Zc, Zs)||22 ≤ ϵ2,
where G is the generation model. Then, for any predictor h ∈ H, with probability at least 1− δ, the target domain error
ϵT (h) is bounded as follows:

ϵT (h) ≤ ϵ̂S(h) + C
√
ϵ1 + L

√
ϵ2 + C(nS , δ), (20)

where L is the lipschitz constant of the loss function, C is a constant, and nS is the sample size in the source domain. Here,
ϵT (h) represents the error in the target domain, while ϵ̂S(h) denotes the emprical error in the source domain.

Proof : For any h ∈ H, the source and target domain errors are defined based on Z, along with its causal and spurious
components Zs and Zc, which can be stated as follows,

ϵS(h) = E(Z,Y )∼S [l(h(Z), Y )] , ϵ
′

S(h) = E(Z,Y )∼S [l(h(G(Z
s, Zc)), Y )] , (21)

ϵT (h) = E(Z,Y )∼T [l(h(Z), Y )] , ϵ
′

T (h) = E(Z,Y )∼T [l(h(G(Zs, Zc)), Y )] . (22)

Since the loss function l and the predictor h are assumed to be lipschitz continuous, the gap between ϵS(h) and ϵ
′

S(h) is
bounded as,

|ϵS(h)− ϵ
′

S(h)| ≤ E(Z,Y )∼S [|l(h(Z), Y )− l(h(G(Zs, Zc)), Y )|] ≤ LE(Z,Y )∼S ||Z −G(Zs, Zc)|| ≤ L
√
ϵ2, (23)

where the second inequality follows from the lipschitz continuity property, and the third follows from Jensen’s inequality.
Similarly, we have |ϵT (h)− ϵ

′

T (h)| ≤ L
√
ϵ2. Next, since I(Y ;Zs) ≤ ϵ1, the total variation distance between P(Y |Zs) and

P(Y |Z) satisfies:

EZs

[
TV 2(P(Y |Zs),P(Y ))

]
≤ 1

2
EZs [DKL(P(Y |Zs)|P(Y ))] =

1

2
I(Y ;Zs) ≤ 1

2
ϵ1. (24)

Here, the inequality follows from Pinsker’s inequality, implying that the dependency of Y on Zs is suppressed to O(
√
ϵ1).

Under the causal sufficiency condition I(Y ;Zc) > Ic, the variable Zc is informative for predicting Y . Assuming the causal
mechanism is stable across the source and target domains, the prediction based on Zc remains consistent. Hence, the primary
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Table 6. Statistics of the datasets.
Datasets Graphs Avg. Nodes Avg. Edges

PTC

PTC_FM 349 14.11 14.48
PTC_FR 351 14.56 15.00

PTC_MM 336 13.97 14.32
PTC_MR 344 14.29 14.69

NCI1 4110 29.87 32.30

TWITTER-Real-Graph-Partial 144033 4.03 4.98

Letter-Med 2250 4.67 3.21

discrepancy between source and target domain errors arises due to Zs, leading to, |ϵ′S(h)− ϵ
′

T (h)| ≤ C
√
ϵ1. Combining

this with inequality (equation 23), we obtain,

ϵT (h) ≤ ϵ
′

T (h) + L
√
ϵ2 ≤ ϵ

′

S(h) + C
√
ϵ1 + L

√
ϵ2 ≤ ϵS(h) + C

√
ϵ1 + 2L

√
ϵ2. (25)

Following the proof in (Rosenfeld & Garg, 2023), we can derive the statistical generalization bound, that is, with probability
at least 1− δ, the source domain error satisfies:

ϵS(h) ≤ ϵ̂S(h) +

√
log(1/δ)

2nS
(26)

Thus, we conclude that the target domain error ϵT (h) is bounded as ϵT (h) ≤ ϵ̂S(h) + C
√
ϵ1 + L

√
ϵ2 + C(nS , δ).

C. Extra Experimental Details
C.1. Extra Dataset Details

Our study uses a diverse set of real-world datasets, encompassing areas from cheminformatics to social networks, to
assess our unsupervised graph domain adaptation method. We employ both dataset division and cross-dataset strategies for
validation. Below is information on these datasets, and statistics of the datasets are shown in table 6:

• Cross-dataset scenarios, which include PTC (Helma et al., 2001). The datasets are inherently unbiased across sub-
datasets. We utilize their original splits as defined, ensuring a stringent test of our model’s adaptability across different
domains. This setup aims to validate our approach’s effectiveness in handling variations inherent in separate datasets,
each representing unique challenges regarding chemical structures or biological attributes.

• Dataset-split scenarios, which contain NCI1 (Wale & Karypis, 2006), TWITTER-Real-Graph-Partial (Pan et al., 2015)
and Letter-Med (Riesen & Bunke, 2008) datasets. We follow previous works (Ding et al., 2018; Yin et al., 2022; Lu
et al., 2023) to split the dataset by graph density, using their diverse nature to evaluate our domain adaptation capability.
The datasets are divided into four subsets (e.g., T0, T1, T2, and T3 for TWITTER-Real-Graph-Partial), organized by
increasing levels of graph density. The split according to density introduces domain shifts, providing a framework for
evaluating the effectiveness of our domain adaptation method.

Below is information on these datasets, and statistics of the datasets are shown in table 6:

• Predicative Toxicology Challenge (PTC) (Helma et al., 2001): Comprising chemicals for toxicology prediction, the
PTC dataset contains compounds classified for carcinogenic potential in rodents. We categorize it into four groups:
PTC_FM (female mice), PTC_FR (female rats), PTC_MM (male mice), and PTC_MR (male rats), each reflecting
different domains based on the rodent’s gender and species.
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• NCI1 (Wale & Karypis, 2006): Central to cheminformatics, the NCI1 dataset represents chemical compounds used in
anti-cancer activity screening, especially for lung cancer. Graphs in NCI1 symbolize compounds, where nodes are
atoms, edges are chemical bonds, and node attributes indicate atom types through one-hot encoding. Based on edge
density variation, we divide NCI1 into four subsets, N0, N1, N2, and N3.

• TWITTER-Real-Graph-Partial (Pan et al., 2015): This dataset derives from Twitter for sentiment analysis, consisting
of tweet-representative graphs. Here, nodes represent terms and emoticons, and edges signify their co-occurrence. We
partition this dataset into T0, T1, T2, and T3, categorizing by edge density.

• Letter-Med (Riesen & Bunke, 2008): A collection of images comprising handwritten letters and medical documents.
In these images, nodes represent the endpoints of strokes, while edges correspond to the lines connecting them. The
letters exhibit significant distortion, which introduces complexity to recognition. This dataset is primarily utilized for
optical character recognition and handwriting recognition tasks within the medical domain.

C.2. Extra Baseline Details

In our study, we compare SLOGAN with an extensive selection of state-of-the-art baselines, spanning a wide array of
strategies within the domain:

• GIN (Xu et al., 2018): GIN refines the Weisfeiler-Lehman graph isomorphism test to improve capture ability for
complex graph topologies.

• GCN (Welling & Kipf, 2016): GCN leverages a simplified spectral graph convolution technique to merge node features.

• GAT (Veličković et al., 2018): GAT applies attention mechanisms to fostering a dynamic and locality-sensitive graph
learning.

• GraphSAGE (Hamilton et al., 2017): GraphSAGE innovatively samples and aggregates neighborhood features,
effectively adapting unseen nodes post-training.

• Mean-Teacher (Tarvainen & Valpola, 2017): Employing a student-teacher paradigm, this technique refines semi-
supervised learning through prediction consistency, leveraging an ensemble of student models as the teacher.

• InfoGraph (Sun et al., 2020): Aiming to maximize mutual information across graph levels, InfoGraph generates potent
graph representations under semi-supervised scheme.

• DANN (Ganin et al., 2016): DANN cultivates features that are relevant to the source task yet domain-agnostic,
incorporating a gradient reversal layer to align domain distributions.

• ToAlign (Wei et al., 2021b): ToAlign applies task-oriented priors for a structured feature decomposition and alignment,
bridging source and target domain disparities with finesse.

• DUA (Mirza et al., 2022): DUA leverages batch norm statistics to online test-time target data adaptation.

• DARE-GRAM (Nejjar et al., 2023): DARE-GRAM proposes to achieve cross-domain alignment with the inverse Gram
matrix instead of the original feature.

• CoCo (Yin et al., 2023): CoCo contrast representation from different branch to improve the topology mining in the
target domain, which is the latest state-of-the-art method in unspervised graph domain adaptation.
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